|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD 3-Clause license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +""" |
| 8 | +Create a quantized `meta-llama/Meta-Llama-3.1-8B-Instruct` model and save |
| 9 | +it to disk for local benchmarking with `vllm`. |
| 10 | +""" |
| 11 | + |
| 12 | +import argparse |
| 13 | +import random |
| 14 | +from pathlib import Path |
| 15 | + |
| 16 | +import numpy as np |
| 17 | +import torch |
| 18 | +from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig |
| 19 | + |
| 20 | +from torchao.prototype.mx_formats.inference_workflow import ( |
| 21 | + MXDynamicActivationMXWeightConfig, |
| 22 | +) |
| 23 | + |
| 24 | + |
| 25 | +# Set seeds for reproducibility |
| 26 | +def set_seed(seed): |
| 27 | + random.seed(seed) |
| 28 | + np.random.seed(seed) |
| 29 | + torch.manual_seed(seed) |
| 30 | + torch.cuda.manual_seed_all(seed) |
| 31 | + |
| 32 | + |
| 33 | +def parse_args(): |
| 34 | + parser = argparse.ArgumentParser(description="Quantize a model with TorchAO") |
| 35 | + parser.add_argument( |
| 36 | + "output_dir", |
| 37 | + type=str, |
| 38 | + help="Directory to save the quantized model", |
| 39 | + ) |
| 40 | + return parser.parse_args() |
| 41 | + |
| 42 | + |
| 43 | +def main(args): |
| 44 | + """ |
| 45 | + Args: |
| 46 | + args: Parsed command line arguments containing: |
| 47 | + output_dir: Directory to save the quantized model |
| 48 | + max_new_tokens: Max tokens to generate for testing |
| 49 | + convert_llama_4_expert_weights_to_mnk: if True, converts LLaMa 4 Scout expert weights from MKN to MNK memory layout |
| 50 | + no_save_model_to_disk: if True, skips saving quantized model to local disk |
| 51 | + no_load_model_from_disk: if True, skips reloading model from disk to test it again |
| 52 | + """ |
| 53 | + |
| 54 | + model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct" |
| 55 | + device_map = "auto" |
| 56 | + max_new_tokens = 20 |
| 57 | + |
| 58 | + # Test prompts |
| 59 | + prompts = [ |
| 60 | + "Why is Pytorch 2.0 the best machine learning compiler?", |
| 61 | + ] |
| 62 | + |
| 63 | + # Set seed before creating the model |
| 64 | + set_seed(42) |
| 65 | + |
| 66 | + # Create output directory |
| 67 | + output_dir = Path(args.output_dir) |
| 68 | + output_dir.mkdir(parents=True, exist_ok=True) |
| 69 | + |
| 70 | + # Get quantization config |
| 71 | + # quantization_config = TorchAoConfig(Float8DynamicActivationFloat8WeightConfig()) |
| 72 | + quantization_config = TorchAoConfig( |
| 73 | + MXDynamicActivationMXWeightConfig( |
| 74 | + activation_dtype=torch.float8_e4m3fn, |
| 75 | + weight_dtype=torch.float8_e4m3fn, |
| 76 | + ) |
| 77 | + ) |
| 78 | + |
| 79 | + # Load tokenizer |
| 80 | + tokenizer = AutoTokenizer.from_pretrained(model_name) |
| 81 | + |
| 82 | + # Load and quantize model |
| 83 | + print("Loading and quantizing model...") |
| 84 | + quantized_model = AutoModelForCausalLM.from_pretrained( |
| 85 | + model_name, |
| 86 | + torch_dtype="bfloat16", |
| 87 | + device_map=device_map, |
| 88 | + quantization_config=quantization_config, |
| 89 | + ) |
| 90 | + print(quantized_model) |
| 91 | + |
| 92 | + if False: |
| 93 | + # Test generation |
| 94 | + print("\nTesting quantized model generation...") |
| 95 | + input_ids = tokenizer(prompts, return_tensors="pt", padding=False).to( |
| 96 | + quantized_model.device |
| 97 | + ) |
| 98 | + outputs = quantized_model.generate(**input_ids, max_new_tokens=max_new_tokens) |
| 99 | + |
| 100 | + for i, (prompt, output) in enumerate(zip(prompts, outputs, strict=False)): |
| 101 | + generated_text = tokenizer.decode(output, skip_special_tokens=True) |
| 102 | + print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") |
| 103 | + |
| 104 | + # Save quantized model |
| 105 | + print(f"\nSaving quantized model to: {output_dir}") |
| 106 | + quantized_model.save_pretrained( |
| 107 | + output_dir, |
| 108 | + safe_serialization=False, |
| 109 | + ) |
| 110 | + tokenizer.save_pretrained(output_dir) |
| 111 | + |
| 112 | + if False: |
| 113 | + # Load saved model to verify |
| 114 | + # TODO: do we really need `weights_only=False` here? |
| 115 | + loaded_model = AutoModelForCausalLM.from_pretrained( |
| 116 | + output_dir, |
| 117 | + device_map=device_map, |
| 118 | + torch_dtype="auto", |
| 119 | + weights_only=False, |
| 120 | + ) |
| 121 | + |
| 122 | + # Test loaded model with first prompt |
| 123 | + test_prompt = prompts[0] |
| 124 | + input_ids = tokenizer(test_prompt, return_tensors="pt").to(loaded_model.device) |
| 125 | + output = loaded_model.generate(**input_ids, max_new_tokens=args.max_new_tokens) |
| 126 | + generated_text = tokenizer.decode(output[0], skip_special_tokens=True) |
| 127 | + print( |
| 128 | + f"Verification - Prompt: {test_prompt!r}, Generated text: {generated_text!r}" |
| 129 | + ) |
| 130 | + |
| 131 | + print("\nQuantization process completed successfully.") |
| 132 | + |
| 133 | + |
| 134 | +if __name__ == "__main__": |
| 135 | + args = parse_args() |
| 136 | + main(args) |
0 commit comments