diff --git a/tests/test_datasets/test_dataset.py b/tests/test_datasets/test_dataset.py index 86a4d3f57..66e9b8554 100644 --- a/tests/test_datasets/test_dataset.py +++ b/tests/test_datasets/test_dataset.py @@ -294,6 +294,7 @@ def test_tagging(): datasets = openml.datasets.list_datasets(tag=tag) assert datasets.empty +@pytest.mark.xfail(reason="failures_issue_1544") def test_get_feature_with_ontology_data_id_11(): # test on car dataset, which has built-in ontology references dataset = openml.datasets.get_dataset(11) @@ -470,4 +471,4 @@ def test__check_qualities(): qualities = [{"oml:name": "a", "oml:value": None}] qualities = openml.datasets.dataset._check_qualities(qualities) - assert qualities["a"] != qualities["a"] \ No newline at end of file + assert qualities["a"] != qualities["a"] diff --git a/tests/test_runs/test_run.py b/tests/test_runs/test_run.py index 088856450..034b731aa 100644 --- a/tests/test_runs/test_run.py +++ b/tests/test_runs/test_run.py @@ -118,7 +118,6 @@ def _check_array(array, type_): assert run_prime_trace_content is None @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_to_from_filesystem_vanilla(self): model = Pipeline( [ @@ -154,7 +153,6 @@ def test_to_from_filesystem_vanilla(self): @pytest.mark.sklearn() @pytest.mark.flaky() - @pytest.mark.xfail(reason="failures_issue_1544") def test_to_from_filesystem_search(self): model = Pipeline( [ @@ -189,7 +187,6 @@ def test_to_from_filesystem_search(self): ) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_to_from_filesystem_no_model(self): model = Pipeline( [("imputer", SimpleImputer(strategy="mean")), ("classifier", DummyClassifier())], @@ -295,7 +292,6 @@ def assert_run_prediction_data(task, run, model): assert_method(y_test, saved_y_test) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_publish_with_local_loaded_flow(self): """ Publish a run tied to a local flow after it has first been saved to @@ -339,7 +335,6 @@ def test_publish_with_local_loaded_flow(self): openml.runs.get_run(loaded_run.run_id) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_offline_and_online_run_identical(self): extension = SklearnExtension() diff --git a/tests/test_runs/test_run_functions.py b/tests/test_runs/test_run_functions.py index 3bb4b0a0c..94ffa5001 100644 --- a/tests/test_runs/test_run_functions.py +++ b/tests/test_runs/test_run_functions.py @@ -398,7 +398,6 @@ def _check_sample_evaluations( assert evaluation < max_time_allowed @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_run_regression_on_classif_task(self): task_id = 259 # collins; crossvalidation; has numeric targets @@ -415,7 +414,6 @@ def test_run_regression_on_classif_task(self): ) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_check_erronous_sklearn_flow_fails(self): task_id = 115 # diabetes; crossvalidation task = openml.tasks.get_task(task_id) @@ -628,7 +626,6 @@ def _run_and_upload_regression( ) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_run_and_upload_logistic_regression(self): lr = LogisticRegression(solver="lbfgs", max_iter=1000) task_id = self.TEST_SERVER_TASK_SIMPLE["task_id"] @@ -637,7 +634,6 @@ def test_run_and_upload_logistic_regression(self): self._run_and_upload_classification(lr, task_id, n_missing_vals, n_test_obs, "62501") @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_run_and_upload_linear_regression(self): lr = LinearRegression() task_id = self.TEST_SERVER_TASK_REGRESSION["task_id"] @@ -668,7 +664,6 @@ def test_run_and_upload_linear_regression(self): self._run_and_upload_regression(lr, task_id, n_missing_vals, n_test_obs, "62501") @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_run_and_upload_pipeline_dummy_pipeline(self): pipeline1 = Pipeline( steps=[ @@ -682,7 +677,6 @@ def test_run_and_upload_pipeline_dummy_pipeline(self): self._run_and_upload_classification(pipeline1, task_id, n_missing_vals, n_test_obs, "62501") @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") @unittest.skipIf( Version(sklearn.__version__) < Version("0.20"), reason="columntransformer introduction in 0.20.0", @@ -799,7 +793,6 @@ def test_run_and_upload_knn_pipeline(self, warnings_mock): assert call_count == 3 @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_run_and_upload_gridsearch(self): estimator_name = ( "base_estimator" if Version(sklearn.__version__) < Version("1.4") else "estimator" @@ -822,7 +815,6 @@ def test_run_and_upload_gridsearch(self): assert len(run.trace.trace_iterations) == 9 @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_run_and_upload_randomsearch(self): randomsearch = RandomizedSearchCV( RandomForestClassifier(n_estimators=5), @@ -855,7 +847,6 @@ def test_run_and_upload_randomsearch(self): assert len(trace.trace_iterations) == 5 @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_run_and_upload_maskedarrays(self): # This testcase is important for 2 reasons: # 1) it verifies the correct handling of masked arrays (not all @@ -883,7 +874,6 @@ def test_run_and_upload_maskedarrays(self): ########################################################################## @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_learning_curve_task_1(self): task_id = 801 # diabates dataset num_test_instances = 6144 # for learning curve @@ -908,7 +898,6 @@ def test_learning_curve_task_1(self): self._check_sample_evaluations(run.sample_evaluations, num_repeats, num_folds, num_samples) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_learning_curve_task_2(self): task_id = 801 # diabates dataset num_test_instances = 6144 # for learning curve @@ -945,7 +934,6 @@ def test_learning_curve_task_2(self): self._check_sample_evaluations(run.sample_evaluations, num_repeats, num_folds, num_samples) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") @unittest.skipIf( Version(sklearn.