|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": { |
| 6 | + "tags": [ |
| 7 | + "aura" |
| 8 | + ] |
| 9 | + }, |
| 10 | + "source": [ |
| 11 | + "# Aura Graph Analytics with Spark" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "markdown", |
| 16 | + "metadata": { |
| 17 | + "colab_type": "text" |
| 18 | + }, |
| 19 | + "source": [ |
| 20 | + "<a target=\"_blank\" href=\"https://colab.research.google.com/github/neo4j/graph-data-science-client/blob/main/examples/graph-analytics-serverless.ipynb\">\n", |
| 21 | + " <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n", |
| 22 | + "</a>" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "markdown", |
| 27 | + "metadata": {}, |
| 28 | + "source": [ |
| 29 | + "This Jupyter notebook is hosted [here](https://github.com/neo4j/graph-data-science-client/blob/main/examples/graph-analytics-serverless.ipynb) in the Neo4j Graph Data Science Client Github repository.\n", |
| 30 | + "\n", |
| 31 | + "The notebook shows how to use the `graphdatascience` Python library to create, manage, and use a GDS Session.\n", |
| 32 | + "\n", |
| 33 | + "We consider a graph of people and fruits, which we're using as a simple example to show how to connect your AuraDB instance to a GDS Session, run algorithms, and eventually write back your analytical results to the AuraDB database. \n", |
| 34 | + "We will cover all management operations: creation, listing, and deletion.\n", |
| 35 | + "\n", |
| 36 | + "If you are using self managed DB, follow [this example](../graph-analytics-serverless-self-managed)." |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "markdown", |
| 41 | + "metadata": {}, |
| 42 | + "source": [ |
| 43 | + "## Prerequisites\n", |
| 44 | + "\n", |
| 45 | + "This notebook requires having an AuraDB instance available and have the Aura Graph Analytics [feature](https://neo4j.com/docs/aura/graph-analytics/#aura-gds-serverless) enabled for your project.\n", |
| 46 | + "\n", |
| 47 | + "You also need to have the `graphdatascience` Python library installed, version `1.15` or later." |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "cell_type": "code", |
| 52 | + "execution_count": null, |
| 53 | + "metadata": {}, |
| 54 | + "outputs": [], |
| 55 | + "source": [ |
| 56 | + "%pip install \"graphdatascience>=1.18a2\" python-dotenv \"pyspark[sql]\"" |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "code", |
| 61 | + "execution_count": null, |
| 62 | + "metadata": {}, |
| 63 | + "outputs": [], |
| 64 | + "source": [ |
| 65 | + "from dotenv import load_dotenv\n", |
| 66 | + "\n", |
| 67 | + "# This allows to load required secrets from `.env` file in local directory\n", |
| 68 | + "# This can include Aura API Credentials and Database Credentials.\n", |
| 69 | + "# If file does not exist this is a noop.\n", |
| 70 | + "load_dotenv(\"sessions.env\")" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "markdown", |
| 75 | + "metadata": {}, |
| 76 | + "source": [ |
| 77 | + "### Connecting to a Spark Session\n", |
| 78 | + "\n", |
| 79 | + "To interact with the Spark Cluster we need to first instantiate a Spark session. In this example we will use a local Spark session, which will run Spark on the same machine.\n", |
| 80 | + "Working with a remote Spark cluster will work similarly." |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "code", |
| 85 | + "execution_count": null, |
| 86 | + "metadata": {}, |
| 87 | + "outputs": [], |
| 88 | + "source": [ |
| 89 | + "import os\n", |
| 90 | + "\n", |
| 91 | + "from pyspark.sql import SparkSession\n", |
| 92 | + "\n", |
| 93 | + "os.environ[\"JAVA_HOME\"] = \"/home/max/.sdkman/candidates/java/current\"\n", |
| 94 | + "\n", |
| 95 | + "spark = SparkSession.builder.master(\"local[4]\").appName(\"GraphAnalytics\").getOrCreate()\n", |
| 96 | + "\n", |
| 97 | + "# Enable Arrow-based columnar data transfers\n", |
