An idiom `u&.(m&{)` is monadic only implementing: ```j m}&y u m&{ y NB. u&.(m&{) y ``` I propose to extend it to support dyadic application implementing: ```j m}&y (m&{ x) u m&{ y NB. x u&.(m&{) y ``` That is, to make an idiom `u&.(m&{)` ambivalent.