|
95 | 95 | "name": "stdout", |
96 | 96 | "output_type": "stream", |
97 | 97 | "text": [ |
98 | | - "\u001b[32m19:22:36\u001b[0m \u001b[35msam.partee-NW9MQX5Y74\u001b[0m \u001b[34mredisvl.cli.index[21909]\u001b[0m \u001b[1;30mINFO\u001b[0m Indices:\n", |
99 | | - "\u001b[32m19:22:36\u001b[0m \u001b[35msam.partee-NW9MQX5Y74\u001b[0m \u001b[34mredisvl.cli.index[21909]\u001b[0m \u001b[1;30mINFO\u001b[0m 1. user_index\n" |
| 98 | + "\u001b[32m14:57:05\u001b[0m \u001b[34m[RedisVL]\u001b[0m \u001b[1;30mINFO\u001b[0m Indices:\n", |
| 99 | + "\u001b[32m14:57:05\u001b[0m \u001b[34m[RedisVL]\u001b[0m \u001b[1;30mINFO\u001b[0m 1. user_index\n" |
100 | 100 | ] |
101 | 101 | } |
102 | 102 | ], |
|
142 | 142 | { |
143 | 143 | "data": { |
144 | 144 | "text/html": [ |
145 | | - "<table><tr><th>vector_distance</th><th>user</th><th>credit_score</th><th>age</th><th>job</th><th>office_location</th></tr><tr><td>0</td><td>john</td><td>high</td><td>18</td><td>engineer</td><td>-122.4194,37.7749</td></tr><tr><td>0.109129190445</td><td>tyler</td><td>high</td><td>100</td><td>engineer</td><td>-122.0839,37.3861</td></tr><tr><td>0.158809006214</td><td>tim</td><td>high</td><td>12</td><td>dermatologist</td><td>-122.0839,37.3861</td></tr><tr><td>0.266666650772</td><td>nancy</td><td>high</td><td>94</td><td>doctor</td><td>-122.4194,37.7749</td></tr></table>" |
| 145 | + "<table><tr><th>id</th><th>vector_distance</th><th>user</th><th>credit_score</th><th>age</th><th>job</th><th>office_location</th></tr><tr><td>v1:b1e376e6003844c8a33b3c953a249948</td><td>0</td><td>john</td><td>high</td><td>18</td><td>engineer</td><td>-122.4194,37.7749</td></tr><tr><td>v1:4f5a69e97b2a4017998bd30fb23e3339</td><td>0.109129190445</td><td>tyler</td><td>high</td><td>100</td><td>engineer</td><td>-122.0839,37.3861</td></tr><tr><td>v1:f94d6b668b6b4f00851ffb0a9d497c53</td><td>0.158809006214</td><td>tim</td><td>high</td><td>12</td><td>dermatologist</td><td>-122.0839,37.3861</td></tr><tr><td>v1:e9f9b5fe5e47414986139bd61ee60920</td><td>0.266666650772</td><td>nancy</td><td>high</td><td>94</td><td>doctor</td><td>-122.4194,37.7749</td></tr></table>" |
146 | 146 | ], |
147 | 147 | "text/plain": [ |
148 | 148 | "<IPython.core.display.HTML object>" |
|
184 | 184 | { |
185 | 185 | "data": { |
186 | 186 | "text/html": [ |
187 | | - "<table><tr><th>vector_distance</th><th>user</th><th>credit_score</th><th>age</th><th>job</th><th>office_location</th></tr><tr><td>0</td><td>john</td><td>high</td><td>18</td><td>engineer</td><td>-122.4194,37.7749</td></tr><tr><td>0.109129190445</td><td>tyler</td><td>high</td><td>100</td><td>engineer</td><td>-122.0839,37.3861</td></tr><tr><td>0.266666650772</td><td>nancy</td><td>high</td><td>94</td><td>doctor</td><td>-122.4194,37.7749</td></tr><tr><td>0.653301358223</td><td>joe</td><td>medium</td><td>35</td><td>dentist</td><td>-122.0839,37.3861</td></tr></table>" |
