@@ -17,7 +17,7 @@ def test_classifier(tmpdir):
1717 csv_file = os .path .join (os .path .dirname (__file__ ), "data" , "breast_cancer.csv" )
1818 inputs = {
1919 "filename" : csv_file ,
20- "x_indices" : range (30 ),
20+ "x_indices" : range (10 ),
2121 "target_vars" : ("target" ,),
2222 "group_var" : None ,
2323 "n_splits" : 2 ,
@@ -29,7 +29,7 @@ def test_classifier(tmpdir):
2929 "permutation_importance_n_repeats" : 5 ,
3030 "permutation_importance_scoring" : "accuracy" ,
3131 "gen_shap" : True ,
32- "nsamples" : 5 ,
32+ "nsamples" : 15 ,
3333 "l1_reg" : "aic" ,
3434 "plot_top_n_shap" : 16 ,
3535 "metrics" : ["roc_auc_score" , "accuracy_score" ],
@@ -40,20 +40,20 @@ def test_classifier(tmpdir):
4040 assert results [0 ][0 ]["ml_wf.permute" ]
4141 assert results [0 ][1 ].output .score [0 ][0 ] < results [1 ][1 ].output .score [0 ][0 ]
4242 assert hasattr (results [2 ][1 ].output .model , "predict" )
43- assert isinstance (results [2 ][1 ].output .model .predict (np .ones ((1 , 30 ))), np .ndarray )
43+ assert isinstance (results [2 ][1 ].output .model .predict (np .ones ((1 , 10 ))), np .ndarray )
4444
4545
4646def test_regressor (tmpdir ):
4747 clfs = [
4848 [
4949 ["sklearn.impute" , "SimpleImputer" ],
5050 ["sklearn.preprocessing" , "StandardScaler" ],
51- ["sklearn.neural_network" , "MLPRegressor" , {"alpha" : 1 , "max_iter" : 1000 }],
51+ ["sklearn.neural_network" , "MLPRegressor" , {"alpha" : 1 , "max_iter" : 100 }],
5252 ],
5353 (
5454 "sklearn.linear_model" ,
5555 "LinearRegression" ,
56- {"fit_intercept" : True , "normalize" : True },
56+ {"fit_intercept" : True },
5757 ),
5858 ]
5959 csv_file = os .path .join (os .path .dirname (__file__ ), "data" , "diabetes_table.csv" )
@@ -71,7 +71,7 @@ def test_regressor(tmpdir):
7171 "permutation_importance_n_repeats" : 5 ,
7272 "permutation_importance_scoring" : "accuracy" ,
7373 "gen_shap" : True ,
74- "nsamples" : 5 ,
74+ "nsamples" : 15 ,
7575 "l1_reg" : "aic" ,
7676 "plot_top_n_shap" : 10 ,
7777 "metrics" : ["explained_variance_score" ],
0 commit comments