|
| 1 | +# Filter observations |
| 2 | + |
| 3 | +## Introduction |
| 4 | + |
| 5 | +In this section, the Datasets' APIs for filtering observations are discussed. We provides information about |
| 6 | +three main ways to filter observations based on some conditions, 1) using the `byrow` function, 2) using the `mask` function, 3) and using Julia broadcasting. |
| 7 | + |
| 8 | +## `byrow` |
| 9 | + |
| 10 | +`byrow` has been discussed previously in details. However, in this section we are going to use it for |
| 11 | +filtering observations. To use `byrow(ds, fun, cols, ...)` for filtering observations, the `fun` argument should |
| 12 | +be set as `all` or `any`, and supply the conditions by using the `by` keyword option. The supplied `by` will be checked for each observation in all selected columns. The function returns a boolean vector where its `j`th elements will be equivalent to the result of `all(by, [col1[j], col2[j], ...])` or `any(by, [col1[j], col2[j], ...])` when `all` or `any` is set as the `fun` argument, respectively. |
| 13 | + |
| 14 | +The main feature of `byrow(ds, fun, cols, by = ...)` when `fun` is `all/any` is that the `by` keyword argument can be a vector of functions. Thus, when a multiple columns are supplied as `cols` each column can have its own `by`. |
| 15 | + |
| 16 | +### Examples |
| 17 | + |
| 18 | +The first expression creates a data set, and in the second one we use `byrow` to filter `all` rows which the values of all columns are equal to 1. |
| 19 | + |
| 20 | +```jldoctest |
| 21 | +julia> ds = Dataset(x1 = 1, x2 = 1:10, x3 = repeat(1:2, 5)) |
| 22 | +10×3 Dataset |
| 23 | + Row │ x1 x2 x3 |
| 24 | + │ identity identity identity |
| 25 | + │ Int64? Int64? Int64? |
| 26 | +─────┼────────────────────────────── |
| 27 | + 1 │ 1 1 1 |
| 28 | + 2 │ 1 2 2 |
| 29 | + 3 │ 1 3 1 |
| 30 | + 4 │ 1 4 2 |
| 31 | + 5 │ 1 5 1 |
| 32 | + 6 │ 1 6 2 |
| 33 | + 7 │ 1 7 1 |
| 34 | + 8 │ 1 8 2 |
| 35 | + 9 │ 1 9 1 |
| 36 | + 10 │ 1 10 2 |
| 37 | +
|
| 38 | +julia> byrow(ds, all, :, by = isequal(1)) |
| 39 | +10-element Vector{Bool}: |
| 40 | +1 |
| 41 | +0 |
| 42 | +0 |
| 43 | +0 |
| 44 | +0 |
| 45 | +0 |
| 46 | +0 |
| 47 | +0 |
| 48 | +0 |
| 49 | +0 |
| 50 | +``` |
| 51 | + |
| 52 | +Note that only the first row is meeting the condition. As another example, let's see the code which |
| 53 | +filter all rows which the numbers in all columns are odd. |
| 54 | + |
| 55 | +```jldoctest |
| 56 | +julia> _tmp = byrow(ds, all, :, by = isodd) |
| 57 | +10-element Vector{Bool}: |
| 58 | + 1 |
| 59 | + 0 |
| 60 | + 1 |
| 61 | + 0 |
| 62 | + 1 |
| 63 | + 0 |
| 64 | + 1 |
| 65 | + 0 |
| 66 | + 1 |
| 67 | + 0 |
| 68 | +
|
| 69 | +julia> ds[_tmp, :] |
| 70 | + 5×3 Dataset |
| 71 | + Row │ x1 x2 x3 |
| 72 | + │ identity identity identity |
| 73 | + │ Int64? Int64? Int64? |
| 74 | + ─────┼────────────────────────────── |
| 75 | + 1 │ 1 1 1 |
| 76 | + 2 │ 1 3 1 |
| 77 | + 3 │ 1 5 1 |
| 78 | + 4 │ 1 7 1 |
| 79 | + 5 │ 1 9 1 |
| 80 | +``` |