| 98 | + "spark.conf.set(\"spark.sql.execution.arrow.pyspark.enabled\", \"true\")" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "markdown", |
| 103 | + "metadata": {}, |
| 104 | + "source": [ |
| 105 | + "## Aura API credentials\n", |
| 106 | + "\n", |
| 107 | + "The entry point for managing GDS Sessions is the `GdsSessions` object, which requires creating [Aura API credentials](https://neo4j.com/docs/aura/api/authentication)." |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": null, |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [], |
| 115 | + "source": [ |
| 116 | + "import os\n", |
| 117 | + "\n", |
| 118 | + "from graphdatascience.session import AuraAPICredentials, GdsSessions\n", |
| 119 | + "\n", |
| 120 | + "# you can also use AuraAPICredentials.from_env() to load credentials from environment variables\n", |
| 121 | + "api_credentials = AuraAPICredentials(\n", |
| 122 | + " client_id=os.environ[\"CLIENT_ID\"],\n", |
| 123 | + " client_secret=os.environ[\"CLIENT_SECRET\"],\n", |
| 124 | + " # If your account is a member of several project, you must also specify the project ID to use\n", |
| 125 | + " project_id=os.environ.get(\"PROJECT_ID\", None),\n", |
| 126 | + ")\n", |
| 127 | + "\n", |
| 128 | + "sessions = GdsSessions(api_credentials=api_credentials)" |
| 129 | + ] |
| 130 | + }, |
| 131 | + { |
| 132 | + "cell_type": "markdown", |
| 133 | + "metadata": {}, |
| 134 | + "source": [ |
| 135 | + "## Creating a new session\n", |
| 136 | + "\n", |
| 137 | + "A new session is created by calling `sessions.get_or_create()` with the following parameters:\n", |
| 138 | + "\n", |
| 139 | + "* A session name, which lets you reconnect to an existing session by calling `get_or_create` again.\n", |
| 140 | + "* The session memory. \n", |
| 141 | + "* The cloud location.\n", |
| 142 | + "* A time-to-live (TTL), which ensures that the session is automatically deleted after being unused for the set time, to avoid incurring costs.\n", |
| 143 | + "\n", |
| 144 | + "See the API reference [documentation](https://neo4j.com/docs/graph-data-science-client/current/api/sessions/gds_sessions/#graphdatascience.session.gds_sessions.GdsSessions.get_or_create) or the manual for more details on the parameters." |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": null, |
| 150 | + "metadata": {}, |
| 151 | + "outputs": [], |
| 152 | + "source": [ |
| 153 | + "from datetime import timedelta\n", |
| 154 | + "\n", |
| 155 | + "from graphdatascience.session import CloudLocation, SessionMemory\n", |
| 156 | + "\n", |
| 157 | + "# Create a GDS session!\n", |
| 158 | + "gds = sessions.get_or_create(\n", |
| 159 | + " # we give it a representative name\n", |
| 160 | + " session_name=\"people_and_fruits\",\n", |
| 161 | + " memory=SessionMemory.m_2GB,\n", |
| 162 | + " ttl=timedelta(minutes=30),\n", |
| 163 | + " cloud_location=CloudLocation(\"gcp\", \"europe-west1\"),\n", |
| 164 | + ")" |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | + "cell_type": "markdown", |
| 169 | + "metadata": {}, |
| 170 | + "source": [ |
| 171 | + "## Adding a dataset\n", |
| 172 | + "\n", |
| 173 | + "As the next step we will setup a dataset in Spark. In this example we will use the New York Bike trips dataset (https://www.kaggle.com/datasets/gabrielramos87/bike-trips)." |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "cell_type": "code", |
| 178 | + "execution_count": null, |
| 179 | + "metadata": {}, |
| 180 | + "outputs": [], |
| 181 | + "source": [ |
| 182 | + "import io\n", |
| 183 | + "import os\n", |
| 184 | + "import zipfile\n", |
| 185 | + "\n", |
| 186 | + "import requests\n", |
| 187 | + "\n", |
| 188 | + "download_path = \"bike_trips_data\"\n", |
| 189 | + "if not os.path.exists(download_path):\n", |
| 190 | + " url = \"https://www.kaggle.com/api/v1/datasets/download/gabrielramos87/bike-trips\"\n", |
| 191 | + "\n", |
| 192 | + " response = requests.get(url)\n", |
| 193 | + " response.raise_for_status()\n", |
| 194 | + "\n", |