| 187 | + "<table><tr><th>id</th><th>vector_distance</th><th>user</th><th>credit_score</th><th>age</th><th>job</th><th>office_location</th></tr><tr><td>v1:b1e376e6003844c8a33b3c953a249948</td><td>0</td><td>john</td><td>high</td><td>18</td><td>engineer</td><td>-122.4194,37.7749</td></tr><tr><td>v1:4f5a69e97b2a4017998bd30fb23e3339</td><td>0.109129190445</td><td>tyler</td><td>high</td><td>100</td><td>engineer</td><td>-122.0839,37.3861</td></tr><tr><td>v1:e9f9b5fe5e47414986139bd61ee60920</td><td>0.266666650772</td><td>nancy</td><td>high</td><td>94</td><td>doctor</td><td>-122.4194,37.7749</td></tr><tr><td>v1:e3ee268f2af94d73a308fb6f42d4ef3e</td><td>0.653301358223</td><td>joe</td><td>medium</td><td>35</td><td>dentist</td><td>-122.0839,37.3861</td></tr></table>" |
188 | 188 | ], |
189 | 189 | "text/plain": [ |
190 | 190 | "<IPython.core.display.HTML object>" |
|
220 | 220 | { |
221 | 221 | "data": { |
222 | 222 | "text/html": [ |
223 | | - "<table><tr><th>vector_distance</th><th>user</th><th>credit_score</th><th>age</th><th>job</th><th>office_location</th></tr><tr><td>0</td><td>derrick</td><td>low</td><td>14</td><td>doctor</td><td>-122.4194,37.7749</td></tr><tr><td>0.266666650772</td><td>nancy</td><td>high</td><td>94</td><td>doctor</td><td>-122.4194,37.7749</td></tr></table>" |
| 223 | + "<table><tr><th>id</th><th>vector_distance</th><th>user</th><th>credit_score</th><th>age</th><th>job</th><th>office_location</th></tr><tr><td>v1:55be34aa947e47edb6d7cb9a894aca6d</td><td>0</td><td>derrick</td><td>low</td><td>14</td><td>doctor</td><td>-122.4194,37.7749</td></tr><tr><td>v1:e9f9b5fe5e47414986139bd61ee60920</td><td>0.266666650772</td><td>nancy</td><td>high</td><td>94</td><td>doctor</td><td>-122.4194,37.7749</td></tr></table>" |
224 | 224 | ], |
225 | 225 | "text/plain": [ |
226 | 226 | "<IPython.core.display.HTML object>" |
|
257 | 257 | { |
258 | 258 | "data": { |
259 | 259 | "text/html": [ |
260 | | - "<table><tr><th>vector_distance</th><th>user</th><th>credit_score</th><th>age</th><th>job</th><th>office_location</th></tr><tr><td>0</td><td>john</td><td>high</td><td>18</td><td>engineer</td><td>-122.4194,37.7749</td></tr><tr><td>0</td><td>derrick</td><td>low</td><td>14</td><td>doctor</td><td>-122.4194,37.7749</td></tr><tr><td>0.266666650772</td><td>nancy</td><td>high</td><td>94</td><td>doctor</td><td>-122.4194,37.7749</td></tr></table>" |
| 260 | + "<table><tr><th>id</th><th>vector_distance</th><th>user</th><th>credit_score</th><th>age</th><th>job</th><th>office_location</th></tr><tr><td>v1:b1e376e6003844c8a33b3c953a249948</td><td>0</td><td>john</td><td>high</td><td>18</td><td>engineer</td><td>-122.4194,37.7749</td></tr><tr><td>v1:55be34aa947e47edb6d7cb9a894aca6d</td><td>0</td><td>derrick</td><td>low</td><td>14</td><td>doctor</td><td>-122.4194,37.7749</td></tr><tr><td>v1:e9f9b5fe5e47414986139bd61ee60920</td><td>0.266666650772</td><td>nancy</td><td>high</td><td>94</td><td>doctor</td><td>-122.4194,37.7749</td></tr></table>" |
261 | 261 | ], |
262 | 262 | "text/plain": [ |
