|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "1767a58b", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Prerequisites:\n", |
| 9 | + "- Variables\n", |
| 10 | + "- Iterables(?)\n", |
| 11 | + "- Loops\n", |
| 12 | + "\n", |
| 13 | + "# Learning Outcomes:\n", |
| 14 | + "- Open files using Python's built-in functions and extract their contents to variables\n", |
| 15 | + "- Use the CSV module to read data from CSV files" |
| 16 | + ] |
| 17 | + }, |
| 18 | + { |
| 19 | + "cell_type": "markdown", |
| 20 | + "id": "f4882898", |
| 21 | + "metadata": {}, |
| 22 | + "source": [ |
| 23 | + "# **Reading Files**\n", |
| 24 | + "\n", |
| 25 | + "One of the common uses of Python in chemistry is to analyse large amounts of data. \n", |
| 26 | + "This might be data gathered during an experiment that has been stored in a number of files, and Python has a number of built-in functions to read (and write) files. \n", |
| 27 | + "In this section, we will explore how to read different types of files, including text files and CSV files, using Python's built-in capabilities.\n", |
| 28 | + "\n", |
| 29 | + "Let's start with a opening a simple text file and reading its contents:" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "code", |
| 34 | + "execution_count": null, |
| 35 | + "id": "0ff6944a", |
| 36 | + "metadata": {}, |
| 37 | + "outputs": [], |
| 38 | + "source": [ |
| 39 | + "file = open('molecule.txt', 'r')\n", |
| 40 | + "contents = file.read()\n", |
| 41 | + "file.close()\n", |
| 42 | + "print(contents)" |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "markdown", |
| 47 | + "id": "6d821f38", |
| 48 | + "metadata": {}, |
| 49 | + "source": [ |
| 50 | + "After running the cell above, you should see the contents of the `molecule.txt` file in the cell output. \n", |
| 51 | + "If you don't see the output, make sure that the file is in the same directory as this notebook. \n", |
| 52 | + "You can also verify the output by checking the file's contents in a text editor.\n", |
| 53 | + "\n", |
| 54 | + "The first line of the code cell above opens the file `molecule.txt` using the `open()` function and saves it to a special file-reading Python *object* we have called `file`.\n", |
| 55 | + "The `open()` function takes at least one argument which is either the file name (if in the same working directory) or the full filepath of the file.\n", |
| 56 | + "It can also take a second argument to specify the mode in which the file is opened (e.g., `'r'` for reading, `'w'` for writing, etc.).\n", |
| 57 | + "If you don't specify a mode, the file is opened in read mode by default.\n", |
| 58 | + "\n", |
| 59 | + "The second line of the code cell reads the entire contents of the file using the `read()` method of the file object and stores it in a variable called `contents`. \n", |
| 60 | + "\n", |
| 61 | + "The third line closes the file using the `close()` method and is considered good practice.\n", |
| 62 | + "Otherwise we might leave it open, which can lead to various issues (e.g., file access errors).\n", |
| 63 | + "\n", |
| 64 | + "Finally, the last line prints the contents of the `contents` variable." |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "markdown", |
| 69 | + "id": "900f642e", |
| 70 | + "metadata": {}, |
| 71 | + "source": [ |
| 72 | + "### Reading Files with `with`\n", |
| 73 | + "We can also use the `with` statement to open files, which will automatically close the file for us when we are done with it.\n", |
| 74 | + "This is a more \"Pythonic\" way to handle files and is generally recommended.\n", |
| 75 | + "\n", |
| 76 | + "Let's take a look at the same example using the `with` statement:" |
| 77 | + ] |
