@@ -32,86 +32,102 @@ def test_imblearn_classification_scorers():
3232
3333 # sensitivity scorer
3434 scorer = make_scorer (sensitivity_score , pos_label = None , average = 'macro' )
35- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
35+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
36+ scoring = scorer )
3637 grid .fit (X_train , y_train ).predict (X_test )
3738 assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
3839
3940 scorer = make_scorer (sensitivity_score , pos_label = None , average = 'weighted' )
40- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
41+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
42+ scoring = scorer )
4143 grid .fit (X_train , y_train ).predict (X_test )
4244 assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
4345
4446 scorer = make_scorer (sensitivity_score , pos_label = None , average = 'micro' )
45- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
47+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
48+ scoring = scorer )
4649 grid .fit (X_train , y_train ).predict (X_test )
4750 assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
4851
4952 scorer = make_scorer (sensitivity_score , pos_label = 1 )
50- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
53+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
54+ scoring = scorer )
5155 grid .fit (X_train , y_train ).predict (X_test )
5256 assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
5357
5458 # specificity scorer
5559 scorer = make_scorer (specificity_score , pos_label = None , average = 'macro' )
56- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
60+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
61+ scoring = scorer )
5762 grid .fit (X_train , y_train ).predict (X_test )
5863 assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
5964
6065 scorer = make_scorer (specificity_score , pos_label = None , average = 'weighted' )
61- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
66+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
67+ scoring = scorer )
6268 grid .fit (X_train , y_train ).predict (X_test )
6369 assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
6470
6571 scorer = make_scorer (specificity_score , pos_label = None , average = 'micro' )
66- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
72+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
73+ scoring = scorer )
6774 grid .fit (X_train , y_train ).predict (X_test )
6875 assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
6976
7077 scorer = make_scorer (specificity_score , pos_label = 1 )
71- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
78+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
79+ scoring = scorer )
7280 grid .fit (X_train , y_train ).predict (X_test )
7381 assert_allclose (grid .best_score_ , 0.95 , rtol = R_TOL )
7482
7583 # geometric_mean scorer
7684 scorer = make_scorer (geometric_mean_score , pos_label = None , average = 'macro' )
77- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
85+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
86+ scoring = scorer )
7887 grid .fit (X_train , y_train ).predict (X_test )
7988 assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
8089
8190 scorer = make_scorer (
8291 geometric_mean_score , pos_label = None , average = 'weighted' )
83- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
92+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
93+ scoring = scorer )
8494 grid .fit (X_train , y_train ).predict (X_test )
8595 assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
8696
8797 scorer = make_scorer (geometric_mean_score , pos_label = None , average = 'micro' )
88- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
98+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
99+ scoring = scorer )
89100 grid .fit (X_train , y_train ).predict (X_test )
90101 assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
91102
92103 scorer = make_scorer (geometric_mean_score , pos_label = 1 )
93- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
104+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
105+ scoring = scorer )
94106 grid .fit (X_train , y_train ).predict (X_test )
95107 assert_allclose (grid .best_score_ , 0.92 , rtol = R_TOL )
96108
97109 # make a iba metric before a scorer
98110 geo_mean_iba = make_index_balanced_accuracy ()(geometric_mean_score )
99111 scorer = make_scorer (geo_mean_iba , pos_label = None , average = 'macro' )
100- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
112+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
113+ scoring = scorer )
101114 grid .fit (X_train , y_train ).predict (X_test )
102115 assert_allclose (grid .best_score_ , 0.85 , rtol = R_TOL )
103116
104117 scorer = make_scorer (geo_mean_iba , pos_label = None , average = 'weighted' )
105- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
118+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
119+ scoring = scorer )
106120 grid .fit (X_train , y_train ).predict (X_test )
107121 assert_allclose (grid .best_score_ , 0.85 , rtol = R_TOL )
108122
109123 scorer = make_scorer (geo_mean_iba , pos_label = None , average = 'micro' )
110- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
124+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
125+ scoring = scorer )
111126 grid .fit (X_train , y_train ).predict (X_test )
112127 assert_allclose (grid .best_score_ , 0.85 , rtol = R_TOL )
113128
114129 scorer = make_scorer (geo_mean_iba , pos_label = 1 )
115- grid = GridSearchCV (LinearSVC (), param_grid = {'C' : [1 , 10 ]}, scoring = scorer )
130+ grid = GridSearchCV (LinearSVC (random_state = 0 ), param_grid = {'C' : [1 , 10 ]},
131+ scoring = scorer )
116132 grid .fit (X_train , y_train ).predict (X_test )
117133 assert_allclose (grid .best_score_ , 0.84 , rtol = R_TOL )
0 commit comments