| 81 | + |
| 82 | +In the next example we are going to filter all rows which the value of any of column is greater than 5. |
| 83 | + |
| 84 | +```jldoctest |
| 85 | +julia> byrow(ds, any, :, by = >(5)) |
| 86 | +10-element Vector{Bool}: |
| 87 | + 0 |
| 88 | + 0 |
| 89 | + 0 |
| 90 | + 0 |
| 91 | + 0 |
| 92 | + 1 |
| 93 | + 1 |
| 94 | + 1 |
| 95 | + 1 |
| 96 | + 1 |
| 97 | +``` |
| 98 | + |
| 99 | +The next example shows how a vector of functions can be supplied: |
| 100 | + |
| 101 | +```jldoctest |
| 102 | +julia> byrow(ds, all, 2:3, by = [>(5), isodd]) |
| 103 | +10-element Vector{Bool}: |
| 104 | + 0 |
| 105 | + 0 |
| 106 | + 0 |
| 107 | + 0 |
| 108 | + 0 |
| 109 | + 0 |
| 110 | + 1 |
| 111 | + 0 |
| 112 | + 1 |
| 113 | + 0 |
| 114 | +``` |
| 115 | + |
| 116 | +We can use the combination of `modify!/modify` and `byrow` to filter observations based on all values in a column, e.g. in the following example we filter all rows which `:x2` and `:x3` are larger than their means: |
| 117 | + |
| 118 | +```jldoctest |
| 119 | +julia> modify!(ds, 2:3 .=> (x -> x .> mean(x)) .=> [:_tmp1, :_tmp2]) |
| 120 | +10×5 Dataset |
| 121 | + Row │ x1 x2 x3 _tmp1 _tmp2 |
| 122 | + │ identity identity identity identity identity |
| 123 | + │ Int64? Int64? Int64? Bool? Bool? |
| 124 | +─────┼────────────────────────────────────────────────── |
| 125 | + 1 │ 1 1 1 false false |
| 126 | + 2 │ 1 2 2 false true |
| 127 | + 3 │ 1 3 1 false false |
| 128 | + 4 │ 1 4 2 false true |
| 129 | + 5 │ 1 5 1 false false |
| 130 | + 6 │ 1 6 2 true true |
| 131 | + 7 │ 1 7 1 true false |
| 132 | + 8 │ 1 8 2 true true |
| 133 | + 9 │ 1 9 1 true false |
| 134 | + 10 │ 1 10 2 true true |
| 135 | +
|
| 136 | +julia> _tmp = byrow(ds, all, r"_tm") |
| 137 | +10-element Vector{Bool}: |
| 138 | +0 |
| 139 | +0 |
| 140 | +0 |
| 141 | +0 |
| 142 | +0 |
| 143 | +1 |
| 144 | +0 |
| 145 | +1 |
| 146 | +0 |
| 147 | +1 |
| 148 | +
|
| 149 | +julia> ds[_tmp, :] |
| 150 | +3×5 Dataset |
| 151 | +Row │ x1 x2 x3 _tmp1 _tmp2 |
| 152 | + │ identity identity identity identity identity |
| 153 | + │ Int64? Int64? Int64? Bool? Bool? |
| 154 | +────┼────────────────────────────────────────────────── |
| 155 | + 1 │ 1 6 2 true true |
| 156 | + 2 │ 1 8 2 true true |
| 157 | + 3 │ 1 10 2 true true |
| 158 | +``` |
| 159 | + |
| 160 | +> Note that to drop the temporary columns we can use the `select!` function. |
| 161 | +
|
| 162 | +## `mask` |
| 163 | + |
| 164 | +`mask` is a function which calls a function (or a vector of functions) on all observations of a set of selected columns. The syntax for `mask` is very similar to `map` function: |
| 165 | + |
| 166 | +> `mask(ds, funs, cols, [mapformats = true, missings = false, threads = true])` |
| 167 | +
|
| 168 | +however, unlike `map`, the function doesn't return the whole modified dataset, it returns a boolean data set with the same number of rows as `ds` and the same number of columns as the length of `cols`, while `fun` has been called on each observation. The return value of `fun` must be `true`, `false`, or `missing`. The combination of `mask` and `byrow` can be used to filter observations. |
