From acba914642f95153747544cc7726e52155b68983 Mon Sep 17 00:00:00 2001 From: pfatheddin <156558883+pfatheddin@users.noreply.github.com> Date: Sun, 24 Mar 2024 19:17:42 -0400 Subject: [PATCH] Update LinearApproximations4.tex https://ximera.osu.edu/mooculus/linearApproximation/exercises/exerciseList/linearApproximation/exercises/LinearApproximations4 They should be able to do this without any hint. I shortened the hint. --- .../exercises/LinearApproximations4.tex | 12 ++++-------- 1 file changed, 4 insertions(+), 8 deletions(-) diff --git a/linearApproximation/exercises/LinearApproximations4.tex b/linearApproximation/exercises/LinearApproximations4.tex index cae679aff..adb6c431e 100644 --- a/linearApproximation/exercises/LinearApproximations4.tex +++ b/linearApproximation/exercises/LinearApproximations4.tex @@ -26,18 +26,14 @@ \] Using this linear approximation, approximate the value of $e$. + \begin{hint} -We have to express $e$ as $f(x)$, for some $x$. -\end{hint} -\begin{hint} -It follows that $e=e^1=e^{2(\frac{1}{2})}=f\left(\frac{1}{2}\right)$. -\end{hint} -\begin{hint} -It follows that $e=f\left(\frac{1}{2}\right)\approx L(\frac{1}{2})$. +Note that $e=e^1=e^{2(\frac{1}{2})}=f\left(\frac{1}{2}\right)$. \end{hint} + \[ e \approx \answer{2}. \] \end{exercise} -\end{document} \ No newline at end of file +\end{document}