|
317 | 317 | ax.set_xlabel(r"$t$ / ps") |
318 | 318 | ax.set_ylabel(r"energy / eV") |
319 | 319 | ax.legend(loc="upper left", ncols=1) |
| 320 | +plt.show() |
320 | 321 |
|
321 | 322 | # %% |
322 | 323 | # |
@@ -360,6 +361,7 @@ def moving_average(arr, window_size): |
360 | 361 | ax.set_xlabel(r"$t$ / ps") |
361 | 362 | ax.set_ylabel(r"temperature / K") |
362 | 363 | ax.legend(loc="upper left", ncols=2) |
| 364 | +plt.show() |
363 | 365 |
|
364 | 366 | # %% |
365 | 367 | # It is clear that the very high rate of biasing used in this demonstrative |
@@ -458,6 +460,7 @@ def moving_average(arr, window_size): |
458 | 460 | ax[0].set_title(r"$t=0.8$ ps") |
459 | 461 | ax[1].set_title(r"$t=2.5$ ps") |
460 | 462 | ax[2].set_title(r"$t=5.0$ ps") |
| 463 | +plt.show() |
461 | 464 |
|
462 | 465 | # %% |
463 | 466 | # Biasing a path integral calculation |
@@ -667,6 +670,7 @@ def moving_average(arr, window_size): |
667 | 670 | ax[0].set_title(r"$t=0.8$ ps") |
668 | 671 | ax[1].set_title(r"$t=2.5$ ps") |
669 | 672 | ax[2].set_title(r"$t=5.0$ ps") |
| 673 | +plt.show() |
670 | 674 |
|
671 | 675 | # %% |
672 | 676 | # Assessing quantum nuclear effects |
@@ -694,6 +698,7 @@ def moving_average(arr, window_size): |
694 | 698 | plt.Line2D([0], [0], color="r", label="PIMD"), |
695 | 699 | ] |
696 | 700 | ) |
| 701 | +plt.show() |
697 | 702 |
|
698 | 703 | # %% |
699 | 704 | # |
@@ -730,6 +735,7 @@ def moving_average(arr, window_size): |
730 | 735 | plt.Line2D([0], [0], color="r", label="PIMD"), |
731 | 736 | ] |
732 | 737 | ) |
| 738 | +plt.show() |
733 | 739 |
|
734 | 740 | # %% |
735 | 741 | # |
@@ -765,6 +771,7 @@ def moving_average(arr, window_size): |
765 | 771 | ax.legend(ncols=2, loc="upper right", fontsize=9) |
766 | 772 | ax.set_ylabel(r"$F$ / eV") |
767 | 773 | ax.set_xlabel(r"$\Delta C_\mathrm{H}$") |
| 774 | +plt.show() |
768 | 775 |
|
769 | 776 | # %% |
770 | 777 | # This model system is representative of the behavior of protons |
|
0 commit comments