Skip to content

Commit cf64ea4

Browse files
committed
ML/MM with GROMACS and Metatomic
1 parent 07c8a57 commit cf64ea4

File tree

12 files changed

+7307
-1
lines changed

12 files changed

+7307
-1
lines changed

docs/src/software/gromacs.sec

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -15,3 +15,4 @@ comprehensive suite for MD workflows. Its open-source nature and active communit
1515
continuous development and support.
1616

1717
- examples/water-pulsed/water-pulsed
18+
- examples/ml-mm/ml-mm

docs/src/topics/index.rst

Lines changed: 92 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,92 @@
1+
Recipes grouped by topic
2+
========================
3+
4+
You can navigate through the various recipes grouped
5+
in thematic areas, including classes of simulation problems
6+
and of modeling techniques. Recipes may be listed in
7+
more than one area, when relevant.
8+
9+
.. toctree::
10+
:maxdepth: 1
11+
:hidden:
12+
13+
sampling
14+
analysis
15+
ml-models
16+
universal
17+
nqes
18+
19+
20+
:doc:`sampling`
21+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22+
23+
.. card-carousel:: 3
24+
25+
26+
.. card:: Atomistic Water Model for Molecular Dynamics
27+
:link: ../examples/water-model/water-model
28+
:link-type: doc
29+
:text-align: center
30+
:shadow: md
31+
32+
.. image:: ../examples/water-model/images/thumb/sphx_glr_water-model_thumb.png
33+
:alt: In this example, we demonstrate how to construct a metatensor atomistic model for flexible three and four-point water model, with parameters optimized for use together with quantum-nuclear-effects-aware path integral simulations (cf. Habershon et al., JCP (2009)). The model also demonstrates the use of torch-pme, a Torch library for long-range interactions, and uses the resulting model to perform demonstrative molecular dynamics simulations.
34+
:class: gallery-img
35+
36+
37+
:doc:`analysis`
38+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
39+
40+
.. card-carousel:: 3
41+
42+
43+
.. card:: Water orientation in a pulsed electric field
44+
:link: ../examples/water-pulsed/water-pulsed
45+
:link-type: doc
46+
:text-align: center
47+
:shadow: md
48+
49+
.. image:: ../examples/water-pulsed/images/thumb/sphx_glr_water-pulsed_thumb.png
50+
:alt: Energy dissipation in water is very fast and more efficient than in many other liquids. This behavior is commonly attributed to the intermolecular interactions associated with hydrogen bonding. This effect has been studied intensively by experiments, ab initio, and classical simulations in the work by Elgabarty et al.. Here, we will re run some of the classical force field molecular dynamics (MD) simulations of the paper using the GROMACS package to compute the timeseries of the dipole moments as well as the energy.
51+
:class: gallery-img
52+
53+
54+
:doc:`ml-models`
55+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
56+
57+
.. card-carousel:: 3
58+
59+
60+
.. card:: ML–MM Simulations with GROMACS and Metatomic
61+
:link: ../examples/ml-mm/ml-mm
62+
:link-type: doc
63+
:text-align: center
64+
:shadow: md
65+
66+
.. image:: ../examples/ml-mm/images/thumb/sphx_glr_ml-mm_thumb.png
67+
:alt: In this tutorial we will simulate alanine dipeptide in water using a machine learning potential for the solute, while the solvent is treated with a classical force field. This setup is commonly referred to as an ML/MM simulation and follows very similar ideas to QM/MM.
68+
:class: gallery-img
69+
70+
71+
:doc:`universal`
72+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
73+
74+
.. card-carousel:: 3
75+
76+
77+
.. card:: ML–MM Simulations with GROMACS and Metatomic
78+
:link: ../examples/ml-mm/ml-mm
79+
:link-type: doc
80+
:text-align: center
81+
:shadow: md
82+
83+
.. image:: ../examples/ml-mm/images/thumb/sphx_glr_ml-mm_thumb.png
84+
:alt: In this tutorial we will simulate alanine dipeptide in water using a machine learning potential for the solute, while the solvent is treated with a classical force field. This setup is commonly referred to as an ML/MM simulation and follows very similar ideas to QM/MM.
85+
:class: gallery-img
86+
87+
88+
:doc:`nqes`
89+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
90+
91+
.. card-carousel:: 3
92+

docs/src/topics/ml-models.sec

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -18,3 +18,4 @@ data.
1818
- examples/flashmd/flashmd-demo
1919
- examples/shiftml/shiftml-example
2020
- examples/hamiltonian-qm7/hamiltonian-qm7
21+
- examples/ml-mm/ml-mm

docs/src/topics/universal.sec

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -11,3 +11,4 @@ structural space.
1111
- examples/pet-mad-uq/pet-mad-uq
1212
- examples/flashmd/flashmd-demo
1313
- examples/eon-pet-neb/eon-pet-neb
14+
- examples/ml-mm/ml-mm

examples/ml-mm/.gitignore

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,10 @@
1+
\#*
2+
*edr
3+
*.tpr
4+
*.cpt
5+
*.trr
6+
*.pt
7+
*.lock
8+
*.npz
9+
mdout.mdp
10+
confout.gro

examples/ml-mm/README.rst

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,5 @@
1+
ML-MM Simulations with GROMACS and Metatomic
2+
============================================
3+
4+
Simulate alanine dipeptide in water using a machine learning potential for the
5+
solute (ML-MM simulation) with GROMACS and the Metatomic interface.

0 commit comments

Comments
 (0)