263 | 263 | "<IPython.core.display.HTML object>" |
|
286 | 286 | { |
287 | 287 | "data": { |
288 | 288 | "text/html": [ |
289 | | - "<table><tr><th>vector_distance</th><th>user</th><th>credit_score</th><th>age</th><th>job</th><th>office_location</th></tr><tr><td>0</td><td>john</td><td>high</td><td>18</td><td>engineer</td><td>-122.4194,37.7749</td></tr><tr><td>0</td><td>derrick</td><td>low</td><td>14</td><td>doctor</td><td>-122.4194,37.7749</td></tr><tr><td>0.109129190445</td><td>tyler</td><td>high</td><td>100</td><td>engineer</td><td>-122.0839,37.3861</td></tr><tr><td>0.158809006214</td><td>tim</td><td>high</td><td>12</td><td>dermatologist</td><td>-122.0839,37.3861</td></tr><tr><td>0.217882037163</td><td>taimur</td><td>low</td><td>15</td><td>CEO</td><td>-122.0839,37.3861</td></tr><tr><td>0.266666650772</td><td>nancy</td><td>high</td><td>94</td><td>doctor</td><td>-122.4194,37.7749</td></tr><tr><td>0.653301358223</td><td>joe</td><td>medium</td><td>35</td><td>dentist</td><td>-122.0839,37.3861</td></tr></table>" |
| 289 | + "<table><tr><th>id</th><th>vector_distance</th><th>user</th><th>credit_score</th><th>age</th><th>job</th><th>office_location</th></tr><tr><td>v1:b1e376e6003844c8a33b3c953a249948</td><td>0</td><td>john</td><td>high</td><td>18</td><td>engineer</td><td>-122.4194,37.7749</td></tr><tr><td>v1:55be34aa947e47edb6d7cb9a894aca6d</td><td>0</td><td>derrick</td><td>low</td><td>14</td><td>doctor</td><td>-122.4194,37.7749</td></tr><tr><td>v1:4f5a69e97b2a4017998bd30fb23e3339</td><td>0.109129190445</td><td>tyler</td><td>high</td><td>100</td><td>engineer</td><td>-122.0839,37.3861</td></tr><tr><td>v1:f94d6b668b6b4f00851ffb0a9d497c53</td><td>0.158809006214</td><td>tim</td><td>high</td><td>12</td><td>dermatologist</td><td>-122.0839,37.3861</td></tr><tr><td>v1:9cb99c4dd6274fe89017ae80742fd96a</td><td>0.217882037163</td><td>taimur</td><td>low</td><td>15</td><td>CEO</td><td>-122.0839,37.3861</td></tr><tr><td>v1:e9f9b5fe5e47414986139bd61ee60920</td><td>0.266666650772</td><td>nancy</td><td>high</td><td>94</td><td>doctor</td><td>-122.4194,37.7749</td></tr><tr><td>v1:e3ee268f2af94d73a308fb6f42d4ef3e</td><td>0.653301358223</td><td>joe</td><td>medium</td><td>35</td><td>dentist</td><td>-122.0839,37.3861</td></tr></table>" |
290 | 290 | ], |
291 | 291 | "text/plain": [ |
292 | 292 | "<IPython.core.display.HTML object>" |
|
322 | 322 | { |
323 | 323 | "data": { |
324 | 324 | "text/html": [ |
325 | | - "<table><tr><th>vector_distance</th><th>user</th><th>credit_score</th><th>age</th><th>job</th><th>office_location</th></tr><tr><td>0</td><td>john</td><td>high</td><td>18</td><td>engineer</td><td>-122.4194,37.7749</td></tr><tr><td>0.109129190445</td><td>tyler</td><td>high</td><td>100</td><td>engineer</td><td>-122.0839,37.3861</td></tr><tr><td>0.266666650772</td><td>nancy</td><td>high</td><td>94</td><td>doctor</td><td>-122.4194,37.7749</td></tr></table>" |