| 78 | + }, |
| 79 | + { |
| 80 | + "cell_type": "code", |
| 81 | + "execution_count": null, |
| 82 | + "id": "f63f3d19", |
| 83 | + "metadata": {}, |
| 84 | + "outputs": [], |
| 85 | + "source": [ |
| 86 | + "with open('molecule.txt', 'r') as file:\n", |
| 87 | + " contents = file.read()\n", |
| 88 | + "\n", |
| 89 | + "print(contents)" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "markdown", |
| 94 | + "id": "06bbb57c", |
| 95 | + "metadata": {}, |
| 96 | + "source": [ |
| 97 | + "As before, we open the `molecule.txt` file and read its contents.\n", |
| 98 | + "The difference is that we use the `with` statement to open the file, which automatically closes it when we are done with it (i.e., when we exit the `with` block).\n", |
| 99 | + "\n", |
| 100 | + "We now have a way to read files in Python, and use their contents as *variables* in our code." |
| 101 | + ] |
| 102 | + }, |
| 103 | + { |
| 104 | + "cell_type": "markdown", |
| 105 | + "id": "8ec1d24a", |
| 106 | + "metadata": {}, |
| 107 | + "source": [ |
| 108 | + "## Reading CSV Files\n", |
| 109 | + "CSV (Comma Separated Values) files are a common format for storing tabular data, such as data from experiments or simulations.\n", |
| 110 | + "Each line in a CSV file represents a row of data, and each value in the row is separated by a comma (you can easily verify this by opening up a CSV file in a text editor).\n", |
| 111 | + "Python has a built-in module called `csv` that makes it easy to read (and write) CSV files.\n", |
| 112 | + "\n", |
| 113 | + "Let's take a look at how to read a CSV file using the `csv` module:" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "code", |
| 118 | + "execution_count": null, |
| 119 | + "id": "3ca51d4d", |
| 120 | + "metadata": {}, |
| 121 | + "outputs": [], |
| 122 | + "source": [ |
| 123 | + "import csv\n", |
| 124 | + "\n", |
| 125 | + "with open('elements.csv') as file:\n", |
| 126 | + " csv_reader = csv.reader(file)\n", |
| 127 | + " for row in csv_reader:\n", |
| 128 | + " print(row)" |
| 129 | + ] |
| 130 | + }, |
| 131 | + { |
| 132 | + "cell_type": "markdown", |
| 133 | + "id": "7ae13696", |
| 134 | + "metadata": {}, |
| 135 | + "source": [ |
| 136 | + "Here, we first import the built-in `csv` module to allow us to easily parse CSV files.\n", |
| 137 | + "\n", |
| 138 | + "Next we open the `elements.csv` file using the `with` statement as we have seen before.\n", |
| 139 | + "Note that we are opening the file in read mode without needing to specify it explicitly.\n", |
| 140 | + "\n", |
| 141 | + "The `csv.reader()` function takes the file object as an argument and returns a CSV reader object that can be used to *iterate* over the rows in the CSV file.\n", |
| 142 | + "\n", |
| 143 | + "Finally, we use a `for` loop to iterate over the rows in the CSV file and print the contents of each row.\n", |
| 144 | + "The csv_reader object allows us to access each row as a list of values, making it easy to work with the data." |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "markdown", |
| 149 | + "id": "760dcb9a", |
| 150 | + "metadata": {}, |
| 151 | + "source": [ |
| 152 | + "## Exercises\n", |
| 153 | + "\n", |
| 154 | + "### Manipulate data\n", |
| 155 | + "Use f-strings to print the contents of the `elements.csv` file in a more readable format.\n", |
| 156 | + "Don't forget about the header row!" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "code", |
| 161 | + "execution_count": null, |
| 162 | + "id": "53a6fb7d", |
| 163 | + "metadata": {}, |
| 164 | + "outputs": [], |
| 165 | + "source": [] |
| 166 | + }, |
| 167 | + { |
| 168 | + "cell_type": "markdown", |
| 169 | + "id": "633a2836", |
| 170 | + "metadata": {}, |
