From f88697a5a74a243262490be77722aef8fd2bf67f Mon Sep 17 00:00:00 2001 From: "filipe@flexcompute.com" Date: Mon, 8 Dec 2025 11:00:14 -0300 Subject: [PATCH 1/3] uploading hexagonal band diagram calculation example --- HexagonalLatticeBands.ipynb | 772 ++++++++++++++++++++++++ docs/case_studies/photonic_crystals.rst | 1 + img/HexagonalSupercell.png | Bin 0 -> 151418 bytes 3 files changed, 773 insertions(+) create mode 100644 HexagonalLatticeBands.ipynb create mode 100644 img/HexagonalSupercell.png diff --git a/HexagonalLatticeBands.ipynb b/HexagonalLatticeBands.ipynb new file mode 100644 index 00000000..a111f81c --- /dev/null +++ b/HexagonalLatticeBands.ipynb @@ -0,0 +1,772 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Band structure calculation of hexagonal lattices\n", + "\n", + "In this notebook, we demonstrate the approach for simulating band diagrams of periodic structures defined in hexagonal lattices. We will reproduce the TM band diagram calculation presented in the paper by `Tsung-li Liu, Kasey J. Russell, Shanying Cui, and Evelyn L. Hu, \"Two-dimensional hybrid photonic/plasmonic crystal cavities\", Optics Express, (2014).` [DOI:10.1364/OE.22.008219](https://doi.org/10.1364/oe.22.008219).\n", + "\n", + "For calculating band diagrams of periodic structures in a **square** lattice, please refer to our [band diagrams for a photonic crystal slab](https://www.flexcompute.com/tidy3d/examples/notebooks/Bandstructure/) example notebook.\n", + "\n", + "\n", + "\n", + "Due to the rectangular nature of the FDTD simulation domain, a primitive hexagonal unit cell **cannot** be represented directly; therefore, it is necessary to use a rectangular supercell of size $(a \\times \\sqrt{3}a$), constructed from two primitive real-space lattice vectors. However, this supercell enlarges the real-space period and reduces the Brillouin zone, which introduces artificial band folding.\n", + "\n", + "To suppress these folded modes, we apply **matching dipoles**. For each dipole placed in the supercell, a second dipole is added at the position shifted by the primitive lattice vector $\\vec{r}$ of the true hexagonal cell. The second dipole is driven with a Bloch phase factor \n", + "\n", + "$$e^{-i 2\\pi\\,\\vec{b}\\cdot\\vec{r}}$$\n", + "\n", + "where $\\vec{b}$ is the Bloch wavevector. This enforces the correct Bloch periodicity of the primitive cell, ensuring that only the physical (unfolded) Bloch modes are excited, and allowing the band diagram to be computed using the standard high-symmetry points of the hexagonal Brillouin zone.\n", + "\n", + "This notebook is structured as follows:\n", + "\n", + "[1)](#1) Definition of the K-points for the hexagonal lattice \n", + "[2)](#2) Supercell definition and base simulation setup \n", + "[3)](#3) Function for creating matching dipoles for a given Bloch vector \n", + "[4)](#4) Band diagram calculation\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from typing import Callable\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import tidy3d as td\n", + "from tidy3d import web\n", + "\n", + "# Defining a random seed for reproducibility\n", + "np.random.seed(12)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## K-points definition \n", + "\n", + "For a hexagonal lattice, we can define the two real-space lattice vectors as \n", + "$a_1 = (a,\\,0)$ and \n", + "$a_2 = a(\\cos(\\pi/3),\\,\\sin(\\pi/3))$.\n", + "\n", + "To transform these vectors into reciprocal space, we use the standard definition, where $a_3$ is simply (0,0,1).\n", + "\n", + "$b_i = 2\\pi\\, \\frac{a_j \\times a_k}{a_1 \\cdot (a_2 \\times a_3)}$,\n", + "\n", + "\n", + "Hence, the vectors in the reciprocal space are:\n", + "\n", + "$ b_1 = \\frac{2\\pi}{a}(1,-\\frac{1}{\\sqrt{3}}) $ \n", + "$ b_2 = \\frac{2\\pi}{a}(0,\\frac{2}{\\sqrt{3}}) $\n", + "\n", + "For band calculations, we only need to sweep points in the irreducible Brillouin zone (IBZ), which in reduced reciprocal coordinates corresponds to the triangular region defined by the points\n", + "\n", + "- $\\Gamma = (0,\\,0)$ \n", + "- $M = \\left(0,\\,\\tfrac{1}{\\sqrt{3}}\\right)$ \n", + "- $K = \\left(\\tfrac{1}{3},\\,\\tfrac{1}{\\sqrt{3}}\\right)$.\n", + "\n", + "The code bellow illustrates the real and reciprocal space." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJUCAYAAADEo5XNAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAA1mFJREFUeJzs3XdYFFfbBvB7O0WxoYglNuwNwdh7wxp7Nyq2xKhRiSZi7yT2JNYkiiZGo0ZjYomKRiwvlig2sGGvWFBEqVvm+8OPiStdd3e23L/r4tJz5uzscw7s7OyzZ87IBEEQQEREREREREREZEFyqQMgIiIiIiIiIiLHw6QUERERERERERFZHJNSRERERERERERkcUxKERERERERERGRxTEpRUREREREREREFsekFBERERERERERWRyTUkREREREREREZHFMShERERERERERkcUxKUVERERERERERBbHpBSRHbh16xZkMhnWrl0rdSiSGThwIEqWLGmx5ytZsiQGDhxoseezJP49ERHZJ3s6vttTX94Vz33IkmQyGaZPny51GFYlNDQUMpkMv//+u9Sh2DQmpYhMZO3atZDJZOKPUqlE0aJFMXDgQNy/f1/q8CgTc+fOxfbt29PUh4WFYfr06YiNjbV4TJS+hIQETJ8+HaGhoVKHQkT0znjOQFLjuU/O8Pwje1KTxQsWLBDrUhM3b/7kz58fderUwa+//mr0+OnTp6dpm96PpW3YsAFLliyx+PM6CqXUARDZm5kzZ6JUqVJISkrC8ePHsXbtWhw9ehQRERFwcnKSOjxKx9y5c9GtWzd06tTJqD4sLAwzZszAwIEDkTdvXqNtV65cgVzOvL6lJSQkYMaMGQCAJk2aSBsMEdF7svQ5Q4kSJZCYmAiVSmXyfZNt4blPzvD84/19/vnn+PDDDwEAMTEx2LRpE/r164fY2FiMGDECANClSxd4eXml+/jz589j/vz5qF27tsViTrVhwwZERERgzJgxFn9uR8CkFJGJtWnTBjVr1gQADBkyBO7u7vjmm2/w119/oUePHhJHR6ai0WikDoFMKD4+Hq6urlKHQUQOxtLnDDKZzKTJLp1OB4PBALVabbJ9kvXiuY/pOdL5R8OGDdGtWzexPHz4cJQuXRobNmwQk1LVqlVDtWrV0jw2Pj4es2fPRp48ebBx40aLxUyW4ZipbiILatiwIQDg+vXrRvWXL19Gt27dkD9/fjg5OaFmzZr466+/jNo8e/YM48aNQ9WqVZErVy64ubmhTZs2OHfu3DvHExUVha5du6Jw4cJwcnJCsWLF0KtXL7x48UJsI5PJMHLkSPz6668oX748nJyc4Ovri8OHDxvt6/bt2/jss89Qvnx5ODs7o0CBAujevTtu3bqV5nljY2MxduxYlCxZEhqNBsWKFUP//v3x9OlTsU1ycjKmTZsGLy8vaDQaFC9eHF9++SWSk5Pfqa8LFixAvXr1UKBAATg7O8PX1zfNNd8ymQzx8fFYt26dOCV44MCBmD59OsaPHw8AKFWqlLgttW/pratg7j4eOXIE3bt3xwcffCA+duzYsUhMTDRqN3DgQOTKlQv3799Hp06dkCtXLhQsWBDjxo2DXq9PE/PAgQORJ08e5M2bFwMGDMjWlP1Tp05BJpNh3bp1abbt3bsXMpkMO3fuFOvu37+PQYMGwcPDAxqNBpUrV8aaNWvSPDYpKQnTp09HuXLl4OTkBE9PT3Tp0gXXr1/HrVu3ULBgQQDAjBkzxN/Jm+sb/PPPP2jYsCFcXV2RN29edOzYEZcuXTJ6jtSp4RcvXkSfPn2QL18+NGjQAAAQHR0Nf39/FCtWDBqNBp6enujYsWO6f9NERKb2PucMQNbvQ+mtw5T6nnHjxg34+fnB1dUVRYoUwcyZMyEIgtjuzctylixZgjJlykCj0eDixYsAsnf8BV6/HwwePBhFihSBRqNBqVKlMHz4cKSkpADguQ/PfTLH8w9j58+fx8CBA1G6dGk4OTmhcOHCGDRoEGJiYtJ97mvXromz4PLkyQN/f38kJCQYtU1OTsbYsWNRsGBB5M6dGx999BHu3buXaRzvQq1WI1++fFAqs54n89lnn+HKlSv44YcfUKpUqUzbpl4effjwYXzyyScoUKAA3Nzc0L9/fzx//tyo7Z9//ol27dqJx6MyZcpg1qxZRufLTZo0wa5du3D79m3xd//2Wm4GgwFz5sxBsWLF4OTkhObNm+PatWvZHwwHx5lSRGaW+maSL18+sS4yMhL169dH0aJFMWHCBLi6umLz5s3o1KkTtm7dis6dOwMAbty4ge3bt6N79+4oVaoUHj16hFWrVqFx48a4ePEiihQpkqNYUlJS4Ofnh+TkZIwaNQqFCxfG/fv3sXPnTsTGxiJPnjxi20OHDmHTpk34/PPPodFosHz5crRu3RonT55ElSpVAAD//vsvwsLC0KtXLxQrVgy3bt3CihUr0KRJE1y8eBEuLi4AgFevXqFhw4a4dOkSBg0aBB8fHzx9+hR//fUX7t27B3d3dxgMBnz00Uc4evQohg0bhooVK+LChQtYvHgxrl69mu66B1n59ttv8dFHH6Fv375ISUnBb7/9hu7du2Pnzp1o164dAOCXX37BkCFDUKtWLQwbNgwAUKZMGbi6uuLq1avYuHEjFi9eDHd3dwAQT0reZok+btmyBQkJCRg+fDgKFCiAkydP4vvvv8e9e/ewZcsWo7Z6vR5+fn6oXbs2FixYgP3792PhwoUoU6YMhg8fDgAQBAEdO3bE0aNH8emnn6JixYr4448/MGDAgCzHtmbNmihdujQ2b96cpv2mTZuQL18++Pn5AQAePXqEOnXqiCf8BQsWxN9//43BgwcjLi5OnAqt1+vRvn17HDhwAL169cLo0aPx8uVLhISEICIiAi1atMCKFSswfPhwdO7cGV26dAEA8Ru1/fv3o02bNihdujSmT5+OxMREfP/996hfvz7Cw8PTnEB0794dZcuWxdy5c8UPXl27dkVkZCRGjRqFkiVL4vHjxwgJCcGdO3csupgsETmm9zlnyM77UEb0ej1at26NOnXqYN68edizZw+mTZsGnU6HmTNnGrUNDg5GUlIShg0bBo1Gg/z582f7+PvgwQPUqlULsbGxGDZsGCpUqID79+/j999/R0JCAtRqNc99eO6TKZ5/GAsJCcGNGzfg7++PwoULIzIyEj/88AMiIyNx/PjxNOsv9ejRA6VKlUJQUBDCw8Px008/oVChQvjmm2/ENkOGDMH69evRp08f1KtXD//884/4t/M+Xr58KSYrnz17Jl4St3r16kwft27dOvz8888YOnRojmaQjhw5Ennz5sX06dNx5coVrFixArdv3xbXuAJeJ7By5cqFgIAA5MqVC//88w+mTp2KuLg4zJ8/HwAwadIkvHjxAvfu3cPixYsBALly5TJ6rq+//hpyuRzjxo3DixcvMG/ePPTt2xcnTpzIdrwOTSAikwgODhYACPv37xeePHki3L17V/j999+FggULChqNRrh7967Ytnnz5kLVqlWFpKQksc5gMAj16tUTypYtK9YlJSUJer3e6Hlu3rwpaDQaYebMmUZ1AITg4OBMYzxz5owAQNiyZUum7QAIAIRTp06Jdbdv3xacnJyEzp07i3UJCQlpHnvs2DEBgPDzzz+LdVOnThUACNu2bUvT3mAwCIIgCL/88osgl8uFI0eOGG1fuXKlAED43//+l2nMAwYMEEqUKGFU93Z8KSkpQpUqVYRmzZoZ1bu6ugoDBgxIs8/58+cLAISbN2+m2VaiRAmjx1iij+mNd1BQkCCTyYTbt2+LdQMGDBAAGP2NCIIg1KhRQ/D19RXL27dvFwAI8+bNE+t0Op3QsGHDbP09BQYGCiqVSnj27JlYl5ycLOTNm1cYNGiQWDd48GDB09NTePr0qdHje/XqJeTJk0fs15o1awQAwqJFi9I8V+oYPnnyRAAgTJs2LU0bb29voVChQkJMTIxYd+7cOUEulwv9+/cX66ZNmyYAEHr37m30+OfPnwsAhPnz52fabyKi92WOc4bsvA+ld76Q+p4xatQoo/bt2rUT1Gq18OTJE6PHurm5CY8fPzbaf3aPv/379xfkcrnw77//Zhgjz3147pMVnn/8J72/x40bNwoAhMOHD6d57jfHRxAEoXPnzkKBAgXE8tmzZwUAwmeffWbUrk+fPhn2/02pr8s3+3Lw4EHx9fXmj1wuF+bMmZPp/i5duiS4uroKlStXTrev6Uk9vvr6+gopKSli/bx58wQAwp9//inWpbfPTz75RHBxcTE65rZr1y7Na+3NvlWsWFFITk4W67/99lsBgHDhwoVsxezoePkekYm1aNECBQsWRPHixdGtWze4urrir7/+QrFixQC8/mbgn3/+QY8ePcRvDJ4+fYqYmBj4+fkhKipKvPOORqMRF5TU6/WIiYlBrly5UL58eYSHh+c4ttRvA/fu3Ztmqu7b6tatC19fX7H8wQcfoGPHjti7d684pdXZ2VncrtVqERMTAy8vL+TNm9covq1bt6J69erit7lvSv2mYsuWLahYsSIqVKggjsnTp0/RrFkzAMDBgwdz3N8343v+/DlevHiBhg0bvtPYZcUSfXyzP/Hx8Xj69Cnq1asHQRBw5syZNO0//fRTo3LDhg1x48YNsbx7924olUpx5hQAKBQKjBo1Khs9Bnr27AmtVott27aJdfv27UNsbCx69uwJ4PVsrK1bt6JDhw4QBMGo335+fnjx4oX4+9i6dSvc3d3Tff6s7rTy8OFDnD17FgMHDkT+/PnF+mrVqqFly5bYvXt3mse8PT7Ozs5Qq9UIDQ1NM72biMgcTHnOkJ33ocyMHDnSqP3IkSORkpKC/fv3G7Xr2rWr0cyZ7B5/DQYDtm/fjg4dOojraKUXI899eO6TFZ5/GD82VVJSEp4+fYo6deoAQLq/8/TODWNiYhAXFwcAYryff/65UTtTLPA9depUhISEICQkBJs2bULv3r0xadIkfPvtt+m2T0pKQs+ePWEwGLBp0yajvmbHsGHDjG7qMHz4cCiVSqPfyZv7TD3GNmzYEAkJCbh8+XK2n8vf399obb3US7HfPO+mjDEpRWRiy5YtQ0hICH7//Xe0bdsWT58+NVoY8tq1axAEAVOmTEHBggWNfqZNmwYAePz4MYDXJ3CLFy9G2bJlodFo4O7ujoIFC+L8+fNG6yC8LTExEdHR0UY/wOv1AQICAvDTTz/B3d0dfn5+WLZsWbr7Klu2bJq6cuXKISEhAU+ePBGfZ+rUqShevLhRfLGxsUb7vH79ujjtPSNRUVGIjIxMMyblypUzGpOc2LlzJ+rUqQMnJyfkz58fBQsWxIoVKzIdu3dliT7euXNHPOlJXSeqcePGAJCmT05OTmmm2+fLl8/oZOf27dvw9PRMMwW5fPnymXf2/1WvXh0VKlTApk2bxLpNmzbB3d1dPNl88uQJYmNj8cMPP6Tpt7+/v1G/r1+/jvLly2drbYG33b59O8PYK1asiKdPnyI+Pt6o/u01CTQaDb755hv8/fff8PDwQKNGjTBv3jzx9UNEZGqmPGfIzvtQRuRyOUqXLm1Ul/re9PaaNm8fO7N7/H3y5Ani4uKyjJHnPjz3yQrPP/7z7NkzjB49Gh4eHnB2dkbBggXF/af3O//ggw+MyqmXCqeeH96+fRtyuRxlypQxapfdc8PMVK1aFS1atECLFi3Qo0cPrF+/Hu3bt8eECRPE19ebxowZg/Pnz2PJkiWoXLlyjp/v7ddzrly54OnpaXRMi4yMROfOnZEnTx64ubmhYMGC6NevH4D0xy8jWY0rZY5rShGZWK1atcRvADt16oQGDRqgT58+uHLlCnLlygWDwQAAGDdunHjN+9tSb4U6d+5cTJkyBYMGDcKsWbOQP39+yOVyjBkzRtxPejZt2iS+4aYS/v+a9YULF2LgwIH4888/sW/fPnz++ecICgrC8ePHxW9ms2vUqFEIDg7GmDFjULduXeTJkwcymQy9evXKNL70GAwGVK1aFYsWLUp3e/HixXO0vyNHjuCjjz5Co0aNsHz5cnh6ekKlUiE4OBgbNmzI0b5M5X36qNfr0bJlSzx79gxfffUVKlSoAFdXV9y/fx8DBw5MM94KhcKksWekZ8+emDNnDp4+fYrcuXPjr7/+Qu/evcUTu9S4+vXrl+FaVendZcUS0vvGbcyYMejQoQO2b9+OvXv3YsqUKQgKCsI///yDGjVqSBAlEdkzU54zWEpOZyvkFM99/uPo5z6Z4fnHaz169EBYWBjGjx8Pb29v8bjRunXrdP8eMzo/TH2tWFrz5s2xc+dOnDx50mjdqi1btmDVqlXo0aOHuO6ZqcXGxqJx48Zwc3PDzJkzUaZMGTg5OSE8PBxfffVVjl7P1jautoZJKSIzUigUCAoKQtOmTbF06VJMmDBB/CZSpVKhRYsWmT7+999/R9OmTdMsABgbG5vpgqV+fn4ICQnJcHvVqlVRtWpVTJ48GWFhYahfvz5WrlyJ2bNni22ioqLSPO7q1atwcXERZ+D8/vvvGDBgABYuXCi2SUpKSnP3tjJlyiAiIiLTvpYpUwbnzp1D8+bNs3WZQVa2bt0KJycn7N271+hb5+Dg4DRtM3q+nMRh7j5euHABV69exbp169C/f3+xPrPfc1ZKlCiBAwcO4NWrV0azpa5cuZLtffTs2RMzZszA1q1b4eHhgbi4OPTq1UvcnnrnFr1en+Xfe5kyZXDixAlotVqj6dZvymjcSpQokWHsly9fhru7e7ZvuVymTBl88cUX+OKLLxAVFQVvb28sXLgQ69evz9bjiYjexfueM2TnfSgjBoMBN27cEGevAK/f8wFkeZOH7B5/nZ2d4ebmlmWMPPd5d/Z27pMZnn+8noVz4MABzJgxA1OnThXr0/s7zq4SJUrAYDCIs8dS5eTcMCd0Oh2A14vmp7px4waGDh2KUqVK4YcffnjnfUdFRaFp06Zi+dWrV3j48CHatm0LAAgNDUVMTAy2bduGRo0aie1u3ryZZl+m/NultHj5HpGZNWnSBLVq1cKSJUuQlJSEQoUKoUmTJli1ahUePnyYpv2b01cVCkWaDPuWLVvE9SMy4unpKU6PTf0BgLi4OPHgn6pq1aqQy+Vpbst77Ngxo2vR7969iz///BOtWrUSvw1IL77vv//e6DaqwOv1J86dO4c//vgjTaypj+/Rowfu37+PH3/8MU2bxMTENFOfs6JQKCCTyYxiuXXrVrp3eXF1dU1zMplaDyDdbW8zdx9Tx/zN8RYEIcPr8LOjbdu20Ol0WLFihVin1+vx/fffZ3sfFStWRNWqVbFp0yZs2rQJnp6eRm/sCoUCXbt2xdatW9M9cX3z771r1654+vQpli5dmqZdar9T72r09u/E09MT3t7eWLdundG2iIgI7Nu3TzwByUxCQgKSkpKM6sqUKYPcuXO/8625iYhy4n3OGbLzPpSZN4+9giBg6dKlUKlUaN68eaaPy+7xVy6Xo1OnTtixYwdOnTqVYYw893mN5z6Z4/lH+ueGALBkyZIsnzMjbdq0AQB89913JttnZnbu3Ang9SWZwOt12nr16oWEhARs3LjR6O6YOfXDDz9Aq9WK5RUrVkCn04l9TG/8UlJSsHz58jT7cnV1NcslsPQaZ0oRWcD48ePRvXt3rF27Fp9++imWLVuGBg0aoGrVqhg6dChKly6NR48e4dixY7h37x7OnTsHAGjfvj1mzpwJf39/1KtXDxcuXMCvv/6aZt2H7Prnn38wcuRIdO/eHeXKlYNOp8Mvv/wivnG/qUqVKvDz8zO6LTIAzJgxQ2zTvn17/PLLL8iTJw8qVaqEY8eOYf/+/ShQoECa/v/+++/o3r07Bg0aBF9fXzx79gx//fUXVq5cierVq+Pjjz/G5s2b8emnn+LgwYOoX78+9Ho9Ll++jM2bN2Pv3r3pLoyakXbt2mHRokVo3bo1+vTpg8ePH2PZsmXw8vLC+fPnjdr6+vpi//79WLRoEYoUKYJSpUqhdu3a4mKnkyZNQq9evaBSqdChQ4d0v/Eydx8rVKiAMmXKYNy4cbh//z7c3NywdevW97pWvUOHDqhfvz4mTJiAW7duoVKlSti2bVuO33R79uyJqVOnwsnJCYMHDxYXqE319ddf4+DBg6hduzaGDh2KSpUq4dmzZwgPD8f+/fvx7NkzAED//v3x888/IyAgACdPnkTDhg0RHx+P/fv347PPPkPHjh3h7OyMSpUqYdOmTShXrhzy58+PKlWqoEqVKpg/fz7atGmDunXrYvDgweItmfPkyYPp06dn2Y+rV6+iefPm6NGjBypVqgSlUok//vgDjx49Mvr2lYjInN71nCE770MZcXJywp49ezBgwADUrl0bf//9N3bt2oWJEyemWZ8wPdk9/s6dOxf79u1D48aNMWzYMFSsWBEPHz7Eli1bcPToUeTNm5fnPg587jN9+nTMmDEDBw8eRJMmTbLsr6Off7i5uYnrT2m1WhQtWhT79u1Ld6ZPdnl7e6N3795Yvnw5Xrx4gXr16uHAgQO4du3aO+8z1ZEjR8TkW+rfyaFDh9CrVy9UqFABADBlyhT8+++/aNasGaKiojKc9dW5c+csZ6ClpKSI43rlyhUsX74cDRo0wEcffQQAqFevHvLly4cBAwbg888/h0wmwy+//JJuEt/X1xebNm1CQEAAPvzwQ+TKlQsdOnR4n+GgN1nkHn9EDiD19qPp3eZYr9cLZcqUEcqUKSPodDpBEATh+vXrQv/+/YXChQsLKpVKKFq0qNC+fXvh999/Fx+XlJQkfPHFF4Knp6fg7Ows1K9fXzh27JjQuHFjoXHjxmK77N4W+caNG8KgQYOEMmXKCE5OTkL+/PmFpk2bCvv37zdqB0AYMWKEsH79eqFs2bKCRqMRatSoIRw8eNCo3fPnzwV/f3/B3d1dyJUrl+Dn5ydcvnw5zS2DBUEQYmJihJEjRwpFixYV1Gq1UKxYMWHAgAFGt+lNSUkRvvnmG6Fy5cqCRqMR8uXLJ/j6+gozZswQXrx4kWnf0rst8urVq8X4K1SoIAQHB4u3xH3T5cuXhUaNGgnOzs4CAKPYZ82aJRQtWlSQy+VGt0iWoo8XL14UWrRoIeTKlUtwd3cXhg4dKpw7dy7d23u7urqmeXx6fY+JiRE+/vhjwc3NTciTJ4/w8ccfi7fPzurvKVVUVJR4e9+jR4+m2+bRo0fCiBEjhOLFiwsqlUooXLiw0Lx5c+GHH34wapeQkCBMmjRJKFWqlNiuW7duwvXr18U2YWFhgq+vr6BWq9Pcnnj//v1C/fr1BWdnZ8HNzU3o0KGDcPHixXTHIfU256mePn0qjBgxQqhQoYLg6uoq5MmTR6hdu7awefPmbI0DEVF2meOcQRCyfh9K73wh9T3j+vXrQqtWrQQXFxfBw8NDmDZtmqDX68V26d3q/U3ZOf4KgiDcvn1b6N+/v1CwYEFBo9EIpUuXFkaMGCHeTp3nPo577vPFF18IMplMuHTpUqb9TsXzD0G4d++e0LlzZyFv3rxCnjx5hO7duwsPHjxIE19Gz516LEr9HQuCICQmJgqff/65UKBAAcHV1VXo0KGDcPfu3TT7TE96x4mDBw+Kv6fUH7VaLVSoUEGYM2eOkJKSIrZt3Lhxmrbp/bwZ79tS+3To0CFh2LBhQr58+YRcuXIJffv2FWJiYoza/u9//xPq1KkjODs7C0WKFBG+/PJLYe/evQIAo9f+q1evhD59+gh58+YVAIivu9S+bdmyJd1xyO65tKOTCQJX3yIiYzKZDCNGjEh3GjMRERHZj4EDB+L33383WtPFEfHcR3q1atVCiRIlsGXLFqlDIRu2du1a+Pv7499//83RTEOSDi/fIyIiIiIiIsnExcXh3LlzWLdundShEJGFMSlFREREREREknFzc+NNRYgcFO++R0REREREREREFsc1pYiIiIiIiIiIyOI4U4qIiIiIiIiIiCyOSSkiIiIiIiIiIrI4LnRuAgaDAQ8ePEDu3Lkhk8mkDoeIiIhMTBAEvHz5EkWKFIFczu/03gfPm4iIiOxfds+dmJQygQcPHqB48eJSh0FERERmdvfuXRQrVkzqMGwaz5uIiIgcR1bnTkxKmUDu3LkBvB5sNzc3k+5bq9Vi3759aNWqFVQqlUn3bS0coY8A+2lPHKGPAPtpbxyhn+bsY1xcHIoXLy6+59O7M+d5k7VxhNddVjgGHAOAYwBwDACOQSpHGYfsnjsxKWUCqVPP3dzczJKUcnFxgZubm93+wTpCHwH20544Qh8B9tPeOEI/LdFHXm72/sx53mRtHOF1lxWOAccA4BgAHAOAY5DK0cYhq3MnLopAREREREREREQWx6QUERERERERERFZHJNSRERERERERERkcUxKERERERERERGRxTEpRUREREREREREFsekFBERERERERERWRyTUkREREREREREZHFMShERERERERERkcUxKUVERERERERERBbHpBQREREREREREVkck1JERERERERERGRxTEoREREREREREZHFMSlFREREREREREQWx6QUERERERERERFZHJNSRERERERERERkcUxKERERERERERGRxdlUUurw4cPo0KEDihQpAplMhu3bt2f5mNDQUPj4+ECj0cDLywtr165N02bZsmUoWbIknJycULt2bZw8edL0wRMRERERERERkcimklLx8fGoXr06li1blq32N2/eRLt27dC0aVOcPXsWY8aMwZAhQ7B3716xzaZNmxAQEIBp06YhPDwc1atXh5+fHx4/fmyubhAREREREREROTyl1AHkRJs2bdCmTZtst1+5ciVKlSqFhQsXAgAqVqyIo0ePYvHixfDz8wMALFq0CEOHDoW/v7/4mF27dmHNmjWYMGGC6TtBRERERERERES2lZTKqWPHjqFFixZGdX5+fhgzZgwAICUlBadPn0ZgYKC4XS6Xo0WLFjh27FiG+01OTkZycrJYjouLAwBotVpotVoT9gDi/ky9X2viCH0E2E974gh9BNhPe+MI/TRnH+153IiIiIikYtdJqejoaHh4eBjVeXh4IC4uDomJiXj+/Dn0en26bS5fvpzhfoOCgjBjxow09fv27YOLi4tpgn9LSEiIWfZrTRyhjwD7aU8coY8A+2lvHKGf5uhjQkKCyfdJRERE5OjsOillLoGBgQgICBDLcXFxKF68OFq1agU3NzeTPpdWq0VISAhatmwJlUpl0n1bC0foI8B+2hNH6CPAftobR+inOfuYOiuaiIiIiEzHrpNShQsXxqNHj4zqHj16BDc3Nzg7O0OhUEChUKTbpnDhwhnuV6PRQKPRpKlXqVRmO9E3576thSP0EWA/7Ykj9BFgP+2NI/TTHH209zEjIiIikoJN3X0vp+rWrYsDBw4Y1YWEhKBu3boAALVaDV9fX6M2BoMBBw4cENsQEREREREREZHp2VRS6tWrVzh79izOnj0LALh58ybOnj2LO3fuAHh9WV3//v3F9p9++ilu3LiBL7/8EpcvX8by5cuxefNmjB07VmwTEBCAH3/8EevWrcOlS5cwfPhwxMfHi3fjIyIiIiIiIiIi07Opy/dOnTqFpk2biuXUdZ0GDBiAtWvX4uHDh2KCCgBKlSqFXbt2YezYsfj2229RrFgx/PTTT/Dz8xPb9OzZE0+ePMHUqVMRHR0Nb29v7NmzJ83i50REREREREREZDo2lZRq0qQJBEHIcPvatWvTfcyZM2cy3e/IkSMxcuTI9w2PiIiIiIiIiIiyyaYu3yMiIiIiIiIiIvvApBQREREREREREVkck1JERERERERERGRxTEoREREREREREZHFMSlFREREREREREQWx6QUERERERERERFZHJNSRERERERERERkcUxKERERERERERGRxTEpRUREREREREREFsekFBERERERERERWRyTUkREREREREREZHFMShERERERERERkcUxKUVERERERERERBbHpBQREREREREREVkck1JEZhQeHo5Ro0bB29sb7u7uAAB3d3d4e3tj1KhRCA8PlzhCIsfE1yYRERERkfSYlCIyg2vXrqFx48bw9fXFypUrce7cOWi1WgCAVqvFuXPnsHLlSvj6+qJx48a4du2axBETOQa+NomIiIiIrAeTUkQmtmHDBlSpUgVhYWEAAJ1Ol2671PqwsDBUqVIFGzdutFiMRI6Ir00iIiIiIuuilDoAInuyYcMG9OvXD4IgZPsxOp0OOp0Offv2hSAI6NOnjxkjJHJMfG0SEREREVkfzpQiMpGoqCgMGjQoRx963yQIAgYNGsTLhYhMjK9NIiIiIiLrxKQUkYkMGTIEer3+vfah1+sxePBgE0VERABfm0RERERE1opJKSITOH36NA4fPpzhGjXZpdPpcPjwYd75i8hE+NokIiIiIrJeTEoRmcDatWuhVJpmiTalUong4GCT7IvI0fG1SURERERkvbjQOZEJHDlyJOczMZTp54R1MODI/44a1SWkJGW4Ho5MJoOL2umd2iamJMGQyTo7rhrnd2qr1euQkJwIpSH9MXmzbZI2GXqDIcP9uqidIJPJAADJ2hToDBlfhpWTts4qDeTy17+DFJ0WWn3Gv7+32yYmJyJZl5JuH51Uaijkimzt9822Wr0OKTpthm01ShWUCmWO2+r0OiRn0latVEGVQVudVmvUzzfb6g16JGlTMtyvSqGEWqnKcVuDwYBEbbJJ2irlCuPXZgavOShl2VpvSqfT4ejRo1m2IyIiIiKi7GFSisgELl68mOPHFOzjDbmzKt1t957EG5UbTe+Fe8+i021bzrMUDk/775b1rYP8cfXhzXTbFstfGKfmbhfLnRYOx7nbl9Jtmz9XXlxcsEcs9/l+LI5FnUm3rbPaCTe/CxXLK89sw8h989NtCwDRK4+L/x8ZPAM7w//JsO31bw+KSazxv36Nzcd3Z9g2Yv7fcM+dDwAw7fdvsfbQ1gzbnpy9DR+4FwEABP25EitCfs2wbejUDahQpDQA4Nu/12LhrtWvN4QsTNP27wlrUKNkJQDAj/9swqxtSzPc79axy1C/vC8A4Jcj2zHxtwUZtv1lxEK0rFr/9eNO7MGYn2dn2PaHoXPwkW9zAMDus4cw7MdJGbZd0n8yetVrDwA4ePEEPl72RdpG/9/Pub3GYVCTbgCA41Fn0XXxiAz3O6XLSIxo1Q8AcP7OFbT5elCGbb9oNxjjOwwFAFyNvoUmMzO+y93wln0xresoAMC9Z9GoNblLhm0HNu4qvjZlTkoUGuCbYdv5J9ZnuO1NkZGR2WpHRERERERZY1KK6D0ZDAZotRnPRAEAKGRwaVUaC0/8CkVeZyjUAvD/M3rSI8hliHp4S5ydk9mMnxSdFtcf3TEqZ0Rn0Bu1Tc5k9orhrbZJmcxIEQRBbKvXZb2g9Jv7jU9KyLTtzcd34fz/s7teJsVn2vbWk/t4kfASABD3//9m5M7TB+Isptj4uEzb3o15KM4Qeh7/ItO2959Fw805FwAg5mVspm0fPH8sjsXTuGeZto2OfSK2fZxF20cvnoptH714mmnbx3HPxLbRsU8ybfv0jbYPnj/OtG3My1ix7f0MEqqpnse/ENvejXmYadvY+Dix7cMsYngR/xIGFwUUUECmUWTatpBLPkCe8WsylVarhcFgEF+bRLauZMmSuH37dpr6zz77DMuWLUtTv3btWvj7+xvVaTQaJCUlmS1GIrJN4eHhCA4OxpEjR3Dz5k38/PPPcHd3R6lSpdCwYUP4+/vDx8dH6jCJSGIy4V3vkU2iuLg45MmTBy9evICbm5tJ963VarF79260bdsWKlX6s2psnT30Ua1WZ56YUsrhMfhDAED8jigkxicAiow/1CoVCkReiBDLSSnJEJDBJXmQwUmteae2ydoUGISML51zfuNSv+y21ev0OH8iHGVrVIJCmX4iICf7dVJpxEvyUnRa6DNJ0OWkrUapFhMLWp0OugwuNUyvbXJKMq6ER6C8T5U0fVQr1VBkc79vttXpdZle6qdSqKBUKN6hrR5afcZ/myqF8o1L/Yzb6nV6o36+2VZvMCBFl3FSUylXQqXMeVuDwYBkE7VVyBWoUd37v8v3MnjNOTs5Yf3yNejduzcSExMz3B8AqFQqpKRk/JzWzB6OtVkxZx/N+V4vpSdPnhjdnTIiIgItW7bEwYMH0aRJkzTt165di9GjR+PKlStinUwmg4eHR7af017HMj2O8LrLCsfA8cbg2rVrGDx4MA4fPgylUgmdTgdnZ2ds3LhRfK9NrW/UqBFWr14NLy8vqcM2O0f7O0gPx+A1RxmH7L7fc6YUkQlUqlQJ586dy9mD9BknYsqWK29UfjORlJWctNWo1GZpq1Io4ax2yjAp9a77fb2WUPYO3Dlpq1Iqocrm4VClVEIOGTRKdZZ9zMl+lW8kfEzbViEmqHLaVi/XZ9hPhVxulFzMTE7ayk3c1svLC5cvX35dyOg1p8/+dzOVK1fOdlsiW1CwYEGj8tdff40yZcqgcePGGT5GJpOhcOHC5g6NiGzQhg0bMGjQIDHZndGaq6n1YWFhqFKlCoKDg9G7d2+LxUlE1oNJKSITaNiwISIjI9/7tvMAoFAo4Oub8do3RJR9NWvWRFRUlNFMkDQUskxnXKVSKpVo0KCBCaMjsi4pKSlYv349AgICxFmn6Xn16hVKlCgBg8EAHx8fzJ07N9OEbXJyMpKT/7sEPC7u9SXTWq0268vfbVxq/+y9n5nhGDjOGGzZsgVDhw6FXC6HXC43mgHi7Oxs9O/bhgwZAkEQ0L17d4vEKgVH+TvIDMfgNUcZh+z2j0kpIhPw9/fH0qUZL2idE3q9Hl26ZLx4MxFlX5cuXbB+fSaLmCvkcO1QFp+HLASUma8ppdPp0qylQ2RPtm/fjtjYWAwcODDDNuXLl8eaNWtQrVo1vHjxAgsWLEC9evUQGRmJYsWKpfuYoKAgzJgxI039vn374OLiYqrwrVpISIjUIUiOY2D/Y+Dq6ooNGzZk2mbNmjWZbt+9O+Mb2tgLe/87yA6OwWv2Pg4JCZmvHZyKSSkiE/Dx8UGjRo0QFhb2XrOlFAoFfHxq8BIhIhOpXLkyPvywJsLDz2Q+WyoLSqUS9erV44KsZNdWr16NNm3aoEiRIhm2qVu3LurWrSuW69Wrh4oVK2LVqlWYNWtWuo8JDAxEQECAWI6Li0Px4sXRqlUrh1hTKiQkBC1btrTrdUMywzFwjDFo27YtTpw4keF5sLOzM9asWYNBgwZluH6jUqlE7dq17TYx5Qh/B1nhGLzmKOOQOjM6K0xKEZnI6tWrUaVKlfdOSs2ZM9eEURHRnDlz0aZNm/fah0KhwOrVq00UEZH1uX37Nvbv349t27bl6HEqlQo1atTAtWvXMmyj0Wig0aRd71ClUtn1yfibHKmvGeEY2O8YnD59Gvv3789W28TExExvKrJ//35cuHDBrr8Este/g5zgGLxm7+OQ3b7xntZEJuLl5YXg4OAM1+EQtAaoFRm/MGUyGYKCglCiRAlzhUjkkPbu3ftes6RkMhmCg4Md4s5A5LiCg4NRqFAhtGvXLkeP0+v1uHDhAjw9Pc0UGRFZu7Vr10KpNM1cB6VSieDgYJPsi4hsA5NSRCbUu3dvrF+/HhqNxvjNWWfAy40R+L7VuDR3+lIoFFCr1ViwYAHat29v4YiJ7JcgCFi4cCEWLlz4To9XKpXQaDT49ddfeUcgsmsGgwHBwcEYMGBAmg+W/fv3R2BgoFieOXMm9u3bhxs3biA8PBz9+vXD7du3MWTIEEuHTURW4siRIya52Q/wev3Go0ePmmRfRGQbmJQiMrE+ffogIiIC9erVA4AMvzlSKBQAAF8fH+zcuZMJKSITMhgMmDlzJn744YcM22Q0qzH1NVu/fn1EREQwIUV2b//+/bhz5w4GDRqUZtudO3fw8OFDsfz8+XMMHToUFStWRNu2bREXF4ewsDBUqlTJkiETkRW5ePGiSfcXGRlp0v0RkXXjmlJEZuDl5YVDhw4hPDwcwcHBOHr0KG7cuAHg9QfeihUrwtfXF126dOGi5kQmptfpEDhxIv78889M2zVp0gQPH0fj6f+XVUoVynt7o0GDBvD397fr9SyI3tSqVSsIgpDuttDQUKPy4sWLsXjxYgtERUS2wGAwmPy29lqtFgaDAXI5508QOQImpYjMyMfHBz4+PkjSJmPQiq/w/anNOPy/I3BxcpY6NCK7lJKSgrFjx2a54KpcLsOCBQug0qgxc+v3iHv+Apvu7Udul1wWipSIiMj2yeVyqFQqkyamVCoVE1JEDoRJKSIL0BsM+OficQCvv1EiItNLTEzAZ5+NQFhYWJZty5evgFy5XiegZnYbg0unzsNJlfbuYERERJS5SpUq4dy5cybbH68iIHIsTEoREZFdiI5+hI8++ghNmjTBq1cvcfjwEZw9ezbdtjVr+lo2OCIiIjvVsGFDREZGmmSxc6VSiQYNGpggKiKyFUxKERGRXShVqhRKlSoFAEhMTMSWLVsybOvrW9NSYREREdk1f39/LF261CT70ul08Pf3N8m+iMg28GJdIiKyO6tXr8bDh9Fi2dOzsHi5HgD4+r6eKZWYkoRGs3rjk7+DkJCcaPE4iYiIbJ2Pjw8aNWqU4R2ns0upVKJRo0a80QiRg2FSioiI7MqDBw/w4w8/GNVNmBCIr776CgBQvHhxFCpUSIrQiIiI7NLq1auhUCjeax8KhQKrV682UUREZCt4+R4REdmVBQsWICk5WSzX+vBD+Pn5AQD+/vtveHh4SBUaERGRXfLy8kJwcDD69u0LQRBy/HiZTIbg4GB4eXmZIToismZMShERkd04ffo0du3aJZblchkmTpoEmUwGAJg9exbOnTsvVXhERER2q3fv3hAEAYMGDYJer8/WwudKpRIKhQLBwcHo3bu3BaIkImvDy/eILMBV44y73x/BqjaBcFY7SR0OkV0yGAyYPXu2UV2PHj1QsWJFsVy0aDG0adPG0qERERE5hD59+iAiIgL16tUDAPFLobelXupXv359REREMCFF5MCYlCIiIrvwx7ZtuHjxoljOnTsXRo8ek6ZdRifIRERE9P68vLxw6NAhnD59Gnny5Em3TZcuXXD69GmEhobykj0iB8ekFBER2bxXr15h4aKFRnUjR45C/vz5JYqIiIjIseXOnRuxsbHpbqtQoQLvskdEAJiUIrKIJG0yPl09BavO/IFkXYrU4RDZnRXLlyMm5plYLlWqFPr27Zvl4+QyOep4eaNKwTKQy/mWSEREZCo7dux4p21E5Fhs7gx82bJlKFmyJJycnFC7dm2cPHkyw7ZNmjSBTCZL89OuXTuxzcCBA9Nsb926tSW6Qg5EbzBg19lQhEdfhsFgkDocIrty69YtrF23zqhu4sSJUKlUWT5Wo1JjXu+vMKpmDzipNOYKkYiIyOHs3Lkzw21nz57FvXv3LBgNEVkrm0pKbdq0CQEBAZg2bRrCw8NRvXp1+Pn54fHjx+m237ZtGx4+fCj+REREQKFQoHv37kbtWrdubdRu48aNlugOERGZwDfffGN0h5/GjRujUaNGEkZERETk2GJjY3HkyJFM22SWtCIix6GUOoCcWLRoEYYOHQp/f38AwMqVK7Fr1y6sWbMGEyZMSNP+7bVEfvvtN7i4uKRJSmk0GhQuXDjbcSQnJyM5OVksx8XFAQC0Wi20Wm2295Mdqfsz9X6tiSP0UfdG3/R6PfQ6vYTRmJderzf61x45Qh8B2+jnsePHcCzsGJydnAG8vpvPhK8m5Og1lto/ez4GAY5xrDVnH+153IiITG3Pnj1GXxilZ8eOHfj0008tFBERWSubSUqlpKTg9OnTCAwMFOvkcjlatGiBY8eOZWsfq1evRq9eveDq6mpUHxoaikKFCiFfvnxo1qwZZs+ejQIFCmS4n6CgIMyYMSNN/b59++Di4pLNHuVMSEiIWfZrTey5j2+uI3Xt3CVolGoJo7GMq2cipQ7B7Byhj4B19zOv0hXrVwUb1SU8eYFLT85n6/HJuhSM++c7AMACXYpDvDbt+Vibyhx9TEhIMPk+iYjsVXbWjDpw4ADi4+PTfDYjIsdiM0mpp0+fQq/Xw8PDw6jew8MDly9fzvLxJ0+eREREBFavXm1U37p1a3Tp0gWlSpXC9evXMXHiRLRp0wbHjh2DQqFId1+BgYEICAgQy3FxcShevDhatWoFNze3d+hdxrRaLUJCQtCyZctsrY9iixyhjwnJiUDI6zuDeVWviFzO9vvmq9frcfVMJMrVqJzha8jWOUIfAevv52+bfsP8efPFct68ebF9+3bkzp072/tITElCSsjrGTDNmjVDnlymPYZbE0c41pqzj6mzoomIKHM6nQ5///03gNef1RQKBZ4/fy5u9/HxQXh4OJKTk7F//3507NhRqlCJyArYTFLqfa1evRpVq1ZFrVq1jOp79eol/r9q1aqoVq0aypQpg9DQUDRv3jzdfWk0Gmg0aRfEValUZjvRN+e+rYU991Fp+G/6skKhgEJpfR/wTc0R+ukIfQSss5+xsbFYsmQJEpMSxbrAzwKRN1/eHO1HYfivX/Z8DHqTI/TTHH209zEjIjKVsLAwqNVqLF68GMOGDUPnzp2N1pfavXs3IiMjMW3aNOzcuZNJKSIHZzNJKXd3dygUCjx69Mio/tGjR1muBxUfH4/ffvsNM2fOzPJ5SpcuDXd3d1y7di3DpBQREUnru+++M5q5UqFCBXTr1k3CiIiIiAgAihQpghs3bmS4rIlMJkOzZs3QtGlTREREWDg6IrI2NnP3PbVaDV9fXxw4cECsMxgMOHDgAOrWrZvpY7ds2YLk5GT069cvy+e5d+8eYmJi4Onp+d4xE6VyUTvhyoJ9+K7lF7ztPNF7unr1CjZu3GBUN2nSJKu8xJCIiMjReHl5ZWudXZlMhqpVq1ogIiKyZjaTlAKAgIAA/Pjjj1i3bh0uXbqE4cOHIz4+XrwbX//+/Y0WQk+1evVqdOrUKc3i5a9evcL48eNx/Phx3Lp1CwcOHEDHjh3h5eUFPz8/i/SJHINMJoOLxhkapRoymUzqcIhsliAImDNnLgwGQazz8/NLc2k2ERERERFZP5u5fA8AevbsiSdPnmDq1KmIjo6Gt7c39uzZIy5+fufOHcjlxnm2K1eu4OjRo9i3b1+a/SkUCpw/fx7r1q1DbGwsihQpglatWmHWrFnprhlFRETSOnDgAI4fPy6W1Wo1vvrqSwkjIiIiIiKid2VTSSkAGDlyJEaOHJnuttDQ0DR15cuXhyAIaRsDcHZ2xt69e00ZHlG6krUp+OKXubh//z5meVeEs5UtGk1kC1JSUvD1118b1Q0ePBhFixZ7533KZXJ4l6iIhJfxkMlsavIwEREREZHNs7mkFJEt0hn0+P3kHgCA3qCXOBoi27Ru3VrcvXtXLHt4eOCTT4a91z41KjW+6z8Vl06dh7OaM2SJiIiIiCyJXwsTEZHVe/LkMZYvX2FUN37cODg7Z72QKhERERERWScmpYiIyOotWrQICQkJYtnb2xvtO3SQMCIiIiIiInpfvHyPiIis2oULF7Bt2x9GdZMnTzbJnSwTU5LQdfEI6LU6NGneFHlUqvfeJxERERERZQ+TUkREZLUEQcDs2bON6jp37oyqVaua7DleJLw02b6IiIiIiCj7ePkeERFZrZ07d+Ls2bNi2cXFBV98ESBdQEREREREZDJMShERkVVKTEzA/PnzjeqGDx+OggULSRQRERERERGZEi/fI7IAF7UTzs79C/v3H4CTiredJ8qOH374EY8ePRLLxYsXx4ABAySMiIiIiIiITIkzpYgsQCaToUDufMitcTHJ4sxE9u7B/ftYvfono7qvvvoKGg2TukRERERE9oJJKSIisjrz5s9HcnKKWK5Tpw5atGghYURERERERGRqTEoRWUCyNgWTNi/Chsi9SNFppQ6HyKr9+++/+Pvvv8WyXC7DpEkTzTLLUC6To4JnaZTIUxgyGd8SiYiIiIgsiWtKEVmAzqDHz0f+AABMNOgljobIeun1esyZM8eorlev3ihXrrxZnk+jUuOHIXNw6dR5OKt5aSARERERkSXxa2EiIrIaW7duxaVLl8Sym5sbRo8eLWFERERERERkLkxKERGRVXj58iUWL15sVDdq1CjkzZtXmoCIiIiIiMisePkeERFZheXLl+PZs2diuUyZMujTp7dZnzMpJRl9l46FNkWLpi2aQaVSmfX5iIiIiIjoP0xKERGR5G7evIl169YZ1U0MDIRSad4kkQAB0S+evv6/IJj1uYiIiIiIyBgv3yMiIsl9/fXX0Ov/uwlA06ZN0aBhQwkjIiIiIiIic2NSioiIJHX48GGEhoaKZaVSiQkTJkgXEBERERERWQQv3yOyAGeVBmHTN+PgwYPQqNRSh0NkNXQ6LYKCgozqBgzoj5IlS0oTEBERERERWQxnShFZgFwuR/ECnnB3yQu5jC87olS//roBN27cEMsFCuTH8OGfSRgRERERERFZCj8dExGRJJ49e4bvv//OqC4gIAC5c+eWKCIiIiIiIrIkJqWILCBFp8Xs7cvw++V/oNXrpA6HyCp8++23ePnylViuVKkSOnfuYtEYZJChpHtReOZyh0wms+hzExERERE5Oq4pRWQBWr0Oqw78BgAYp/8UgEbagIgkdvnyZWzevMmobvLkyVAoFBaNw0mtwc/DF+DSqfNwVjtZ9LmJiIiIiBwdZ0oREZFFCYKAOXPmwGAQxLq2bdvC19dXwqiIiIiIiMjSmJQiIiKLCgkJwcmTJ8WyRqPG+PHjJYyIiIiIiIikwMv3iIjIYpKTk/H1118b1Q0dOgxFihSRJJ6klGQMXjUByUnJaNqiGVQqlSRxEBERERE5IialiIjIYoKDg3H//n2xXLhwYQwZMkSyeAQIuPX0dTyCIGTRmoiIiIiITImX7xERkUU8evQIK1euNKr78ssv4ezsLFFEREREREQkJSaliIjIIhYuXIjExESx7OPjg7Zt20oYERERERERSYmX7xFZgLNKg/0Tf8aRw4ehUamlDofI4s6dO4c///xTLMtkMkyeNAkymUzCqIiIiIiISEqcKUVkAXK5HOU9S6FI7oKQy/iyI8diMBgwZ84co7ouXbqgcpUqEkVERERERETWgJ+OiYjIrHbs2IFz586JZVdXVwSMHSthRESUavr06ZDJZEY/FSpUyPQxW7ZsQYUKFeDk5ISqVati9+7dFoqWiIiI7A2TUkQWkKLTYtHuNdgRdQRavU7qcIgsJiEhAfPnzzeq++yzz+BesKBEERmTQYbCedxRwDkPLyUkh1W5cmU8fPhQ/Dl69GiGbcPCwtC7d28MHjwYZ86cQadOndCpUydERERYMGIiIiKyF1xTisgCtHodFv8dDAAYpR8MQCNtQEQWsmrVKjx58kQsl/jgA/Tv31/CiIw5qTXY/Pn3uHTqPJzVTlKHQyQJpVKJwoULZ6vtt99+i9atW2P8+PEAgFmzZiEkJARLly5Nc3dNIiIioqwwKUVERGZx7949rFmzxqhuwoQJUKu52D+RNYmKikKRIkXg5OSEunXrIigoCB988EG6bY8dO4aAgACjOj8/P2zfvj3D/ScnJyM5OVksx8XFAQC0Wi20Wu37d8CKpfbP3vuZGY4Bx0ClUsHZ2RkA4OzsDJ1O55Bj4eh/BwDHIJWjjEN2+8ekFBERmcW8b75BSkqKWK5fvx6aNmsmYURE9LbatWtj7dq1KF++PB4+fIgZM2agYcOGiIiIQO7cudO0j46OhoeHh1Gdh4cHoqOjM3yOoKAgzJgxI039vn374OLi8v6dsAEhISFShyA5joHjjsHQoUMxdOhQAMCaNWvw77//ShyRtBz17+BNHIPX7H0cEhISstWOSSkiIjK5EyeOY+++fWJZLpcjMHCi1a3blKxNwWerpyIxIQFNWzSHSqWSOiQii2rTpo34/2rVqqF27dooUaIENm/ejMGDB5vkOQIDA41mV8XFxaF48eJo1aoV3NzcTPIc1kqr1SIkJAQtW7Z02OMLx4Bj0LlzZxw7dgxr1qzBoEGDcOHCBRS0krUlLcnR/w4AjkEqRxmH1JnRWWFSioiITEqv02HOnLlGdX379kHZsmUliihjBsGAyw9vAAAEwSBxNETSy5s3L8qVK4dr166lu71w4cJ49OiRUd2jR48yXZNKo9FAo0m7lqJKpbLrk/E3OVJfM8IxcNwx0Gq1SExMBAAkJiZCqVQ65DikctS/gzdxDF6z93HIbt949z0iIjKpzVu24MqVK2I5T548GDVqlIQREVF2vXr1CtevX4enp2e62+vWrYsDBw4Y1YWEhKBu3bqWCI+IiIjsDJNSRERkMi9evMCSJUuM6kaPHo08efJKEg8RZW7cuHE4dOgQbt26hbCwMHTu3BkKhQK9e/cGAPTv3x+BgYFi+9GjR2PPnj1YuHAhLl++jOnTp+PUqVMYOXKkVF0gIiIiG8bL94gswEmlxo5xPyDsf/+DWsk7j5H9WrZsGWJjY8VyWS8v9OrZU7qAiChT9+7dQ+/evRETE4OCBQuiQYMGOH78uLjey507dyCX//cdZr169bBhwwZMnjwZEydORNmyZbF9+3ZUqVJFqi4QERGRDWNSisgCFHIFvEtUxIPIm1DIOUGR7NP169exfv16o7pJkydDoeRbDZG1+u233zLdHhoamqaue/fu6N69u5kiIiIiIkfCT8dERPTeBEHA3LlzodfrxboWLVpwnRkiIiIiIsoQk1JEFpCi02Ll/g3Ye+M4tHqd1OEQmdyhQ4dw9OhRsaxSqfDVV19JGFH25XHJjVwqZ6nDICIiIiJyOLymgsgCtHod5vy5AgDwib4/gLS3xiayVVqtFkFBQUZ1AwcOxAcffCBRRNnnrHbCji9+wKVT5+GiYWKKiIiIiMiSOFOKiIjey/r163Hr1i2x7O7ujuHDh0sXEBERERER2QSbS0otW7YMJUuWhJOTE2rXro2TJ09m2Hbt2rWQyWRGP05OTkZtBEHA1KlT4enpCWdnZ7Ro0QJRUVHm7gYRkV2IiYnB0qVLjeq++OILuLq6ShQRERERERHZCptKSm3atAkBAQGYNm0awsPDUb16dfj5+eHx48cZPsbNzQ0PHz4Uf27fvm20fd68efjuu++wcuVKnDhxAq6urvDz80NSUpK5u0NEZPOWLFmCV69eieUqVaqgU6dO0gWUQ8naFHz+80wsPPErElOSpQ6HiIiIiMih2FRSatGiRRg6dCj8/f1RqVIlrFy5Ei4uLlizZk2Gj5HJZChcuLD44+HhIW4TBAFLlizB5MmT0bFjR1SrVg0///wzHjx4gO3bt1ugR0REtuvixYvYsmWLUd3kyZMhl9vOW4tBMODs7Uu4+uwOBMEgdThERERERA7FZhY6T0lJwenTpxEYGCjWyeVytGjRAseOHcvwca9evUKJEiVgMBjg4+ODuXPnonLlygCAmzdvIjo6Gi1atBDb58mTB7Vr18axY8fQq1evdPeZnJyM5OT/vlGPi4sD8HqxX61W+179fFvq/ky9X2viCH3UvdE3vV4PvU4vYTTmpdfrjf61R47QRyDzfgqCgAXz58NJ898l0W1at0a1qtVs6u/7zVjNcQy3Jo5wrDVnH+153IiIiIikYjNJqadPn0Kv1xvNdAIADw8PXL58Od3HlC9fHmvWrEG1atXw4sULLFiwAPXq1UNkZCSKFSuG6OhocR9v7zN1W3qCgoIwY8aMNPX79u2Di4tLTruWLSEhIWbZrzWx5z4m61LE/187dwkapVrCaCzj6plIqUMwO0foI5BxPwM++TxN3aVT580djkm9+dr8559/HOK1ac/H2lTm6GNCQoLJ90lERETk6GwmKfUu6tati7p164rlevXqoWLFili1ahVmzZr1zvsNDAxEQECAWI6Li0Px4sXRqlUruLm5vVfMb9NqtQgJCUHLli2hUqlMum9r4Qh91Bv0cC9bFKdOnUIl3+pQ22k/gdezaq6eiUS5GpWhUCikDscsHKGPQMb9TE5OQpcuXRAd/UisG/7ppxgydKgUYb6XxJQk4P/zF82aNUOeXKY9hlsTRzjWmrOPqbOiiYiIiMh0bCYp5e7uDoVCgUePHhnVP3r0CIULF87WPlQqFWrUqIFr164BgPi4R48ewdPT02if3t7eGe5Ho9FAo9Gku39zneibc9/Wwp77qIIKDSt+iJc3n0CtUkGhtN9ERiqFQmH3/XSEPgJp+7l21VrcvHVLLHt6emKA/0CbHAuF4b+Y7fkY9CZH6Kc5+mjvY0ZEREQkBZtZjVatVsPX1xcHDhwQ6wwGAw4cOGA0Gyozer0eFy5cEBNQpUqVQuHChY32GRcXhxMnTmR7n0REjiQ6OhqrfvjBqG7ChK/g5OSUwSOIiIiIiIjSZzMzpQAgICAAAwYMQM2aNVGrVi0sWbIE8fHx8Pf3BwD0798fRYsWRVBQEABg5syZqFOnDry8vBAbG4v58+fj9u3bGDJkCIDXd+YbM2YMZs+ejbJly6JUqVKYMmUKihQpYlO3NCfrp9XrsPbwNkTejkTZGpVsckYJEQAsWLAASUlJYrlmzZrw82stYUTvz0mlgcHAO+8REREREVmaTSWlevbsiSdPnmDq1KmIjo6Gt7c39uzZIy5UfufOHaNbkT9//hxDhw5FdHQ08uXLB19fX4SFhaFSpUpimy+//BLx8fEYNmwYYmNj0aBBA+zZs4ff+pNJpei0mLJlMQDAv0NvaJD28k8ia3fmTDh27NghlmUyGSZNmgSZTCZhVO/HWe2EfRPW4tKp83DROEsdDhERERGRQ7GppBQAjBw5EiNHjkx3W2hoqFF58eLFWLx4cab7k8lkmDlzJmbOnGmqEImI7I7BYMDs2XOM6rp3726U5CciIiIiIsoJm1lTioiIpLN9+3ZERESI5Vy5cmHMmDHSBURERERERDbP5mZKERGRZSUkxGPhwoVGdSNHjkSBAgUkish0krUpmPjbArx68RLNWjbnHdaIiIiIiCyIM6WIiChTq9eswdOnT8VyyZIl0a9fPwkjMh2DYMDxa2cR8eQ6FzsnIiJ6B40bN4ZMJsPcuXON6gVBQO3atbFv3z5otVqJorO8xo0bY9CgQUZ1S5YsQd68efH3339LFBWR9eJMKSIiytSv69cblQMDAzmjiIjIBhgMBqObABGZmiAIOHPmDEqUKIELFy4YbVu3bh0ePHgAAA7zd5g6Ht27dwcAJCQkYOjQoTh48CD+/vtvPH/+XOIIKRWPj9aDvwUiIsqUVqsT/9+wYUM0btxYwmiIiCgj4eHhGDVqFLy9vaFWq6FQKKBWq+Ht7Y1Ro0YhPDxc6hDJzkRFReHly5cYMGCAUVLq5cuXCAwMxMCBAwE4TlIqdTx8fHxw8+ZN1KtXDzdv3sTp06dRt25dqcNzaDw+Wi/HODoQSUyjVGHtJ99gpG93qJScYUK24cTJE0ZlhUKBwMBAyGQyiSIiIqL0XLt2DY0bN4avry9WrlyJc+fOiZdLabVanDt3DitXroSvry8aN26Ma9euSRwx2YvTp0/DxcUFvXv3xpUrV5CSkgIAmDVrFmrWrImCBQtCrVY7zLnD6dOnoVAo8OjRI9SsWRO1a9dGaGgoPD09pQ7NYfH4aP2YlCKyAKVCieZV6qFqIS8o5QqpwyHKkl6nw8L5C4zq+vXrhzJlykgUERERpWfDhg2oUqUKwsLCAAA6nS7ddqn1YWFhqFKlCjZu3GixGMl+hYeHo1q1aihfvjycnJxw+fJlREVFYcWKFVi0aBHCw8Ph5uYmdZgWkzrbplu3bpg1axZWrVoFtVotcVSOi8dH28A1pYiIKI1Nmzfj+o0bYjlfvnwYMWKEhBEREdHbNmzYgH79+kEQhGw/RqfTQafToW/fvhAEAX369DFjhGTvwsPD4ePjA5lMhmrVquHChQvYuHEjhg8fjrJly+L06dNwc3NDfHy81KFaRHh4OFq0aIGIiAicPn1a6nAcGo+PtoMzpYgsQKvXYfPx3Qi7dx46ffoZeiJr8eJFLJYsWWJUN3r0aOTJk0eagIiIKI2oqCgMGjQoRx+43iQIAgYNGsRLVei9pCalAMDb2xtLlizBqVOnMGXKFCQlJeHy5csON1OqTZs2+PPPP7Fx40bMnz9f6pAcEo+PtoVJKSILSNFp8cWvQVh3YRe0TEqRlfv+++/x4sULsVy2bFn06NFDwojMx1nthMNTNmJVm0C4aJylDoeIKNuGDBkCvV7/XvvQ6/UYPHiwiSIiR3Pjxg3ExsaKSakaNWrg1KlTCAoKQu7cuXHu3DnodDrkdssNhYcrTj6IhMLDFXrD+/3dWhO9QY//XTmNP/7dh837/xTHw9fXF8HBwQgMDMSff/4pdZgOh8dH28LL94iISBQVFYVff91gVDdu3BdQKLgWGhGRtTh9+jQOHz783vvR6XQ4fPiw0WwXouw6ffo01Go1qlSpAgAYMGAAOnXqhAIFCgB4PWsoT768uFlWC9eKZbD63F9w9SuD1ouGYG7vcWhXo6mU4b+3XWcOYvKmxXgY+xgAkHQ9BgAQLYsDAPTs2RORkZHo27cvjh49isqVK0sWqyPh8dH2cKYUEREBeD1VOShoLgwGg1F9zZofShQRERGlZ+3atVAqTfPdslKpRHBwsEn2RY4lPDwcVapUgUr1+s7SKpUK7u7u4p32tofsRKKrAK3C+BKqx3ExGLIqELvOHLR4zKay68xBDFkVKCakAED7NB6KPE74fP0ssW8zZsxA69at8dFHHyE6OlqqcB0Kj4+2hzOliIgIAHDw4EH8739hYlmtVkkYjWUka1Mwc+v3iHv+As1aNhdPrImIrNmRI0cyvItUTul0Ohw9etQk+yLHEhQUhKCgoHS36Q16PC6nQL5CFdJsEwDIAEzatAgflqkGhY3dmVpv0GPibwvx9mpFuWt/gNy1PwAATNm8BK2rN4JCrsDvv/8OANBqtRaO1DHx+Gh7mJQiIiKkpKTg67dOLPt9/LFE0ViOQTAg9NKJ1/9/a4YYEZG1unjxokn3FxkZadL9ER2POms0i+htAoDo2Ceo9mU7ywVlIQKAB88f4XjUWdQv7yt1OA6Hx0fbw8v3iIgIP//8M27fuSOWCxYsiEH+/hJGRERE6TEYDCafcaHVapmYJ5N6HBcjdQiS4xhYHo+PtokzpYiIHNzTJ0+wfPlyo7rx48fD2dlFooiIiCgjcrkcKpXKpB+8VCoV5HJ+V02mU8itQLbabR27DPXK2dYi0mFXw9F18Ygs22V3DMh0eHy0TRxdIgvQKFVYMWgmhnl3gkrJNWvIuixavBjx8fFiuXr16ujQoYOEERERUWYqVapk0v3xrmBkanXKesMzbyHIMtguA1AknwfqlPWGTCazqZ86Zb1ROG/BDPv+Zt/I8nh8tD1MShFZgFKhRPsaTeHrWRFKG1vMkexbZEQEtm3bZlQ3adIkfiNERGTFGjZsaNK7SzVo0MAk+yJKpZArMLvn2NeFt1YET01UzeoxxuYWOQde962Ol3e622y9b/aAx0fbw08dREQOShAEzJ4zB4Lw39lix44dUb16dQmjIiKirPj7+5v07lL+XEOQzKBdjab46ZMgqPTG86U83Nzx0ydBaFejqUSRvZ+Hzx9j7/kjAIC8rm5G2zzzedh03+wBj4+2h2tKEVmATq/DzjMHcebhJZQ1VIYC/OaEpLd7926Eh4eLZWdnZ3zxxRcSRkRERNnh4+ODRo0aISws7L0+fCmVStSrVw8+Pra1pg/ZjnY1mqLi3dw4W+gp5K5qJB6/j7/3/AHPwp5Sh/bO5mxfjsSUJNQqUw3bApbjxLVzeBwXg0JuBVCnrDdnSEmMx0fbw6QUkQUk67QYvmYqAKCrX0do1GqJIyJHl5iYiHnz5hnVffrpp/Dw8JAoImk4qTTY+1UwroRHwFntJHU4RETZtnr1alSpUuW9PnQpFAqsXr3ahFERpSWDDNC/npVteJZo00mbUzcu4PcTeyCTyTCrRwCUCiXql/eVOix6C4+PtoWX7xEROaCffvoJ0dHRYrlo0aIOOT1ZJpPBWe0EjVINmSyj5ViJiKyPl5cXgoOD3/nYJZPJEBwcDC8vLxNHRmSfDAYDJm9aDADoWbcdqpeoIHFElBEeH20Lk1JERA7mwYMH+OnHH43qJkyYAI1GI1FERET0Lnr37o3169dDo9Fke2FfpVIJjUaDX3/9Fb179zZzhET2Y8uJv3H29kW4alwwseNwqcOhLPD4aDuYlCIicjALFixAUnKyWK5VqxZatmwpYUTSSdFpMffPFVh7fieStSlSh0NElGN9+vRBREQE6tWrBwAZfvhKra9fvz4iIiL4gYsoB14lxWPu9hUAgLFt/VEoTwGJI6Ls4PHRNnBNKSIiB3Lq1Cns2rVLLMvlMkyaNMlhL13TG/TYc/6w+H8iIlvk5eWFQ4cOITw8HMHBwTh69CgiIyOh1WqhUqlQuXJlNGjQAP7+/ly0l+gdfLfnZzx68RQlCxbD0GY9pQ6HcoDHR+vHpBQRkYPQ6/WYM2e2UV2PHj1RoQLXRCAisgc+Pj5GH6oMBgPkcl4YQfQ+bj+5j5X7NwAAZnT7HBoVb1hki3h8tF78LRAROYg//tiGixcviWW33LkxevRoCSMiIiJz4gcuovc3Y+t3SNFp0ajCh2hVraHU4ZCJ8PhoPThTisgC1EoVFvYNxPnz56FS8GVHlvfq1SssWrTIqG7kqFHInz+/RBERERERWbejl09h99lDUMgVmNF9jMMud0BkTvx0TGQBKoUSPeq0Ra5ngJJJKZLAiuXLERPzTCyXLl0affv2kTAiIiIiIuul0+swZctiAMCARp1RsWgZiSMisk+cs0ZEZOdu3bqFtevWGdVNnBgIpVIlUURERERE1m390T9x6f515HN1w/gOQ6UOh8huMSlFZAE6vQ4HIsJw4fE16HiHL7Kwr7/+GjqdTiw3adIEDRs2kjAiIiIiIuv1PP4F5v31AwBgfIdhyOeaR+KIiOwXryMisoBknRYDV30FAOjQoi00at61gyzj6NGjOHjwoFhWKBQIDJwgYUTWxUmlwV8Bq3D17EU4q52kDoeIiIiswMKdq/Es/gXKFymN/g07SR0OkV3jTCkiIjul02kRFDTXqG7AgAEoWbKURBFZH5lMhryubsitceHipURERIQrD24i+NBWAMCs7mO4HiyRmTEpRURkpzZu/A3Xrl0Xy/nz58dnn30mYURERERE1ksQBEz7fQn0Bj1aV2+ERhVrSR0Skd1jUoqIyA49f/4c3337rVHd2LFjkTt3bokisk4pOi0W/b0GGyL3IlmbInU4REREJKGQC/9D6MUTUCtVmNZ1lNThEDkEzkUkIrJD3333HeJevhTLFStWRNeuXSWMyDrpDXpsPxUi/p+IiIgcU4pOi2lblgAAhjXvhVKFiksbEJGD4EwpIiI7c/XqFfz220ajukmTJkGhUEgUEREREZF1++mfzbj55B4KuuXHmDYDpQ6HyGEwKUVEZEcEQcCcOXNhMAhiXZs2bfDhhx9KGBURERGR9XoSF4NFu1cDACZ2+gy5nFwljojIcfDyPSILUCtVmNV9LCIjI6HiHTzIjA4cOIDjx4+LZY1GjS/Hj5cwIiIiIiLr9vWfq/AqKQHVPqiAnnXaSh0OkUPhTCkiC1AplBjYqAualvDlbWXJbJKTk/H1118b1Q0ePARFihaVKCIisnZBQUH48MMPkTt3bhQqVAidOnXClStXMn3M2rVrIZPJjH6cnJwsFDERkWmdv3MZG8J2AADm9AyAXM6PyESWxFccEZGdWLduHe7evSuWPTw8MGzYUAkjIiJrd+jQIYwYMQLHjx9HSEgItFotWrVqhfj4+Ewf5+bmhocPH4o/t2/ftlDERESmIwgCpmxeDEEQ0OXDVviwTDWpQyJyOJyyQWQBeoMex6LO4ErMbZQzVIECXHCaTOvJk8dYvny5Ud348ePh7OwiUUREZAv27NljVF67di0KFSqE06dPo1GjRhk+TiaToXDhwuYOj4jIrP48vR8nrp2Ds0qDSZ1HSB0OkUNiUorIApK0Kejx3ecAAL+mLaFWqySOiOzNokWLkJiYKJZr1KiB9u3bSxiRbdAo1dg06jtcO38JTiqN1OEQSe7FixcAgPz582fa7tWrVyhRogQMBgN8fHwwd+5cVK5cOd22ycnJSE5OFstxcXEAAK1WC61Wa6LIrVNq/+y9n5nhGHAMVCoVZHIZAECj0UCn01nFWCSmJGHm1u8BAJ+17ItCufObNS5H/zsAOAapHGUcsts/JqWIiGzchQsXsG3bH0Z1kydPgkwmkygi2yGXy+GZtyBiXR5yDQlyeAaDAWPGjEH9+vVRpUqVDNuVL18ea9asQbVq1fDixQssWLAA9erVQ2RkJIoVK5amfVBQEGbMmJGmft++fXBxcYzZnCEhIVKHIDmOgeOOwdChQ3H70Ao8SYjFxEkT8e+//0odEgBgZ9RRPHj+GPmd3FBSlx+7d++2yPM66t/BmzgGr9n7OCQkJGSrHZNSREQ2TBAEzJ41y6iuS5fOqFKlqkQREZGtGjFiBCIiInD06NFM29WtWxd169YVy/Xq1UPFihWxatUqzHrreAQAgYGBCAgIEMtxcXEoXrw4WrVqBTc3N9N1wApptVqEhISgZcuWUKkcc5Y0x4Bj0LlzZzzO+xiyXGrMnTMX5w/9i4IFC0oa04PnjzB6/yIAwOzeX6CDTzOzP6ej/x0AHINUjjIOqTOjs8KkFBGRDdu5YwfOnjsnll1cXIw+/FHmtDodVu7fgJjoJ2jRyr5PDIgyM3LkSOzcuROHDx9Od7ZTZlQqFWrUqIFr166lu12j0UCjSXt5rEqlcpjXnCP1NSMcA8cdA61WC8EgQIbXl/MqlUrJx+HrHT8gSZuMOl7e6FyrlUVnlzvq38GbOAav2fs4ZLdvTEoREdmoxMQEzF+wwKjus8+Go2DBQhJFZHt0Bh1+O7bz9f/1OomjIbI8QRAwatQo/PHHHwgNDUWpUqVyvA+9Xo8LFy6gbdu2ZoiQiMi0Tlw7iz/+3QeZTIZZPcZyuQMiidncAhrLli1DyZIl4eTkhNq1a+PkyZMZtv3xxx/RsGFD5MuXD/ny5UOLFi3StB84cCBkMpnRT+vWrc3dDSKi9/bDDz/i0aNHYvmDD4pjwICB0gVERDZnxIgRWL9+PTZs2IDcuXMjOjoa0dHRRjdO6N+/PwIDA8XyzJkzsW/fPty4cQPh4eHo168fbt++jSFDhkjRBSKibDMYDJiyeQkAoE+9Dqj6QXlpAyIi20pKbdq0CQEBAZg2bRrCw8NRvXp1+Pn54fHjx+m2Dw0NRe/evXHw4EEcO3ZMXL/g/v37Ru1at26Nhw8fij8bN260RHeIiN7Z/fv3sHr1T0Z1EyZMgFqtligiIrJFK1aswIsXL9CkSRN4enqKP5s2bRLb3LlzBw8fPhTLz58/x9ChQ1GxYkW0bdsWcXFxCAsLQ6VKlaToAhFRtm06vhvn71xGbidXTOj4idThEBFs7PK9RYsWYejQofD39wcArFy5Ert27cKaNWswYcKENO1//fVXo/JPP/2ErVu34sCBA+jfv79Yr9FoULhwYfMGTw5NpVBiUsfhuHT5MpQKm3rZkZWaN28+kpNTxHLdunXRrFlzCSMiIlskCEKWbUJDQ43KixcvxuLFi80UERGRebxMjMfc7csBAAHtBqGgWwGJIyIiwIaSUikpKTh9+rTR9HG5XI4WLVrg2LFj2dpHQkICtFot8ufPb1QfGhqKQoUKIV++fGjWrBlmz56NAgUyPkglJycjOTlZLKeuKq/VaqHVanPSrSyl7s/U+7UmjtBHGYDBjbsjJCUEcsig1+mlDsls9Hq90b/2SOo+nj59GodCD8HZyRkAIJfLMDEwEAa9waTPI3U/LeHN16I5juHWxBGOtebsoz2PGxGRI1jydzCexD1D6ULFMbhpD6nDIaL/ZzNJqadPn0Kv18PDw8Oo3sPDA5cvX87WPr766isUKVIELVq0EOtat26NLl26oFSpUrh+/TomTpyINm3a4NixY1AoFOnuJygoCDNmzEhTv2/fPri4uOSgV9kXEhJilv1aE0foIwBcPRMpdQgW4Qj9lKqPLlBh/apgo7qU5wm4dOq8WZ7Pnn+Xybr/Zpv9888/0Cjt//JHRzjWmqOPCQkJJt8nERFZxo1Hd/DDgd8AANO7jYZaab93PCOyNTaTlHpfX3/9NX777TeEhobCyclJrO/Vq5f4/6pVq6JatWooU6YMQkND0bx5+pfCBAYGGt1yPS4uTlyvys3NzaRxa7VahISEoGVL+71VuSP0UW/Q48zNizh54gSaN24OtZ32E3g9q+bqmUiUq1E5w8SurZOyj3/88Qdmz54tlnO75caf2/9Enjx5TP5cjvC7TExJAv4/f9GsWTPkyWXaY7g1cYRjrTn7mDormoiIbM+Mrd9Dq9ehaaU6aFm1vtThENEbbCYp5e7uDoVCYXSnKQB49OhRlutBLViwAF9//TX279+PatWqZdq2dOnScHd3x7Vr1zJMSmk0Gmg0mjT1KpXKbCf65ty3tbDnPqYk69B5yWcAgCaNmkChdMriEbZPoVBAobTPREYqS/cxLi4OCxctRGLSf3fFGjd+HPIXyJ/Jo96fPf8uXeTOWPfJPNyIvIrcLrns9hj0Jns+1qYyRx/tfcyIiOzVoYsnsPf8ESjkCszoPhoymUzqkIjoDTZz9z21Wg1fX18cOHBArDMYDDhw4ADq1q2b4ePmzZuHWbNmYc+ePahZs2aWz3Pv3j3ExMTA09PTJHETEZnK8uXL8ezZM7Hs5VUGvd+Y7Uk5J5fLUapQcRTJXRByuc28JRIREVE26PQ6TNmyBAAwqEk3lPMsJW1ARJSGTZ2BBwQE4Mcff8S6detw6dIlDB8+HPHx8eLd+Pr372+0EPo333yDKVOmYM2aNShZsiSio6MRHR2NV69eAQBevXqF8ePH4/jx47h16xYOHDiAjh07wsvLC35+fpL0kYgoPTdv3sTPP/9sVDdx4iQolDYz4ZWIiIjIotYd/gNXH95Eftc8+KLdYKnDIaJ02NSnmZ49e+LJkyeYOnUqoqOj4e3tjT179oiLn9+5c8fom+4VK1YgJSUF3bp1M9rPtGnTMH36dCgUCpw/fx7r1q1DbGwsihQpglatWmHWrFnpXp5HRCSVoKAgo7vgNWvWDPXrc02E96XV6bD20FY8ffAILXT2u9YSERGRo3n26gXm7/gRAPDlR8OQ19V+140ksmU2lZQCgJEjR2LkyJHpbgsNDTUq37p1K9N9OTs7Y+/evSaKjIjIPA4fPoxDhw6JZaVSiQkTJkgYkf3QGXRYe3grAGChXidxNERERGQq83f8iNiEOFQsWgb9GnSUOhwiyoBNXb5HRORodDot5s6da1Q3cOBAlChRQqKIiIiIiKzbpfvX8fORPwAAs7qPhVJhc3MxiBwGk1JERFbs119/xc2bN8Wye4ECGD58uIQREREREVkvQRAwdcti6A16tKvRBA0qZH2zKyKSDlPGRBagUigxto0/oqKi+E0NZduzZ8/w/fffG9UFBAQgV65cEkVEREREZN32njuCI5dPQaNUY2qXUVKHQ0RZ4EwpIgtQK1UIaDsIHco2hIpJKcqmb79dgpcvX4nlypUro3OXLhJGRERERGS9krUpmPb7twCAT1r0RomCRSWOiIiywqQUEZEVunz5MjZv3mxUN3nyZKM7jBIRERHRf3745zfcfnofHnnc8Xnr/lKHQ0TZwE83RBZgMBhw5eFNPHj5BAbBIHU4ZOUEQcCcOXNgMAhiXfv27eDj4yNhVERERETW6/GLGCzZvRYAMKnzZ8jl5CptQESULbyOiMgCErXJaDH39bc19erXh0qlkjgismb79u3DyZMnxbKTRoNx48ZLGJH9UivVWDV4Nm5djIJGpZY6HCIiInpHc/9cgfjkBNQoWQndarWWOhwiyiYmpYiIrEhSUhK++eYbo7qhw4bB09NToojsm0IuR8UiZYAH8VDIFVKHQ0RERO/gzK2L+C1sJwBgdo8ALndAZEP4aiUisiLBwcG4f/++WPb0LIzBgwdLGBERERGR9RIEAVM2LwYAdKvdGr6lq0gcERHlBJNSRERW4tGjR1i1apVR3ZdffgVnZ2eJIrJ/Wp0OG8N2YO+N40jRaaUOh4iIiHLoj3/34dSNC3BWO2FSp8+kDoeIcohJKSIiK7Fw4UIkJiaKZV9fX7Rp00bCiOyfzqDDigMbsO3KQej0OqnDISIiohyIT07E7D+WAQBGtx4Az3yFJI6IiHKKSSkiIitw9uxZ/Pnnn2JZJpNh0qRJkMlkEkZFREREZL2W7VuPB88fo3gBT3zSorfU4RDRO2BSiohIYgaDAXPmzDGq69q1KypXrixRRERERETW7W7MQyzftx4AMK3rKDirnSSOiIjeBe++R2QBKoUSnzTvhRs3bkKp4MuOjP311184f/68WHZ1dcXYsWMljIiIiIjIus3athRJ2mTULVsD7Wo0lTocInpHnClFZAFqpQqTO41AtwrNoGJSit6QkJCABQsWGNWNGDEC7u7uEkVEREREZN2ORZ3BX6cPQC6TY1aPsVzugMiGMSlFRCShVatW4cmTJ2K5RIkS6N+/v4QREREREVkvvUGPqZsXAwD6NeiIKsXLSRwREb0PJqWILMBgMOBuzEM8TYiFQTBIHQ5Zibt372LNmjVGdYGBgVCpVBJFRERERGTdfgvbiQt3r8LNORe+/GiY1OEQ0XvidUREFpCoTUa96T0AAHvr1GLSgQAA8+Z9g5SUFLHcoH59NGnSRLqAHJBaqca3H0/B7SvXoVGppQ6HiIiIMhGX+Apz/1wJABjXfgjcc+eTOCIiel9MShERSeDEiePYty9ELMvlcgROnMg1ESxMIZejRslKcHqqg0KukDocIiIiysSiXWsQ8/I5vDxKwL9JN6nDISIT4OV7REQWptfpMGfOXKO6fn37wsvLS6KIiIiIiKzb9Ud38NM/mwAAM7qP5s2DiOwEk1JERBa2ecsWXLlyRSznzZsXI0eNkjAix6XT67Dt3304ePs0tHqd1OEQERFRBqb//i10Bj2aV6mH5lXqSR0OEZkIk1JERBb04sULLFmyxKhuzJjRyJMnjzQBOTitXocle4Lx28V90Oq0UodDRERE6fgn8hhCLvwPSrkCM7qNljocIjIhJqWIiCxo6dKliI2NFctly5ZFj+49pAuIiIiIyIpp9TpM27IEADC4WQ94FS4hbUBEZFJMShERWcj169exfv16o7pJkyZBoeSaCERERETpWRu6FVHRt5E/V14EtB0kdThEZGL8JERkAUq5Av0bdsbt27d5hy8HJQgC5s6dC4PBINa1bNkSdevWlTAqIiIiIusV8yoWC3b9BAAI7Pgp8rjkljgiIjI1zpQisgCNSo05PQLQp7If1EqV1OGQBA4dOoSjR4+KZZVKha+++krCiIiIiIis27y/fsCLhJeoXKws+tTvIHU4RGQGTEoREZmZVqvF3LlzjeoGDRqE4sWLSxQRERERkXW7eC8KvxzZDgCY1WMsrzYgslNMShFZgCAIiHn5HC+TEyAIgtThkIX98ssvuH37tlh2d3fHJ598ImFERERERNZLEARM2bIEBsGADj7NUa+cj9QhEZGZcE0pIgtISEmC98SPAAB7PwxGLhVfeo4iJiYGy5YtM6obN24cXF1dJYqI3qRSqPBNr/G4G3WLl9YSERFZid1nQ/G/K6ehUaoxpcsIqcMhIjPiJ2MiIjNasmQJXr16JZarVq2Kjh07ShgRvUmpUKBuWR/kfaGEUsG3RCIiIqklaZMx/ffvAACfteqLD9yLSBwREZkTL98jIjKTixcvYsuWLUZ1kyZNglzOQy8RERFRen448BvuxjyEZ96CGOnXX+pwiMjM+MmIiMgMBEHAnDlzjNYQ++ijj1CjRg0Jo6K36fQ6/H3uEMLunYdWr5M6HCIiIocWHfsES/5eCwCY3HkEXDXO0gZERGbHpBQRkRns2bMHp06dEstOTk4YN26chBFRerR6HYL+Wol1F3ZBq9NKHQ4REZFDm7N9BRKSE1GzdFV0qeUndThEZAFMShERmVhiYiK++eYbo7pPPvkEHh4eEkVEREREZN3Cb0Zgy/HdAIBZPcZCJpNJHBERWQKTUkREJrZmzWo8fPhQLBcpUgSDBg2SMCIiIiIi62UwGDB582IAQI86bVGjZCWJIyIiS+GthogsQClXoFut1rh//z4UcoXU4ZAZPXz4ED+s+sGo7quvvoKTk5NEERERERFZt23/7kX4zUi4alwwqfNnUodDRBbEmVJEFqBRqbH440kYWK091EqV1OGQGS1csABJycliudaHH8LPj2siEBEREaUnPikBs7ctBwCMaTMQHnncJY6IiCyJSSkiIhMJDw/Hjp07xbJMJsPESZO4JgIRERFRBr7f+zOiXzxBCfeiGNq8p9ThEJGFMSlFZAGCICAhORHJuhQIgiB1OGQGBoMBs2fPNqrr0aMHKlasKFFERERERJY1cOBAyGQyo599+/bh5Yk76ba//fQBVoRsAABM6zoKTiqNJcMlIivANaWILCAhJQnlx7UCAOz1CUYuFV969uaPP/5AZGSkWM6dOxfGjBkjXUCULSqFCjO6jsb967d5aS0REZEJtG7dGsHBwWK5V69eiCj4LN22M7d+j2RdChqUr4k23o0tFSIRWRF+MiYiek+vXr3CooULjepGjhyF/PnzSxQRZZdSoUDTSnVwKcEFSgXfEomIiN6XRqNB4cKFjcpyVdob/fzvymnsOnMQcpkcs3qM4XIHRA6Kl+9ZofDwcIwaNQre3t5wd3+90J+7uzu8vb0xatQohIeHSxwhkeOJjIzErFmz0LFjR9SuXRsAULt2bXTs2BEff/wxnsbEiG1LlSqFvn37ShUqkUPheyYRkXVKPT6HhYUZ1Tdt2hQjR47EuHVzAQD9G3VGxaJeUoRIRFaAXwtbkWvXrmHw4ME4fPgwlEoldDodnJ2dAQBarRbnzp1DZGQkli5dikaNGmH16tXw8uIBnMicbt++jUmTJuLff09BoVBAr9fD2en161Kn0+Hy5ctpHhMYGAiVipeC2QKdXo/Qi8dx/+FttNK34u/NhvA9k4jIOsXHx6Nx48bGx+c3tl+8eBG3Zc+Qq0EJyPVA9yotJIuViKTHmVJWYsOGDahSpYr4TYJOp0u3XWp9WFgYqlSpgo0bN1osRiJHs2PHDrRv3x7h4WcAAHq9PsvHyOUyvHz50tyhkYlo9VpM2/otfji7HSk6rdThUDbxPZOIyDrduHED//zzT6bHZ5laARffIgCAlyfvoP6HdXl8JnJgnCllBTZs2IB+/frl6K5sOp0OOp0Offv2hSAI6NOnjxkjJHI8O3bswPjx43N8t0SDQcC4ceMgCAI6dOhgpuiI7EtsbCzy5s2brbZ8zyQisk4bNmzAkSNHALy+K3FGXH2LQu6sgu55Il5FRAMGgcdnIgfGmVISi4qKwqBBg3L8wTeVIAgYNGgQrl27ZuLIiBzXrVu3MHHixPd6XU6cOBG3b982cWRE9mnFihXw9vbGlClTcOLEiQw/zNjze+ann36Kx48fSx0GEdE7ST0+Z0WeRwOXyh4AgJdhtwHD6+O5NR+fici8mJSS2JAhQ7J1SVBm9Ho9Bg8ebKKIyBwUcjnaeTeBT+EKkMv5srN2kydPMsnrctKkiSaKiMi+jRw5Enfv3sXs2bNRp04dFClSBIMHD8b27dsRHx8vtrPn98w2bdqgbdu2mD59ulGfiYhsQabHZzkA1evzX6daRSBTyJF86zlS7r0wamatx2ciMi+b+3S8bNkylCxZEk5OTqhduzZOnjyZafstW7agQoUKcHJyQtWqVbF7926j7YIgYOrUqfD09ISzszNatGiBqKgoc3ZBdPr0aRw+fDjDtTCyS6fT4fDhw7zDkBVzUmmwcvAsfFKjMzRKtdThUCYiIyLw77+nTPLB999/TyEyMtJEkRHZr9y5c2PcuHFi+dGjR1izZg06d+6MAgUKoE2bNpgwYYJdv2d27NgRJ06cgIeHB+rVq4eVK1dmevmLqZn6/IqIHEdmn2ly1S6OQoNrQe78+kYiMpUCgiBAn5CSpq21Hp+JyLxyvKbUgAEDMHjwYDRq1Mgc8WRq06ZNCAgIwMqVK1G7dm0sWbIEfn5+uHLlCgoVKpSmfVhYGHr37o2goCC0b98eGzZsQKdOnRAeHo4qVaoAAObNm4fvvvsO69atQ6lSpTBlyhT4+fnh4sWLcHJyMmt/1q5dK96R4n0plUoEBwfDx8fHBJEROa5tf/wh3mXvfcnlMnz99ddo3769CSKzPLlMjoofeGHbtm0wCJb7cGxJWsN/x9/169dDJbffpRZlMhkKFSqEtWvXvvPlb+akVqefsE9OTsaePXuwZ88ekz2Xtb5nKhQKtGvXDs7Ozhg3bhyWLFmC+fPnm319OnOcXxGR48joM02u2sXhUt0z3cc4VywEIUWPVyfuGtVb6/GZiMwnx2ffL168QIsWLVCiRAn4+/tjwIABKFq0qDliS2PRokUYOnQo/P39AQArV67Erl27sGbNGkyYMCFN+2+//RatW7fG+PHjAQCzZs1CSEgIli5dipUrV0IQBCxZsgSTJ09Gx44dAQA///wzPDw8sH37dvTq1cus/Tly5IhJElLA628Wjh49apJ9ETmyU6fef5ZUKoNBwMmTJ7OccWCtnJ2csX5VMObMmYPEpESpwzEPhRzu3asCAMZ/OR6JLxMkDsh8nJ2dsXHjRowePRqJiXb6+8wma3zPbN26NS5duoTixYujVq1a+P7771GuXDksX74cBw4cwJIlS8z23KY+vyIix5LuZxo54FLtdUJKJpMZbZLJZBAEAS7VPPHq37vAG997WePxmYjMK8dJqe3bt+PJkyf45ZdfsG7dOkybNg0tWrTA4MGD0bFjR6hUKnPEiZSUFJw+fRqBgYFinVwuR4sWLXDs2LF0H3Ps2DEEBAQY1fn5+WH79u0AgJs3byI6OhotWrQQt+fJkwe1a9fGsWPHMkxKJScnIzk5WSzHxcUBALRaLbTa7N9S/ObNm3B2ds60Ter2rNoBr2/BmpPntxapMdti7NmVkJyI8uNaAQB2V/4JuZxdJY7IfFITOqZK7Fja/Xv34eyUxevy/2dROpt5NqXUHKKfMsBwIQb+ffrjJ3UU4Gx9M4hMJSfvJ7bKnO+Zpn6Pevz4sdEspK+//hpVq1aFQqEward69WpUqFDBpM/9JnOcX73NVOdNtsgRznGywjGw/zFI7zONqkIByOSyDB7x/4kqGeBWvRi0l2OMttnqZ5qs2PvfQXZwDF5zlHHIbv/e6TqFggULIiAgAAEBAQgPD0dwcDA+/vhj5MqVC/369cNnn32GsmXLvsuuM/T06VPo9Xp4eHgY1Xt4eODy5cvpPiY6Ojrd9tHR0eL21LqM2qQnKCgIM2bMSFO/b98+uLi4ZN2Z//fzzz9nu+2aNWuy1c6W13QICQmROgSzSdb9d938tXOXHGJdqatnbHMtpbXLfsx22x+/XWHGSKyHo/Sz3ursHWdtXXbfT2yZOd4zExJMO4uuW7duOHjwoJiE8vb2FrfpdDoolf+dopnzvd0c51dvM9V5ky2z53Oc7OIY2O8YpPeZZmPkXoTeyXptqDbdOqB3Zb809bb8mSYr9vp3kBMcg9fsfRyye+70XotnPHz4ECEhIQgJCYFCoUDbtm1x4cIFVKpUCfPmzcPYsWPfZ/dWKzAw0Ogbwri4OBQvXhytWrWCm5tbtvfj7u6eZfbQ2dkZa9aswaBBg7K83EKlUuHp06fZfn5rodVqERISgpYtW5ptpp3UEpITgZCFAACv6hXtfqbU1TORKFejcppv/G1B7dq1s7ys1tnJCT9+uwJDRw9HYlJSpm3lchm++uorU4ZoMXKZHBVLlMWl21F2u6YU8F8/o6OjrXKtJVORyWQoXLiw1fYzPj4eU6ZMea99mPM9M3V2j6nkzZsXn3/+OZYtW2ZUHxMTg65duyI0NFSsK126tEmf29JMdd5kixzhHCcrHAP7H4P0PtOoKhSAc62sl3j5+/cd+Gv2WuPH2uhnmqzY+99BdnAMXnOUccjuuVOOk1JarRZ//fUXgoODsW/fPlSrVg1jxoxBnz59xBOLP/74A4MGDTJpUsrd3R0KhQKPHj0yqn/06BEKFy6c7mMKFy6cafvUfx89egRPT0+jNm9+Y/k2jUYDjUaTpl6lUuXoj6pUqVI4d+5cttomJiZmeYJdvnx5m/6jzun42RLlG4spKxQKKJS2l6zJKVvtZ9FiRTOcHfC2xKSkLNdaqlixInqaeX06c9Hr9Lh06jy6dO1qk7/L7NDp9Th+NRwXoq7hiwGfZXnppi3TarXYvXs3Bg0aZJXH2m+++Sbd9zm1Wo2mTZsiIiIC9+/fz9a+zPGeaeox+/nnn1GrVi0xiQYAly5dQvv27c16ud7bzHF+9TZTnTfZMkfqa0Y4BvY7Bul9pkk8dw9ONYsAsrRrSgGv74AOAYg7d89oTSkAKFeunF2OUyp7/TvICY7Ba/Y+DtntmzynO/b09MTQoUNRokQJnDx5EqdOncKnn35q9E1X06ZNkTdv3pzuOlNqtRq+vr44cOCAWGcwGHDgwAHUrVs33cfUrVvXqD3weopcavtSpUqhcOHCRm3i4uJw4sSJDPdpSg0bNjSanv8+lEolGjRoYJJ9ETmymjVrmmyGl0KhgK+vr0n2Reah1Wvx1W/zsfT0FqTo7Pu6fmv28uVLzJ8/XywXKlQI/v7+2LZtG2JiYrBnzx507tzZrt4z8+bNi61bt2L8+PE4efIk9u7di7p166JTp07YsWOHxeIwx/kVETmWdD/TGICE8w8BIM3s3NRywvmHaRJSwOsZoxcuXDBLrERkfXKclFq8eDEePHiAZcuWZTibKG/evLh58+b7xpZGQEAAfvzxR6xbtw6XLl3C8OHDER8fL94tpn///kYLdY4ePRp79uzBwoULcfnyZUyfPh2nTp3CyJEjAbzO2o8ZMwazZ8/GX3/9hQsXLqB///4oUqQIOnXqZPL43+bv72/Su++ljgMRvbsuXbqYbJF2vV6PLl26mGRfRPZs2bJlKFq0KCZNmoTjx4/j4cOHWLNmDTp37oxcuXIBsI/3zC5dumDmzJn466+/cOfOHVStWhVLly5F27Zt0bVrVyxevBgLFy6EXJ7j07P3YurzKyJyLBkdn1+duIuEcw+Bt68YF4CEcw/x6sTddPd37949eHt7Y8SIEYiJiUm3DRHZjxx/5fjxxx+bI45s6dmzJ548eYKpU6ciOjoa3t7e2LNnj7jY5p07d4xO5OrVq4cNGzZg8uTJmDhxIsqWLYvt27ejSpUqYpsvv/wS8fHxGDZsGGJjY9GgQQPs2bMHTha425SPjw8aNWqEsLCw9zrRViqVqFevHnx8fEwYHZFjqly5Mj78sCbCw8+8V3JKoVDAx6cGKleubMLoiOzTJ598ggkTJmTaxh7eM8uUKYMjR45g6dKlePr0KfLly4fq1atDEAT06dMHPj4+0Gq1Fp/Kb47zKyJyHJkdn1+duItX/96FW/ViaNOtA/7+fUe6l+y9zWAwYPny5di4cSOmT5+O4cOH2/VlTkSOzDTz4C1o5MiRGX4T9+aioKm6d++O7t27Z7g/mUyGmTNnYubMmaYKMUdWr16NKlWqvNcJtkKhwOrVq00YFZmaQi5Hs0p18PjJE4t/A045N2fOXLRv3/69k1Jz5sw1YVRE9itfvnzZamfr75lvXqJ4//59nD17FmfPnkWBAgVw8OBBrF69GkqlEhUqVMj2mpOmYurzKyJyLJkenw2A9nIMelf2e72oeQYJKYVCAaVSieTkZLHu+fPnGD16NFauXIklS5agVatW5ukAEUmGn44l5uXlheDg4HQXAMwOmUyG4OBgeHl5mTgyMiUnlQbrhs/HqJo9oFGqpQ6HslCiRAkEBQW91+syKCgIJUqUMHFkRI7Nnt4zixYtinbt2mHSpEnYsmULoqKi8OLFCxw4cADDhg2TOjwiohwxxfH5l19+wZUrV9CjR4802y9dugQ/Pz989NFHiIqKet9wiciKMCllBXr37o3169dDo9FkexFXpVIJjUaDX3/9Fb179zZzhESOp3379pg/fz7UanW2Fz5XKBRQq9VYsGAB2rdvb+YIiRyTPb9n5sqVCw0aNMCIESOkDoWIKMdMcXwuUaIENm3ahMOHD6NGjRpp2u/YsQOVK1fG+PHj8eLFC1N3gYgkwKSUlejTpw8iIiJQr149AMjwQJ5aX79+fURERFj1yTWRrevQoQN27twJH5/XJ0UZJadS6319fLBz504mpIjMjO+ZRETWyVTH54YNG+Lff//Fjz/+iIIFCxpt02q1WLBgAcqVK4fVq1eb7AY1RCQNJqWsiJeXFw4dOoTTp0/j008/hbe3t7ign0qlgre3Nz799FOcPn0aoaGhVnH5AWVPfHIiyn3REqP2LUBiSpLU4VAOlChRAuvX/4pt27ahd+/eqFixongipVQqUbFiRfTu3Rvbtm3DL+vX85I9G6NSKDGmtT96VWoFlZILqNoSvmcSEVknUx2fFQoFhgwZgqioKIwbNy7NQuePHz/GkCFDUKtWLRw9etTs/SIi87C5hc4dgY+Pj3hXIK1Wi927d+Pp06e844SNYzLKtlWuXFm8k55ep8elU+dx4sQJKJTZu7SPrJNSoUSXD1vhkuw8VAq+JdoivmcSEVknUx2f8+TJg/nz52Po0KH44osvsHPnTqPt4eHhaNiwIXr27Il58+bhgw8+MFkfiMj8OFOKiIiIiIiIrFq5cuWwY8cO/P3336hQoUKa7Zs2bUKFChUwffp0JCQkSBAhEb0LJqWIiMhh6Q0GnLl1EVdibkNv4JoURERE1q5169Y4f/48vv32W+TNm9doW2JiImbMmIHy5cvjt99+gyAI0gRJRNnGpBQRETmsFF0KRv8yC4tObkCyNkXqcIiIiCgbVCoVPv/8c0RFRWH48OGQy40/1t67dw+9e/dGw4YNcfr0aYmiJKLsYFKKiIiIiIiIbI67uzuWL1+OM2fOoGnTpmm2/+9//8OHH36IwYMHIzo6WoIIiSgrTEoRERERERGRzapWrRoOHDiArVu3olSpUkbbBEHAmjVrUK5cOcyfPx/JyckSRUlE6WFSisgC5DIZ6nh5o1z+DyCX8WVHRERERGRKMpkMXbp0wcWLFzF37ly4uroabX/58iW+/PJLVK5cGX/99RfXmyKyEvx0TGQBzmonbBn9Pb6o3RcalVrqcIiIiIiI7JKTkxMCAwNx9epV9O/fP83269evo2PHjvDz80NkZKQEERLRm5iUIiIiIiIiIrtSpEgRrFu3DsePH0ft2rXTbA8JCUH16tUxatQoPHv2TIIIiQhgUoqIiIiIiIjsVO3atREWFoZffvkFRYoUMdqm1+uxdOlSlC1bFsuWLYNOp5MoSiLHxaQUkQXEJyeiemB7fLF/CRJTkqQOh4j+n1KuxPDmfdClfFMoFUqpwyEiIiIzkMvl6NevH65cuYJJkyZBo9EYbX/27BlGjhwJb29vHDhwQKIoiRwTk1JEFvLs1Qu80iZKHQYRvUGlVKJ3vQ7wK10HaqVK6nCIiIjIjHLlyoXZs2fj0qVL6NatW5rtkZGRaNGiBTp37ozr169LECGR42FSioiIiIiIiBxGqVKlsGXLFhw8eBDVqlVLs3379u2oVKkSJkyYgJcvX0oQIZHjYFKKiIgclt5gwKUH13Er9gH0Br3U4RAREZEFNWnSBOHh4Vi5ciXc3d2NtqWkpOCbb75BuXLlsHbtWhgMBomiJLJvTEoREZHDStGl4JPVkxF0bB2StSlSh0NEREQWplAo8MknnyAqKgpjx46FUmm8xmR0dDT8/f3FBdOJyLSYlCIiIiIiIiKHljdvXixatAgXLlxAmzZt0mw/deoU6tevj759++LevXsSREhkn5iUIiIiIiIiIgJQoUIF7N69G7t27UK5cuXSbN+wYQPKly+PWbNmITGRNzEiel9MShFZgFwmQ7UPKqBEnsKQy/iyIyIiIiKyZm3btsWFCxewaNEiuLm5GW1LSEjA1KlTUaFCBWzZsgWCIEgUJZHt46djIgtwVjth1/gfMbGePzQqtdThEBERERFRFtRqNcaOHYuoqCgMGzYMMpnMaPudO3fQo0cPNG7cGGfOnJEoSiLbxqQUERERERERUQYKFSqEVatWITw8HI0aNUqz/ciRI/D19cWwYcPw+PFjCSIksl1MShERERERERFlwdvbG6GhodiyZQtKlChhtE0QBPz4448oW7YsFi5ciJQU3tWXKDuYlCKygISUJNSd1h0TQ5cjSZssdThE9P+UciUGNuqK9l4NoFQos34AEREROTSZTIZu3brh0qVLmDVrFlxcXIy2x8XFYdy4cahSpQp27drF9aaIssCkFJEFCIKAe8+iEZP4gm9MRFZEpVRiUONu6FC2IdRKldThEBERkY1wdnbG5MmTceXKFfTr1y/N9qioKLRv3x5t27bFpUuXJIiQyDYwKUVERERERET0DooVK4ZffvkFYWFh+PDDD9Ns37NnD6pVq4YJEyZIEB2R9WNSioiIHJbBYMDNx3fx4OUTGAwGqcMhIiIiG1W3bl0cP34ca9euReHChY226XQ6rFixAgCwZs0a6PV6KUIkskpMShERkcNK1qVgwKovMePoT1zvjYiIiN6LXC7HgAEDcPXqVUyYMAFqtTpNm7Fjx8LHxwcHDx6UIEIi68OkFBEREREREZGJ5M6dG0FBQbh06RI6d+6cZvv58+fRrFkzdO3aFTdv3pQgQiLrwaQUERERERERkYmVLl0a27Ztw/79+1GpUqU027dt24aKFSti0qRJePXqlQQREkmPSSkiC5DJZChXuCQ8c7lDJpNJHQ4REREREVlI8+bNceTIEQBAvnz5jLYlJydj7ty5KFeuHH7++WeucUkOh0kpIgtwUTvhwKRfML3hUDipNFKHQ0REREREFqRUKgEAZ86cweeffw6FQmG0/eHDhxgwYADq1q2LEydOSBEikSSYlCIiIiIiIiKygHz58uHbb7/F+fPn0apVqzTbT548iTp16qB///64f/++BBESWRaTUkREREREREQWVKlSJezZswc7duyAl5dXmu2//PILypcvj7lz5yIpKUmCCIksg0kpIgtISElC8zkfY/qRH3nbeSIropQr0atue7QsVRtKhVLqcIiIiMiByGQytG/fHhEREZg/fz5y585ttD0+Ph6TJk1CxYoVsXXrVgiCIFGkRObDpBSRBQiCgKvRt/Dw1VO+mRBZEZVSic9a9EW3Cs2gVqqkDoeIiIgckEajwbhx4xAVFYXBgwenuTHSrVu30K1bNzRr1gznzp2TKEoi82BSioiIiIiIiEhiHh4e+Omnn3Dq1Ck0aNAgzfbQ0FD4+Phg+PDhePLkiQQREpkek1JEROSwDAYDHsY+wdOEWN6CmYiIiKyCj48PDh8+jN9++w3Fixc32mYwGLBy5UqULVsWS5YsgVarlShKItNgUoqIiBxWsi4FPb//HJMOreB6b0RERGQ1ZDIZevbsicuXL2P69OlwdnY22v7ixQuMHTsW1apVw549eySKkuj9MSlFREREREREZIVcXFwwbdo0XLlyBb17906z/fLly2jTpg3atWuHK1euSBAh0fthUoqIiIiIiIjIihUvXhwbNmzAkSNH4OPjk2b77t27UaVKFXzxxReIjY21fIBE74hJKSILkMlkKJa/MAo450lzNw0iIiIiIqLsaNCgAf7991+sXr0aHh4eRtt0Oh0WLVqEcuXK4ccff4Rer5coSqLsY1KKyAJc1E44NmML5jb5DE4qjdThEBERERGRjZLL5Rg0aBCuXr2KL7/8EiqVymj7kydPMGzYMNSsWROHDx+WKEqi7GFSioiIiIiIiMjGuLm54ZtvvkFkZCQ++uijNNvPnj2Lxo0bo0ePHrh9+7YEERJlzWaSUs+ePUPfvn3h5uaGvHnz4v/au/PwqMrz/+OfyWxJgBBWA8qOEhAQ0JKCCChbxKpVurBYJCCIAlZBBbSoQGVRXH6lVLGFUAvIV60bFpGACyJ7ICwhIkFwQQJVhIBAMjN5fn/QjIzZYTKTmXm/risXzDn3PLnvZ2ZOTu6cZcSIETp16lSp8ePGjVOrVq0UExOjxo0b67777tOJEyd84iwWS5GvZcuWVXY5AAAAAABctMsvv1xvv/22Vq1apTZt2hRZ/9prrykxMVGPPfaYfvzxxyBkCJQsZJpSQ4YMUWZmptLS0vTuu+9q7dq1GjVqVInx3377rb799lvNmTNHu3fv1qJFi7Ry5UqNGDGiSGxqaqoOHz7s/fr1r39diZUgEp3JP6ubnh6pGetTlefKD3Y6AP7HGmXVr6/pox6NO8kaZQ12OgAAABesT58+2rFjh+bOnatatWr5rDt79qymT5+uVq1aacmSJTLGBClLwFdINKWysrK0cuVK/eMf/1BSUpK6deumuXPnatmyZfr222+LfU7btm3173//WzfffLNatGihG264QU8++aSWL18ut9vtExsfH6+EhATvV3R0dCDKQgQpMEY7v/pMX57IUYEpCHY6AP7HYbNr/I3DNfjKfnLaHcFOBwAA4KLYbDaNHTtW+/bt05gxY2S1+v7R7dChQ7rjjjt07bXXasuWLUHKEviJLdgJlMeGDRsUHx+va665xrusd+/eioqK0qZNm3TbbbeVa5wTJ04oLi5ONptv2WPGjNFdd92l5s2ba/To0UpJSSn1Dml5eXnKy8vzPs7NzZUkuVwuuVyuipRWpsLx/D1uVRIJNbrPq83j8cjjDt87YRTe5SOc7/YRCTVKkVdnOG+DpMjY1lZmjeE8bwCA8FOnTh399a9/1ejRo3X//fdrzZo1Pus3bNigzp07a9iwYZoxY4YaNGgQpEwR6UKiKZWTk6P69ev7LLPZbKpdu7ZycnLKNcZ3332n6dOnFznlb9q0abrhhhsUGxurVatW6d5779WpU6d03333lTjWzJkzNXXq1CLLV61apdjY2HLlU1FpaWmVMm5VEs415rl/OmUve0eWnLbwPyLj8+2ZwU6h0kVCjVJ412mM0an8M5LObcNL+4NEuAjnbW2hyqjx9OnTfh8TAIDK1rZtW6Wlpemdd97R+PHj9cUXX/isX7RokV5//XU9+uijuv/++zlrCAEX1KbUpEmTNHv27FJjsrKyLvr75Obm6qabblKbNm30xBNP+KybMmWK9/8dO3bUjz/+qKeffrrUptTkyZM1fvx4n/EbNWqkvn37Ki4u7qLzPZ/L5VJaWpr69OlT5Faf4SISajydd0ZKe0aS1PKq1qoeUy3IGVUej8ejz7dn6oqOVxY5XDhcREKNUmTUeSb/rPrNTpEk7Z75H9Ws7t9teFUSCdvayqyx8KhoAABCjcVi0a233qrk5GQ9//zz+vOf/+xz07BTp05p8uTJ+vvf/65nnnlGt956a0T8oQ5VQ1CbUhMmTNCwYcNKjWnevLkSEhJ09OhRn+Vut1vHjh1TQkJCqc8/efKkkpOTVaNGDb355ptl7qQmJSVp+vTpysvLk9PpLDbG6XQWu85ut1fajn5ljl1VhHONtoKfrmNmtVpltYXnL/jni4Q6I6FGKbzrtBb8VFc4b4POFwl1VkaN4T5nAIDw53Q6NXHiRA0dOlSPPvqoUlNTfdZ/8cUXuu2229SrVy89//zzatu2bZAyRSQJ6oXO69Wrp8TExFK/HA6HunTpouPHjys9Pd373A8++EAFBQVKSkoqcfzc3Fz17dtXDodD77zzTrkORczIyFCtWrVKbEgBAAAAABCqGjRooIULF2rz5s3q0qVLkfVr1qzRVVddpTFjxuj7778PQoaIJCFx973WrVsrOTlZI0eO1ObNm/Xpp59q7NixGjhwoBo2bCjp3F0EEhMTtXnzZkk/NaR+/PFHLViwQLm5ucrJyVFOTo73orbLly/XP/7xD+3evVvZ2dl64YUXNGPGDI0bNy5otSJ81a5eU9XtMcFOAwAASdLBgwc1YsQINWvWTDExMWrRooUef/xx5efnl/q8nj17ymKx+HyNHj06QFkDAPzlF7/4hT799FMtWbJEl156qc+6goIC/e1vf9Pll1+uuXPncsMPVJqQaEpJ0pIlS5SYmKhevXqpf//+6tatm1566SXvepfLpb1793ovRLpt2zZt2rRJu3btUsuWLdWgQQPv19dffy3p3KH48+bNU5cuXdShQwfNnz9fzz77rB5//PGg1IjwVc0Zox0z39Uzve9XjIOLBwIAgu+zzz5TQUGB5s+fr8zMTD333HN68cUX9cgjj5T53JEjR+rw4cPer6eeeioAGQMA/M1isWjw4MHau3evpkyZUuTsoh9++EH33XefOnToEBE3S0HghcTd9ySpdu3aWrp0aYnrmzZtKmOM93HPnj19HhcnOTlZycnJfssRAAAgVPx8P6h58+bau3evXnjhBc2ZM6fU58bGxpZ5XU8AQOioVq2apk2bphEjRujhhx/Wq6++6rN+z5496tu3r26++WY988wzuvzyy4OUKcJNyDSlAAAAULlOnDih2rVrlxm3ZMkSLV68WAkJCbr55ps1ZcoUxcbGFhubl5envLw87+PCOxm6XK6wPx2ksL5wr7M0zAFzIDEHUujMQcOGDbV48WLde++9mjhxonbu3OmzfvXq1brmmmt077336qGHHlKNGjXKPXaozEFli5R5KG99NKWAADiTf1aD/nK/jh07pnlXJSrWxrWlgKrAGmVVcvvuOvH9D7JGhecdBoHyys7O1ty5c8s8Smrw4MFq0qSJGjZsqJ07d2rixInau3ev3njjjWLjZ86cqalTpxZZvmrVqhIbWeGGU16YA4k5kJgDKbTmYPLkyaWu/+STTy5o3FCag8oU7vNQeGmlstCUAgKgwBhtzM743/8LgpsMAC+Hza5Hbr1HWVt3yml3BDsdwC8mTZqk2bNnlxqTlZWlxMRE7+NDhw4pOTlZv/3tbzVy5MhSnztq1Cjv/9u1a6cGDRqoV69e2r9/v1q0aFEkfvLkyRo/frz3cW5urho1aqS+ffsqLi6uvGWFJJfLpbS0NPXp00d2uz3Y6QQFc8AcSMyBFNpzkJubq6eeekovvPCC3G53kfVXXXWVZs+eXeyd/M4XynPgT5EyD4VHRpeFphQAAEAYmTBhgoYNG1ZqTPPmzb3///bbb3X99dera9euPjeRKa+kpCRJ5460Kq4p5XQ65XQ6iyy32+1hvTN+vkiqtSTMAXMgMQdSaM5BnTp1NHv2bA0fPlwTJkzQf/7zH5/1GzduVI8ePTRw4EDNnj1bjRs3LnW8UJyDyhDu81De2mhKAQAiljFGZ/LPKs+dX+bNMYBQUa9ePdWrV69csYcOHdL111+vq6++WqmpqYqKqviNmTMyMiRJDRo0qPBzAQCho1WrVnr33Xe1cuVKPfDAA/rss8981i9btkxvv/22Hn74YT388MMRc4o2Lk7F9zwAAAgTZ1156jc7RfelPaMz+WeDnQ4QUIcOHVLPnj3VuHFjzZkzR//973+Vk5OjnJwcn5jExERt3rxZkrR//35Nnz5d6enpOnjwoN555x0NHTpU3bt3V/v27YNVCgAggJKTk7Vz5049//zzqlmzps+6M2fOaOrUqUpMTNSyZcv4ox/KRFMKAAAgAqWlpSk7O1tr1qzRZZddpgYNGni/CrlcLu3du9d7sVKHw6HVq1erb9++SkxM1IQJEzRgwAAtX748WGUAAILAbrfrj3/8o/bt26fRo0cXOdL266+/1qBBg3TdddcpPT09SFkiFNCUAgAAiEDDhg2TMabYr0JNmzaVMUY9e/aUJDVq1Egff/yxvv/+e509e1b79u3TU089FfYXLAcAFK9evXp64YUXtH37du/PivN9+umn+sUvfqERI0boyJEjgU8QVR5NKSBAYhzRcljD90J2AAAAACJT+/bt9cEHH+jf//63mjZt6rPOGKOFCxeqU6dOkqT8/PwgZIiqiqYUEADVnDH6/Jk0ze37oGIc0cFOBwAAAAD8ymKx6Pbbb1dWVpZmzJihatWq+aw/deqUpHN3bV2+fDnXm4IkmlIAAAAAAMBPoqOjNXnyZH3++ecaOnRokfVffPGFbrnlFiUnJ2vPnj1ByBBVCU0pAAAAAADgVw0bNtQ///lPbdy4UUlJSUXWr1q1Su3bt9d9992nY8eOBSFDVAU0pYAAOOvK050vPKS5W19VnptzqIGqIsoSpZ6tk9QpIbHIXWMAAABw8ZKSkrR+/XrNnz+/yDqPx6O5c+fq8ssv19/+9je53e4gZIhgYg8cCABPQYE+2LNRu/+7XwUFBcFOB8D/OO0OTfvN/bq7422KtjuDnQ4AAEBYioqK0sCBAyVJDz74oJxO3/2uY8eOacyYMerYsaPWrFkTjBQRJDSlAAAAAABAQEyZMkVZWVkaMGBAkXW7d+9W7969ddttt2n//v1ByA6BRlMKAAAAAAAETLNmzfT666/rgw8+UPv27Yusf+utt9SmTRtNnjxZJ0+eLHGcI0eOVGaaCACaUgCAiHUm/6y6Tx+ku9+bqdN5Z4KdDgAAQES5/vrrtW3bNr344ouqU6eOz7r8/HzNmjVLV1xxhRYtWlTsZVCGDx+ujRs3BipdVAKaUgAAAAAAICisVqvuvvtu7du3T/fff79sNpvP+pycHKWkpCgpKUkbNmzwWXfo0CHdeOON2rFjRyBThh/RlAIAAAAAAEFVq1YtPffcc9q1a5eSk5OLrN+6dau6du2qO+64Q998840k6cSJEzp+/Lj69u2rzz//PNApww9oSgEAAABhiDv+AghFiYmJeu+99/Sf//xHV1xxRZH1S5YsUatWrTR9+nQdO3ZMknT06FH17t1bX331Vbm+B9vHqoOmFBAA1Zwx+nruJ5p/42TFOKKDnQ4AAAhD27Zt07hx49ShQwc5HA5ZrVY5HA516NBB48aN07Zt24KdIgCUW//+/bVr1y4988wziouL81l3+vRpPfbYY8rNzfUu+/rrr9W7d+9iL37O9rHqoikFAAAAhLDs7Gz16NFDV199tV588UXt2LFDLpdLkuRyubRjxw69+OKLuvrqq9WjRw9lZ2cHOWMAKB+Hw6Hx48dr3759GjVqlCwWS6nx+/btU9++ffXDDz9IYvsYCmhKAQAAACFq6dKlatu2rdavXy9JcrvdxcYVLl+/fr3atm2rV155JWA5AsDFql+/vubPn6/09HR179691NidO3eqf//+WrhwIdvHEGArOwTAxTrrytOYBY/rcE6OZndIVKwtJtgpAZAUZYnSL1t20KkTJxUVxd9pAISWpUuX6o477pAxptzPcbvdcrvdGjJkiIwxGjx4cCVmCAD+1b59e91yyy1at25dqdeF2rhxozZu3Fihsdk+Bgd74EAAeAoK9J+Mj7Qt5zMuqgdUIU67Q08Nmqhx1/xO0XZnsNMBgHLbt2+fhg8fXqGG1PmMMRo+fDinqgAIGVlZWerWrZsefPDBSv2diu1jYNGUAgAAAELMXXfdJY/Hc1FjeDwejRgxwk8ZAUDl+f777/XEE0/o888/D8j3Y/sYODSlAAAAgBCSnp6utWvXlnh9lPJyu91au3Ytd50CUOXVqVNH//d//6f//ve/yszM1Pz583XHHXeoadOmlfL92D4GDk0pAEDEOpN/Vn1nDdO4VXN0Ou9MsNMBgHJZtGiRbDb/XBrWZrMpNTXVL2MBQGWLiopSmzZtNGrUKP3