| 325 | + "<table><tr><th>id</th><th>vector_distance</th><th>user</th><th>credit_score</th><th>age</th><th>job</th><th>office_location</th></tr><tr><td>v1:b1e376e6003844c8a33b3c953a249948</td><td>0</td><td>john</td><td>high</td><td>18</td><td>engineer</td><td>-122.4194,37.7749</td></tr><tr><td>v1:4f5a69e97b2a4017998bd30fb23e3339</td><td>0.109129190445</td><td>tyler</td><td>high</td><td>100</td><td>engineer</td><td>-122.0839,37.3861</td></tr><tr><td>v1:e9f9b5fe5e47414986139bd61ee60920</td><td>0.266666650772</td><td>nancy</td><td>high</td><td>94</td><td>doctor</td><td>-122.4194,37.7749</td></tr></table>" |
326 | 326 | ], |
327 | 327 | "text/plain": [ |
328 | 328 | "<IPython.core.display.HTML object>" |
|
364 | 364 | { |
365 | 365 | "data": { |
366 | 366 | "text/html": [ |
367 | | - "<table><tr><th>vector_distance</th><th>user</th><th>credit_score</th><th>age</th><th>job</th><th>office_location</th></tr><tr><td>0.158809006214</td><td>tim</td><td>high</td><td>12</td><td>dermatologist</td><td>-122.0839,37.3861</td></tr></table>" |
| 367 | + "<table><tr><th>id</th><th>vector_distance</th><th>user</th><th>credit_score</th><th>age</th><th>job</th><th>office_location</th></tr><tr><td>v1:f94d6b668b6b4f00851ffb0a9d497c53</td><td>0.158809006214</td><td>tim</td><td>high</td><td>12</td><td>dermatologist</td><td>-122.0839,37.3861</td></tr></table>" |
368 | 368 | ], |
369 | 369 | "text/plain": [ |
370 | 370 | "<IPython.core.display.HTML object>" |
|
402 | 402 | { |
403 | 403 | "data": { |
404 | 404 | "text/html": [ |
405 | | - "<table><tr><th>vector_distance</th><th>user</th><th>credit_score</th><th>age</th><th>job</th><th>office_location</th></tr><tr><td>0</td><td>john</td><td>high</td><td>18</td><td>engineer</td><td>-122.4194,37.7749</td></tr><tr><td>0.109129190445</td><td>tyler</td><td>high</td><td>100</td><td>engineer</td><td>-122.0839,37.3861</td></tr><tr><td>0.158809006214</td><td>tim</td><td>high</td><td>12</td><td>dermatologist</td><td>-122.0839,37.3861</td></tr><tr><td>0.266666650772</td><td>nancy</td><td>high</td><td>94</td><td>doctor</td><td>-122.4194,37.7749</td></tr><tr><td>0.653301358223</td><td>joe</td><td>medium</td><td>35</td><td>dentist</td><td>-122.0839,37.3861</td></tr></table>" |
| 405 | + "<table><tr><th>id</th><th>vector_distance</th><th>user</th><th>credit_score</th><th>age</th><th>job</th><th>office_location</th></tr><tr><td>v1:b1e376e6003844c8a33b3c953a249948</td><td>0</td><td>john</td><td>high</td><td>18</td><td>engineer</td><td>-122.4194,37.7749</td></tr><tr><td>v1:4f5a69e97b2a4017998bd30fb23e3339</td><td>0.109129190445</td><td>tyler</td><td>high</td><td>100</td><td>engineer</td><td>-122.0839,37.3861</td></tr><tr><td>v1:f94d6b668b6b4f00851ffb0a9d497c53</td><td>0.158809006214</td><td>tim</td><td>high</td><td>12</td><td>dermatologist</td><td>-122.0839,37.3861</td></tr><tr><td>v1:e9f9b5fe5e47414986139bd61ee60920</td><td>0.266666650772</td><td>nancy</td><td>high</td><td>94</td><td>doctor</td><td>-122.4194,37.7749</td></tr><tr><td>v1:e3ee268f2af94d73a308fb6f42d4ef3e</td><td>0.653301358223</td><td>joe</td><td>medium</td><td>35</td><td>dentist</td><td>-122.0839,37.3861</td></tr></table>" |