| 195 | + " # Unzip the content\n", |
| 196 | + " with zipfile.ZipFile(io.BytesIO(response.content)) as z:\n", |
| 197 | + " z.extractall(download_path)\n", |
| 198 | + "\n", |
| 199 | + "df = spark.read.csv(download_path, header=True, inferSchema=True)\n", |
| 200 | + "df.createOrReplaceTempView(\"bike_trips\")\n", |
| 201 | + "df.limit(10).show()" |
| 202 | + ] |
| 203 | + }, |
| 204 | + { |
| 205 | + "cell_type": "markdown", |
| 206 | + "metadata": {}, |
| 207 | + "source": [ |
| 208 | + "## Projecting Graphs\n", |
| 209 | + "\n", |
| 210 | + "Now that we have our dataset available within our Spark session it is time to project it to the GDS Session.\n", |
| 211 | + "\n", |
| 212 | + "We first need to get access to the GDSArrowClient. This client allows us to directly communicate with the Arrow Flight server provided by the session.\n", |
| 213 | + "\n", |
| 214 | + "Our input data already resembles edge triplets, where each of the rows represents an edge from a source station to a target station. This allows us to use the arrows servers graph import from triplets functionality, which requires the following protocol:\n", |
| 215 | + "\n", |
| 216 | + "1. Send an action `v2/graph.project.fromTriplets`\n", |
| 217 | + " This will initialize the import process and allows us to specify the graph name, and settings like `undirected_relationship_types`. It returns a job id, that we need to reference the import job in the following steps.\n", |
| 218 | + "2. Send the data in batches to the arrow server.\n", |
| 219 | + "3. Send another action called `v2/graph.project.fromTriples.done` to tell the import process that no more data will be send. This will trigger the final graph creation inside the session.\n", |
| 220 | + "4. Wait for the import process to reach the `DONE` state.\n", |
| 221 | + "\n", |
| 222 | + "While the overall process is straight forward, we need to somehow tell Spark to" |
| 223 | + ] |
| 224 | + }, |
| 225 | + { |
| 226 | + "cell_type": "code", |
| 227 | + "execution_count": null, |
| 228 | + "metadata": {}, |
| 229 | + "outputs": [], |
| 230 | + "source": [ |
| 231 | + "import pandas as pd\n", |
| 232 | + "import pyarrow\n", |
| 233 | + "from pyspark.sql import functions\n", |
| 234 | + "\n", |
| 235 | + "graph_name = \"bike_trips\"\n", |
| 236 | + "\n", |
| 237 | + "arrow_client = gds.arrow_client()\n", |
| 238 | + "\n", |
| 239 | + "# 1. Start the import process\n", |
| 240 | + "job_id = arrow_client.create_graph_from_triplets(graph_name, concurrency=4)\n", |
| 241 | + "\n", |
| 242 | + "\n", |
| 243 | + "# Define a function that receives an arrow batch and uploads it to the session\n", |
| 244 | + "def upload_batch(iterator):\n", |
| 245 | + " for batch in iterator:\n", |
| 246 | + " arrow_client.upload_triplets(job_id, [batch])\n", |
| 247 | + " yield pyarrow.RecordBatch.from_pandas(pd.DataFrame({\"batch_rows_imported\": [len(batch)]}))\n", |
| 248 | + "\n", |
| 249 | + "\n", |
| 250 | + "# Select the source target pairs from our source data\n", |
| 251 | + "source_target_pairs = spark.sql(\"\"\"\n", |
| 252 | + " SELECT start_station_id AS sourceNode, end_station_id AS targetNode\n", |
| 253 | + " FROM bike_trips\n", |
| 254 | + "\"\"\")\n", |
| 255 | + "\n", |
| 256 | + "# 2. Use the `mapInArrow` function to upload the data to the sessions. Returns a dataframe with a single column with the batch sizes.\n", |
| 257 | + "uploaded_batches = source_target_pairs.mapInArrow(upload_batch, \"batch_rows_imported long\")\n", |
| 258 | + "\n", |
| 259 | + "# Aggregate the batch sizes to receive the row count.\n", |
| 260 | + "uploaded_batches.agg(functions.sum(\"batch_rows_imported\").alias(\"rows_imported\")).show()\n", |
| 261 | + "\n", |
| 262 | + "# 3. Finish the import process\n", |
| 263 | + "arrow_client.triplet_load_done(job_id)\n", |
| 264 | + "\n", |
| 265 | + "# 4. Wait for the import to finish\n", |
| 266 | + "while not arrow_client.job_status(job_id).succeeded():\n", |