| 169 | + |
| 170 | + Compared to `byrow`, the `mask` function has some useful features which are handy in some scenarios: |
| 171 | + |
| 172 | +* `mask` returns a boolean data set which shows exactly which observation will be selected when `fun` is called on it. |
| 173 | +* By default, the `mask` function filters observations based on their formatted values. However, this can be changed by setting `mapformats = false`. |
| 174 | +* By default, the `mask` function will treat the missing values as `false`, however, this behaviour can be modified by using the keyword option `missings`. This option can be set as `true`, `false`(default value), or `missing`. |
| 175 | + |
| 176 | +### Examples |
| 177 | + |
| 178 | +```jldoctest |
| 179 | +julia> ds = Dataset(x1 = repeat(1:2, 5), x2 = 1:10, x3 = repeat([missing, 2], 5)) |
| 180 | +10×3 Dataset |
| 181 | + Row │ x1 x2 x3 |
| 182 | + │ identity identity identity |
| 183 | + │ Int64? Int64? Int64? |
| 184 | +─────┼────────────────────────────── |
| 185 | + 1 │ 1 1 missing |
| 186 | + 2 │ 2 2 2 |
| 187 | + 3 │ 1 3 missing |
| 188 | + 4 │ 2 4 2 |
| 189 | + 5 │ 1 5 missing |
| 190 | + 6 │ 2 6 2 |
| 191 | + 7 │ 1 7 missing |
| 192 | + 8 │ 2 8 2 |
| 193 | + 9 │ 1 9 missing |
| 194 | + 10 │ 2 10 2 |
| 195 | +
|
| 196 | +julia> setformat!(ds, 2 => isodd) |
| 197 | +10×3 Dataset |
| 198 | +Row │ x1 x2 x3 |
| 199 | + │ identity isodd identity |
| 200 | + │ Int64? Int64? Int64? |
| 201 | +────┼──────────────────────────── |
| 202 | + 1 │ 1 true missing |
| 203 | + 2 │ 2 false 2 |
| 204 | + 3 │ 1 true missing |
| 205 | + 4 │ 2 false 2 |
| 206 | + 5 │ 1 true missing |
| 207 | + 6 │ 2 false 2 |
| 208 | + 7 │ 1 true missing |
| 209 | + 8 │ 2 false 2 |
| 210 | + 9 │ 1 true missing |
| 211 | + 10 │ 2 false 2 |
| 212 | +
|
| 213 | +julia> mask(ds, isequal(1), :) # simple use case |
| 214 | +10×3 Dataset |
| 215 | + Row │ x1 x2 x3 |
| 216 | + │ identity identity identity |
| 217 | + │ Bool? Bool? Bool? |
| 218 | +─────┼────────────────────────────── |
| 219 | + 1 │ true true false |
| 220 | + 2 │ false false false |
| 221 | + 3 │ true true false |
| 222 | + 4 │ false false false |
| 223 | + 5 │ true true false |
| 224 | + 6 │ false false false |
| 225 | + 7 │ true true false |
| 226 | + 8 │ false false false |
| 227 | + 9 │ true true false |
| 228 | + 10 │ false false false |
| 229 | +
|
| 230 | +julia> _tmp = mask(ds, isequal(1), :, mapformats = false) # use the actual values instead of formatted values |
| 231 | +10×3 Dataset |
| 232 | +Row │ x1 x2 x3 |
| 233 | + │ identity identity identity |
| 234 | + │ Bool? Bool? Bool? |
| 235 | +────┼────────────────────────────── |
| 236 | + 1 │ true true false |
| 237 | + 2 │ false false false |
| 238 | + 3 │ true false false |
| 239 | + 4 │ false false false |
| 240 | + 5 │ true false false |
