@@ -66,22 +66,6 @@ class BalancedRandomForestClassifier(RandomForestClassifier):
6666 "gini" for the Gini impurity and "entropy" for the information gain.
6767 Note: this parameter is tree-specific.
6868
69- max_features : int, float, string or None, optional (default="auto")
70- The number of features to consider when looking for the best split:
71-
72- - If int, then consider `max_features` features at each split.
73- - If float, then `max_features` is a percentage and
74- `int(max_features * n_features)` features are considered at each
75- split.
76- - If "auto", then `max_features=sqrt(n_features)`.
77- - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto").
78- - If "log2", then `max_features=log2(n_features)`.
79- - If None, then `max_features=n_features`.
80-
81- Note: the search for a split does not stop until at least one
82- valid partition of the node samples is found, even if it requires to
83- effectively inspect more than ``max_features`` features.
84-
8569 max_depth : integer or None, optional (default=None)
8670 The maximum depth of the tree. If None, then nodes are expanded until
8771 all leaves are pure or until all leaves contain less than
@@ -108,10 +92,21 @@ class BalancedRandomForestClassifier(RandomForestClassifier):
10892 the input samples) required to be at a leaf node. Samples have
10993 equal weight when sample_weight is not provided.
11094
111- .. deprecated:: 0.20
112- The parameter ``min_weight_fraction_leaf`` is deprecated in version
113- 0.20. Its implementation, like ``min_samples_leaf``, is ineffective
114- for regularization.
95+ max_features : int, float, string or None, optional (default="auto")
96+ The number of features to consider when looking for the best split:
97+
98+ - If int, then consider `max_features` features at each split.
99+ - If float, then `max_features` is a percentage and
100+ `int(max_features * n_features)` features are considered at each
101+ split.
102+ - If "auto", then `max_features=sqrt(n_features)`.
103+ - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto").
104+ - If "log2", then `max_features=log2(n_features)`.
105+ - If None, then `max_features=n_features`.
106+
107+ Note: the search for a split does not stop until at least one
108+ valid partition of the node samples is found, even if it requires to
109+ effectively inspect more than ``max_features`` features.
115110
116111 max_leaf_nodes : int or None, optional (default=None)
117112 Grow trees with ``max_leaf_nodes`` in best-first fashion.
@@ -239,10 +234,10 @@ class labels (multi-output problem).
239234 >>> clf.fit(X, y) # doctest: +ELLIPSIS
240235 BalancedRandomForestClassifier(...)
241236 >>> print(clf.feature_importances_)
242- [ 0.21521153 0.01054557 0.00689419 0.17404434 0.00414734 0.00704686
243- 0.19761999 0.01865445 0.00608294 0.00490484 0.00866699 0.0046718
244- 0.00359038 0.01168016 0.09392572 0.04978297 0.0033278 0.01008566
245- 0.15534173 0.01377474 ]
237+ [ 0.21506735 0.0104961 0.00706549 0.17414694 0.00556422 0.00704686
238+ 0.19779549 0.01865445 0.00608294 0.00490484 0.00866699 0.00251414
239+ 0.00339721 0.01174379 0.09380596 0.05049964 0.0033278 0.01008566
240+ 0.15534173 0.01379241 ]
246241 >>> print(clf.predict([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
247242 ... 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]))
248243 [1]
@@ -253,8 +248,8 @@ def __init__(self,
253248 criterion = "gini" ,
254249 max_depth = None ,
255250 min_samples_split = 2 ,
256- min_samples_leaf = 'deprecated' ,
257- min_weight_fraction_leaf = 'deprecated' ,
251+ min_samples_leaf = 2 ,
252+ min_weight_fraction_leaf = 0. ,
258253 max_features = "auto" ,
259254 max_leaf_nodes = None ,
260255 min_impurity_decrease = 0. ,
0 commit comments