|
| 1 | +################################################################################# |
| 2 | +# To mimic the scenario that computation is i/o bound and constrained by memory |
| 3 | +# |
| 4 | +# It's a much simplified version that the chunk is computed in a loop, |
| 5 | +# and expression is evaluated in a sequence, which is not true in reality. |
| 6 | +# Neverthless, numexpr outperforms numpy. |
| 7 | +################################################################################# |
| 8 | +""" |
| 9 | +Benchmarking Expression 1: |
| 10 | +NumPy time (threaded over 32 chunks with 2 threads): 4.612313 seconds |
| 11 | +numexpr time (threaded with re_evaluate over 32 chunks with 2 threads): 0.951172 seconds |
| 12 | +numexpr speedup: 4.85x |
| 13 | +---------------------------------------- |
| 14 | +Benchmarking Expression 2: |
| 15 | +NumPy time (threaded over 32 chunks with 2 threads): 23.862752 seconds |
| 16 | +numexpr time (threaded with re_evaluate over 32 chunks with 2 threads): 2.182058 seconds |
| 17 | +numexpr speedup: 10.94x |
| 18 | +---------------------------------------- |
| 19 | +Benchmarking Expression 3: |
| 20 | +NumPy time (threaded over 32 chunks with 2 threads): 20.594895 seconds |
| 21 | +numexpr time (threaded with re_evaluate over 32 chunks with 2 threads): 2.927881 seconds |
| 22 | +numexpr speedup: 7.03x |
| 23 | +---------------------------------------- |
| 24 | +Benchmarking Expression 4: |
| 25 | +NumPy time (threaded over 32 chunks with 2 threads): 12.834101 seconds |
| 26 | +numexpr time (threaded with re_evaluate over 32 chunks with 2 threads): 5.392480 seconds |
| 27 | +numexpr speedup: 2.38x |
| 28 | +---------------------------------------- |
| 29 | +""" |
| 30 | + |
| 31 | +import os |
| 32 | + |
| 33 | +os.environ["NUMEXPR_NUM_THREADS"] = "16" |
| 34 | +import numpy as np |
| 35 | +import numexpr as ne |
| 36 | +import timeit |
| 37 | +import threading |
| 38 | + |
| 39 | +array_size = 10**8 |
| 40 | +num_runs = 10 |
| 41 | +num_chunks = 32 # Number of chunks |
| 42 | +num_threads = 2 # Number of threads constrained by how many chunks memory can hold |
| 43 | + |
| 44 | +a = np.random.rand(array_size).reshape(10**4, -1) |
| 45 | +b = np.random.rand(array_size).reshape(10**4, -1) |
| 46 | +c = np.random.rand(array_size).reshape(10**4, -1) |
| 47 | + |
| 48 | +chunk_size = array_size // num_chunks |
| 49 | + |
| 50 | +expressions_numpy = [ |
| 51 | + lambda a, b, c: a + b * c, |
| 52 | + lambda a, b, c: a**2 + b**2 - 2 * a * b * np.cos(c), |
| 53 | + lambda a, b, c: np.sin(a) + np.log(b) * np.sqrt(c), |
| 54 | + lambda a, b, c: np.exp(a) + np.tan(b) - np.sinh(c), |
| 55 | +] |
| 56 | + |
| 57 | +expressions_numexpr = [ |
| 58 | + "a + b * c", |
| 59 | + "a**2 + b**2 - 2 * a * b * cos(c)", |
| 60 | + "sin(a) + log(b) * sqrt(c)", |
| 61 | + "exp(a) + tan(b) - sinh(c)", |
| 62 | +] |
| 63 | + |
| 64 | + |
| 65 | +def benchmark_numpy_chunk(func, a, b, c, results, indices): |
| 66 | + for index in indices: |
| 67 | + start = index * chunk_size |