| 241 | + 6 │ false false false |
| 242 | + 7 │ true false false |
| 243 | + 8 │ false false false |
| 244 | + 9 │ true false false |
| 245 | + 10 │ false false false |
| 246 | +
|
| 247 | +julia> ds[byrow(_tmp, any, :), :] # use the result of previous run |
| 248 | +5×3 Dataset |
| 249 | + Row │ x1 x2 x3 |
| 250 | + │ identity isodd identity |
| 251 | + │ Int64? Int64? Int64? |
| 252 | +─────┼──────────────────────────── |
| 253 | + 1 │ 1 true missing |
| 254 | + 2 │ 1 true missing |
| 255 | + 3 │ 1 true missing |
| 256 | + 4 │ 1 true missing |
| 257 | + 5 │ 1 true missing |
| 258 | +
|
| 259 | +julia> mask(ds, [isodd, ==(2)], 2:3, missings = missing) # using a vector of functions and setting missings option |
| 260 | +10×2 Dataset |
| 261 | + Row │ x2 x3 |
| 262 | + │ identity identity |
| 263 | + │ Bool? Bool? |
| 264 | +─────┼──────────────────── |
| 265 | + 1 │ true missing |
| 266 | + 2 │ false true |
| 267 | + 3 │ true missing |
| 268 | + 4 │ false true |
| 269 | + 5 │ true missing |
| 270 | + 6 │ false true |
| 271 | + 7 │ true missing |
| 272 | + 8 │ false true |
| 273 | + 9 │ true missing |
| 274 | + 10 │ false true |
| 275 | +``` |
| 276 | + |
| 277 | +## Julia broadcasting |
| 278 | + |
| 279 | +For simple use case (e.g. when working on a single column) we can use broadcasting directly. For example if we are interested on rows which the first column is greater than 5 we can directly use (assume the data set is called `ds`): |
| 280 | + |
| 281 | +> `ds[ds[!, 1] .> 1, :]` |
| 282 | +
|
| 283 | +or use the column names. |
| 284 | + |
| 285 | +### Examples |
| 286 | + |
| 287 | +In the following examples we use `.` for broadcasting, and its important to include it in your code when you are going to use this option for filtering observations. |
| 288 | + |
| 289 | +```jldoctest |
| 290 | +julia> ds = Dataset(x1 = repeat(1:2, 5), x2 = 1:10, x3 = repeat([missing, 2], 5)) |
| 291 | +10×3 Dataset |
| 292 | + Row │ x1 x2 x3 |
| 293 | + │ identity identity identity |
| 294 | + │ Int64? Int64? Int64? |
| 295 | +─────┼────────────────────────────── |
| 296 | + 1 │ 1 1 missing |
| 297 | + 2 │ 2 2 2 |
| 298 | + 3 │ 1 3 missing |
| 299 | + 4 │ 2 4 2 |
| 300 | + 5 │ 1 5 missing |
| 301 | + 6 │ 2 6 2 |
| 302 | + 7 │ 1 7 missing |
| 303 | + 8 │ 2 8 2 |
| 304 | + 9 │ 1 9 missing |
| 305 | + 10 │ 2 10 2 |
| 306 | +
|
| 307 | +julia> ds[ds.x1 .== 2, :] |
| 308 | +5×3 Dataset |
| 309 | +Row │ x1 x2 x3 |
| 310 | + │ identity identity identity |
| 311 | + │ Int64? Int64? Int64? |
| 312 | +────┼────────────────────────────── |
| 313 | + 1 │ 2 2 2 |
| 314 | + 2 │ 2 4 2 |
| 315 | + 3 │ 2 6 2 |
| 316 | + 4 │ 2 8 2 |
| 317 | + 5 │ 2 10 2 |
| 318 | +
|
| 319 | +julia> ds[(ds.x1 .== 1) .& (ds.x2 .> 5), :] |
| 320 | +2×3 Dataset |
| 321 | +Row │ x1 x2 x3 |
| 322 | + │ identity identity identity |
| 323 | + │ Int64? Int64? Int64? |
| 324 | +────┼────────────────────────────── |
| 325 | + 1 │ 1 7 missing |
| 326 | + 2 │ 1 9 missing |
| 327 | +``` |
0 commit comments