-
-
Notifications
You must be signed in to change notification settings - Fork 5.1k
Description
efficientformerv2_s2 uses an image size of 224. When I don’t use pre-training parameters and change the input image size to 480 or others, an error will be reported
python3 -u ./train.py /gpu1-data/datasets --num-classes 58 --model efficientformerv2_s2 -b 48 --img-size 480 --sched step --epochs 300 --lr .001 -j 8 --opt adamp --weight-decay 1e-5 --decay-epochs 2 --decay-rate .91 --warmup-lr 1e-6 --warmup-epochs 1 --remode pixel --reprob 0.15 --amp
Training with a single process on 1 device (cuda:0).
/opt/conda/lib/python3.7/site-packages/torch/functional.py:478: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2895.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
Model efficientformerv2_s2 created, param count:12165636
Data processing configuration for current model + dataset:
input_size: (3, 480, 480)
interpolation: bicubic
mean: (0.485, 0.456, 0.406)
std: (0.229, 0.224, 0.225)
crop_pct: 0.95
crop_mode: center
Using native Torch AMP. Training in mixed precision.
Scheduled epochs: 300. LR stepped per epoch.
Traceback (most recent call last):
File "./train.py", line 1037, in
main()
File "./train.py", line 774, in main
mixup_fn=mixup_fn,
File "./train.py", line 876, in train_one_epoch
output = model(input)
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/gpu2-data/zhenty/pytorch-image-models/timm/models/efficientformer_v2.py", line 645, in forward
x = self.forward_features(x)
File "/gpu2-data/zhenty/pytorch-image-models/timm/models/efficientformer_v2.py", line 627, in forward_features
x = self.stages(x)
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/container.py", line 139, in forward
input = module(input)
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/gpu2-data/zhenty/pytorch-image-models/timm/models/efficientformer_v2.py", line 505, in forward
x = self.blocks(x)
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/container.py", line 139, in forward
input = module(input)
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/gpu2-data/zhenty/pytorch-image-models/timm/models/efficientformer_v2.py", line 422, in forward
x = x + self.drop_path1(self.ls1(self.token_mixer(x)))
File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/gpu2-data/zhenty/pytorch-image-models/timm/models/efficientformer_v2.py", line 160, in forward
q = self.q(x).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2)
RuntimeError: shape '[48, 8, -1, 49]' is invalid for input of size 2764800