| 171 | + "source": [ |
| 172 | + "Example answer (skipping the header entirely):\n", |
| 173 | + "```python\n", |
| 174 | + "import csv\n", |
| 175 | + "\n", |
| 176 | + "with open('elements.csv') as csvfile:\n", |
| 177 | + " csv_reader = csv.reader(csvfile)\n", |
| 178 | + " next(csv_reader) # Skip the header row\n", |
| 179 | + " for row in csv_reader:\n", |
| 180 | + " print(f\"Name: {row[0]}, Symbol: {row[1]}, Atomic Number: {row[2]}\")\n", |
| 181 | + "```" |
| 182 | + ] |
| 183 | + }, |
| 184 | + { |
| 185 | + "cell_type": "markdown", |
| 186 | + "id": "c67c1875", |
| 187 | + "metadata": {}, |
| 188 | + "source": [ |
| 189 | + "### Using the file path\n", |
| 190 | + "Try to open a file that is not in the same directory as this notebook and print its contents." |
| 191 | + ] |
| 192 | + }, |
| 193 | + { |
| 194 | + "cell_type": "code", |
| 195 | + "execution_count": null, |
| 196 | + "id": "de2abab4", |
| 197 | + "metadata": {}, |
| 198 | + "outputs": [], |
| 199 | + "source": [] |
| 200 | + }, |
| 201 | + { |
| 202 | + "cell_type": "markdown", |
| 203 | + "id": "3430cc73", |
| 204 | + "metadata": {}, |
| 205 | + "source": [ |
| 206 | + "TODO: Example answer" |
| 207 | + ] |
| 208 | + }, |
| 209 | + { |
| 210 | + "cell_type": "markdown", |
| 211 | + "id": "10c5379d", |
| 212 | + "metadata": {}, |
| 213 | + "source": [ |
| 214 | + "### Loop through multiple files\n", |
| 215 | + "TODO: Task involving looping through multiple files with a predictable filename (e.g. `001.csv`) and reading their contents." |
| 216 | + ] |
| 217 | + }, |
| 218 | + { |
| 219 | + "cell_type": "code", |
| 220 | + "execution_count": null, |
| 221 | + "id": "002dbb28", |
| 222 | + "metadata": {}, |
| 223 | + "outputs": [], |
| 224 | + "source": [] |
| 225 | + }, |
| 226 | + { |
| 227 | + "cell_type": "markdown", |
| 228 | + "id": "c1114d99", |
| 229 | + "metadata": {}, |
| 230 | + "source": [ |
| 231 | + "TODO: Example answer" |
| 232 | + ] |
| 233 | + }, |
| 234 | + { |
| 235 | + "cell_type": "markdown", |
| 236 | + "id": "619f5799", |
| 237 | + "metadata": {}, |
| 238 | + "source": [ |
| 239 | + "## Debugging\n", |
| 240 | + "The code below contains a bug and will not run.\n", |
| 241 | + "See if you can fix it by reading the error message and using the information it provides." |
| 242 | + ] |
| 243 | + }, |
| 244 | + { |
| 245 | + "cell_type": "code", |
| 246 | + "execution_count": null, |
| 247 | + "id": "818250af", |
| 248 | + "metadata": {}, |
| 249 | + "outputs": [], |
| 250 | + "source": [ |
| 251 | + "with open('molecule.csv', 'r') as file:\n", |
| 252 | + " text = file.read()\n", |
| 253 | + "\n", |
| 254 | + "print(text)" |
| 255 | + ] |
| 256 | + }, |
| 257 | + { |
| 258 | + "cell_type": "markdown", |
| 259 | + "id": "f58d91db", |
| 260 | + "metadata": {}, |
| 261 | + "source": [ |
| 262 | + "## TODO\n", |
| 263 | + "- Discuss carriage returns and other special characters?\n", |
| 264 | + "- Explain the distinction between text and binary files?" |
| 265 | + ] |
| 266 | + } |
| 267 | + ], |
| 268 | + "metadata": { |
| 269 | + "kernelspec": { |
| 270 | + "display_name": "Python 3", |
| 271 | + "language": "python", |
| 272 | + "name": "python3" |
| 273 | + }, |
| 274 | + "language_info": { |
| 275 | + "codemirror_mode": { |
| 276 | + "name": "ipython", |
| 277 | + "version": 3 |
| 278 | + }, |
| 279 | + "file_extension": ".py", |
| 280 | + "mimetype": "text/x-python", |
| 281 | + "name": "python", |
| 282 | + "nbconvert_exporter": "python", |
| 283 | + "pygments_lexer": "ipython3", |
| 284 | + "version": "3.13.2" |
| 285 | + } |
| 286 | + }, |
| 287 | + "nbformat": 4, |
| 288 | + "nbformat_minor": 5 |
| 289 | +} |
0 commit comments