406 | 406 | ], |
407 | 407 | "text/plain": [ |
408 | 408 | "<IPython.core.display.HTML object>" |
|
505 | 505 | "name": "stdout", |
506 | 506 | "output_type": "stream", |
507 | 507 | "text": [ |
508 | | - "{'id': 'v1:38bfee0253ca452e96b4b3fdcb2798f7', 'payload': None, 'user': 'john', 'age': '18', 'job': 'engineer', 'credit_score': 'high', 'office_location': '-122.4194,37.7749', 'user_embedding': '==\\x00\\x00\\x00?'}\n", |
509 | | - "{'id': 'v1:747bce550564443199ae1118cf03b5e3', 'payload': None, 'user': 'nancy', 'age': '94', 'job': 'doctor', 'credit_score': 'high', 'office_location': '-122.4194,37.7749', 'user_embedding': '333?=\\x00\\x00\\x00?'}\n", |
510 | | - "{'id': 'v1:da7b6b0bf94f4c40a2ea23e20035ca73', 'payload': None, 'user': 'tyler', 'age': '100', 'job': 'engineer', 'credit_score': 'high', 'office_location': '-122.0839,37.3861', 'user_embedding': '=>\\x00\\x00\\x00?'}\n", |
511 | | - "{'id': 'v1:abcdf6be4fb042389a93a9b27d6cce5c', 'payload': None, 'user': 'tim', 'age': '12', 'job': 'dermatologist', 'credit_score': 'high', 'office_location': '-122.0839,37.3861', 'user_embedding': '>>\\x00\\x00\\x00?'}\n" |
| 508 | + "{'id': 'v1:b1e376e6003844c8a33b3c953a249948', 'payload': None, 'user': 'john', 'age': '18', 'job': 'engineer', 'credit_score': 'high', 'office_location': '-122.4194,37.7749', 'user_embedding': '==\\x00\\x00\\x00?'}\n", |
| 509 | + "{'id': 'v1:e9f9b5fe5e47414986139bd61ee60920', 'payload': None, 'user': 'nancy', 'age': '94', 'job': 'doctor', 'credit_score': 'high', 'office_location': '-122.4194,37.7749', 'user_embedding': '333?=\\x00\\x00\\x00?'}\n", |
| 510 | + "{'id': 'v1:4f5a69e97b2a4017998bd30fb23e3339', 'payload': None, 'user': 'tyler', 'age': '100', 'job': 'engineer', 'credit_score': 'high', 'office_location': '-122.0839,37.3861', 'user_embedding': '=>\\x00\\x00\\x00?'}\n", |
| 511 | + "{'id': 'v1:f94d6b668b6b4f00851ffb0a9d497c53', 'payload': None, 'user': 'tim', 'age': '12', 'job': 'dermatologist', 'credit_score': 'high', 'office_location': '-122.0839,37.3861', 'user_embedding': '>>\\x00\\x00\\x00?'}\n" |
512 | 512 | ] |
513 | 513 | } |
514 | 514 | ], |
|
558 | 558 | "# Using the str() method, you can see what Redis Query this will emit.\n", |
559 | 559 | "str(v)" |
560 | 560 | ] |
561 | | - }, |
562 | | - { |
563 | | - "cell_type": "code", |
564 | | - "execution_count": null, |
565 | | - "metadata": {}, |
566 | | - "outputs": [], |
567 | | - "source": [] |
568 | 561 | } |
569 | 562 | ], |
570 | 563 | "metadata": { |
|
583 | 576 | "name": "python", |
584 | 577 | "nbconvert_exporter": "python", |
585 | 578 | "pygments_lexer": "ipython3", |
586 | | - "version": "3.8.13" |
| 579 | + "version": "3.9.12" |
587 | 580 | }, |
588 | 581 | "orig_nbformat": 4, |
589 | 582 | "vscode": { |
|
0 commit comments