@@ -291,7 +291,7 @@ def PES(x, y , z):
291291driver_process .wait ()
292292
293293# %%
294- # The Hessian can be recovered from the `harm.phonons.hess`file.
294+ # The Hessian can be recovered from the `harm.phonons.hess` file.
295295# You can use the snippet below to plot the harmonic approximation
296296# to the PES
297297#
@@ -369,3 +369,41 @@ def quantum_harmonic_free_energy(Ws, T):
369369print ('Exact Quantum free energy: %15.8f [eV]' % (F * 27.211386 ))
370370print ('Exact Quantum free energy: %15.8f [kJ/mol]' % (F * 2625.4996 ))
371371
372+ # %%
373+ #
374+ # Harmonic to anharmonic
375+ # ----------------------
376+ #
377+ # Calculating free energies beyond the harmonic approximation is non-trivial.
378+ # There exist a familty of methods that can solve the vibrational Schroedinger
379+ # Equation by approximating the anharmonic component of the PES, yielding an amharmonic
380+ # free energy. While highly effective for low-dimensional or mildly anharmonic systems,
381+ # the method of resort for *numerically-exact amharmonic free energies* of solid and clusters
382+ # is the thermodynamic integration method combined with the path-integral method
383+ # ( for applications see Refs.
384+ # `M. Rossi et al, PRL (2016) <https://doi.org/10.1103/PhysRevLett.117.115702>`_,
385+ # `V. Kapil et al, JCTC (2019) <https://doi.org/10.1021/acs.jctc.9b00596>`_,
386+ # `V. Kapil et al, PNAS (2022) <https://doi.org/10.1073/pnas.2111769119>`_).
387+ #
388+ #
389+ # The central idea is to reversibly change the potential from harmonic to anharmonic
390+ # by defining a :math:`\lambda`-dependent Hamiltonian
391+ #
392+ # .. math::
393+ # \hat{H}(\lambda) = \hat{T} + \lambda
394+ # \hat{V}^{\text{harm}} + (1 - \lambda) \hat{V}
395+ #
396+ # The the anharmonic free energy is calculated as the reversible work done
397+ # along the fictitious path in :math:`\lambda`-space
398+ #
399+ # .. math::
400+ # F = F^{\text{harm}} + \left< \hat{V} -
401+ # \hat{V}^{\text{harm}} \right>_{\lambda}
402+ #
403+ #
404+ # where :math:`\left< \hat{O} \right>_{\lambda}`
405+ # is the path-integral estimator for a positon dependent operator
406+ # for :math:`\hat{H}(\lambda)`.
407+
408+
409+
0 commit comments