| 267 | + " pass\n", |
| 268 | + "\n", |
| 269 | + "G = gds.v2.graph.get(graph_name)\n", |
| 270 | + "G" |
| 271 | + ] |
| 272 | + }, |
| 273 | + { |
| 274 | + "cell_type": "markdown", |
| 275 | + "metadata": {}, |
| 276 | + "source": [ |
| 277 | + "## Running Algorithms\n", |
| 278 | + "\n", |
| 279 | + "We can run algorithms on the constructed graph using the standard GDS Python Client API. See the other tutorials for more examples." |
| 280 | + ] |
| 281 | + }, |
| 282 | + { |
| 283 | + "cell_type": "code", |
| 284 | + "execution_count": null, |
| 285 | + "metadata": {}, |
| 286 | + "outputs": [], |
| 287 | + "source": [ |
| 288 | + "print(\"Running PageRank ...\")\n", |
| 289 | + "pr_result = gds.v2.page_rank.mutate(G, mutate_property=\"pagerank\")" |
| 290 | + ] |
| 291 | + }, |
| 292 | + { |
| 293 | + "cell_type": "markdown", |
| 294 | + "metadata": {}, |
| 295 | + "source": [ |
| 296 | + "## Sending the computation result back to Spark\n", |
| 297 | + "\n", |
| 298 | + "Once the computation is done. We might want to further use the result in Spark.\n", |
| 299 | + "We can do this in a similar to the projection, by streaming batches of data into each of the Spark workers.\n", |
| 300 | + "Retrieving the data is a bit more complicated since we need some input data frame in order to trigger computations on the Spark workers.\n", |
| 301 | + "We use a data range equal to the size of workers we have in our cluster as our driving table.\n", |
| 302 | + "On the workers we will disregard the input and instead stream the computation data from the GDS Session." |
| 303 | + ] |
| 304 | + }, |
| 305 | + { |
| 306 | + "cell_type": "code", |
| 307 | + "execution_count": null, |
| 308 | + "metadata": {}, |
| 309 | + "outputs": [], |
| 310 | + "source": [ |
| 311 | + "# 1. Start the node property export on the session\n", |
| 312 | + "job_id = arrow_client.get_node_properties(G.name(), [\"pagerank\"])\n", |
| 313 | + "\n", |
| 314 | + "\n", |
| 315 | + "# Define a function that receives data from the GDS Session and turns it into data batches\n", |
| 316 | + "def retrieve_data(ignored):\n", |
| 317 | + " stream_data = arrow_client.stream_job(G.name(), job_id)\n", |
| 318 | + " batches = pyarrow.Table.from_pandas(stream_data).to_batches(1000)\n", |
| 319 | + " for b in batches:\n", |
| 320 | + " yield b\n", |
| 321 | + "\n", |
| 322 | + "\n", |
| 323 | + "# Create DataFrame with a single column and one row per worker\n", |
| 324 | + "input_partitions = spark.range(spark.sparkContext.defaultParallelism).toDF(\"batch_id\")\n", |
| 325 | + "# 2. Stream the data from the GDS Session into the Spark workers\n", |
| 326 | + "received_batches = input_partitions.mapInArrow(retrieve_data, \"nodeId long, pagerank double\")\n", |
| 327 | + "# Optional: Repartition the data to make sure it is distributed equally\n", |
| 328 | + "result = received_batches.repartition(numPartitions=spark.sparkContext.defaultParallelism)\n", |
| 329 | + "\n", |
| 330 | + "result.show()" |
| 331 | + ] |
| 332 | + }, |
| 333 | + { |
| 334 | + "cell_type": "markdown", |
| 335 | + "metadata": {}, |
| 336 | + "source": [ |
| 337 | + "## Cleanup\n", |
| 338 | + "\n", |
| 339 | + "Now that we have finished our analysis, we can delete the session and stop the spark connection.\n", |
| 340 | + "\n", |
| 341 | + "Deleting the session will release all resources associated with it, and stop incurring costs." |
| 342 | + ] |
| 343 | + }, |
| 344 | + { |
| 345 | + "cell_type": "code", |
| 346 | + "execution_count": null, |
| 347 | + "metadata": {}, |
| 348 | + "outputs": [], |
| 349 | + "source": [ |
| 350 | + "gds.delete()\n", |
| 351 | + "spark.stop()" |
| 352 | + ] |
| 353 | + } |
| 354 | + ], |
| 355 | + "metadata": { |
| 356 | + "language_info": { |
| 357 | + "name": "python" |
| 358 | + } |
| 359 | + }, |
| 360 | + "nbformat": 4, |
| 361 | + "nbformat_minor": 4 |
| 362 | +} |
0 commit comments