Skip to content

Commit 998fd19

Browse files
committed
start anharmonic
1 parent a75d86c commit 998fd19

File tree

1 file changed

+39
-1
lines changed

1 file changed

+39
-1
lines changed

examples/free-energy/free-energy.py

Lines changed: 39 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -291,7 +291,7 @@ def PES(x, y , z):
291291
driver_process.wait()
292292

293293
# %%
294-
# The Hessian can be recovered from the `harm.phonons.hess`file.
294+
# The Hessian can be recovered from the `harm.phonons.hess` file.
295295
# You can use the snippet below to plot the harmonic approximation
296296
# to the PES
297297
#
@@ -369,3 +369,41 @@ def quantum_harmonic_free_energy(Ws, T):
369369
print ('Exact Quantum free energy: %15.8f [eV]'% (F * 27.211386))
370370
print ('Exact Quantum free energy: %15.8f [kJ/mol]' % (F * 2625.4996))
371371

372+
# %%
373+
#
374+
# Harmonic to anharmonic
375+
# ----------------------
376+
#
377+
# Calculating free energies beyond the harmonic approximation is non-trivial.
378+
# There exist a familty of methods that can solve the vibrational Schroedinger
379+
# Equation by approximating the anharmonic component of the PES, yielding an amharmonic
380+
# free energy. While highly effective for low-dimensional or mildly anharmonic systems,
381+
# the method of resort for *numerically-exact amharmonic free energies* of solid and clusters
382+
# is the thermodynamic integration method combined with the path-integral method
383+
# ( for applications see Refs.
384+
# `M. Rossi et al, PRL (2016) <https://doi.org/10.1103/PhysRevLett.117.115702>`_,
385+
# `V. Kapil et al, JCTC (2019) <https://doi.org/10.1021/acs.jctc.9b00596>`_,
386+
# `V. Kapil et al, PNAS (2022) <https://doi.org/10.1073/pnas.2111769119>`_).
387+
#
388+
#
389+
# The central idea is to reversibly change the potential from harmonic to anharmonic
390+
# by defining a :math:`\lambda`-dependent Hamiltonian
391+
#
392+
# .. math::
393+
# \hat{H}(\lambda) = \hat{T} + \lambda
394+
# \hat{V}^{\text{harm}} + (1 - \lambda) \hat{V}
395+
#
396+
# The the anharmonic free energy is calculated as the reversible work done
397+
# along the fictitious path in :math:`\lambda`-space
398+
#
399+
# .. math::
400+
# F = F^{\text{harm}} + \left< \hat{V} -
401+
# \hat{V}^{\text{harm}} \right>_{\lambda}
402+
#
403+
#
404+
# where :math:`\left< \hat{O} \right>_{\lambda}`
405+
# is the path-integral estimator for a positon dependent operator
406+
# for :math:`\hat{H}(\lambda)`.
407+
408+
409+

0 commit comments

Comments
 (0)