-
Notifications
You must be signed in to change notification settings - Fork 31.3k
Open
Description
System Info
transformersversion: 4.57.3- Platform: Linux-6.1.0-31-amd64-x86_64-with-glibc2.36
- Python version: 3.12.9
- Huggingface_hub version: 0.36.0
- Safetensors version: 0.7.0
- Accelerate version: 1.12.0
- Accelerate config: not found
- DeepSpeed version: not installed
- PyTorch version (accelerator?): 2.9.1+cu128 (CUDA)
- Tensorflow version (GPU?): not installed (NA)
- Flax version (CPU?/GPU?/TPU?): not installed (NA)
- Jax version: not installed
- JaxLib version: not installed
- Using distributed or parallel set-up in script?: no
- Using GPU in script?: yes
- GPU type: NVIDIA A100 80GB PCIe
Who can help?
Information
- The official example scripts
- My own modified scripts
Tasks
- An officially supported task in the
examplesfolder (such as GLUE/SQuAD, ...) - My own task or dataset (give details below)
Reproduction
from transformers import pipeline
asr = pipeline(
"automatic-speech-recognition",
model="mistralai/Voxtral-Mini-3B-2507"
)from transformers import VoxtralForConditionalGeneration, VoxtralProcessor, pipeline
model = VoxtralForConditionalGeneration.from_pretrained("mistralai/Voxtral-Mini-3B-2507")
processor = VoxtralProcessor.from_pretrained("mistralai/Voxtral-Mini-3B-2507")
asr = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
)
result = asr("example.wav")Expected behavior
The automatic-speech-recognition pipeline should seamlessly handle mistralai/Voxtral models by:
- The tokenizer should accept standard pipeline arguments (like _from_pipeline) without raising a ValueError
- The pipeline should automatically generate the required request and the corresponding input_ids
Metadata
Metadata
Assignees
Labels
No labels