Skip to content

nfent training issue #498

@choibigo

Description

@choibigo

Hi,

  1. I trying to training nfnet. I used the Pytorch internal Optimizer function ( Adam ). But Loss value has increased by more than 1billion won. I want to use the optimizer function inside the pytorch. How can we learn nfnet normally using hte Pytorch internal optimizer function

  2. I trained nfnet using a pytorch internal SGD function. when this is done, the Loss values converage. But the accuracy was very low( I used Cifar-10, test accuracy 69% ) How can we use the Pytorch internal function to improve accuracy? I want to use the nfnet network.

image
image

Epoch Loss Accuracy
1 1.753645 34.90%
2 1.500068 44.98%
3 1.344993 51.19%
4 1.196938 56.67%
5 1.052379 62.29%
6 0.911386 67.60%
7 0.772456 72.64%
8 0.633716 77.47%
9 0.499606 82.60%
10 0.372976 87.39%
11 0.260337 91.45%
12 0.171906 94.62%
13 0.116029 96.64%
14 0.065437 98.22%
15 0.049405 98.83%
16 0.028897 99.36%
17 0.015737 99.74%
18 0.016722 99.71%
19 0.018367 99.67%
20 0.006228 99.93%
21 0.003135 99.97%
22 0.002308 99.97%
23 0.001698 99.98%
24 0.001331 99.99%
25 0.001087 99.99%
26 0.000905 99.99%
27 0.000768 100.00%
28 0.000658 100.00%
29 0.000574 100.00%
30 0.000509 100.00%
31 0.000444 100.00%
32 0.000397 100.00%
33 0.000346 100.00%
34 0.000307 100.00%
35 0.00027 100.00%
36 0.000241 100.00%
37 0.000218 100.00%
38 0.0002 100.00%
39 0.000183 100.00%
40 0.000169 100.00%
41 0.000158 100.00%
42 0.000148 100.00%
43 0.00014 100.00%
44 0.000132 100.00%
45 0.000124 100.00%
46 0.000118 100.00%
47 0.000112 100.00%
48 0.000107 100.00%
49 0.000102 100.00%
50 9.79E-05 100.00%
51 9.38E-05 100.00%
52 8.99E-05 100.00%
53 8.63E-05 100.00%
54 8.31E-05 100.00%
55 8.00E-05 100.00%
56 7.71E-05 100.00%
57 7.45E-05 100.00%
58 7.20E-05 100.00%
59 6.97E-05 100.00%
60 6.75E-05 100.00%
61 6.53E-05 100.00%
62 6.34E-05 100.00%
63 6.15E-05 100.00%
64 5.97E-05 100.00%
65 5.80E-05 100.00%
66 5.65E-05 100.00%
67 5.49E-05 100.00%
68 5.35E-05 100.00%
69 5.21E-05 100.00%
70 5.08E-05 100.00%
71 4.95E-05 100.00%
72 4.84E-05 100.00%
73 4.72E-05 100.00%
74 4.61E-05 100.00%
75 4.51E-05 100.00%
76 4.41E-05 100.00%
77 4.31E-05 100.00%
78 4.22E-05 100.00%
79 4.13E-05 100.00%
80 4.04E-05 100.00%
81 3.96E-05 100.00%
82 3.88E-05 100.00%
83 3.80E-05 100.00%
84 3.73E-05 100.00%
85 3.66E-05 100.00%
86 3.59E-05 100.00%
87 3.53E-05 100.00%
88 3.46E-05 100.00%
89 3.40E-05 100.00%
90 3.34E-05 100.00%
91 3.28E-05 100.00%
92 3.23E-05 100.00%
93 3.17E-05 100.00%
94 3.12E-05 100.00%
95 3.07E-05 100.00%
96 3.02E-05 100.00%
97 2.97E-05 100.00%
98 2.92E-05 100.00%
99 2.88E-05 100.00%
100 2.83E-05 100.00%

I will wait for your reply.
Thank you

Metadata

Metadata

Assignees

No one assigned

    Labels

    enhancementNew feature or request

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions