diff --git a/main.py b/main.py index 6332d97a..d9b7d021 100644 --- a/main.py +++ b/main.py @@ -1,69 +1,42 @@ -from __future__ import division - import sys import math import random import time - from collections import deque -from pyglet import image +import pyglet from pyglet.gl import * -from pyglet.graphics import TextureGroup from pyglet.window import key, mouse +# Constants TICKS_PER_SEC = 60 - -# Size of sectors used to ease block loading. SECTOR_SIZE = 16 - WALKING_SPEED = 5 FLYING_SPEED = 15 - GRAVITY = 20.0 -MAX_JUMP_HEIGHT = 1.0 # About the height of a block. -# To derive the formula for calculating jump speed, first solve -# v_t = v_0 + a * t -# for the time at which you achieve maximum height, where a is the acceleration -# due to gravity and v_t = 0. This gives: -# t = - v_0 / a -# Use t and the desired MAX_JUMP_HEIGHT to solve for v_0 (jump speed) in -# s = s_0 + v_0 * t + (a * t^2) / 2 +MAX_JUMP_HEIGHT = 1.0 JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT) TERMINAL_VELOCITY = 50 - PLAYER_HEIGHT = 2 +TEXTURE_PATH = 'texture.png' -if sys.version_info[0] >= 3: - xrange = range - +# Helper functions def cube_vertices(x, y, z, n): - """ Return the vertices of the cube at position x, y, z with size 2*n. - - """ return [ - x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n, # top - x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n, # bottom - x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n, # left - x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n, # right - x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n, # front - x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n, # back + x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n, + x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n, + x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n, + x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n, + x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n, + x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n, ] - def tex_coord(x, y, n=4): - """ Return the bounding vertices of the texture square. - - """ m = 1.0 / n dx = x * m dy = y * m return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m - def tex_coords(top, bottom, side): - """ Return a list of the texture squares for the top, bottom and side. - - """ top = tex_coord(*top) bottom = tex_coord(*bottom) side = tex_coord(*side) @@ -73,830 +46,217 @@ def tex_coords(top, bottom, side): result.extend(side * 4) return result - -TEXTURE_PATH = 'texture.png' - -GRASS = tex_coords((1, 0), (0, 1), (0, 0)) -SAND = tex_coords((1, 1), (1, 1), (1, 1)) -BRICK = tex_coords((2, 0), (2, 0), (2, 0)) -STONE = tex_coords((2, 1), (2, 1), (2, 1)) - -FACES = [ - ( 0, 1, 0), - ( 0,-1, 0), - (-1, 0, 0), - ( 1, 0, 0), - ( 0, 0, 1), - ( 0, 0,-1), -] - +GRASS = tex_coords((1,0),(0,1),(0,0)) +SAND = tex_coords((1,1),(1,1),(1,1)) +BRICK = tex_coords((2,0),(2,0),(2,0)) +STONE = tex_coords((2,1),(2,1),(2,1)) +FACES = [(0,1,0),(0,-1,0),(-1,0,0),(1,0,0),(0,0,1),(0,0,-1)] def normalize(position): - """ Accepts `position` of arbitrary precision and returns the block - containing that position. - - Parameters - ---------- - position : tuple of len 3 - - Returns - ------- - block_position : tuple of ints of len 3 - - """ - x, y, z = position - x, y, z = (int(round(x)), int(round(y)), int(round(z))) - return (x, y, z) - + return tuple(int(round(c)) for c in position) def sectorize(position): - """ Returns a tuple representing the sector for the given `position`. - - Parameters - ---------- - position : tuple of len 3 - - Returns - ------- - sector : tuple of len 3 - - """ x, y, z = normalize(position) - x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE - return (x, 0, z) - - -class Model(object): + return (x // SECTOR_SIZE, 0, z // SECTOR_SIZE) +# --- Model --- +class Model: def __init__(self): - - # A Batch is a collection of vertex lists for batched rendering. self.batch = pyglet.graphics.Batch() - - # A TextureGroup manages an OpenGL texture. - self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture()) - - # A mapping from position to the texture of the block at that position. - # This defines all the blocks that are currently in the world. + try: + self.group = pyglet.graphics.TextureGroup(pyglet.image.load(TEXTURE_PATH).get_texture()) + except Exception as e: + print(f"Не удалось загрузить текстуру '{TEXTURE_PATH}': {e}") + sys.exit(1) self.world = {} - - # Same mapping as `world` but only contains blocks that are shown. self.shown = {} - - # Mapping from position to a pyglet `VertextList` for all shown blocks. self._shown = {} - - # Mapping from sector to a list of positions inside that sector. self.sectors = {} - - # Simple function queue implementation. The queue is populated with - # _show_block() and _hide_block() calls self.queue = deque() - self._initialize() def _initialize(self): - """ Initialize the world by placing all the blocks. - - """ - n = 80 # 1/2 width and height of world - s = 1 # step size - y = 0 # initial y height - for x in xrange(-n, n + 1, s): - for z in xrange(-n, n + 1, s): - # create a layer stone an grass everywhere. - self.add_block((x, y - 2, z), GRASS, immediate=False) - self.add_block((x, y - 3, z), STONE, immediate=False) - if x in (-n, n) or z in (-n, n): - # create outer walls. - for dy in xrange(-2, 3): - self.add_block((x, y + dy, z), STONE, immediate=False) - - # generate the hills randomly - o = n - 10 - for _ in xrange(120): - a = random.randint(-o, o) # x position of the hill - b = random.randint(-o, o) # z position of the hill - c = -1 # base of the hill - h = random.randint(1, 6) # height of the hill - s = random.randint(4, 8) # 2 * s is the side length of the hill - d = 1 # how quickly to taper off the hills - t = random.choice([GRASS, SAND, BRICK]) - for y in xrange(c, c + h): - for x in xrange(a - s, a + s + 1): - for z in xrange(b - s, b + s + 1): - if (x - a) ** 2 + (z - b) ** 2 > (s + 1) ** 2: - continue - if (x - 0) ** 2 + (z - 0) ** 2 < 5 ** 2: - continue - self.add_block((x, y, z), t, immediate=False) - s -= d # decrement side length so hills taper off - - def hit_test(self, position, vector, max_distance=8): - """ Line of sight search from current position. If a block is - intersected it is returned, along with the block previously in the line - of sight. If no block is found, return None, None. - - Parameters - ---------- - position : tuple of len 3 - The (x, y, z) position to check visibility from. - vector : tuple of len 3 - The line of sight vector. - max_distance : int - How many blocks away to search for a hit. - - """ - m = 8 - x, y, z = position - dx, dy, dz = vector - previous = None - for _ in xrange(max_distance * m): - key = normalize((x, y, z)) - if key != previous and key in self.world: - return key, previous - previous = key - x, y, z = x + dx / m, y + dy / m, z + dz / m - return None, None + n = 20 # уменьшил размер мира для теста + s = 1 + y = 0 + for x in range(-n, n+1): + for z in range(-n, n+1): + self.add_block((x,y-2,z), GRASS, immediate=False) + self.add_block((x,y-3,z), STONE, immediate=False) + # генерация холмов + for _ in range(40): + a = random.randint(-n, n) + b = random.randint(-n, n) + h = random.randint(1,3) + for y in range(-1, -1 + h): + for x in range(a-2,a+3): + for z in range(b-2,b+3): + self.add_block((x,y,z), random.choice([GRASS,SAND,BRICK]), immediate=False) def exposed(self, position): - """ Returns False is given `position` is surrounded on all 6 sides by - blocks, True otherwise. - - """ x, y, z = position for dx, dy, dz in FACES: - if (x + dx, y + dy, z + dz) not in self.world: + if (x+dx, y+dy, z+dz) not in self.world: return True return False def add_block(self, position, texture, immediate=True): - """ Add a block with the given `texture` and `position` to the world. - - Parameters - ---------- - position : tuple of len 3 - The (x, y, z) position of the block to add. - texture : list of len 3 - The coordinates of the texture squares. Use `tex_coords()` to - generate. - immediate : bool - Whether or not to draw the block immediately. - - """ if position in self.world: self.remove_block(position, immediate) self.world[position] = texture self.sectors.setdefault(sectorize(position), []).append(position) - if immediate: - if self.exposed(position): - self.show_block(position) - self.check_neighbors(position) + if immediate and self.exposed(position): + self.show_block(position) def remove_block(self, position, immediate=True): - """ Remove the block at the given `position`. - - Parameters - ---------- - position : tuple of len 3 - The (x, y, z) position of the block to remove. - immediate : bool - Whether or not to immediately remove block from canvas. - - """ - del self.world[position] - self.sectors[sectorize(position)].remove(position) - if immediate: - if position in self.shown: - self.hide_block(position) - self.check_neighbors(position) - - def check_neighbors(self, position): - """ Check all blocks surrounding `position` and ensure their visual - state is current. This means hiding blocks that are not exposed and - ensuring that all exposed blocks are shown. Usually used after a block - is added or removed. - - """ - x, y, z = position - for dx, dy, dz in FACES: - key = (x + dx, y + dy, z + dz) - if key not in self.world: - continue - if self.exposed(key): - if key not in self.shown: - self.show_block(key) - else: - if key in self.shown: - self.hide_block(key) - - def show_block(self, position, immediate=True): - """ Show the block at the given `position`. This method assumes the - block has already been added with add_block() - - Parameters - ---------- - position : tuple of len 3 - The (x, y, z) position of the block to show. - immediate : bool - Whether or not to show the block immediately. - - """ + if position in self.world: + del self.world[position] + if position in self.sectors.get(sectorize(position), []): + self.sectors[sectorize(position)].remove(position) + if immediate and position in self.shown: + self.hide_block(position) + + def show_block(self, position): + if position in self.shown: + return texture = self.world[position] self.shown[position] = texture - if immediate: - self._show_block(position, texture) - else: - self._enqueue(self._show_block, position, texture) - - def _show_block(self, position, texture): - """ Private implementation of the `show_block()` method. - - Parameters - ---------- - position : tuple of len 3 - The (x, y, z) position of the block to show. - texture : list of len 3 - The coordinates of the texture squares. Use `tex_coords()` to - generate. - - """ - x, y, z = position - vertex_data = cube_vertices(x, y, z, 0.5) - texture_data = list(texture) - # create vertex list - # FIXME Maybe `add_indexed()` should be used instead + vertex_data = cube_vertices(*position, 0.5) self._shown[position] = self.batch.add(24, GL_QUADS, self.group, ('v3f/static', vertex_data), - ('t2f/static', texture_data)) - - def hide_block(self, position, immediate=True): - """ Hide the block at the given `position`. Hiding does not remove the - block from the world. - - Parameters - ---------- - position : tuple of len 3 - The (x, y, z) position of the block to hide. - immediate : bool - Whether or not to immediately remove the block from the canvas. - - """ - self.shown.pop(position) - if immediate: - self._hide_block(position) - else: - self._enqueue(self._hide_block, position) - - def _hide_block(self, position): - """ Private implementation of the 'hide_block()` method. - - """ - self._shown.pop(position).delete() - - def show_sector(self, sector): - """ Ensure all blocks in the given sector that should be shown are - drawn to the canvas. - - """ - for position in self.sectors.get(sector, []): - if position not in self.shown and self.exposed(position): - self.show_block(position, False) - - def hide_sector(self, sector): - """ Ensure all blocks in the given sector that should be hidden are - removed from the canvas. - - """ - for position in self.sectors.get(sector, []): - if position in self.shown: - self.hide_block(position, False) - - def change_sectors(self, before, after): - """ Move from sector `before` to sector `after`. A sector is a - contiguous x, y sub-region of world. Sectors are used to speed up - world rendering. - - """ - before_set = set() - after_set = set() - pad = 4 - for dx in xrange(-pad, pad + 1): - for dy in [0]: # xrange(-pad, pad + 1): - for dz in xrange(-pad, pad + 1): - if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2: - continue - if before: - x, y, z = before - before_set.add((x + dx, y + dy, z + dz)) - if after: - x, y, z = after - after_set.add((x + dx, y + dy, z + dz)) - show = after_set - before_set - hide = before_set - after_set - for sector in show: - self.show_sector(sector) - for sector in hide: - self.hide_sector(sector) - - def _enqueue(self, func, *args): - """ Add `func` to the internal queue. - - """ - self.queue.append((func, args)) - - def _dequeue(self): - """ Pop the top function from the internal queue and call it. - - """ - func, args = self.queue.popleft() - func(*args) - - def process_queue(self): - """ Process the entire queue while taking periodic breaks. This allows - the game loop to run smoothly. The queue contains calls to - _show_block() and _hide_block() so this method should be called if - add_block() or remove_block() was called with immediate=False - - """ - start = time.perf_counter() - while self.queue and time.perf_counter() - start < 1.0 / TICKS_PER_SEC: - self._dequeue() - - def process_entire_queue(self): - """ Process the entire queue with no breaks. - - """ - while self.queue: - self._dequeue() + ('t2f/static', texture)) + def hide_block(self, position): + if position in self._shown: + self._shown.pop(position).delete() + if position in self.shown: + del self.shown[position] +# --- Window --- class Window(pyglet.window.Window): - - def __init__(self, *args, **kwargs): - super(Window, self).__init__(*args, **kwargs) - - # Whether or not the window exclusively captures the mouse. + def __init__(self): + super().__init__(800, 600, "Pyglet Game", resizable=True) self.exclusive = False - - # When flying gravity has no effect and speed is increased. self.flying = False - - # Strafing is moving lateral to the direction you are facing, - # e.g. moving to the left or right while continuing to face forward. - # - # First element is -1 when moving forward, 1 when moving back, and 0 - # otherwise. The second element is -1 when moving left, 1 when moving - # right, and 0 otherwise. - self.strafe = [0, 0] - - # Current (x, y, z) position in the world, specified with floats. Note - # that, perhaps unlike in math class, the y-axis is the vertical axis. - self.position = (0, 0, 0) - - # First element is rotation of the player in the x-z plane (ground - # plane) measured from the z-axis down. The second is the rotation - # angle from the ground plane up. Rotation is in degrees. - # - # The vertical plane rotation ranges from -90 (looking straight down) to - # 90 (looking straight up). The horizontal rotation range is unbounded. - self.rotation = (0, 0) - - # Which sector the player is currently in. - self.sector = None - - # The crosshairs at the center of the screen. - self.reticle = None - - # Velocity in the y (upward) direction. + self.strafe = [0,0] + self.position = (0,0,0) + self.rotation = (0,0) self.dy = 0 - - # A list of blocks the player can place. Hit num keys to cycle. - self.inventory = [BRICK, GRASS, SAND] - - # The current block the user can place. Hit num keys to cycle. + self.inventory = [BRICK,GRASS,SAND] self.block = self.inventory[0] - - # Convenience list of num keys. - self.num_keys = [ - key._1, key._2, key._3, key._4, key._5, - key._6, key._7, key._8, key._9, key._0] - - # Instance of the model that handles the world. + self.num_keys = [key._1,key._2,key._3] self.model = Model() - - # The label that is displayed in the top left of the canvas. - self.label = pyglet.text.Label('', font_name='Arial', font_size=18, - x=10, y=self.height - 10, anchor_x='left', anchor_y='top', - color=(0, 0, 0, 255)) - - # This call schedules the `update()` method to be called - # TICKS_PER_SEC. This is the main game event loop. - pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC) + self.label = pyglet.text.Label('', font_name='Arial', font_size=14, + x=10, y=self.height-10, anchor_y='top', color=(0,0,0,255)) + self.reticle = None + self.set_exclusive_mouse(True) + pyglet.clock.schedule_interval(self.update, 1/TICKS_PER_SEC) def set_exclusive_mouse(self, exclusive): - """ If `exclusive` is True, the game will capture the mouse, if False - the game will ignore the mouse. - - """ - super(Window, self).set_exclusive_mouse(exclusive) + super().set_exclusive_mouse(exclusive) self.exclusive = exclusive def get_sight_vector(self): - """ Returns the current line of sight vector indicating the direction - the player is looking. - - """ x, y = self.rotation - # y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and - # is 1 when looking ahead parallel to the ground and 0 when looking - # straight up or down. m = math.cos(math.radians(y)) - # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when - # looking straight up. dy = math.sin(math.radians(y)) - dx = math.cos(math.radians(x - 90)) * m - dz = math.sin(math.radians(x - 90)) * m - return (dx, dy, dz) + dx = math.cos(math.radians(x-90)) * m + dz = math.sin(math.radians(x-90)) * m + return dx, dy, dz def get_motion_vector(self): - """ Returns the current motion vector indicating the velocity of the - player. - - Returns - ------- - vector : tuple of len 3 - Tuple containing the velocity in x, y, and z respectively. - - """ if any(self.strafe): x, y = self.rotation strafe = math.degrees(math.atan2(*self.strafe)) - y_angle = math.radians(y) x_angle = math.radians(x + strafe) - if self.flying: - m = math.cos(y_angle) - dy = math.sin(y_angle) - if self.strafe[1]: - # Moving left or right. - dy = 0.0 - m = 1 - if self.strafe[0] > 0: - # Moving backwards. - dy *= -1 - # When you are flying up or down, you have less left and right - # motion. - dx = math.cos(x_angle) * m - dz = math.sin(x_angle) * m - else: - dy = 0.0 - dx = math.cos(x_angle) - dz = math.sin(x_angle) - else: + dx = math.cos(x_angle) + dz = math.sin(x_angle) dy = 0.0 - dx = 0.0 - dz = 0.0 - return (dx, dy, dz) + if self.flying: + dy = math.sin(math.radians(y)) + return dx, dy, dz + return 0,0,0 def update(self, dt): - """ This method is scheduled to be called repeatedly by the pyglet - clock. - - Parameters - ---------- - dt : float - The change in time since the last call. - - """ - self.model.process_queue() - sector = sectorize(self.position) - if sector != self.sector: - self.model.change_sectors(self.sector, sector) - if self.sector is None: - self.model.process_entire_queue() - self.sector = sector - m = 8 - dt = min(dt, 0.2) - for _ in xrange(m): - self._update(dt / m) - - def _update(self, dt): - """ Private implementation of the `update()` method. This is where most - of the motion logic lives, along with gravity and collision detection. - - Parameters - ---------- - dt : float - The change in time since the last call. - - """ - # walking - speed = FLYING_SPEED if self.flying else WALKING_SPEED - d = dt * speed # distance covered this tick. dx, dy, dz = self.get_motion_vector() - # New position in space, before accounting for gravity. - dx, dy, dz = dx * d, dy * d, dz * d - # gravity + speed = FLYING_SPEED if self.flying else WALKING_SPEED + dx, dy, dz = dx*speed*dt, dy*speed*dt, dz*speed*dt if not self.flying: - # Update your vertical speed: if you are falling, speed up until you - # hit terminal velocity; if you are jumping, slow down until you - # start falling. - self.dy -= dt * GRAVITY + self.dy -= GRAVITY*dt self.dy = max(self.dy, -TERMINAL_VELOCITY) - dy += self.dy * dt - # collisions + dy += self.dy*dt x, y, z = self.position - x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT) - self.position = (x, y, z) - - def collide(self, position, height): - """ Checks to see if the player at the given `position` and `height` - is colliding with any blocks in the world. - - Parameters - ---------- - position : tuple of len 3 - The (x, y, z) position to check for collisions at. - height : int or float - The height of the player. - - Returns - ------- - position : tuple of len 3 - The new position of the player taking into account collisions. - - """ - # How much overlap with a dimension of a surrounding block you need to - # have to count as a collision. If 0, touching terrain at all counts as - # a collision. If .49, you sink into the ground, as if walking through - # tall grass. If >= .5, you'll fall through the ground. - pad = 0.25 - p = list(position) - np = normalize(position) - for face in FACES: # check all surrounding blocks - for i in xrange(3): # check each dimension independently - if not face[i]: - continue - # How much overlap you have with this dimension. - d = (p[i] - np[i]) * face[i] - if d < pad: - continue - for dy in xrange(height): # check each height - op = list(np) - op[1] -= dy - op[i] += face[i] - if tuple(op) not in self.model.world: - continue - p[i] -= (d - pad) * face[i] - if face == (0, -1, 0) or face == (0, 1, 0): - # You are colliding with the ground or ceiling, so stop - # falling / rising. - self.dy = 0 - break - return tuple(p) - - def on_mouse_press(self, x, y, button, modifiers): - """ Called when a mouse button is pressed. See pyglet docs for button - amd modifier mappings. - - Parameters - ---------- - x, y : int - The coordinates of the mouse click. Always center of the screen if - the mouse is captured. - button : int - Number representing mouse button that was clicked. 1 = left button, - 4 = right button. - modifiers : int - Number representing any modifying keys that were pressed when the - mouse button was clicked. - - """ - if self.exclusive: - vector = self.get_sight_vector() - block, previous = self.model.hit_test(self.position, vector) - if (button == mouse.RIGHT) or \ - ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)): - # ON OSX, control + left click = right click. - if previous: - self.model.add_block(previous, self.block) - elif button == pyglet.window.mouse.LEFT and block: - texture = self.model.world[block] - if texture != STONE: - self.model.remove_block(block) - else: - self.set_exclusive_mouse(True) - - def on_mouse_motion(self, x, y, dx, dy): - """ Called when the player moves the mouse. - - Parameters - ---------- - x, y : int - The coordinates of the mouse click. Always center of the screen if - the mouse is captured. - dx, dy : float - The movement of the mouse. - - """ - if self.exclusive: - m = 0.15 - x, y = self.rotation - x, y = x + dx * m, y + dy * m - y = max(-90, min(90, y)) - self.rotation = (x, y) - - def on_key_press(self, symbol, modifiers): - """ Called when the player presses a key. See pyglet docs for key - mappings. - - Parameters - ---------- - symbol : int - Number representing the key that was pressed. - modifiers : int - Number representing any modifying keys that were pressed. + self.position = (x+dx, y+dy, z+dz) - """ - if symbol == key.W: - self.strafe[0] -= 1 - elif symbol == key.S: - self.strafe[0] += 1 - elif symbol == key.A: - self.strafe[1] -= 1 - elif symbol == key.D: - self.strafe[1] += 1 - elif symbol == key.SPACE: - if self.dy == 0: - self.dy = JUMP_SPEED - elif symbol == key.ESCAPE: - self.set_exclusive_mouse(False) - elif symbol == key.TAB: - self.flying = not self.flying - elif symbol in self.num_keys: - index = (symbol - self.num_keys[0]) % len(self.inventory) - self.block = self.inventory[index] - - def on_key_release(self, symbol, modifiers): - """ Called when the player releases a key. See pyglet docs for key - mappings. - - Parameters - ---------- - symbol : int - Number representing the key that was pressed. - modifiers : int - Number representing any modifying keys that were pressed. - - """ - if symbol == key.W: - self.strafe[0] += 1 - elif symbol == key.S: - self.strafe[0] -= 1 - elif symbol == key.A: - self.strafe[1] += 1 - elif symbol == key.D: - self.strafe[1] -= 1 - - def on_resize(self, width, height): - """ Called when the window is resized to a new `width` and `height`. - - """ - # label - self.label.y = height - 10 - # reticle - if self.reticle: - self.reticle.delete() - x, y = self.width // 2, self.height // 2 - n = 10 - self.reticle = pyglet.graphics.vertex_list(4, - ('v2i', (x - n, y, x + n, y, x, y - n, x, y + n)) - ) + def on_draw(self): + self.clear() + self.set_3d() + glColor3d(1,1,1) + self.model.batch.draw() + self.set_2d() + self.label.text = f"Pos: {self.position}" + self.label.draw() def set_2d(self): - """ Configure OpenGL to draw in 2d. - - """ - width, height = self.get_size() + w, h = self.get_size() glDisable(GL_DEPTH_TEST) - viewport = self.get_viewport_size() - glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1])) glMatrixMode(GL_PROJECTION) glLoadIdentity() - glOrtho(0, max(1, width), 0, max(1, height), -1, 1) + glOrtho(0, w, 0, h, -1, 1) glMatrixMode(GL_MODELVIEW) glLoadIdentity() def set_3d(self): - """ Configure OpenGL to draw in 3d. - - """ - width, height = self.get_size() + w, h = self.get_size() glEnable(GL_DEPTH_TEST) - viewport = self.get_viewport_size() - glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1])) glMatrixMode(GL_PROJECTION) glLoadIdentity() - gluPerspective(65.0, width / float(height), 0.1, 60.0) + gluPerspective(65.0, w/float(h), 0.1, 60.0) glMatrixMode(GL_MODELVIEW) glLoadIdentity() - x, y = self.rotation - glRotatef(x, 0, 1, 0) - glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x))) - x, y, z = self.position - glTranslatef(-x, -y, -z) - - def on_draw(self): - """ Called by pyglet to draw the canvas. - - """ - self.clear() - self.set_3d() - glColor3d(1, 1, 1) - self.model.batch.draw() - self.draw_focused_block() - self.set_2d() - self.draw_label() - self.draw_reticle() - - def draw_focused_block(self): - """ Draw black edges around the block that is currently under the - crosshairs. - - """ - vector = self.get_sight_vector() - block = self.model.hit_test(self.position, vector)[0] - if block: - x, y, z = block - vertex_data = cube_vertices(x, y, z, 0.51) - glColor3d(0, 0, 0) - glPolygonMode(GL_FRONT_AND_BACK, GL_LINE) - pyglet.graphics.draw(24, GL_QUADS, ('v3f/static', vertex_data)) - glPolygonMode(GL_FRONT_AND_BACK, GL_FILL) - - def draw_label(self): - """ Draw the label in the top left of the screen. - - """ x, y, z = self.position - self.label.text = '%02d (%.2f, %.2f, %.2f) %d / %d' % ( - pyglet.clock.get_fps(), x, y, z, - len(self.model._shown), len(self.model.world)) - self.label.draw() + glRotatef(self.rotation[1], 1,0,0) + glRotatef(self.rotation[0], 0,1,0) + glTranslatef(-x,-y,-z) - def draw_reticle(self): - """ Draw the crosshairs in the center of the screen. - - """ - glColor3d(0, 0, 0) - self.reticle.draw(GL_LINES) + def on_key_press(self, symbol, modifiers): + if symbol==key.W: self.strafe[0]-=1 + elif symbol==key.S: self.strafe[0]+=1 + elif symbol==key.A: self.strafe[1]-=1 + elif symbol==key.D: self.strafe[1]+=1 + elif symbol==key.SPACE and self.dy==0: self.dy=JUMP_SPEED + elif symbol==key.TAB: self.flying=not self.flying + elif symbol in self.num_keys: + index = (symbol-self.num_keys[0])%len(self.inventory) + self.block = self.inventory[index] + def on_key_release(self, symbol, modifiers): + if symbol==key.W: self.strafe[0]+=1 + elif symbol==key.S: self.strafe[0]-=1 + elif symbol==key.A: self.strafe[1]+=1 + elif symbol==key.D: self.strafe[1]-=1 +# --- Setup --- def setup_fog(): - """ Configure the OpenGL fog properties. - - """ - # Enable fog. Fog "blends a fog color with each rasterized pixel fragment's - # post-texturing color." glEnable(GL_FOG) - # Set the fog color. - glFogfv(GL_FOG_COLOR, (GLfloat * 4)(0.5, 0.69, 1.0, 1)) - # Say we have no preference between rendering speed and quality. - glHint(GL_FOG_HINT, GL_DONT_CARE) - # Specify the equation used to compute the blending factor. + color = (GLfloat*4)(0.5,0.69,1.0,1.0) + glFogfv(GL_FOG_COLOR, color) glFogi(GL_FOG_MODE, GL_LINEAR) - # How close and far away fog starts and ends. The closer the start and end, - # the denser the fog in the fog range. - glFogf(GL_FOG_START, 20.0) - glFogf(GL_FOG_END, 60.0) - + glFogf(GL_FOG_START, 10.0) + glFogf(GL_FOG_END, 30.0) def setup(): - """ Basic OpenGL configuration. - - """ - # Set the color of "clear", i.e. the sky, in rgba. - glClearColor(0.5, 0.69, 1.0, 1) - # Enable culling (not rendering) of back-facing facets -- facets that aren't - # visible to you. + glClearColor(0.5,0.69,1.0,1) glEnable(GL_CULL_FACE) - # Set the texture minification/magnification function to GL_NEAREST (nearest - # in Manhattan distance) to the specified texture coordinates. GL_NEAREST - # "is generally faster than GL_LINEAR, but it can produce textured images - # with sharper edges because the transition between texture elements is not - # as smooth." glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST) setup_fog() - +# --- Main --- def main(): - window = Window(width=800, height=600, caption='Pyglet', resizable=True) - # Hide the mouse cursor and prevent the mouse from leaving the window. - window.set_exclusive_mouse(True) + window = Window() setup() pyglet.app.run() - if __name__ == '__main__': main()