From 2eeaf162a7b7853a7bc959eb2bf3d7eb84f38b96 Mon Sep 17 00:00:00 2001 From: Joren Hammudoglu Date: Sun, 30 Nov 2025 08:41:26 +0100 Subject: [PATCH] replace `http://` with `https://` --- README.md | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index 0fdaf94..ba7a7ba 100644 --- a/README.md +++ b/README.md @@ -74,7 +74,7 @@ ## Machine Learning ### General Purpose Machine Learning -* [scikit-learn](http://scikit-learn.org/stable/) - Machine learning in Python. sklearn +* [scikit-learn](https://scikit-learn.org/stable/) - Machine learning in Python. sklearn * [PyCaret](https://github.com/pycaret/pycaret) - An open-source, low-code machine learning library in Python. R inspired lib * [Shogun](https://github.com/shogun-toolbox/shogun) - Machine learning toolbox. * [xLearn](https://github.com/aksnzhy/xlearn) - High Performance, Easy-to-use, and Scalable Machine Learning Package. @@ -104,7 +104,7 @@ * [TensorFlow Decision Forests](https://github.com/tensorflow/decision-forests) - A collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models in Keras. keras TensorFlow ### Ensemble Methods -* [ML-Ensemble](http://ml-ensemble.com/) - High performance ensemble learning. sklearn +* [ML-Ensemble](https://ml-ensemble.com/) - High performance ensemble learning. sklearn * [Stacking](https://github.com/ikki407/stacking) - Simple and useful stacking library written in Python. sklearn * [stacked_generalization](https://github.com/fukatani/stacked_generalization) - Library for machine learning stacking generalization. sklearn * [vecstack](https://github.com/vecxoz/vecstack) - Python package for stacking (machine learning technique). sklearn @@ -290,8 +290,8 @@ ## Probabilistic Methods * [pyro](https://github.com/uber/pyro) - A flexible, scalable deep probabilistic programming library built on PyTorch. PyTorch based/compatible * [PyMC](https://github.com/pymc-devs/pymc) - Bayesian Stochastic Modelling in Python. -* [ZhuSuan](http://zhusuan.readthedocs.io/en/latest/) - Bayesian Deep Learning. sklearn -* [GPflow](http://gpflow.readthedocs.io/en/latest/?badge=latest) - Gaussian processes in TensorFlow. sklearn +* [ZhuSuan](https://zhusuan.readthedocs.io/en/latest/) - Bayesian Deep Learning. sklearn +* [GPflow](https://gpflow.readthedocs.io/en/latest/?badge=latest) - Gaussian processes in TensorFlow. sklearn * [InferPy](https://github.com/PGM-Lab/InferPy) - Deep Probabilistic Modelling Made Easy. sklearn * [PyStan](https://github.com/stan-dev/pystan) - Bayesian inference using the No-U-Turn sampler (Python interface). * [sklearn-bayes](https://github.com/AmazaspShumik/sklearn-bayes) - Python package for Bayesian Machine Learning with scikit-learn API. sklearn @@ -512,7 +512,7 @@ * [AI Fairness 360](https://github.com/IBM/AIF360) - Fairness metrics for datasets and ML models, explanations, and algorithms to mitigate bias in datasets and models. ## Computations -* [numpy](http://www.numpy.org/) - The fundamental package needed for scientific computing with Python. +* [numpy](https://www.numpy.org/) - The fundamental package needed for scientific computing with Python. * [Dask](https://github.com/dask/dask) - Parallel computing with task scheduling. pandas compatible * [bottleneck](https://github.com/kwgoodman/bottleneck) - Fast NumPy array functions written in C. * [CuPy](https://github.com/cupy/cupy) - NumPy-like API accelerated with CUDA.