__version__) < Version("0.21"), reason="Pipelines don't support indexing (used for the assert check)", @@ -1024,7 +1012,6 @@ def _test_local_evaluations(self, run): assert alt_scores[idx] <= 1 @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_local_run_swapped_parameter_order_model(self): clf = DecisionTreeClassifier() australian_task = 595 # Australian; crossvalidation @@ -1040,7 +1027,6 @@ def test_local_run_swapped_parameter_order_model(self): self._test_local_evaluations(run) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") @unittest.skipIf( Version(sklearn.__version__) < Version("0.20"), reason="SimpleImputer doesn't handle mixed type DataFrame as input", @@ -1069,7 +1055,6 @@ def test_local_run_swapped_parameter_order_flow(self): self._test_local_evaluations(run) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") @unittest.skipIf( Version(sklearn.__version__) < Version("0.20"), reason="SimpleImputer doesn't handle mixed type DataFrame as input", @@ -1107,7 +1092,6 @@ def test_online_run_metric_score(self): self._test_local_evaluations(run) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") @unittest.skipIf( Version(sklearn.__version__) < Version("0.20"), reason="SimpleImputer doesn't handle mixed type DataFrame as input", @@ -1173,7 +1157,6 @@ def test_initialize_model_from_run(self): Version(sklearn.__version__) < Version("0.20"), reason="SimpleImputer doesn't handle mixed type DataFrame as input", ) - @pytest.mark.xfail(reason="failures_issue_1544") def test__run_exists(self): # would be better to not sentinel these clfs, # so we do not have to perform the actual runs @@ -1229,7 +1212,6 @@ def test__run_exists(self): assert run_ids, (run_ids, clf) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_run_with_illegal_flow_id(self): # check the case where the user adds an illegal flow id to a # non-existing flo @@ -1249,7 +1231,6 @@ def test_run_with_illegal_flow_id(self): ) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_run_with_illegal_flow_id_after_load(self): # Same as `test_run_with_illegal_flow_id`, but test this error is also # caught if the run is stored to and loaded from disk first. @@ -1281,7 +1262,6 @@ def test_run_with_illegal_flow_id_after_load(self): TestBase.logger.info(f"collected from test_run_functions: {loaded_run.run_id}") @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_run_with_illegal_flow_id_1(self): # Check the case where the user adds an illegal flow id to an existing # flow. Comes to a different value error than the previous test @@ -1307,7 +1287,6 @@ def test_run_with_illegal_flow_id_1(self): ) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_run_with_illegal_flow_id_1_after_load(self): # Same as `test_run_with_illegal_flow_id_1`, but test this error is # also caught if the run is stored to and loaded from disk first. @@ -1346,7 +1325,6 @@ def test_run_with_illegal_flow_id_1_after_load(self): ) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") @unittest.skipIf( Version(sklearn.__version__) < Version("0.20"), reason="OneHotEncoder cannot handle mixed type DataFrame as input", @@ -1574,7 +1552,6 @@ def test_get_runs_list_by_tag(self): assert len(runs) >= 1 @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") @unittest.skipIf( Version(sklearn.__version__) < Version("0.20"), reason="columntransformer introduction in 0.20.0", @@ -1611,7 +1588,6 @@ def test_run_on_dataset_with_missing_labels_dataframe(self): assert len(row) == 12 @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") @unittest.skipIf( Version(sklearn.__version__) < Version("0.20"), reason="columntransformer introduction in 0.20.0", @@ -1664,7 +1640,6 @@ def test_get_uncached_run(self): openml.runs.functions._get_cached_run(10) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_run_flow_on_task_downloaded_flow(self): model = sklearn.ensemble.RandomForestClassifier(n_estimators=33) flow = self.extension.model_to_flow(model) @@ -1765,7 +1740,6 @@ def test_format_prediction_task_regression(self): reason="SimpleImputer doesn't handle mixed type DataFrame as input", ) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_delete_run(self): rs = np.random.randint(1, 2**31 - 1) clf = sklearn.pipeline.Pipeline( @@ -1861,7 +1835,6 @@ def test_delete_unknown_run(mock_delete, test_files_directory, test_api_key): @pytest.mark.sklearn() -@pytest.mark.xfail(reason="failures_issue_1544") @unittest.skipIf( Version(sklearn.__version__) < Version("0.21"), reason="couldn't perform local tests successfully w/o bloating RAM", @@ -1957,7 +1930,6 @@ def test__run_task_get_arffcontent_2(parallel_mock): (-1, "threading", 10), # the threading backend does preserve mocks even with parallelizing ] ) -@pytest.mark.xfail(reason="failures_issue_1544") def test_joblib_backends(parallel_mock, n_jobs, backend, call_count): """Tests evaluation of a run using various joblib backends and n_jobs.""" if backend is None: diff --git a/tests/test_setups/test_setup_functions.py b/tests/test_setups/test_setup_functions.py index 18d7f5cc6..42af5362b 100644 --- a/tests/test_setups/test_setup_functions.py +++ b/tests/test_setups/test_setup_functions.py @@ -82,7 +82,6 @@ def _existing_setup_exists(self, classif): assert setup_id == run.setup_id @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_existing_setup_exists_1(self): def side_effect(self): self.var_smoothing = 1e-9 @@ -98,13 +97,11 @@ def side_effect(self): self._existing_setup_exists(nb) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_exisiting_setup_exists_2(self): # Check a flow with one hyperparameter self._existing_setup_exists(sklearn.naive_bayes.GaussianNB()) @pytest.mark.sklearn() - @pytest.mark.xfail(reason="failures_issue_1544") def test_existing_setup_exists_3(self): # Check a flow with many hyperparameters self._existing_setup_exists(