| 68 | + end = (index + 1) * chunk_size |
| 69 | + time_taken = timeit.timeit( |
| 70 | + lambda: func(a[start:end], b[start:end], c[start:end]), number=num_runs |
| 71 | + ) |
| 72 | + results.append(time_taken) |
| 73 | + |
| 74 | + |
| 75 | +def benchmark_numexpr_re_evaluate(expr, a, b, c, results, indices): |
| 76 | + for index in indices: |
| 77 | + start = index * chunk_size |
| 78 | + end = (index + 1) * chunk_size |
| 79 | + if index == 0: |
| 80 | + # Evaluate the first chunk with evaluate |
| 81 | + time_taken = timeit.timeit( |
| 82 | + lambda: ne.evaluate( |
| 83 | + expr, |
| 84 | + local_dict={ |
| 85 | + "a": a[start:end], |
| 86 | + "b": b[start:end], |
| 87 | + "c": c[start:end], |
| 88 | + }, |
| 89 | + ), |
| 90 | + number=num_runs, |
| 91 | + ) |
| 92 | + else: |
| 93 | + # Re-evaluate subsequent chunks with re_evaluate |
| 94 | + time_taken = timeit.timeit( |
| 95 | + lambda: ne.re_evaluate( |
| 96 | + local_dict={"a": a[start:end], "b": b[start:end], "c": c[start:end]} |
| 97 | + ), |
| 98 | + number=num_runs, |
| 99 | + ) |
| 100 | + results.append(time_taken) |
| 101 | + |
| 102 | + |
| 103 | +def run_benchmark_threaded(): |
| 104 | + chunk_indices = list(range(num_chunks)) |
| 105 | + |
| 106 | + for i in range(len(expressions_numpy)): |
| 107 | + print(f"Benchmarking Expression {i+1}:") |
| 108 | + |
| 109 | + results_numpy = [] |
| 110 | + results_numexpr = [] |
| 111 | + |
| 112 | + threads_numpy = [] |
| 113 | + for j in range(num_threads): |
| 114 | + indices = chunk_indices[j::num_threads] # Distribute chunks across threads |
| 115 | + thread = threading.Thread( |
| 116 | + target=benchmark_numpy_chunk, |
| 117 | + args=(expressions_numpy[i], a, b, c, results_numpy, indices), |
| 118 | + ) |
| 119 | + threads_numpy.append(thread) |
| 120 | + thread.start() |
| 121 | + |
| 122 | + for thread in threads_numpy: |
| 123 | + thread.join() |
| 124 | + |
| 125 | + numpy_time = sum(results_numpy) |
| 126 | + print( |
| 127 | + f"NumPy time (threaded over {num_chunks} chunks with {num_threads} threads): {numpy_time:.6f} seconds" |
| 128 | + ) |
| 129 | + |
| 130 | + threads_numexpr = [] |
| 131 | + for j in range(num_threads): |
| 132 | + indices = chunk_indices[j::num_threads] # Distribute chunks across threads |
| 133 | + thread = threading.Thread( |
| 134 | + target=benchmark_numexpr_re_evaluate, |
| 135 | + args=(expressions_numexpr[i], a, b, c, results_numexpr, indices), |
| 136 | + ) |
| 137 | + threads_numexpr.append(thread) |
| 138 | + thread.start() |
| 139 | + |
| 140 | + for thread in threads_numexpr: |
| 141 | + thread.join() |
| 142 | + |
| 143 | + numexpr_time = sum(results_numexpr) |
| 144 | + print( |
| 145 | + f"numexpr time (threaded with re_evaluate over {num_chunks} chunks with {num_threads} threads): {numexpr_time:.6f} seconds" |
| 146 | + ) |
| 147 | + print(f"numexpr speedup: {numpy_time / numexpr_time:.2f}x") |
| 148 | + print("-" * 40) |
| 149 | + |
| 150 | + |
| 151 | +if __name__ == "__main__": |
| 152 | + run_benchmark_threaded() |
0 commit comments