rX//SgQMH9PXXX+uVV17Rvffeqzp16vjte7F9DAyaUgCAiHbWlad8jyvYaQBAuX3yyScXfZRUIbfbrXXr1vllLAAIhssuu0wDBw7UvHnzdNlll/ltXLaPgUFTCgAAAAghe/bs8et4mZmZfh0PAIKF7WPooSkFAAAAhIiCggK5XP49utPlcnF3YAAhj+1jaPLPyegAShXriNbeOav0/vvvc9t5AABwwaKiomS32/36i5fdbldUFH+rBhDa2D6GJmYXCACLxaJYZ4ycNocsFkuw0wEAACGsTZs2fh3vyiuv9Ot4ABAsbB9DD00pAAAAIIRcd911fr37Xrdu3fwyFgAEG9vH0ENTCgiAPFe+HvjXk1q0813lu7nLF1BVRFmi1KFJa11Ru7EsFn4kAggNKSkpfr37XkpKil/GAoBgY/sYetgDBwLAXeDR65tXasOhXfIUeIKdDoD/cdod+svQxzQhaYhiHFzvDUBo6NSpk7p3737RRwPYbDZ1795dnTp18lNmABBcbB9DD00pAAAAIMQsWLBAVqv1osawWq1asGCBnzICgKqB7WNooSkFAAAAhJiWLVsqNTX1gm+gYrFYlJqaqpYtW/o5MwAILraPocU/VwADACAEnck/qwHPjZHH5VbPXterpt0e7JQAoNwGDRokY4yGDx8uj8dTruuo2Gw2Wa1WpaamatCgQQHIEgACj+1j6OBIKQBARDtx+qROuc4EOw0AuCCDBw/W7t271bVrV0kq8ToqhcuvvfZa7d69m1+4AIQ9to+hgSOlAAAAgBDWsmVLffzxx9q2bZtSU1O1bt06ZWZmyuVyyW6368orr1S3bt2UkpLCRXsBRBS2j1UfTSkAAAAgDHTq1Mnnl6qCggJFRXFiBACwfay6aEoBARDriFbGjHe0evUaRdu57TwAAKh8/MIFAMVj+1h18EoAAWCxWFSnRi3VcMZe8F0gAAAAAAAIJzSlAAAAAAAAEHA0pYAAyHPl69FXn9XSzPeV73YFOx0A/xNliVJig+ZqUjNBFgs/EgEAAIBA4ppSQAC4Czx6+ZM3JUmPFHiCnA2AQk67Qy/d9aSytu5UjIPrvQEAAACBFDJ/Fj527JiGDBmiuLg4xcfHa8SIETp16lSpz+nZs6csFovP1+jRo31ivvrqK910002KjY1V/fr19dBDD8ntdldmKQAAAAAAABEvZI6UGjJkiA4fPqy0tDS5XC6lpKRo1KhRWrp0aanPGzlypKZNm+Z9HBsb6/2/x+PRTTfdpISEBK1fv16HDx/W0KFDZbfbNWPGjEqrBQAAAAAAINKFRFMqKytLK1eu1JYtW3TNNddIkubOnav+/ftrzpw5atiwYYnPjY2NVUJCQrHrVq1apT179mj16tW65JJL1KFDB02fPl0TJ07UE088IYfDUSn1AACqhrP5eRry1wfkynfp+t43yG63BzslAAAAIGKERFNqw4YNio+P9zakJKl3796KiorSpk2bdNttt5X43CVLlmjx4sVKSEjQzTffrClTpniPltqwYYPatWunSy65xBvfr18/3XPPPcrMzFTHjh2LHTMvL095eXnex7m5uZIkl8sll8u/F7EuHM/f41YlkVCj+7zaPB6PPO7wva6Ux+Px+TccRUKNUmTU6Xa7lXPiO0lSfn6+XI7w3Q5Fwra2MmsM53kDAAAIlpBoSuXk5Kh+/fo+y2w2m2rXrq2cnJwSnzd48GA1adJEDRs21M6dOzVx4kTt3btXb7zxhnfc8xtSkryPSxt35syZmjp1apHlq1at8jk90J/S0tIqZdyqJJxrzHPne/+fvSNLTlv4H4X3+fbMYKdQ6SKhRim86zz/s/nBBx9ExGcznLe1hSqjxtOnT/t9TAAAgEgX1KbUpEmTNHv27FJjsrKyLnj8UaNGef/frl07NWjQQL169dL+/fvVokWLCx538uTJGj9+vPdxbm6uGjVqpL59+youLu6Cxy2Oy+VSWlqa+vTpE7anlURCjafzzkhpz0iSWl7VWtVjqgU5o8rj8Xj0+fZMXdHxSlmt1mCnUykioUYpMuo8k39W+l//4oYbblDN6v7dhlclkbCtrcwaC4+KBgAAgP8EtSk1YcIEDRs2rNSY5s2bKyEhQUePHvVZ7na7dezYsRKvF1WcpKQkSVJ2drZatGihhIQEbd682SfmyJEjklTquE6nU05n0VuH2+32StvRr8yxq4pwrrGG1ar1T7yqDz/8ULHRMbLawvMX/PNZrdawrzMSapTCu05rwU91hfM26HyRUGdl1BjucwYAABAMQW1K1atXT/Xq1SszrkuXLjp+/LjS09N19dVXSzp3mkVBQYG30VQeGRkZkqQGDRp4x33yySd19OhR7+mBaWlpiouLU5s2bSpYDVCyqKgoNarTQHVj4xVliQp2OgAAAAAABF1I/HbcunVrJScna+TIkdq8ebM+/fRTjR07VgMHDvTeee/QoUNKTEz0Hvm0f/9+TZ8+Xenp6Tp48KDeeecdDR06VN27d1f79u0lSX379lWbNm30hz/8QTt27ND777+vP/3pTxozZkyxR0IBAAAAAADAP0KiKSWdu4teYmKievXqpf79+6tbt2566aWXvOtdLpf27t3rvRCpw+HQ6tWr1bdvXyUmJmrChAkaMGCAli9f7n2O1WrVu+++K6vVqi5duuiOO+7Q0KFDNW3atIDXh/CW73bpz2/N0+uffSCXxx3sdAD8j0UWNa17qRpUryuLxRLsdAAAAICIEhJ335Ok2rVra+nSpSWub9q0qYwx3seNGjXSxx9/XOa4TZo00YoVK/ySI1ASl8et+WuWSZIe9IyWxJF4QFUQ7XDq5XvmKGvrTsU4ooOdDgAAABBRQuZIKQAAAAAAAIQPmlIAAAAAAAAIuJA5fQ8AAH87m5+nEfMnKe9snq7vfYPsdnuwUwIAAAAiBk0pAEDEMjI6+N2hc/8/77qEAAAAACofp+8BAABEqKZNm8pisfh8zZo1q9TnnD17VmPGjFGdOnVUvXp1DRgwQEeOHAlQxgAAIJzQlAIAAIhg06ZN0+HDh71f48aNKzX+gQce0PLly/Xaa6/p448/1rfffqvbb789QNkCAIBwwul7QADE2J1a/cjL+mTtWjntjmCnAwCAV40aNZSQkFCu2BMnTmjBggVaunSpbrjhBklSamqqWrdurY0bN+qXv/xlZaYKAADCDE0pIACioqLUqkEz7a+RpSgLBygCAKqOWbNmafr06WrcuLEGDx6sBx54QDZb8buI6enpcrlc6t27t3dZYmKiGjdurA0bNhTblMrLy1NeXp73cW5uriTJ5XLJ5XL5uZqqpbC+cK+zNMwBcyAxBxJzIDEHhSJlHspbH00pAACACHXfffepU6dOql27ttavX6/Jkyfr8OHDevbZZ4uNz8nJkcPhUHx8vM/ySy65RDk5OcU+Z+bMmZo6dWqR5atWrVJsbOxF1xAK0tLSgp1C0DEHzIHEHEjMgcQcFAr3eTh9+nS54mhKAQGQ73bpuRULtW/fPrXs2EZWmzXYKQGQZJFFCTXrypXvksViCXY6gF9MmjRJs2fPLjUmKytLiYmJGj9+vHdZ+/bt5XA4dPfdd2vmzJlyOp1+yWfy5Mk+3yc3N1eNGjVS3759FRcX55fvUVW5XC6lpaWpT58+stvtwU4nKJgD5kBiDiTmQGIOCkXKPBQeGV0WmlJAALg8bj33XqokaZxnhCT/7OgDuDjRDqdevW+usrbuVIwjOtjpAH4xYcIEDRs2rNSY5s2bF7s8KSlJbrdbBw8eVKtWrYqsT0hIUH5+vo4fP+5ztNSRI0dKvC6V0+kstsFlt9vDemf8fJFUa0mYA+ZAYg4k5kBiDgqF+zyUtzaaUgAAAGGkXr16qlev3gU9NyMjQ1FRUapfv36x66+++mrZ7XatWbNGAwYMkCTt3btXX331lbp06XLBOQMAgMhEUwoAACACbdiwQZs2bdL111+vGjVqaMOGDXrggQd0xx13qFatWpKkQ4cOqVevXnr55ZfVuXNn1axZUyNGjND48eNVu3ZtxcXFady4cerSpQt33gMAABVGUwoAELHyXPm6d8FjOnP6tK7v3SusD6EGfs7pdGrZsmV64oknlJeXp2bNmumBBx7wuf6Ty+XS3r17fS5W+txzzykqKkoDBgxQXl6e+vXrp7/97W/BKAEAAIQ4mlIAgIhVYAr02eEvJEnGFAQ5GyCwOnXqpI0bN5Ya07RpUxljfJZFR0dr3rx5mjdvXmWmBwAAIkBUsBMAAAAAAABA5KEpBQAAAAAAgIDj9D0gAKLtDi1/8CWt//RTOWyOYKcDAAAAAEDQcaQUEADWKKs6NGmtpvENZY3iYwcAAAAAAL8dAwAAAAAAIOBoSgEBkO926cXVS/X+Fxvl8riDnQ6A89SMraHq9phgpwEAAABEHK4pBQSAy+PWk2+/IEm62zNUkjO4CQGQJMU4orV8wkvK2rpTsU4aUwAAAEAgcaQUAAAAAAAAAo6mFAAAAAAAAAKO0/cAABErz5Wv8f96UqdP/qjre/eS3W4PdkoAAABAxKApBQCIWAWmQBlfZkmSjCkIcjYAAABAZOH0PQAAAAAAAAQcTSkAAAAAAAAEHKfvAQEQbXfo1fv+oo0bN8phcwQ7HQAAAAAAgo6mFBAA1iirulzeUT/sOyxrFAcoAgAAAADAb8cAAAAAAAAIOJpSQAC4PG4tWvuGPvwyXW6PO9jpADhPtN0ph9Ue7DQAAACAiMPpe0AA5LtdmvLac5KklJsHySlnkDMCIEkxjmitmrRIWVt3KtYZE+x0AAAAgIjCkVIAAAAAAAAIOJpSAAAAAAAACDhO3wMARKw8V74eWTZHp06c1A19eslu59pSAAAAQKDQlAIARKwCU6CN2Rnn/l9QENxkAAAAgAjD6XsAAAAAAAAIOJpSAAAAAAAACDhO3wMCwGmza9Hds7V161bZbVyzBgAAAAAAmlJAANisNvVq21V5Xx2XLcoa7HQAAAAAAAg6Tt8DAAAAAABAwNGUAgLA5XHr1Y0rtP6bnXJ73MFOBwAAAACAoOP0PSAA8t0uTVgyU5I0uP9v5JQzyBkBkKQYR7TWTnlFWVt3KtYZE+x0AAAAgIjCkVIAAAAAAAAIOJpSAAAAAAAACDiaUgCAiJXnytdjrz+v+dvf1FlXXrDTAQAAACJKyDSljh07piFDhiguLk7x8fEaMWKETp06VWL8wYMHZbFYiv167bXXvHHFrV+2bFkgSgIABFmBKdBHWZu0LeczFRQUBDsdAAAAIKKEzIXOhwwZosOHDystLU0ul0spKSkaNWqUli5dWmx8o0aNdPjwYZ9lL730kp5++mndeOONPstTU1OVnJzsfRwfH+/3/AEAAAAAAPCTkGhKZWVlaeXKldqyZYuuueYaSdLcuXPVv39/zZkzRw0bNizyHKvVqoSEBJ9lb775pn73u9+pevXqPsvj4+OLxAIAAAAAAKDyhERTasOGDYqPj/c2pCSpd+/eioqK0qZNm3TbbbeVOUZ6eroyMjI0b968IuvGjBmju+66S82bN9fo0aOVkpIii8VS4lh5eXnKy/vp2iO5ubmSJJfLJZfLVZHSylQ4nr/HrUoiocYoI/116GPauXOnrJYoedyeYKdUaTwej8+/4SgSapQio87zP4uVsQ2vSiJhW1uZNYbzvAEAAARLSDSlcnJyVL9+fZ9lNptNtWvXVk5OTrnGWLBggVq3bq2uXbv6LJ82bZpuuOEGxcbGatWqVbr33nt16tQp3XfffSWONXPmTE2dOrXI8lWrVik2NrZc+VRUWlpapYxblYR7jXZJVzdorf07Pgt2KgHx+fbMYKdQ6SKhRim868xz53v//8EHH8hpcwQxm8AI922tVDk1nj592u9jAgAARLqgNqUmTZqk2bNnlxqTlZV10d/nzJkzWrp0qaZMmVJk3fnLOnbsqB9//FFPP/10qU2pyZMna/z48d7Hubm5atSokfr27au4uLiLzvd8LpdLaWlp6tOnj+x2u1/HrioioUbppzqv6HilrFZrsNOpNB6PR59vzwzrOiOhRiky6jyTf1b6X//ihhtuUM3q/t2GVyWRsK2tzBoLj4oGAACA/wS1KTVhwgQNGzas1JjmzZsrISFBR48e9Vnudrt17Nixcl0L6vXXX9fp06c1dOjQMmOTkpI0ffp05eXlyel0FhvjdDqLXWe32yttR78yx64qwrlGt8et93ev0/bDWbq805Wy2sLzF/zzWa3WsK8zEmqUwrtOa8FPdYXzNuh8kVBnZdQY7nMGAAAQDEFtStWrV0/16tUrM65Lly46fvy40tPTdfXVV0s6d5pFQUGBkpKSynz+ggULdMstt5Tre2VkZKhWrVolNqSAC5HndumehY9Jkgb0u1VOR/ifIgSEgmi7U+9PTNXebbsV44gOdjoAAABARAmJa0q1bt1aycnJGjlypF588UW5XC6NHTtWAwcO9N5579ChQ+rVq5defvllde7c2fvc7OxsrV27VitWrCgy7vLly3XkyBH98pe/VHR0tNLS0jRjxgw9+OCDAasNABA8FotFMY5oOW2OUm9wAQAAAMD/QqIpJUlLlizR2LFj1atXL0VFRWnAgAH6y1/+4l3vcrm0d+/eIhciXbhwoS677DL17du3yJh2u13z5s3TAw88IGOMWrZsqWeffVYjR46s9HoAAAAAAAAiWcg0pWrXrq2lS5eWuL5p06YyxhRZPmPGDM2YMaPY5yQnJys5OdlvOQIAQku+26XZb8/Xie9/UK8+vbluEAAAfrJt2zalpqbqk08+0YEDB/Tyyy+rbt26atasma677jqlpKSoU6dOwU4TQJCFTFMKAAB/8xR4tHLnWu//AQDAxcnOztaIESO0du1a2Ww2ud1uxcTESDp3dsuOHTuUmZmpv/71r+revbsWLFigli1bBjlrAMESFewEAAAAAAChb+nSpWrbtq3Wr18v6dwd04tTuHz9+vVq27atXnnllYDlCKBq4UgpAAAAAMBFWbp0qe64445iL6lSErfbLbfbrSFDhsgYo8GDB1dihgCqIo6UAgLAYbPrmSGTdWe7m2S30gsGAABA+Ni3b5+GDx9eoYbU+YwxGj58uLKzs/2cGYCqjqYUEAB2q02/+2V/db2svWw0pQAAABBG7rrrLnk8F3dtRo/HoxEjRvgpIwChgqYUAAAAAOCCpKena+3atSVeP6q83G631q5dq23btvkpMwChgKYUEABuj1trdq/XrqPZcnOHLwAAAISJRYsWyWbzz5kANptNqampfhkLQGjgPCIgAPLcLg2bP1GSdHPv/nI6HEHOCIAkRdudemf8fH2esUcxjuhgpwMAQMj55JNPLvooqUJut1vr1q3zy1gAQgNHSgEAIpbFYlF8tTjVcMbKYrEEOx0AAELOnj17/DpeZmamX8cDULXRlAIq0bZt2zRu3Dh16dLFu6xnz5669dZbNX36dH7oAkGSmZmp6dOn69Zbb1VSUpIkqW7duurQoYPGjRvH9SwAACiHgoICuVwuv47pcrlUUFDg1zEBVF2cvgdUguzsbI0YMUJr166VzWaTWwW6pPMvJJ07LPmzzz7Tvn37tHjxYv3iF9foySdnqEmTJkHOGgh/X375pR599BFt2bJVVqtVHlOgmtc01tLM9+XyuLVjxw5lZmbqr3/9q7p3764FCxaoZcuWwU4bAIAqKSoqSna73a+NKbvdrqgojp0AIgWfdsDPli5dqrZt22r9+vWSVOI59oW3zd22bbt+9atf6d133w1YjkAkWr58uX71q19p27btkv73GbRYZG8er4+/2ub9iVj4mV2/fr3atm2rV155JVgpA5Xqo48+ksViKfZry5YtJT6vZ8+eReJHjx4dwMwBVCVt2rTx63hXXnmlX8cDULVxpBTgR0uXLtUdd9whY0y5n+PxeOTxePTggw/KGKObb765EjMEItPy5cv10EMPVeiz6Xa75Xa7NWTIEBljNHjw4ErMEAi8rl276vDhwz7LpkyZojVr1uiaa64p9bkjR47UtGnTvI9jY2MrJUcAVd91112nzMxMv1zs3GazqVu3bn7ICkCo4EgpwE/27dun4cOHV+iX3vMZY/TII4/oyy+/9HNmQGQ7ePCgHnnkkYv6bA4fPlzZ2dl+zgwILofDoYSEBO9XnTp19PbbbyslJaXMC//Hxsb6PDcuLi5AWQOoalJSUvx6972UlBS/jAUgNHCkFOAnd911l/eUvCIKjM5sOqSUlBQtePvzEsfweDx69NFHtHjxkkrKEog8f/rToyV/NsvJ4/FoxIgR+vjjj/2UFVD1vPPOO/r+++/L9QvhkiVLtHjxYiUkJOjmm2/WlClTSjxaKi8vT3l5ed7Hubm5ks5dzNjfF0iuagrrC/c6S8MchP8ctGvXTr1799amTZtKbE7FxMT4/Fscm82mpKQktWvXLiznKtzfB+XBHJwTKfNQ3vpoSgF+kJ6errVr15YcUGDk2vu9rm9ytRaUcrCGx+PRli1blZmZyfn0gB9k7t6tLVu2XvQ4brdba9eu1bZt29SpUyc/ZAZUPQsWLFC/fv102WWXlRo3ePBgNWnSRA0bNtTOnTs1ceJE7d27V2+88Uax8TNnztTUqVOLLF+1alXEnPaXlpYW7BSCjjkI7zkYO3asxo4dW2bcwoULy4xZsWKFP1KqssL5fVBezME54T4Pp0+fLlccTSnADxYtWnTuLnt+OHTZarXqjTfeoCkF+MEbb7557i57F3mklHTuL7ipqak0pVDlTZo0SbNnzy41JisrS4mJid7H33zzjd5//329+uqrZY4/atQo7//btWunBg0aqFevXtq/f79atGhRJH7y5MkaP36893Fubq4aNWqkvn37hv1pfy6XS2lpaerTp4/sdnuw0wkK5iBy5uD111/XXXfdVezp8jExMVq4cKGGDx+uM2fOFFlvsVj0j3/8Q7/5zW8CkWpQRMr7oDTMwTmRMg+FR0aXhaYU4AeffPJJ6Q0pi2S9pJp2Hc2WbFGStZjLuRkjFRh5PB6lp6frTP7ZEoeLskTJaXd4H1ck9mx+noyKP1zLIouiHc4Lis1z5avAFMjj9ijPna8z+WdlLbB618c4oovElqSyYqPtTu91UvLdLnkKSm5UlBb78xqdNof31sUut1vugpLfCxWJddgcsl5ArNvjlstTcqzdapfNai0z1uP2yFPw03y6PR65PCUfhmu32mSz2ioc6ykoUL47v8RYW5RNdlvFYwsKCrRl21Z5ZEr+zFWA2+3WunXrKvQcIBgmTJigYcOGlRrTvHlzn8epqamqU6eObrnllgp/v6SkJElSdnZ2sU0pp9Mpp9NZZLndbg/rnfHzRVKtJWEOwn8OBg0a5L0Oo8fjKXbf+MyZMz5NKZvNJqvVqtTUVA0aNCiQ6QZNuL8PyoM5OCfc56G8tdGUAvxgz549pQdYo1StXwv9Nf01VftVS1UrJiT/21zlrj0g6dxF03/11EiddeUVEyl1bNpGf015wvv4N8+N0fHTJ4uNTWzYQgvunul9PGTeeOUc/2+xsU3rXaYlY5/1Ph7x0mQd/O83xcYmxNfTvx+Y531878LH9dm3+38KOO9o1PjYGvrPxAXexxMWz9D2g8XPWbTdqTV/+pf38aP/94w27NtebKwkfTr1p7/qT3/jr/pwz8YSY1c/+rK3ifXU8pf0XkbJ1wd69+F/qFa1c3/Bn7vyn3pjy6qiQf+r8fX7/6oGtepLkuaveUWvrF9e4rj/GvOMmtdvJEl6+ZM3tPCj10uM/ceoGWp9aUtJ0qsbV+hvaYtLjJ077HF1anbu6Lq3t67WsytKPjz+6SGT1PWKc0f7vL9znWa89bcSY0d1+LXaqoMkae1nmzXl1edKjH3k1/fqpo49JUmb9+/QQ0tmlRg7vv9wDUhKliTt+DJL4xYVPbWn0L197tCQbud+Uf788Be666VHSowd3vM3GnH97yRJB787pO/bO1W3fbtiY09nHdXpHYd1etUXeu7JpzXu5XtKHLdQZmZmmTFAsNWrV0/16tUrd7wxRqmpqRo6dOgF7RxnZGRIkho0aFDh5wIIL4MHD1bnzp01YsQIrV27tsQzCQqXX3vttfrHP/6hli1bBiFbAFUBTSngIhUUFJR9ETd3gXJf3qm4oe1LDDEujzwnzh3x5JFKvfNRtN2pFpc09j6OirKWGOu0O3xibaXEOmx2n1iHreRfTmxRVp/Y84/G+rmon8VG24v+xbyQxWLxiY11lnxBTEk+sdWiS782SbP6jVTtf+PViC6uNfiTpvUuVd0atSRJcbE1So1tXLehGtdtKEmKr1b6qSiN6jTw5lyrWs1SYy+tneCNrVMjvtTYhrXqe2PrxtUuNTYhvp43tn4ZsZLUrP5lstvtyvxmX6lx9eNqe8f94ujXpcbWPS+2pCZpoTo14r2xuWdOlRpbq1pNb2y+q+QjqiTJ5LvlOXFW7nyL6sbGlxpbyOVyqaCgwHu0GxAOPvjgAx04cEB33XVXkXWHDh1Sr1699PLLL6tz587av3+/li5dqv79+6tOnTrauXOnHnjgAXXv3l3t25f8Mw5A5GjZsqU+/vhjbdu2TampqVq3bp2++OILSeeOnGjVqpW6deumlJQUTokHIIu50Htkwys3N1c1a9bUiRMn/H5tBJfLpRUrVqh///5he2hfONTocDjKbEzFxMRo0b/+qWEpw3TmTDGn2xkjec59HO12u344eaLEsaIsFp/T1n7MK3pufkmxp/PPFnuuv3SuIRR7gbFn8s+qwBi5XS69//776tevn2znvZ7VzmsuFcaW5PzYs648n1PILiY21hHtbfblufLlLuX0vdJif15jjN3pbVLku12lnjpXkdhou0PW/zURKxLr8riV7y75/ei02b2nzpUW63a5tCZtjW7+1a9kt9vl9riVV8q4Dptddu/pe+WP9RR4dLaUBpLdavM2SCsSW1BQoOjqsSV/NgvOnTIbExOjV155RYMGDSr2Ohc+49vtys8vvdlVVYXDtrYslVljZf6sD7bBgwfryy+/1Kefflpk3cGDB9WsWTN9+OGH6tmzp77++mvdcccd2r17t3788Uc1atRIt912m/70pz+Ve17CeS5/LhI+d2VhDpgDiTmQmAOJOSgUKfNQ3p/3HCkF+EGbNm20Y8eOMuOcNofkNpK75MaJJF155ZU+zZayVCT2/EaSP2MLG1+uKJucNodinTElbmRjKjBuaUdVXUys0+5QeaN/HltajQ6bvdQjzAIRa7favA2fi4l1Rdm816mSJNt514EqS0VirVHWcr+HKxIbFRWlNlckluuzWV7cgADhaOnSpSWua9q0qc8fJxo1aqSPPy751GcAAICK4PwDwA+uu+462Wz+6fHabDZ169bNL2MBkY7PJgAAAFB10ZQC/CAlJaX0u+9VgNvtVkpKil/GAiIdn00AAACg6qIpBfhBp06d1L1794s+IsNms6l79+5c9BHwEz6bAAAAQNVFUwrwkwULFshqLfnOduVhtVq1YMECP2UEQOKzCQAAAFRVNKUAP2nZsqVSU1O9d2yrKIvFotTUVLVs2dLPmQGRjc8mAAAAUDXRlAL8aNCgQVq8eLGcTme5Txey2WxyOp1asmSJBg0aVMkZApGJzyYAAABQ9dCUAvxs8ODB2r17t7p27SpJJf4CXLj82muv1e7du/mlF6hkfDYBAACAqsU/98kG4KNly5b6+OOPtW3bNqWmpmrdunX64osvJEl2u12tWrVSt27dlJKSwoWTgQDiswkAAABUHTSlgErUqVMn7y+2LpdLK1as0HfffSe73R7kzIDIxmcTAAAACD5O3wMAAAAAAEDA0ZQCAAAAAABAwNGUAgAAAAAAQMDRlAIAAAAAAEDA0ZQCAAAAAABAwNGUAgAAAAAAQMDRlAIAAAAAAEDA0ZQCAAAAAABAwNGUAgAAAAAAQMDRlAIAAAAAAEDA0ZQCAAAAAABAwNGUAgAAAAAAQMDRlAIAAAAAAEDA0ZQCAAAAAABAwNGUAgAAAAAAQMCFTFPqySefVNeuXRUbG6v4+PhyPccYo8cee0wNGjRQTEyMevfurX379vnEHDt2TEOGDFFcXJzi4+M1YsQInTp1qhIqAAAAAAAAQKGQaUrl5+frt7/9re65555yP+epp57SX/7yF7344ovatGmTqlWrpn79+uns2bPemCFDhigzM1NpaWl69913tXbtWo0aNaoySgAAAAAAAMD/2IKdQHlNnTpVkrRo0aJyxRtj9Pzzz+tPf/qTbr31VknSyy+/rEsuuURvvfWWBg4cqKysLK1cuVJbtmzRNddcI0maO3eu+vfvrzlz5qhhw4aVUgsAAAAAAECkC5mmVEUdOHBAOTk56t27t3dZzZo1lZSUpA0bNmjgwIHasGGD4uPjvQ0pSerdu7eioqK0adMm3XbbbcWOnZeXp7y8PO/j3NxcSZLL5ZLL5fJrHYXj+XvcqiQSapSoM5xEQo0SdYabSKizMmsM53kDAAAIlrBtSuXk5EiSLrnkEp/ll1xyiXddTk6O6tev77PeZrOpdu3a3pjizJw503vk1vlWrVql2NjYi029WGlpaZUyblUSCTVK1BlOIqFGiTrDTSTUWRk1nj592u9jAgAARLqgNqUmTZqk2bNnlxqTlZWlxMTEAGVUPpMnT9b48eO9j3Nzc9WoUSP17dtXcXFxfv1eLpdLaWlp6tOnj+x2u1/HrioioUaJOsNJJNQoUWe4iYQ6K7PGwqOiAQAA4D9BbUpNmDBBw4YNKzWmefPmFzR2QkKCJOnIkSNq0KCBd/mRI0fUoUMHb8zRo0d9nud2u3Xs2DHv84vjdDrldDqLLLfb7ZW2o1+ZY1cVkVCjRJ3hJBJqlKgz3ERCnZVRY7jPGQAAQDAEtSlVr1491atXr1LGbtasmRISErRmzRpvEyo3N1ebNm3y3sGvS5cuOn78uNLT03X11VdLkj744AMVFBQoKSmpUvICAAAAAACAFBXsBMrrq6++UkZGhr766it5PB5lZGQoIyNDp06d8sYkJibqzTfflCRZLBbdf//9+vOf/6x33nlHu3bt0tChQ9WwYUP9+te/liS1bt1aycnJGjlypDZv3qxPP/1UY8eO1cCBA7nzHgAAAAAAQCUKmQudP/bYY/rnP//pfdyxY0dJ0ocffqiePXtKkvbu3asTJ054Yx5++GH9+OOPGjVqlI4fP65u3bpp5cqVio6O9sYsWbJEY8eOVa9evRQVFaUBAwboL3/5S2CKAgAAAAAAiFAh05RatGiRFi1aVGqMMcbnscVi0bRp0zRt2rQSn1O7dm0tXbrUHykCAAAAAACgnELm9D0AAAAAAACED5pSAAAAAAAACDiaUgAAAAAAAAg4mlIAAAAAAAAIOJpSAAAAAAAACDiaUgAAAAAAAAg4mlIAAAAAAAAIOJpSAAAAAAAACDiaUgAAAAAAAAg4mlIAAAAAAAAIOJpSAAAAAAAACDiaUgAAAAAAAAg4mlIAAAAAAAAIOJpSAAAAAAAACDiaUgAAAAAAAAg4W7ATCAfGGElSbm6u38d2uVw6ffq0cnNzZbfb/T5+VRAJNUrUGU4ioUaJOsNNJNRZmTUW/owv/JmPC1eZ+01VTSR87srCHDAHEnMgMQcSc1AoUuahvPtONKX84OTJk5KkRo0aBTkTAABQmU6ePKmaNWsGO42Qxn4TAACRo6x9J4vhT34XraCgQN9++61q1Kghi8Xi17Fzc3PVqFEjff3114qLi/Pr2FVFJNQoUWc4iYQaJeoMN5FQZ2XWaIzRyZMn1bBhQ0VFcfWDi1GZ+01VTSR87srCHDAHEnMgMQcSc1AoUuahvPtOHCnlB1FRUbrssssq9XvExcWF9RtWiowaJeoMJ5FQo0Sd4SYS6qysGjlCyj8Csd9U1UTC564szAFzIDEHEnMgMQeFImEeyrPvxJ/6AAAAAAAAEHA0pQAAAAAAABBwNKWqOKfTqccff1xOpzPYqVSaSKhRos5wEgk1StQZbiKhzkioEaGF9yRzIDEHEnMgMQcSc1CIefDFhc4BAAAAAAAQcBwpBQAAAAAAgICjKQUAAAAAAICAoykFAAAAAACAgKMpBQAAAAAAgICjKQUAAAAAAICAoykVZE8++aS6du2q2NhYxcfHl+s5xhg99thjatCggWJiYtS7d2/t27fPJ+bYsWMaMmSI4uLiFB8frxEjRujUqVOVUEH5VDSfgwcPymKxFPv12muveeOKW79s2bJAlFTEhcx5z549i+Q/evRon5ivvvpKN910k2JjY1W/fn099NBDcrvdlVlKqSpa57FjxzRu3Di1atVKMTExaty4se677z6dOHHCJy7Yr+W8efPUtGlTRUdHKykpSZs3by41/rXXXlNiYqKio6PVrl07rVixwmd9eT6nwVCROv/+97/ruuuuU61atVSrVi317t27SPywYcOKvG7JycmVXUapKlLjokWLiuQfHR3tExMOr2Vx2xqLxaKbbrrJG1PVXsu1a9fq5ptvVsOGDWWxWPTWW2+V+ZyPPvpInTp1ktPpVMuWLbVo0aIiMRX9rAPl9dFHH5W477Jly5YSn1eefYFQ07Rp0yI1zZo1q9TnnD17VmPGjFGdOnVUvXp1DRgwQEeOHAlQxv518OBBjRgxQs2aNVNMTIxatGihxx9/XPn5+aU+L9TfC/7elwolM2fO1C9+8QvVqFFD9evX169//Wvt3bu31OeUZx8k1DzxxBNFakpMTCz1OeH0PpCK3/5ZLBaNGTOm2PhwfB9UmEFQPfbYY+bZZ58148ePNzVr1izXc2bNmmVq1qxp3nrrLbNjxw5zyy23mGbNmpkzZ854Y5KTk81VV11lNm7caD755BPTsmVLM2jQoEqqomwVzcftdpvDhw/7fE2dOtVUr17dnDx50hsnyaSmpvrEnT8PgXQhc96jRw8zcuRIn/xPnDjhXe92u03btm1N7969zfbt282KFStM3bp1zeTJkyu7nBJVtM5du3aZ22+/3bzzzjsmOzvbrFmzxlx++eVmwIABPnHBfC2XLVtmHA6HWbhwocnMzDQjR4408fHx5siRI8XGf/rpp8ZqtZqnnnrK7Nmzx/zpT38ydrvd7Nq1yxtTns9poFW0zsGDB5t58+aZ7du3m6ysLDNs2DBTs2ZN880333hj7rzzTpOcnOzzuh07dixQJRVR0RpTU1NNXFycT/45OTk+MeHwWn7//fc+Ne7evdtYrVaTmprqjalqr+WKFSvMo48+at544w0jybz55pulxn/xxRcmNjbWjB8/3uzZs8fMnTvXWK1Ws3LlSm9MRecNqIi8vLwi+y533XWXadasmSkoKCjxeWXtC4SiJk2amGnTpvnUdOrUqVKfM3r0aNOoUSOzZs0as3XrVvPLX/7SdO3aNUAZ+9d7771nhg0bZt5//32zf/9+8/bbb5v69eubCRMmlPq8UH4vVMa+VCjp16+fSU1NNbt37zYZGRmmf//+pnHjxqW+78uzDxJqHn/8cXPllVf61PTf//63xPhwex8YY8zRo0d96k9LSzOSzIcfflhsfDi+DyqKplQVkZqaWq6mVEFBgUlISDBPP/20d9nx48eN0+k0r7zyijHGmD179hhJZsuWLd6Y9957z1gsFnPo0CG/514Wf+XToUMHM3z4cJ9l5flFJRAutMYePXqYP/7xjyWuX7FihYmKivLZML3wwgsmLi7O5OXl+SX3ivDXa/nqq68ah8NhXC6Xd1kwX8vOnTubMWPGeB97PB7TsGFDM3PmzGLjf/e735mbbrrJZ1lSUpK5++67jTHl+5wGQ0Xr/Dm3221q1Khh/vnPf3qX3XnnnebWW2/1d6oXrKI1lrXtDdfX8rnnnjM1atTw2Vmuaq/l+cqzfXj44YfNlVde6bPs97//venXr5/38cXOG1AR+fn5pl69embatGmlxpW1LxCKmjRpYp577rlyxx8/ftzY7Xbz2muveZdlZWUZSWbDhg2VkGHgPfXUU6ZZs2alxoTye8Hf+1Kh7ujRo0aS+fjjj0uMKe/vf6Hk8ccfN1dddVW548P9fWCMMX/84x9NixYtSvzjRDi+DyqK0/dCzIEDB5STk6PevXt7l9WsWVNJSUnasGGDJGnDhg2Kj4/XNddc443p3bu3oqKitGnTpoDn7I980tPTlZGRoREjRhRZN2bMGNWtW1edO3fWwoULZYzxW+7ldTE1LlmyRHXr1lXbtm01efJknT592mfcdu3a6ZJLLvEu69evn3Jzc5WZmen/Qsrgr/fWiRMnFBcXJ5vN5rM8GK9lfn6+0tPTfT5TUVFR6t27t/cz9XMbNmzwiZfOvS6F8eX5nAbahdT5c6dPn5bL5VLt2rV9ln/00UeqX7++WrVqpXvuuUfff/+9X3Mvrwut8dSpU2rSpIkaNWqkW2+91eezFa6v5YIFCzRw4EBVq1bNZ3lVeS0vRFmfS3/MG1AR77zzjr7//nulpKSUGVvavkComjVrlurUqaOOHTvq6aefLvXSA+np6XK5XD6fz8TERDVu3DhsPp8nTpwo8vOzOKH4XqiMfalQV3iZirJe89L2QULVvn371LBhQzVv3lxDhgzRV199VWJsuL8P8vPztXjxYg0fPlwWi6XEuHB8H1SErewQVCU5OTmS5NOkKHxcuC4nJ0f169f3WW+z2VS7dm1vTCD5I58FCxaodevW6tq1q8/yadOm6YYbblBsbKxWrVqle++9V6dOndJ9993nt/zL40JrHDx4sJo0aaKGDRtq586dmjhxovbu3as33njDO25xr3XhukDzx2v53Xffafr06Ro1apTP8mC9lt999508Hk+x8/zZZ58V+5ySXpfzP4OFy0qKCbQLqfPnJk6cqIYNG/rsPCQnJ+v2229Xs2bNtH//fj3yyCO68cYbtWHDBlmtVr/WUJYLqbFVq1ZauHCh2rdvrxMnTmjOnDnq2rWrMjMzddlll4Xla7l582bt3r1bCxYs8FlelV7LC1HS5zI3N1dnzpzRDz/8cNGfAaAiFixYoH79+umyyy4rNa6sfYFQdN9996lTp06qXbu21q9fr8mTJ+vw4cN69tlni43PycmRw+Eocn3VYG5r/Sk7O1tz587VnDlzSo0L1fdCZexLhbKCggLdf//9uvbaa9W2bdsS48raBwlFSUlJWrRokVq1aqXDhw9r6tSpuu6667R7927VqFGjSHw4vw8k6a233tLx48c1bNiwEmPC8X1QUTSlKsGkSZM0e/bsUmOysrLKvOhbVVfeOi/WmTNntHTpUk2ZMqXIuvOXdezYUT/++KOefvppvzUyKrvG8xsz7dq1U4MGDdSrVy/t379fLVq0uOBxKypQr2Vubq5uuukmtWnTRk888YTPusp+LXFxZs2apWXLlumjjz7yufjiwIEDvf9v166d2rdvrxYtWuijjz5Sr169gpFqhXTp0kVdunTxPu7atatat26t+fPna/r06UHMrPIsWLBA7dq1U+fOnX2Wh/prCVSWC9mv++abb/T+++/r1VdfLXP8qrIvUJaKzMP48eO9y9q3by+Hw6G7775bM2fOlNPprOxUK82FvBcOHTqk5ORk/fa3v9XIkSNLfW6ovBdQujFjxmj37t1at25dqXHhuA9y4403ev/fvn17JSUlqUmTJnr11VeLPeMl3C1YsEA33nijGjZsWGJMOL4PKoqmVCWYMGFCqd1QSWrevPkFjZ2QkCBJOnLkiBo0aOBdfuTIEXXo0MEbc/ToUZ/nud1uHTt2zPt8fyhvnRebz+uvv67Tp09r6NChZcYmJSVp+vTpysvL88tOT6BqLJSUlCTp3F/UWrRooYSEhCJ3Lim8E02ovZYnT55UcnKyatSooTfffFN2u73UeH+/liWpW7eurFZrkTv8HDlypMSaEhISSo0vz+c00C6kzkJz5szRrFmztHr1arVv377U2ObNm6tu3brKzs4OeCPjYmosZLfb1bFjR2VnZ0sKv9fyxx9/1LJlyzRt2rQyv08wX8sLUdLnMi4uTjExMbJarRf9/kBkupD9utTUVNWpU0e33HJLhb/fz/cFqoqL2b9NSkqS2+3WwYMH1apVqyLrExISlJ+fr+PHj/scLVXVPp8VnYNvv/1W119/vbp27aqXXnqpwt+vqr4Xfq4y9qVC1dixY/Xuu+9q7dq1FT7K5ef7IOEgPj5eV1xxRYk1hev7QJK+/PJLrV69usJHOobj+6BMwb6oFc6p6IXO58yZ41124sSJYi90vnXrVm/M+++/H/QLnV9oPj169Chyp7aS/PnPfza1atW64FwvlL/mfN26dUaS2bFjhzHmpwudn3/nkvnz55u4uDhz9uxZ/xVQThda54kTJ8wvf/lL06NHD/Pjjz+W63sF8rXs3LmzGTt2rPexx+Mxl156aakX5/zVr37ls6xLly5FLnRe2uc0GCpapzHGzJ4928TFxZX7QrNff/21sVgs5u23377ofC/EhdR4PrfbbVq1amUeeOABY0x4vZbGnPtZ43Q6zXfffVfm9wj2a3k+lfNC523btvVZNmjQoCIXOr+Y9wdQHgUFBaZZs2Zl3mmtJD/fFwgHixcvNlFRUSXe0bPwQuevv/66d9lnn30W0hc6/+abb8zll19uBg4caNxu9wWNEUrvBX/vS4WagoICM2bMGNOwYUPz+eefX9AYP98HCQcnT540tWrVMv/v//2/YteH2/vgfI8//rhJSEjwubFTeYTj+6AsNKWC7MsvvzTbt283U6dONdWrVzfbt28327dvNydPnvTGtGrVyrzxxhvex7NmzTLx8fHm7bffNjt37jS33nprkduTJycnm44dO5pNmzaZdevWmcsvv9wMGjQooLWdr6x8vvnmG9OqVSuzadMmn+ft27fPWCwW89577xUZ85133jF///vfza5du8y+ffvM3/72NxMbG2see+yxSq+nOBWtMTs720ybNs1s3brVHDhwwLz99tumefPmpnv37t7nuN1u07ZtW9O3b1+TkZFhVq5caerVq2cmT54c8PoKVbTOEydOmKSkJNOuXTuTnZ3tc7vTwp20YL+Wy5YtM06n0yxatMjs2bPHjBo1ysTHx3vveviHP/zBTJo0yRv/6aefGpvNZubMmWOysrLM448/XuT2teX5nAZaReucNWuWcTgc5vXXX/d53Qq3TydPnjQPPvig2bBhgzlw4IBZvXq16dSpk7n88suD0jS9kBqnTp3qvWV3enq6GThwoImOjjaZmZnemHB4LQt169bN/P73vy+yvCq+lidPnvT+TJRknn32WbN9+3bz5ZdfGmOMmTRpkvnDH/7gjf/iiy9MbGyseeihh0xWVpaZN2+esVqtZuXKld6YsuYN8IfVq1cbSSYrK6vIugvZFwg169evN88995zJyMgw+/fvN4sXLzb16tUzQ4cO9cYUt983evRo07hxY/PBBx+YrVu3mi5dupguXboEo4SL9s0335iWLVuaXr16mW+++cbnZ+j5MeH0XqiMfalQcs8995iaNWuajz76yOf1Pn36tDfmQvZBQs2ECRPMRx99ZA4cOGA+/fRT07t3b1O3bl1z9OhRY0z4vw8KeTwe07hxYzNx4sQi6yLhfVBRNKWC7M477zSSinx9+OGH3hhJJjU11fu4oKDATJkyxVxyySXG6XSaXr16mb179/qM+/3335tBgwaZ6tWrm7i4OJOSkuLT6Aq0svI5cOBAkbqNMWby5MmmUaNGxuPxFBnzvffeMx06dDDVq1c31apVM1dddZV58cUXi40NhIrW+NVXX5nu3bub2rVrG6fTaVq2bGkeeughc+LECZ9xDx48aG688UYTExNj6tatayZMmFDhjrs/VbTODz/8sNj3uCRz4MABY0zVeC3nzp1rGjdubBwOh+ncubPZuHGjd12PHj3MnXfe6RP/6quvmiuuuMI4HA5z5ZVXmv/85z8+68vzOQ2GitTZpEmTYl+3xx9/3BhjzOnTp03fvn1NvXr1jN1uN02aNDEjR44M+i/4Fanx/vvv98Zecsklpn///mbbtm0+44XDa2nMT0cdrFq1qshYVfG1LGnbUVjXnXfeaXr06FHkOR06dDAOh8M0b97c52dnodLmDfCHQYMGma5duxa77kL3BUJJenq6SUpKMjVr1jTR0dGmdevWZsaMGT4N7uL2+86cOWPuvfdeU6tWLRMbG2tuu+02nyZOKElNTS1x36dQOL4X/L0vFUpKer3P/zl0Ifsgoeb3v/+9adCggXE4HObSSy81v//97012drZ3fbi/Dwq9//77RlKx+4uR8D6oKIsxAbjnOgAAAAAAAHCeqGAnAAAAAAAAgMhDUwoAAAAAAAABR1MKAAAAAAAAAUdTCgAAAAAAAAFHUwoAAAAAAAABR1MKAAAAAAAAAUdTCgAAAAAAAAFHUwoAAAAAAAABR1MKAAAAAAAAAUdTCgAAAADgNw8++KB+/etfBzsNACGAphQAlNN///tfJSQkaMaMGd5l69evl8Ph0Jo1a4KYGQAAQNWRkZGhDh06BDsNACGAphQAlFO9evW0cOFCPfHEE9q6datOnjypP/zhDxo7dqx69eoV7PQAAACqhB07dtCUAlAuFmOMCXYSABBKxowZo9WrV+uaa67Rrl27tGXLFjmdzmCnBQAAEHTffPONGjVqpAMHDqhp06Y6fvy4/vCHP+iHH37Q66+/roSEhGCnCKAK4UgpAKigOXPmyO1267XXXtOSJUtoSAEAAPxPRkaG4uPj1bRpU+3atUu/+MUvdOmll+rDDz+kIQWgCJpSAFBB+/fv17fffquCggIdPHgw2OkAAABUGRkZGbrqqqu0dOlS9ejRQw8//LBefPFF2e32YKcGoAri9D0AqID8/Hx17txZHTp0UKtWrfT8889r165dql+/frBTAwAACLrf/OY3+uCDDyRJ//nPf9SlS5cgZwSgKuNIKQCogEcffVQnTpzQX/7yF02cOFFXXHGFhg8fHuy0AAAAqoSMjAzdfvvtOnv2rI4fP15k/bXXXqtNmzZJkkaMGKHnnnsuwBkCqEo4UgoAyumjjz5Snz599OGHH6pbt26SpIMHD+qqq67SrFmzdM899wQ5QwAAgOA5efKkatasqfT0dG3fvl0PPPCA1q9fryuvvNIbs3LlSs2fP1/XXXedsrKy9Pe//z2IGQMINppSAAAAAICLtm7dOl1//fU6deqUnE6nxo8fr7feekubN29W3bp1vXFXX3214uPjtXLlSq41BUQ4Tt8DAAAAAFy0jIwMJSYmeu9M/PTTT6tVq1a6/fbblZ+fL0nasmWLjh07ppo1a9KQAsCRUgAAAACAynfo0CH1799fb731lgYMGKCXX35Zbdu2DXZaAIKII6UAAAAAAJXqzJkz+u1vf6u5c+eqWbNmmjx5sqZPnx7stAAEGUdKAQAAAAAAIOA4UgoAAAAAAAABR1MKAAAAAAAAAUdTCgAAAAAAAAFHUwoAAAAAAAABR1MKAAAAAAAAAUdTCgAAAAAAAAFHUwoAAAAAAAABR1MKAAAAAAAAAUdTCgAAAAAAAAFHUwoAAAAAAAABR1MKAAAAAAAAAff/AXs4KBrKcH3sAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "\n", + "# -------------------------------------------------\n", + "# Lattice definitions\n", + "# -------------------------------------------------\n", + "a = 1.0 # lattice constant\n", + "\n", + "# Real-space lattice vectors\n", + "a1 = np.array([a, 0.0])\n", + "a2 = a * np.array([np.cos(np.pi / 3), np.sin(np.pi / 3)])\n", + "\n", + "# Reciprocal-space lattice vectors\n", + "b1 = (2 * np.pi / a) * np.array([1.0, -1.0 / np.sqrt(3)])\n", + "b2 = (2 * np.pi / a) * np.array([0.0, 2.0 / np.sqrt(3)])\n", + "\n", + "# -------------------------------------------------\n", + "# Generate lattice points\n", + "# -------------------------------------------------\n", + "N = 5 # number of points in each direction (odd, so we get symmetry around 0)\n", + "\n", + "# Real space points\n", + "pts_real = []\n", + "for i in range(-(N // 2), N // 2 + 1):\n", + " for j in range(-(N // 2), N // 2 + 1):\n", + " pts_real.append(i * a1 + j * a2)\n", + "pts_real = np.array(pts_real)\n", + "\n", + "# Reciprocal space points\n", + "pts_rec = []\n", + "for i in range(-(N // 2), N // 2 + 1):\n", + " for j in range(-(N // 2), N // 2 + 1):\n", + " pts_rec.append(i * b1 + j * b2)\n", + "pts_rec = np.array(pts_rec)\n", + "\n", + "\n", + "# -------------------------------------------------\n", + "# IBZ path in reciprocal space\n", + "# (given in reduced coordinates; convert to Cartesian k)\n", + "# -------------------------------------------------\n", + "Gamma = 2 * np.pi / a * np.array([0.0, 0.0])\n", + "M = 2 * np.pi / a * np.array([0.0, 1.0 / np.sqrt(3)])\n", + "K = 2 * np.pi / a * np.array([1.0 / 3.0, 1.0 / np.sqrt(3)])\n", + "\n", + "ibz_path = np.vstack([Gamma, M, K, Gamma])\n", + "\n", + "# -------------------------------------------------\n", + "# Plot\n", + "# -------------------------------------------------\n", + "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))\n", + "\n", + "\n", + "# --- Real space ---\n", + "ax1.scatter(pts_real[:, 0], pts_real[:, 1], marker=\"o\", s=200, color=\"black\")\n", + "ax1.quiver(0, 0, a1[0], a1[1], angles=\"xy\", scale_units=\"xy\", scale=1)\n", + "ax1.quiver(0, 0, a2[0], a2[1], angles=\"xy\", scale_units=\"xy\", scale=1)\n", + "ax1.set_title(\"Real-space lattice and vectors\")\n", + "ax1.set_xlabel(\"x\")\n", + "ax1.set_ylabel(\"y\")\n", + "ax1.set_aspect(\"equal\")\n", + "ax1.grid(True)\n", + "\n", + "# Supercell corners in real space\n", + "W = a / 2\n", + "H = (a * np.sqrt(3)) / 2\n", + "\n", + "# Rectangle corners (closed loop)\n", + "rect = np.array([[-W, -H], [W, -H], [W, H], [-W, H], [-W, -H]])\n", + "\n", + "# Draw rectangle\n", + "ax1.plot(rect[:, 0], rect[:, 1], \"--\")\n", + "\n", + "# Fill it\n", + "ax1.fill(rect[:, 0], rect[:, 1], alpha=0.15)\n", + "\n", + "\n", + "# --- Reciprocal space ---\n", + "ax2.scatter(pts_rec[:, 0], pts_rec[:, 1], marker=\"o\", s=200, color=\"black\")\n", + "ax2.quiver(0, 0, b1[0], b1[1], angles=\"xy\", scale_units=\"xy\", scale=1)\n", + "ax2.quiver(0, 0, b2[0], b2[1], angles=\"xy\", scale_units=\"xy\", scale=1)\n", + "\n", + "# IBZ path Γ–M–K–Γ\n", + "ax2.plot(ibz_path[:, 0], ibz_path[:, 1], marker=\"o\")\n", + "\n", + "# Label the special points\n", + "ax2.text(Gamma[0], Gamma[1], r\"$\\Gamma$\", ha=\"right\", va=\"bottom\")\n", + "ax2.text(M[0], M[1], r\"$M$\", ha=\"right\", va=\"bottom\")\n", + "ax2.text(K[0], K[1], r\"$K$\", ha=\"left\", va=\"bottom\")\n", + "\n", + "ax2.set_title(\"Reciprocal-space lattice, vectors and IBZ path\")\n", + "ax2.set_xlabel(r\"$k_x$\")\n", + "ax2.set_ylabel(r\"$k_y$\")\n", + "ax2.set_aspect(\"equal\")\n", + "ax2.grid(True)\n", + "\n", + "ax1.set_xlim(-1.1, 1.1)\n", + "ax1.set_ylim(-1.1, 1.1)\n", + "\n", + "ax2.set_xlim(-3.1 * np.pi / a, 3.1 * np.pi / a)\n", + "ax2.set_ylim(-3.1 * np.pi / a, 3.1 * np.pi / a)\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulation Setup " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we will define the global parameters to be used in the simulation.\n", + "Since we can express everything in terms of the lattice constant, we will set it to 1 and then scale the frequency accordingly during post-processing." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Source polarization\n", + "polarization = \"Ez\"\n", + "\n", + "theta = np.pi / 6\n", + "sizeZ = 6\n", + "\n", + "# Option to add or not matching dipoles\n", + "matchingDipoles = True\n", + "\n", + "# K-points of the Brillouin zone of hexagonal lattice\n", + "kPoints = [(0, 0), (0, 1 / (np.sqrt(3))), (1 / 3, 1 / np.sqrt(3)), (0, 0)]\n", + "\n", + "# Source frequency and width\n", + "freq0 = 200e12\n", + "fwidth = 150e12\n", + "\n", + "runTime = 3e-12\n", + "\n", + "rodMaterial = td.Medium(permittivity=2.5**2)\n", + "\n", + "# Lattice constant defined as 1. Then we just scale the results\n", + "latticeConstant = 1\n", + "\n", + "radius = 0.28 * latticeConstant\n", + "height = 1 * latticeConstant\n", + "\n", + "\n", + "# Lattice vectors\n", + "y = latticeConstant * np.cos(theta)\n", + "x = latticeConstant * np.sin(theta)\n", + "a1 = np.array([x, y, 0])\n", + "a2 = np.array([-x, y, 0])\n", + "\n", + "\n", + "# Creating the supercell\n", + "centerRod = td.Cylinder(center=(0, 0, 0), radius=radius, length=height)\n", + "\n", + "geometry = centerRod\n", + "geometry += centerRod.updated_copy(center=tuple(-a1))\n", + "geometry += centerRod.updated_copy(center=tuple(a2))\n", + "geometry += centerRod.updated_copy(center=tuple(-a2))\n", + "geometry += centerRod.updated_copy(center=tuple(a1))\n", + "\n", + "\n", + "structure = td.Structure(geometry=geometry, medium=rodMaterial)\n", + "\n", + "size = (2 * x, 2 * y, sizeZ)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To ensure periodicity, we will use a [MeshOverrideRegion] to create a custom grid with a fixed number of grid points in x and y." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "grid = td.MeshOverrideStructure(\n", + " geometry=td.Box(center=(0, 0, 0), size=(td.inf, td.inf, td.inf)),\n", + " dl=(size[0] / 40, size[1] / 60, 0.1),\n", + ")\n", + "\n", + "grid_spec = td.GridSpec.auto(\n", + " override_structures=[grid],\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we will define the sources and monitors.\n", + "\n", + "We will place 5 sources randomly distributed in the lower-left unit cell, and 5 [FieldMonitor](https://docs.flexcompute.com/projects/tidy3d/en/latest/api/_autosummary/tidy3d.FieldMonitor.html) objects randomly distributed in the supercell." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Sources\n", + "Nsources = 5\n", + "\n", + "sourceTime = [\n", + " td.GaussianPulse(freq0=freq0, fwidth=fwidth, phase=i)\n", + " for i in 2 * np.pi * np.random.random(2 * Nsources)\n", + "]\n", + "\n", + "\n", + "# Random positions for the sources\n", + "posySource = np.random.uniform(-0.8, -0.2, Nsources)\n", + "posxSource = np.random.uniform(-0.2, -0.1, Nsources)\n", + "\n", + "\n", + "# Monitors\n", + "Nmonitors = 5\n", + "\n", + "posyMon = np.random.uniform(-0.8, -0.2, 5)\n", + "posxMon = np.random.uniform(-0.2, 0.2, 5)\n", + "\n", + "monitors = [\n", + " td.FieldTimeMonitor(\n", + " center=(posxMon[i], posyMon[i], 0), name=f\"mon{i}\", size=(0, 0, 0), start=1e-12\n", + " )\n", + " for i in range(Nmonitors)\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Defining the [Simulation](https://docs.flexcompute.com/projects/tidy3d/en/latest/api/_autosummary/tidy3d.Simulation.html) and Matching Dipoles \n", + "\n", + "Finally, we define a function to generate the [Simulation](https://docs.flexcompute.com/projects/tidy3d/en/latest/api/_autosummary/tidy3d.Simulation.html) object as a function of the parameters below." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Function to return a simulation for every Bloch vector\n", + "def getSim(pol, bloch_x, bloch_y, matchingDipoles=True):\n", + " symmetry = [0, 0, -1] if pol == \"Ez\" else [0, 0, 1]\n", + "\n", + " boundary_spec = td.BoundarySpec(\n", + " x=td.Boundary.bloch(bloch_x * size[0]),\n", + " y=td.Boundary.bloch(bloch_y * size[1]),\n", + " z=td.Boundary.pml(),\n", + " )\n", + "\n", + " bVector = np.array([bloch_x, bloch_y, 0])\n", + "\n", + " # Creating the sources\n", + " sources = [\n", + " td.PointDipole(\n", + " center=(posxSource[i], posySource[i], 0), polarization=pol, source_time=sourceTime[i]\n", + " )\n", + " for i in range(len(posxSource))\n", + " ]\n", + "\n", + " # Creating the matching dipoles\n", + " matching_dipoles = []\n", + " if matchingDipoles:\n", + " for i, sc in enumerate(sources):\n", + " # Coordinates of the matching dipole\n", + " px = sc.center[0] + 0.5\n", + " py = sc.center[1] + np.sqrt(3) / 2\n", + "\n", + " # Adjust the phase\n", + " phase = sc.source_time.phase\n", + " r_vec = np.array((px, py, 0)) - np.array(sc.center)\n", + " deltaPhase = 2 * np.pi * bVector.dot(r_vec)\n", + "\n", + " source_time = sc.source_time.updated_copy(phase=phase + deltaPhase)\n", + "\n", + " sp = sc.updated_copy(center=(px, py, 0), source_time=source_time)\n", + " matching_dipoles.append(sp)\n", + "\n", + " sim = td.Simulation(\n", + " size=size,\n", + " structures=[structure],\n", + " sources=sources + matching_dipoles,\n", + " monitors=monitors,\n", + " run_time=runTime,\n", + " boundary_spec=boundary_spec,\n", + " grid_spec=grid_spec,\n", + " symmetry=symmetry,\n", + " medium=td.Medium(),\n", + " shutoff=False,\n", + " )\n", + " return sim" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can create a simulation object and inspect the permittivity to confirm that the periodicity is preserved." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwgAAAHqCAYAAACgFmm3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcnFJREFUeJzt3XlcVPX+P/DXMAzDMuzLAIKC+4ogGlKahtzQvKVpppWp6dUW6V71SkXXNK2+lHjTutfy1jVt0atZav2yNEWxNFeE1FRSRBFlVWBkh5nz+4M8NbLIMjNnltfz8ZiHzud8zpnXmQFm3nM+53NkgiAIICIiIiIiAmAndQAiIiIiIjIfLBCIiIiIiEjEAoGIiIiIiEQsEIiIiIiISMQCgYiIiIiIRCwQiIiIiIhIxAKBiIiIiIhELBCIiIiIiEjEAoGIiIiIiEQsEMjihISEYMaMGeL91NRUyGQypKamSpaJiIjI1j3wwAOYPXu21DH0nDlzBvb29jh9+rTUUSwKCwQiIiKiFmzcuBGrVq2y+QwtOXjwIL7//nu8+OKLJnvMq1ev4tFHH4WHhwfc3Nwwbtw4XLx4Ua9P3759MXbsWCxevNhkuayBTBAEQeoQRG1RU1MDOzs7KBQKAA1HEO677z7s27cPI0eOlDYcERFZnT//+c84ffo0Ll26ZNMZWjJ+/HhUVVVh165dJnm88vJyDBo0CGVlZfj73/8OhUKBlStXQhAEZGRkwNvbW+z73Xff4YEHHsCFCxfQrVs3k+SzdDyCQBZHqVSKxQEREZE5qa6uhk6nkzpGq1VWVnZ4G4WFhdixYwceffRRAyRqnffeew/nz5/HN998gxdeeAHz58/H999/j7y8PPzzn//U6xsbGwtPT098/PHHJstn6VggUIddvXoVM2fOhFqthlKpRL9+/fDRRx+Jy2+dI7B582a8/PLL8Pf3h4uLCx566CFcuXJFb1vnz5/HxIkT4e/vD0dHRwQFBWHKlCkoKysT+9x+DkJztmzZgsjISDg5OcHHxwdTp07F1atX9frMmDEDKpUKV69exfjx46FSqeDr64uFCxdCq9V27IkhIiKzd/PmTcybNw8hISFQKpXw8/PDn/70J5w4cQIAMHLkSOzYsQOXL1+GTCaDTCZDSEgIgN/f3zZt2oRFixahU6dOcHZ2hkajwauvvgqZTNbo8davXw+ZTNboSMB3332HESNGwNXVFW5ubhgyZAg2btx4xwzNba+p8/NGjhyJ/v37Iy0tDffeey+cnZ3x8ssvA2g4Or9kyRJ0794dSqUSwcHBeOGFF1BTU3PH53DHjh2or69HbGysXvutrE3dOnok5IsvvsCQIUMwZMgQsa13794YNWoUPv/8c72+CoUCI0eOxFdffdWhx7Ql9lIHIMtWUFCAoUOHQiaTIT4+Hr6+vvjuu+8wa9YsaDQazJs3T+z7xhtvQCaT4cUXX0RhYSFWrVqF2NhYZGRkwMnJCbW1tYiLi0NNTQ2ef/55+Pv74+rVq/jmm29QWloKd3f3Vudav349nnrqKQwZMgRJSUkoKCjAO++8g4MHDyI9PR0eHh5iX61Wi7i4OERFRWHFihXYs2cP/vnPf6Jbt2549tlnDfhsERGRuXnmmWfwxRdfID4+Hn379sX169dx4MABnD17FoMGDcI//vEPlJWVITc3FytXrgQAqFQqvW289tprcHBwwMKFC1FTUwMHB4c2ZVi/fj1mzpyJfv36ITExER4eHkhPT8fOnTvx+OOPtypDa12/fh1jxozBlClTMHXqVKjVauh0Ojz00EM4cOAA5syZgz59+uDUqVNYuXIlfv31V2zfvr3Fbf7000/w9vZGly5d9No//fTTRn0XLVqEwsJCMX9NTQ1u3rzZquw+Pj4AAJ1Oh5MnT2LmzJmN+tx11134/vvvcfPmTbi6uortkZGR+Oqrr6DRaODm5taqx7NpAlEHzJo1SwgICBCKi4v12qdMmSK4u7sLlZWVwr59+wQAQqdOnQSNRiP2+fzzzwUAwjvvvCMIgiCkp6cLAIQtW7a0+JhdunQRpk+fLt6/tf19+/YJgiAItbW1gp+fn9C/f3+hqqpK7PfNN98IAITFixeLbdOnTxcACMuWLdN7jIiICCEyMrJNzwUREVked3d3Ye7cuS32GTt2rNClS5dG7bfef7p27SpUVlbqLVuyZInQ1MesdevWCQCE7OxsQRAEobS0VHB1dRWioqL03rMEQRB0Ot0dM9y+vduz3XpvFARBGDFihABAWLNmjV7fTz/9VLCzsxN+/PFHvfY1a9YIAISDBw82etw/GjZsWKveM5cvXy4AED755JNG+Vtzu6WoqKjJ925BEITVq1cLAIRz587ptW/cuFEAIBw5cuSOOUkQeASB2k0QBHz55Zd49NFHIQgCiouLxWVxcXHYtGmTeIgWAKZNm6ZXzT/yyCMICAjAt99+i7/+9a/iEYJdu3bhgQcegLOzc7tyHT9+HIWFhXj11Vfh6Ogoto8dOxa9e/fGjh07sHTpUr11nnnmGb37w4cPb/KbDyIisi4eHh44cuQIrl27hsDAwHZtY/r06XBycmrXurt378bNmzfx0ksv6b1nAWhyiFJHKZVKPPXUU3ptW7ZsQZ8+fdC7d2+99/KYmBgAwL59+3D33Xc3u83r16+jU6dOLT7uvn37kJiYiOeffx5PPvmk2B4XF4fdu3e3aR+qqqrEfbndrefwVp9bPD09AUBv/6h5LBCo3YqKilBaWooPPvgAH3zwQZN9CgsLxV/KHj166C2TyWTo3r27OA4xNDQUCxYswNtvv40NGzZg+PDheOihhzB16tQ2DS+6fPkyAKBXr16NlvXu3RsHDhzQa3N0dISvr69em6enJ0pKSlr9mEREZJmWL1+O6dOnIzg4GJGRkXjggQcwbdo0dO3atdXbCA0NbffjZ2VlAQD69+/f7m20RadOnRoNgTp//jzOnj3b6L3wlsLCwjtuV2hhUszc3FxMnjwZ99xzD95++229ZQEBAQgICGhF8t/dKsaaOj+iurpar8/t+YxRdFkjFgjUbrdmaZg6dSqmT5/eZJ+wsDCcOXOm1dv85z//iRkzZuCrr77C999/j7/+9a9ISkrC4cOHERQUZJDct5PL5UbZLhERmb9HH30Uw4cPx7Zt2/D9998jOTkZb731FrZu3YoxY8a0ahtNHT1o7oOooSfAaOvjNJVVp9NhwIABjT683xIcHNxiBm9v72a/VKutrcUjjzwCpVKJzz//HPb2+h89q6qq9CYiaYm/vz8AwMvLC0qlEnl5eY363Gq7/WjQrXy3zmOglrFAoHbz9fWFq6srtFpto5kL/uhWgXD+/Hm9dkEQcOHCBYSFhem1DxgwAAMGDMCiRYvw008/4Z577sGaNWvw+uuvtyrXrZOkMjMzxcOjt2RmZjY6iYqIiGxbQEAAnnvuOTz33HMoLCzEoEGD8MYbb4gFQnu+db519Ly0tFRvYoxbR7lvuTUv/+nTp9G9e/dmt9dchj8+zh/d/jgt6datG37++WeMGjWqXfvau3dvfPnll00u++tf/4qMjAz88MMPUKvVjZZv3ry50ZCn5tw6CmBnZ4cBAwbg+PHjjfocOXIEXbt21RvSDADZ2dmws7NDz549W/VYto7TnFK7yeVyTJw4EV9++WWTlzAvKirSu//JJ5/ozVTwxRdfIC8vT/wDrNFoUF9fr7fOgAEDYGdn16pp1m4ZPHgw/Pz8sGbNGr31vvvuO5w9exZjx45t9baIiMh6abXaRt9e+/n5ITAwUO/9w8XFpdXfct9y64P/Dz/8ILZVVFQ0mov//vvvh6urK5KSksThMbf8cdhOcxmaehytVtvs0N+mPProo7h69So+/PDDRsuqqqpQUVHR4vrR0dEoKSlpdBXjdevW4T//+Q9Wr16Nu+66q8l1b52D0JrbHz3yyCM4duyYXpGQmZmJvXv3YtKkSY0eJy0tDf369WvTkGVbxiMI1CFvvvkm9u3bh6ioKMyePRt9+/bFjRs3cOLECezZswc3btwQ+3p5eWHYsGF46qmnUFBQgFWrVqF79+6YPXs2AGDv3r2Ij4/HpEmT0LNnT9TX1+PTTz8VC5HWUigUeOutt/DUU09hxIgReOyxx8RpTkNCQjB//nyDPw9ERGR5bt68iaCgIDzyyCMYOHAgVCoV9uzZg2PHjuldbCsyMhKbN2/GggULMGTIEKhUKjz44IMtbvv+++9H586dMWvWLCQkJEAul+Ojjz6Cr68vcnJyxH5ubm5YuXIl/vKXv2DIkCF4/PHH4enpiZ9//hmVlZViQdFchn79+mHo0KFITEzEjRs34OXlhU2bNjX6wq0lTz75JD7//HM888wz2LdvH+655x5otVqcO3cOn3/+OXbt2oXBgwc3u/7YsWNhb2+PPXv2YM6cOQAaTgZ+7rnn0LdvXyiVSnz22Wd66zz88MNwcXFp1zkIAPDcc8/hww8/xNixY7Fw4UIoFAq8/fbbUKvV+Pvf/67Xt66uDvv378dzzz3X5sexWRLOoERWoqCgQJg7d64QHBwsKBQKwd/fXxg1apTwwQcfCILw+1Rr//vf/4TExETBz89PcHJyEsaOHStcvnxZ3M7FixeFmTNnCt26dRMcHR0FLy8v4b777hP27Nmj93h3mub0ls2bNwsRERGCUqkUvLy8hCeeeELIzc3V6zN9+nTBxcWl0T41Nz0dERFZj5qaGiEhIUEYOHCg4OrqKri4uAgDBw4U3nvvPb1+5eXlwuOPPy54eHgIAMTpRm+9/zQ3PXdaWpoQFRUlODg4CJ07dxbefvvtZqcl/frrr4W7775bcHJyEtzc3IS77rpL+N///nfHDIIgCFlZWUJsbKygVCoFtVotvPzyy8Lu3bubnOa0X79+TWatra0V3nrrLaFfv36CUqkUPD09hcjISGHp0qVCWVnZHZ/Lhx56SBg1apR4Pzs7u8UpS2/f//a4cuWK8Mgjjwhubm6CSqUS/vznPwvnz59v1O+7774TADS5jJomE4QWTjsnMoDU1FTcd9992LJlCx555BGp4xAREZGB/fjjjxg5ciTOnTvXaNZCqY0fPx4ymQzbtm2TOorF4DkIRERERNQhw4cPx/3334/ly5dLHUXP2bNn8c033+C1116TOopF4TkIRERERNRh3333ndQRGunTp0+bzsegBjyCQEREREREIp6DQEREREREIh5BICIiIiIiEQsEIiIiIiISGe0k5dWrVyM5ORn5+fkYOHAg/vWvfzV7Fb0/0ul0uHbtGlxdXdt1uW8isj2CIODmzZsIDAyEnR2/9yAyNL43E5k3Q78PGuUchM2bN2PatGlYs2YNoqKisGrVKmzZsgWZmZnw8/Nrcd3c3FwEBwcbOhIR2YArV64gKChI6hhEVqel92Y7mR10gs7EiYhsV0u/c4Z6HzRKgRAVFYUhQ4bg3//+N4CGbx6Cg4Px/PPP46WXXmpx3bKyMnh4eODyiRC4qfhNYEse7jlA6ghkAtt+PSV1BLOnKdehy6BLKC0thbu7u9RxiKzOrffmK1euwM3NTWzPyMjAiBEjsGL0W+jm1U3ChES2IetGFhbufBH79+9HeHi42K7RaBAcHGyw90GDDzGqra1FWloaEhMTxTY7OzvExsbi0KFDd1z/1qFLN5Ud3FxZILTEXqaQOgKZAH8PWo9DH4iMQ3xvdnPTKxBUKhUAoJtXN/Tz6ytJNiJbpFKp9H4XbzHU+6DBC4Ti4mJotVqo1Wq9drVajXPnzjXqX1NTg5qaGvG+RqMxdCQiIiIiImolyb+aTEpKgru7u3jj+QdERERERNIxeIHg4+MDuVyOgoICvfaCggL4+/s36p+YmIiysjLxduXKFUNHIiIiIiKiVjJ4geDg4IDIyEikpKSIbTqdDikpKYiOjm7UX6lUimMabx/bSEREREREpmWU6yAsWLAA06dPx+DBg3HXXXdh1apVqKiowFNPPWWMhyMiIiIiIgMxSoEwefJkFBUVYfHixcjPz0d4eDh27tzZ6MRlIiIiIiIyL0a7knJ8fDzi4+ONtXkiIiIiIjICoxUIREREZF0yMjLEax8AwNmzZwE0XLyJiIzv1u/ard+9W8rLyw36OCwQiIiI6I7sZHYYMWJEk+0Ld74oQSIi22Qns8PUqVON+hgsEIiIiOiOdIIOK0a/hW5e3cS2rBtZWLjzRcTMToRnQGcJ05lewthIKOzlUsewaR//cAZXSwz7zbm5K8nLwd4Pk5r9XTQUFghERETUKt28uqGfX99G7Z4BneHbpYcEiaQzZMhg2MlkUsewaT8UALV5JVLHkERzv4uGIvmVlImIiIgsiUJux+LADDjwCI7RsEAgIiIiagNnBw7AMAdOfB2MhgUCERERURu4OCqkjkAAVHwdjIYFAhEREVEbuDkppY5AANycHKSOYLVYIBARERG1gacLCwRz4OniKHUEq8UCgYiIiKgNvFT8YGoOvPk6GA3P7jBzcYHhUkcgiTX3M7DrWoZJcxARUQM/N2epIxAAXzcnqSNYLR5BICIiImqDAA8XqSMQAFdHB84oZSQsEIiIiIhayU4mg787jyCYA5lMhk5eKqljWCUWCERERESt5O/hDAUv0GU2gr1dpY5glVggEBEREbVSiI+b1BHoD/h6GAcLBCIiIqJW6qb2kDoC/UFXtbvUEawSCwQiIiKiVuru7yF1BPoDb5UTp501AhYIRERERK3gpXKEryun1jQ3vQO9pI5gdVggEBEREbVCv07ekMlkUseg2/TrxALB0FggEBEREbXCgGAfqSNQE/p08obcjoWbIbFAICIiIroDpb0cvQM9pY5BTXBysEevAB5FMCQWCERERER3MLCLL69/YMYGd/WTOoJVYYFARERkRlavXo2QkBA4OjoiKioKR48ebbbvyJEjIZPJGt3Gjh0r9pkxY0aj5aNHjzbFrliVIV3VUkegFoR38YNCzo+1hsJnkoiIyExs3rwZCxYswJIlS3DixAkMHDgQcXFxKCwsbLL/1q1bkZeXJ95Onz4NuVyOSZMm6fUbPXq0Xr///e9/ptgdq+HurEQfnghr1pwc7BHexVfqGFbDXuoA1CAuMFzqCGRhWvqZ2XUtw2Q5iMhw3n77bcyePRtPPfUUAGDNmjXYsWMHPvroI7z00kuN+nt56X9o3bRpE5ydnRsVCEqlEv7+/sYLbuXu7hEAuR2/UzV3w3p1wrGLBVLHsAr8aSciIjIDtbW1SEtLQ2xsrNhmZ2eH2NhYHDp0qFXbWLt2LaZMmQIXFxe99tTUVPj5+aFXr1549tlncf36dYNmt2Z2MhmG9eokdQxqhR7+HgjwcLlzR7ojFghERERmoLi4GFqtFmq1/lh3tVqN/Pz8O65/9OhRnD59Gn/5y1/02kePHo1PPvkEKSkpeOutt7B//36MGTMGWq222W3V1NRAo9Ho3WxVRIgvr9RrIWQyGWL6BUsdwypwiBEREZEVWLt2LQYMGIC77rpLr33KlCni/wcMGICwsDB069YNqampGDVqVJPbSkpKwtKlS42a11L8aUAXqSNQG0R188f/O3ERmqpaqaNYNB5BICIiMgM+Pj6Qy+UoKNAfQ11QUHDH8wcqKiqwadMmzJo1646P07VrV/j4+ODChQvN9klMTERZWZl4u3LlSut2wsr06eSFLj5uUsegNlDYyzGqf2epY1g8FghERERmwMHBAZGRkUhJSRHbdDodUlJSEB0d3eK6W7ZsQU1NDaZOnXrHx8nNzcX169cREBDQbB+lUgk3Nze9my36c0RXqSNQO9zbuxNUjgqpY1g0DjEyIc5URKbCGY6ILNOCBQswffp0DB48GHfddRdWrVqFiooKcVajadOmoVOnTkhKStJbb+3atRg/fjy8vb312svLy7F06VJMnDgR/v7+yMrKwgsvvIDu3bsjLi7OZPtliQYE+6Crn7vUMagdHBX2GDMwBFuOnJc6isVigUBERGQmJk+ejKKiIixevBj5+fkIDw/Hzp07xROXc3JyYHfbdJuZmZk4cOAAvv/++0bbk8vlOHnyJD7++GOUlpYiMDAQ999/P1577TUolUqT7JMlspPJ8PDgblLHoA64t3cQUs/kouhmldRRLBILBCIiIjMSHx+P+Pj4JpelpqY2auvVqxcEQWiyv5OTE3bt2mXIeDZheO9OCPBUSR2DOsBebocJd/XAf1JOSh3FIvEcBCIiIqLfqBwVeHAQzz2wBgM7+6BfkPedO1IjLBCIiIiIfjMpqidclDzB1RrIZDJMHtoLCjk/7rYVnzEiIiIiAP2DvTGkq/rOHcli+Lo5YRzPJ2kzFghERERk81yU9njinj6QyWRSRyEDu69vMHr4e0gdw6LwJGUD41SmZO44BSoRUWNT7+kDD2fO7GSN7GQyzLi3H17ffgRVtfVSx7EIPIJARERENm1knyCEh/hJHYOMyEvliGnD+0odw2KwQCAiIiKbFeLrhgl39ZA6BplAeBdfxPbvLHUMi8ACgYiIiGySu5MDno4ZwFlubMj4wd3Qp5OX1DHMHn8jiIiIyOYo5HZ4JnYgPFwcpY5CJiS3s8NfRvaHv4ez1FHMGgsEIiIisikyGfCX+/ojxNdN6igkAWelAvF/Coebk4PUUcwWCwQiIiKyKVPv6YOwzr5SxyAJebs64fm4cDg7cELPpvBZaQGnLCVb056feU6NSkSWZPLQnri7Z6DUMcgMBHm54vm4cLyzMx3VdVqp45gVHkEgIiIimzB5aE+M7BssdQwyIyG+7vhrXASceCRBDwsEIiIismoyGfDksD4sDqhJoX7umD9mEFSOCqmjmA0WCERERGS1FHI7PB0TxmFF1KJgb1ckjB0MX1cnqaOYBRYIREREZJXcnByw4IFBGNiFJyTTnfm5OyPhz4PRzc+90TIBOmhUWbjukQ6NKgsCdBIkNB0OuCIiIiKr08XHDU+PGgBPXueA2sDVyQF/GzMImw5l4qdfrwEAbrifQk6nr1HrUCb2c6h1R+erD8GrbIBUUY2KRxCIiIjIqgzv3Ql/HxvJ4oDaRSG3w5PD+uCJe3pD4/kLLoR8ilpFmV6fWkUZLoR8ihvupyRKaVxWcwSBU5ISScPQv3ucNpWI2svJwR5P3NMbkaFqqaOQFYju6Y9l1d8C9QBkty2UARCAnE5fw7OsH2RW9p271RQIREREZLv6dvLC1GF9eNSADCa9PB3XtUWNi4NbZECtQxluqrLhVt7NpNmMjQUCERERWSwXpT0m3tUDQ7sHQCZr7pMcUdsV1xW3ql+dvcbISUyPBQIRERFZHBmAe3oFYlxkN6gcHaSOQ1bIR+HTqn6KejcjJzE9FghERERkUfp08sKEwd0R5O0qdRSyYhGqCPgp/FBYV9h0BwFwqPOAa3moaYOZgHWdUUFERERWq4e/B+aPGYS/xkWwOCCjk8vkSAhKaHa5TCbDC50X4u4enWBnZcPb2nwE4YcffkBycjLS0tKQl5eHbdu2Yfz48eJyQRCwZMkSfPjhhygtLcU999yD999/Hz169GjT4zzccwDsZbzkNZGtac+sSPVCHYCLBs9CRNKTARjQ2Qd/6t8F3f09pI5DNibGMwbJSEZybrLekQS1Qo2FQQsR4xkDBAJjw0Ox53QODp3PQ029VsLEhtHmAqGiogIDBw7EzJkzMWHChEbLly9fjnfffRcff/wxQkND8corryAuLg5nzpyBoyNnFiAiIqI7c1EqEN0jAMN7d4Kfm7PUcciGxXjGYITHCKSXp6O4rhg+Ch9EqCIgl8nFPt6uTpgc3QsPDuqKQxfycODcVeSXVUqYumPaXCCMGTMGY8aMaXKZIAhYtWoVFi1ahHHjxgEAPvnkE6jVamzfvh1TpkzpWFoiIiKyWvZyO/QP8sZd3fwxINgH9nKOhCbzIJfJMdh18B37OSsVGNWvM2L6BiO7SIMjF/Jw4lIhyqvrTJDScAx6knJ2djby8/MRGxsrtrm7uyMqKgqHDh1qskCoqalBTU2NeF+jsb6pooiIiKhpKkcF+nXyxoDOPugX5A1HBedPIcuhFbRNHlmQyWTo6ueOrn7ueHRoT2QVlOFkThFO515HgQUcWTDob2F+fj4AQK3Wv4KhWq0Wl90uKSkJS5cuNWQMIiIiMlPeKkeE+Lqhm9oDPfw9EOipsroTPMk27C3Z2+jcBD+FHxKCEhrOTfiN3M4OPQM80TPAE49EATfKq3E+vwQXCkpxqUiDayUV0AmCFLvQLMnL9MTERCxYsEC8r9FoEBwcLGEiIiIiai+lvRwujgq4OTnAy8URXipH+Lk5w9/DGYGeKrgoOQEJWb69JXuRkN14hqPCukIkZCcgGcl6RcIfeakcEdU9AFHdAwAAdfVa5JdV4lpJOQo1lSi+WY2SimqUVdbgZnUdqmvrYerywaAFgr+/PwCgoKAAAQEBYntBQQHCw8ObXEepVEKpVBoyBhEREZnQX+PCMWTwYDjY20Fux/MGyLppBS2Sc5Nb7LMidwVGeIzQO5G5OQp7OYK9XRHczNS9OkFAbb0WdfU6nDjhgi+XtSt2mxj0tzg0NBT+/v5ISUkR2zQaDY4cOYLo6GhDPhQRERGZCZWjA5wc7FkckE1IL09v/uJpvymoK0B6ebpBHs9OJoOjwh6uTg5wdTLNVcPbfAShvLwcFy5cEO9nZ2cjIyMDXl5e6Ny5M+bNm4fXX38dPXr0EKc5DQwM1LtWAhERERGRJSquKzZoP3PU5gLh+PHjuO+++8T7t84fmD59OtavX48XXngBFRUVmDNnDkpLSzFs2DDs3LmT10AgIiIiIovno/AxaD9z1OYCYeTIkRBaONNaJpNh2bJlWLbMBAOkiIiIiIhMKEIVAT+FX4vDjNQKNSJUESZMZVgcLEhERERE1EpymRwJQY1nMLpFBhkWBi1s1QnK5ooFAhERERFRG8R4xiA5NBl+Cj+9drVCjeWhy5ud4tRSSH4dBCIiIiIiSxPjGYMRHiOavJKypWOBQERERETUDnKZHINdB0sdw+A4xIiIiIiIiEQsEIiIiIiISMQCgYiIiIiIRCwQiIiIiIhIxAKBiIiIiIhELBCIiIiIiEjEAoGIiMiMrF69GiEhIXB0dERUVBSOHj3abN/169dDJpPp3RwdHfX6CIKAxYsXIyAgAE5OToiNjcX58+eNvRtEZMFYIBAREZmJzZs3Y8GCBViyZAlOnDiBgQMHIi4uDoWFhc2u4+bmhry8PPF2+fJlveXLly/Hu+++izVr1uDIkSNwcXFBXFwcqqurjb07RGShWCAQERGZibfffhuzZ8/GU089hb59+2LNmjVwdnbGRx991Ow6MpkM/v7+4k2tVovLBEHAqlWrsGjRIowbNw5hYWH45JNPcO3aNWzfvt0Ee0RElogFAhERkRmora1FWloaYmNjxTY7OzvExsbi0KFDza5XXl6OLl26IDg4GOPGjcMvv/wiLsvOzkZ+fr7eNt3d3REVFdXiNmtqaqDRaPRuRGQ7WCAQERGZgeLiYmi1Wr0jAACgVquRn5/f5Dq9evXCRx99hK+++gqfffYZdDod7r77buTm5gKAuF5btgkASUlJcHd3F2/BwcEd2TUisjAsEIiIiCxUdHQ0pk2bhvDwcIwYMQJbt26Fr68v/vOf/3Rou4mJiSgrKxNvV65cMVBiIrIELBCIiIjMgI+PD+RyOQoKCvTaCwoK4O/v36ptKBQKRERE4MKFCwAgrtfWbSqVSri5uendiMh2sEAgIiIyAw4ODoiMjERKSorYptPpkJKSgujo6FZtQ6vV4tSpUwgICAAAhIaGwt/fX2+bGo0GR44cafU2icj22EsdgIiIiBosWLAA06dPx+DBg3HXXXdh1apVqKiowFNPPQUAmDZtGjp16oSkpCQAwLJlyzB06FB0794dpaWlSE5OxuXLl/GXv/wFQMMMR/PmzcPrr7+OHj16IDQ0FK+88goCAwMxfvx4qXaTiMwcCwQiIiIzMXnyZBQVFWHx4sXIz89HeHg4du7cKZ5knJOTAzu73w/+l5SUYPbs2cjPz4enpyciIyPx008/oW/fvmKfF154ARUVFZgzZw5KS0sxbNgw7Ny5s9EF1YiIbmGBQEREZEbi4+MRHx/f5LLU1FS9+ytXrsTKlStb3J5MJsOyZcuwbNkyQ0UkIivHcxCIiIiIiEjEAoGIiIiIiEQsEIiIiIiISMQCgYiIiIiIRDxJmYiIiIjoDrSCFunl6SiuK4aPwgcRqgjIZXKpYxkFCwQiIiIiohbsLdmL5NxkFNYVim1+Cj8kBCUgxjNGwmTGwSFGRERERETN2FuyFwnZCXrFAQAU1hUiITsBe0v2SpTMeFggEBERERE1QStokZyb3GKfFbkroBW0JkpkGiwQiIiIiIiakF6e3ujIwe0K6gqQXp5uokSmwQKBiIiIiKgJxXXFBu1nKVggEBERERE1wUfhY9B+loIFAhERERFREyJUEfBT+LXYR61QI0IVYaJEpsECgYiIiIioCXKZHAlBCc0ul0GGhUELre56CCwQiIiIiIiaEeMZg+TQ5EZHEtQKNZaHLrfK6yDwQmlERERERC2I8YzBCI8RvJIyERERERE1kMvkGOw6WOoYJsEhRkREREREJGKBQEREREREIhYIREREREQkYoFAREREREQiFghERERERCRigUBERERERCIWCEREREREJGKBQEREREREIhYIREREREQkYoFAREREREQiFghERERERCRigUBERERERCIWCEREREREJGKBQEREREREIhYIREREREQkYoFAREREREQiFghERERERCRigUBERERERCIWCEREREREJGpTgZCUlIQhQ4bA1dUVfn5+GD9+PDIzM/X6VFdXY+7cufD29oZKpcLEiRNRUFBg0NBERERERGQc9m3pvH//fsydOxdDhgxBfX09Xn75Zdx///04c+YMXFxcAADz58/Hjh07sGXLFri7uyM+Ph4TJkzAwYMHjbIDZJl2Xcsw2WPFBYab7LGIiIiILF2bCoSdO3fq3V+/fj38/PyQlpaGe++9F2VlZVi7di02btyImJgYAMC6devQp08fHD58GEOHDjVcciIiIiIiMrgOnYNQVlYGAPDy8gIApKWloa6uDrGxsWKf3r17o3Pnzjh06FCT26ipqYFGo9G7ERERERGRNNpdIOh0OsybNw/33HMP+vfvDwDIz8+Hg4MDPDw89Pqq1Wrk5+c3uZ2kpCS4u7uLt+Dg4PZGIiIiIiKiDmp3gTB37lycPn0amzZt6lCAxMRElJWVibcrV650aHtERERERNR+bToH4Zb4+Hh88803+OGHHxAUFCS2+/v7o7a2FqWlpXpHEQoKCuDv79/ktpRKJZRKZXtiEBEREVELtDodblbXoaK6DlW19ajValGv1UEnADIAcjsZHOzlcHKwh7PSHq6ODnCwl0sdmyTWpgJBEAQ8//zz2LZtG1JTUxEaGqq3PDIyEgqFAikpKZg4cSIAIDMzEzk5OYiOjjZcaiIiIiIC0PD5rLSyBleu38TVkgrkl1agSFOJG+XV0FTVQmjj9pwd7OGlcoSPqxP83V0Q4OmCYC8V1O4usLOTGWUfyLy0qUCYO3cuNm7ciK+++gqurq7ieQXu7u5wcnKCu7s7Zs2ahQULFsDLywtubm54/vnnER0dzRmMLJwppyU1NGNk59SpREQkFUEQcK20ApnXbuB8fikuFpZBU1VrsO1X1taj8kY5cm+UAygS25X2coT4uqG72gO9Aj0R6usOezmvuWuN2vSqvv/++ygrK8PIkSMREBAg3jZv3iz2WblyJf785z9j4sSJuPfee+Hv74+tW7caPDgREZE1Wr16NUJCQuDo6IioqCgcPXq02b4ffvghhg8fDk9PT3h6eiI2NrZR/xkzZkAmk+ndRo8ebezdIAPT6nQ4k3sdGw+ew8ubD+L1bUew5ch5ZFwuMmhx0JKaei0y80qwIyMbb397Agkbf8B/Uk7iyIU8VNbUmSQDmUabhxjdiaOjI1avXo3Vq1e3OxQREZEt2rx5MxYsWIA1a9YgKioKq1atQlxcHDIzM+Hn59eof2pqKh577DHcfffdcHR0xFtvvYX7778fv/zyCzp16iT2Gz16NNatWyfe57l/lkEQBFwq0uDQhTycyC5ARU291JH0VNdpkXG5CBmXi2BvJ0O/IB8M7e6P/sE+PLJg4dp1kjIREREZ3ttvv43Zs2fjqaeeAgCsWbMGO3bswEcffYSXXnqpUf8NGzbo3f/vf/+LL7/8EikpKZg2bZrYrlQqm50shMxPdV09jlzIxw/ncnGtpELqOK1SrxPwc04Rfs4pgqujAnf3DMS9vYPgpXKUOppBaAUt0svTUVxXDB+FDyJUEZDLrPdkbhYIREREZqC2thZpaWlITEwU2+zs7BAbG9vsxUZvV1lZibq6OvECprekpqbCz88Pnp6eiImJweuvvw5vb+9mt1NTU4OamhrxPi9iahqaqlrs++UK9p/LRVWteR0taIub1XXYdfIydp/KQWSoH+LCQtDJSyV1rHbbW7IXybnJKKwrFNv8FH5ICEpAjGeMhMmMhwUCERGRGSguLoZWq4VardZrV6vVOHfuXKu28eKLLyIwMBCxsbFi2+jRozFhwgSEhoYiKysLL7/8MsaMGYNDhw5BLm/6G9CkpCQsXbq0/TtDbVJeXYtdJy9j/9lc1Gl1UscxGJ0g4NjFAhy7WIDwLr7486Cu6ORpWYXC3pK9SMhOaNReWFeIhOwEJCPZKosEFgg2yJJnJDIX7XkOOfMRERnTm2++iU2bNiE1NRWOjr8P65gyZYr4/wEDBiAsLAzdunVDamoqRo0a1eS2EhMTsWDBAvG+RqNBcHCw8cLbqNp6LVJ+uYLvT15CdZ1W6jhGlXG5CD9fLsLQHgF4KLIbPJzN/zwYraBFcm5yi31W5K7ACI8RVjfciAUCERGRGfDx8YFcLkdBQYFee0sXG71lxYoVePPNN7Fnzx6EhYW12Ldr167w8fHBhQsXmi0QeBFT4/v5chG2HPkV18urpY5iMgKAQ+fzcCK7EGMGhmBU/85mfTJzenm63rCiphTUFSC9PB2DXQebKJVpmO+rQkREZEMcHBwQGRmJlJQUsU2n0yElJaXFi40uX74cr732Gnbu3InBg+/8ISU3NxfXr19HQECAQXJT25RWVGPNnp+xJuWkTRUHf1RTr8X2tCz831dHcbGwTOo4zSquKzZoP0vCAoGIiMhMLFiwAB9++CE+/vhjnD17Fs8++ywqKirEWY2mTZumdxLzW2+9hVdeeQUfffQRQkJCkJ+fj/z8fJSXlwMAysvLkZCQgMOHD+PSpUtISUnBuHHj0L17d8TFxUmyj7ZKEAQcuZCHZduO4Occ6/tA2R55pRVY8c1xfHn0POrqzW+IlY/Cx6D9LAmHGBEREZmJyZMno6ioCIsXL0Z+fj7Cw8Oxc+dO8cTlnJwc2Nn9/t3e+++/j9raWjzyyCN621myZAleffVVyOVynDx5Eh9//DFKS0sRGBiI+++/H6+99hqHEJlQVW09Nhw8i7Tsloer2CIBwJ7TOTh79QZmjeyHADM6iTlCFQE/hV+Lw4zUCjUiVBEmTGUaLBCIiIjMSHx8POLj45tclpqaqnf/0qVLLW7LyckJu3btMlAyao8r12/ig72nUHyzSuooZu1qSTmSvj6GJ+7pjaju5jH8TS6TIyEooclZjABABhkWBi20uhOUAQ4xIiIiIjKKIxfykPzNcRYHrVSn1WH9D2ew+XAmtDrzmO41xjMGyaHJ8FPoX8lcrVBjeehyq5ziFOARBKvFqUzNT0uvCadAJSKyHjpBwP9Lu4idJy9JHcUipZ7JRUFpJWbHDICTg/QfVWM8YzDCYwSvpExEREREbVev1eGTH8/g2MWCO3emZp29dgMrdhzH8/eHw8PF8c4rGJlcJre6qUxbwiFGRERERAZQW6/F+3tOsjgwkGslFUj+Jg2FZZVSR7E5LBCIiIiIOqimTot/f5+BM1evSx3FqtyoqMY/v01DfmmF1FFsCgsEIiIiog6orddi9e4MnM8vlTqKVdJU1WLldydQwCMJJsMCgYiIiKidtDodPth7isWBkWmqavHOzhO4YaNXnzY1FghERERE7SAIAj798Sx+yeWwIlMoqajBv75PR0VNndRRrB5nMbJgnMrUenAKVCIiy/NNejaOZOVLHcOm5JdW4oOUk3g+LgL2cn7PbSx8ZomIiIja6PjFAnybkS11DJv0a34pNh/KlDqGVWOBQERERNQGV2+U49MDZ6SOYdMO/HoNP567KnUMq8UCgYiIiKiVquvq8cHeU6it10kdxeZ9fjgTV67flDqGVWKBQERERNRKmw5lolDD6TbNQb1OwH/3nUZ1Xb3UUawOCwQiIiKiVkjLLsCRCzwp2ZwUaiqx9egFqWNYHRYIRERERHegqarF/37iibHm6MfMqzjLK1gbFKc5NXOcypSa+xng9KdERKaz5civnH/fjG04eA6vPDwUSoVc6ihWgUcQiIiIiFpw9up1HL9YIHUMasH18mpOO2tALBCIiIiImqHV6fD54V+ljkGtkPJLDgrKeAK5IbBAICIiImrGD+euIp8fOi2CVidg67HzUsewCiwQiIiIiJpQVVvPYSsW5mROMc7nl0gdw+KxQCAiIiJqwr4zV1BezROTLc3/O3ERgiBIHcOisUAgIiIiuk1VbT32nM6ROga1w/n8UvzKowgdwgKBiIiI6DY/nMtFVS2v0Gupdv18WeoIFo0FAhEREdEf1Gt12HcmV+oY1AFnr91A7vWbUsewWCwQiIiIiP7gxKVClFXWSB2DOmjfmStSR7BYLBCIiIiI/uCHczx6YA2OXSxAJa9+3S4sEIiIiIh+k19WgayCMqljkAHUaXU4xitgt4u91AGIiIgsRXZ2Nn788UdcvnwZlZWV8PX1RUREBKKjo+Ho6Ch1PDKAw+fzpI5ABnT4fB5G9AmSOobFYYFgJnZdy5A6AlmYln5m4gLDTZaDyBZs2LAB77zzDo4fPw61Wo3AwEA4OTnhxo0byMrKgqOjI5544gm8+OKL6NKli9RxqZ0EQcBxfuNsVS4Va1CoqYSfm7PUUSwKCwQiIqIWREREwMHBATNmzMCXX36J4OBgveU1NTU4dOgQNm3ahMGDB+O9997DpEmTJEpLHXG5+Caul1dLHYMM7ER2IUYPDGmxj1bQIr08HcV1xfBR+CBCFQG5TG6agGaIBQIREVEL3nzzTcTFxTW7XKlUYuTIkRg5ciTeeOMNXLp0yXThyKAyLhdKHYGM4OfLRS0WCHtL9iI5NxmFdb+//n4KPyQEJSDGM8YECc0PT1ImIiJqQUvFwe28vb0RGRlpxDRkTKevXJc6AhnBpWINNFVNT1u7t2QvErIT9IoDACisK0RCdgL2luw1RUSzwyMIREREbVRYWIjCwkLodDq99rCwMIkSUUeVVdbgakm51DHISM5evYGo7gF6bVpBi+Tc5BbXW5G7AiM8RtjccCMWCERERK2UlpaG6dOn4+zZsxAEAQAgk8kgCAJkMhm0Wq3ECam9MvNKpI5ARpSZV9KoQEgvT2905OB2BXUFSC9Px2DXwcaMZ3ZYIBAREbXSzJkz0bNnT6xduxZqtRoymUzqSGQg5/NZIFizC/mljdqK64pbtW5r+1kTFghEREStdPHiRXz55Zfo3r271FHIwLILNVJHICMqulkFTVUt3JwcxDYfhU+r1m1tP2vCk5SJiIhaadSoUfj555+ljkEGVluvxbVSnn9g7S4X6xeBEaoI+Cn8WlxHrVAjQhVhzFhmiUcQiIiIWum///0vpk+fjtOnT6N///5QKBR6yx966CGJklFHXL1Rjt9OKSErlnv9JgYE/340QC6TIyEoAQnZCU32l0GGhUELbe4EZYAFAhERUasdOnQIBw8exHfffddoGU9Stlycvcg2XCupaNQW4xmDZCQ3ug6CWqHGwqCFNnsdBBYIRERErfT8889j6tSpeOWVV6BWq6WOQwZSUFYpdQQygfyyxgUC0FAkjPAYwSsp/wELBCIiola6fv065s+fz+LAyhRpqqSOQCZQpKkSpyS+nVwmt7mpTFvCk5SJiIhaacKECdi3b5/UMcjAblRUSx2BTKCmXovK2nqpY1gEHkEgIiJqpZ49eyIxMREHDhzAgAEDGp2k/Ne//lWiZNQRJSwQbEZJRTVclIo7d7RxLBCIiIha6b///S9UKhX279+P/fv36y2TyWQsECyQTiegorpO6hhkIjeraqWOYBE4xIiIiKiVsrOzm71dvHjRII+xevVqhISEwNHREVFRUTh69GiL/bds2YLevXvD0dERAwYMwLfffqu3XBAELF68GAEBAXByckJsbCzOnz9vkKzWoLK2Dpzh1HaU17AYbA0WCERERB2Ul5eH5cuXd3g7mzdvxoIFC7BkyRKcOHECAwcORFxcHAoLC5vs/9NPP+Gxxx7DrFmzkJ6ejvHjx2P8+PE4ffq02Gf58uV49913sWbNGhw5cgQuLi6Ii4tDdTWH1QBAVS2nprUl1Xy9W4VDjIiIiFpp5syZTbZfvnwZR48exQsvvNCh7b/99tuYPXs2nnrqKQDAmjVrsGPHDnz00Ud46aWXGvV/5513MHr0aCQkNFzo6bXXXsPu3bvx73//G2vWrIEgCFi1ahUWLVqEcePGAQA++eQTqNVqbN++HVOmTOlQXmtQW88PjLakltcqaZU2HUF4//33ERYWBjc3N7i5uSE6OlrvYjHV1dWYO3cuvL29oVKpMHHiRBQUFBg8NBERkRRKSkr0bsXFxTh69ChSU1OxYsWKDm27trYWaWlpiI2NFdvs7OwQGxuLQ4cONbnOoUOH9PoDQFxcnNg/Ozsb+fn5en3c3d0RFRXV7DZtTb1OJ3UEMqF6LV/v1mjTEYSgoCC8+eab6NGjBwRBwMcff4xx48YhPT0d/fr1w/z587Fjxw5s2bIF7u7uiI+Px4QJE3Dw4EFj5SciIjKZbdu2Ndn+xhtvYPv27Xj66afbve3i4mJotdpG11hQq9U4d+5ck+vk5+c32T8/P19cfqutuT5NqampQU1NjXhfo9G0fkcsjMATEGwKX+/WadMRhAcffBAPPPAAevTogZ49e+KNN96ASqXC4cOHUVZWhrVr1+Ltt99GTEwMIiMjsW7dOvz00084fPiwsfITERFJ7rHHHkNqaqrUMQwmKSkJ7u7u4i04OFjqSEbTxDWzyIrx9W6ddp+krNVqsWnTJlRUVCA6OhppaWmoq6vTO4zZu3dvdO7cmYcxiYjIqv3888+IiIjo0DZ8fHwgl8sbDc0tKCiAv79/k+v4+/u32P/Wv23ZJgAkJiairKxMvF25cqXN+2Mp7O04X4st4evdOm0+SfnUqVOIjo5GdXU1VCoVtm3bhr59+yIjIwMODg7w8PDQ68/DmEREZC0WLFjQqK2goABfffUVxo4dq7f87bffbtO2HRwcEBkZiZSUFIwfPx4AoNPpkJKSgvj4+CbXiY6ORkpKCubNmye27d69G9HR0QCA0NBQ+Pv7IyUlBeHh4QAa3mePHDmCZ599ttksSqUSSqWyTfktlYM9PzDaEr7erdPmAqFXr17IyMhAWVkZvvjiC0yfPr3RxWLaIikpCUuXLm33+kRERKaSnp7eZPuQIUNQWFgoTkcqa+c4hgULFmD69OkYPHgw7rrrLqxatQoVFRXirEbTpk1Dp06dkJSUBAD429/+hhEjRuCf//wnxo4di02bNuH48eP44IMPxBzz5s3D66+/jh49eiA0NBSvvPIKAgMDxSLE1jkqOKGjLXF04OvdGm1+lhwcHNC9e3cAQGRkJI4dO4Z33nkHkydPRm1tLUpLS/WOIrTmMOYfv3HRaDRWPdaRiIgs1759+4y6/cmTJ6OoqAiLFy9Gfn4+wsPDsXPnTvEk45ycHNj9YYjE3XffjY0bN2LRokV4+eWX0aNHD2zfvh39+/cX+7zwwguoqKjAnDlzUFpaimHDhmHnzp1wdHQ06r5YCmclPzDaEhelQuoIFqHDvxU6nQ41NTWIjIyEQqFASkoKJk6cCADIzMxETk6OeKizKbZ0GJOIiOhO4uPjmx1S1NSJ0JMmTcKkSZOa3Z5MJsOyZcuwbNkyQ0W0KnI7O6gcFSiv5hV2bYGbo4PUESxCmwqExMREjBkzBp07d8bNmzexceNGpKamYteuXXB3d8esWbOwYMECeHl5wc3NDc8//zyio6MxdOhQY+UnIiIyqtGjR+PVV1+943vZzZs38d5770GlUmHu3LkmSkeG4OGsZIFgIzxc+KV0a7SpQCgsLMS0adOQl5cHd3d3hIWFYdeuXfjTn/4EAFi5ciXs7OwwceJE1NTUIC4uDu+9955RghMREZnCpEmTMHHiRLi7u+PBBx/E4MGDERgYCEdHR5SUlODMmTM4cOAAvv32W4wdOxbJyclSR6Y28lI5IvdGudQxyMgc7O04xKiV2lQgrF27tsXljo6OWL16NVavXt2hUEREROZi1qxZmDp1KrZs2YLNmzfjgw8+QFlZGYCG4Tt9+/ZFXFwcjh07hj59+kicltrD19VJ6ghkAr6uzu2eQMDW8MwcIiKiO1AqlZg6dSqmTp0KACgrK0NVVRW8vb2hUPAbSUundneROgKZgNrdWeoIFoMFAhERURvdusIwWYdATxYItoCvc+vxahFERERk0zp5qcCBJ9Yv2NtV6ggWgwUCERER2TRHhT38PfjtsrXr4uMmdQSLwQKBiIiIbF6oH4eMWTMvlSPcnTnFaWuxQCAiIiKb10PtIXUEMiK+vm3DAoGIiKiVpk+fjh9++EHqGGQEvQI9pY5ARsTXt21YIBAREbVSWVkZYmNj0aNHD/zf//0frl69KnUkMhBPF0cE8DwEq9Wnk7fUESwKCwQiIqJW2r59O65evYpnn30WmzdvRkhICMaMGYMvvvgCdXV1UsejDuofzA+R1ijY2xUePP+gTVggEBERtYGvry8WLFiAn3/+GUeOHEH37t3x5JNPIjAwEPPnz8f58+eljkjtNLCzr9QRyAjCu/B1bSsWCERERO2Ql5eH3bt3Y/fu3ZDL5XjggQdw6tQp9O3bFytXrpQ6HrVDqJ87PF34TbO1GRTiJ3UEi8MrKZuJuMDwJtt3XcswaQ6yHM39zBCR8dTV1eHrr7/GunXr8P333yMsLAzz5s3D448/Dje3hjnWt23bhpkzZ2L+/PkSp6W2spPJEBmqxp7TOVJHIQMJ8lLxGhftwAKBiIiolQICAqDT6fDYY4/h6NGjCA8Pb9Tnvvvug4eHh8mzkWEM7RHAAsGKDO0RIHUEi8QCgYiIqJVWrlyJSZMmwdHRsdk+Hh4eyM7ONmEqMqROniqE+LrhUpFG6ijUQfZ2MkR185c6hkXiOQhERESt9OSTT7ZYHJB1uLd3kNQRyAAGhaqhcnSQOoZFYoFARERE9AeDQ/3g6qiQOgZ10H19g6WOYLFYIBARERH9gcJejpH8cGnRevh7IMTXTeoYFosFAhEREdFtRvQJgtJeLnUMaqe4sBCpI1g0FghEREREt3FRKjhExUKF+LqhbycvqWNYNBYIRERERE2IHdAZTg6c8NHSPDSoG2QymdQxLBoLBCIiIqImuCgVGD0wROoY1AZ9OnmhD48edBgLBCIiIqJm3NcnCD6uTlLHoFawk8kw8a4eUsewCiwQiIiIiJqhsJdjUhQ/dFqCEX06oZOnSuoYVoEFAhEREVELwjr7YmBnX6ljUAvcnZV4cFA3qWNYDZ55Y+biAsObXbbrWobJcpB0WvoZICIi05gS3RO/5pegqrZe6ijUhMfu7sUTyg2IRxCIiIiI7sDDxRGPRvWUOgY1IaqbP4/wGBgLBCIiIqJWiOruj0EhflLHoD/wUjlicnQvqWNYHRYIRERERK0gk8nw+D294aVylDoKoWHWolkj+3NokRGwQCAiIiJqJRelArPvGwB7O16IS2oThnRHVz93qWNYJRYIRERERG0Q4uuGx+7uLXUMmzakqxox/YKljmG1WCAQERERtdHdPQMxql9nqWPYpBBfN0wd1gcyGY/iGAsHbVkwToFqPTiVKRGR5ZkwpDuul1ch43KR1FFsho+rE56NDYODvVzqKFaNRxCIiIiI2sHOToaZI/qhh7+H1FFsgpuTA56PC4ebk1LqKFaPBQIRERFROyns5Xg2diBCfNykjmLVXJT2+GtcBPzcnKWOYhNYIBARERF1gJODPZ6PC0cXFglG4aK0x99GD0InL5XUUWwGCwQiIiKiDnJWKvC30RHorvaQOopVcXNywPwxkQj2dpU6ik1hgUBERERkALeOJIR19pE6ilXwdXPCwrGDeeRAAiwQiIiIiAzEwV6OOTEDMLJPUKNlAnTQqLJw3SMdGlUWBOgkSGgZuvq5I2HsYPi6OUkdxSZxmlMrxSlQzQ+nMiUisg1yOztMju4Ffw8XfH74V+gEATfcTyGn09eodSgT+znUuqPz1YfgVTZAwrTmZ2j3ADx+dy8oOJWpZHgEgYiIiMgIRvQJwoIHBqHa7xwuhHyKWkWZ3vJaRRkuhHyKG+6nJEpoXuR2Mkwe2hPThvdhcSAxHkEgIiIiMpIQP1fkdf4GqANw+4V/ZQAEIKfT1/As6weZDX9v6+vmhFkj+3MmKDNhuz+JREREZkQQBCxevBgBAQFwcnJCbGwszp8/3+I6SUlJGDJkCFxdXeHn54fx48cjMzNTr8/IkSMhk8n0bs8884wxd4X+IL08HUX1hY2Lg1tkQK1DGW6qsk2ay5wM6xWIl8fdxeLAjLBAICIiMgPLly/Hu+++izVr1uDIkSNwcXFBXFwcqqurm11n//79mDt3Lg4fPozdu3ejrq4O999/PyoqKvT6zZ49G3l5eeJt+fLlxt4d+k1xXXGr+tXZa4ycxPx4qxzx17hwPHFPHzgqOKjFnPDVICIikpggCFi1ahUWLVqEcePGAQA++eQTqNVqbN++HVOmTGlyvZ07d+rdX79+Pfz8/JCWloZ7771XbHd2doa/v7/xdoCa5aNo3ZSninrb+fbc3k6GUf0744HwUDjwXAOzxALBBrVnNh3OfKSPMxIRkSFlZ2cjPz8fsbGxYpu7uzuioqJw6NChZguE25WVNZwE6+Xlpde+YcMGfPbZZ/D398eDDz6IV155Bc7OzobbAWpWhCoCfgo/FNYVNt1BABzqPOBaHmraYBIJ7+KLCUO6w9eNP3/mjAUCERGRxPLz8wEAarVar12tVovL7kSn02HevHm455570L9/f7H98ccfR5cuXRAYGIiTJ0/ixRdfRGZmJrZu3drstmpqalBTUyPe12hsb/iLochlciQEJSAhO6HJ5TKZDIkhCbipDcJPv+ZBJwgmTmgavQO98OCgrujq5y51FGoFFghEREQmtmHDBjz99NPi/R07dnR4m3PnzsXp06dx4MABvfY5c+aI/x8wYAACAgIwatQoZGVloVu3bk1uKykpCUuXLu1wJmoQ4xmDZCQjOTdZ70iCWqHGwqCFiPGMAfyB0QNDsOdUDg7+eg11Wuu4iNqAYB/EhXVBN7WH1FGoDVggEBERmdhDDz2EqKgo8f6tb+sLCgoQEBAgthcUFCA8PPyO24uPj8c333yDH374AUFBja/g+0e3HvfChQvNFgiJiYlYsGCBeF+j0SA4OPiOOah5MZ4xGOExAunl6SiuK4aPwgcRqgjIZb+PwfdWOWFydC/8eVBXHMi8ih/PXcX18uZPUjdXjgo5oroHYGTfIPi7u0gdh9qBBQIREZGJubq6wtXVVbwvCAL8/f2RkpIiFgQajQZHjhzBs88+2+x2BEHA888/j23btiE1NRWhoXcex56RkQEAeoXI7ZRKJZRKZet2hlpNLpNjsOvgO/ZzUSoQFxaCPw3ognPXbuDw+Tz8nFOE2nrzPaogA9AzwBNR3QMwKMQPSgVPPrZkLBCIiIgkJpPJMG/ePLz++uvo0aMHQkND8corryAwMBDjx48X+40aNQoPP/ww4uPjATQMK9q4cSO++uoruLq6iucruLu7w8nJCVlZWdi4cSMeeOABeHt74+TJk5g/fz7uvfdehIWFSbGr1AStoG3yyIKdTIa+nbzRt5M3auq0OJ1bjIzLRfgl9zqqauuljg25nQw9/D0xsLMPIkL84O7MotJasEAgIiIyAy+88AIqKiowZ84clJaWYtiwYdi5cyccHR3FPllZWSgu/n1e/ffffx9Aw8XQ/mjdunWYMWMGHBwcsGfPHqxatQoVFRUIDg7GxIkTsWjRIpPsE93Z3pK9jc5N8FP4ISEooeHchN8oFXJEhqoRGaqGVqfDpSINMvNKcD6/FNmFZaip1xo9q51MhmBvFbqrPdArwAs9Ajx4/QIrxVeVWsXQ03qactpUTklKRJZAJpNh2bJlWLZsWbN9Ll26pHdfuMOMN8HBwdi/f78h4pER7C3Z2+TsRoV1hUjITkAykvWKhFvkdnbopvYQT/zV6QQUlFXgyo1yXL1RjoKyChRqqnCjvLpdhYPcTgZPF0f4uDrB390ZgZ4u6OTliiAvFa9bYCNYIBARERGZmFbQIjk3ucU+K3JXYITHCL0TmZtiZydDgKcKAZ4q4A/nnQuCgKraemiqalFRU4eq2nrU1Guh1QnQ6QTIZA3FhoO9HRwV9nBRKuDqpIDK0QF2MpkhdpMsFAsEIiIiIhNLL09v/uJpvymoK0B6eXqrTmxuikwmg7NSAWelol3rk+2ykzoAERERka0priu+c6c29CMyJBYIRERERCbmo/AxaD8iQ2KBQERERGRiEaoI+Cn8WuyjVqgRoYowUSKi33WoQHjzzTfFuZtvqa6uxty5c+Ht7Q2VSoWJEyeioKCgozmJiIiIrIZcJkdCUOMZjG6RQYaFQQvveIIykTG0+yTlY8eO4T//+U+jC63Mnz8fO3bswJYtW+Du7o74+HhMmDABBw8e7HBYsh6cepSIiGxdjGcMkpHc6DoIaoUaC4MWNjnFKZEptKtAKC8vxxNPPIEPP/wQr7/+utheVlaGtWvXYuPGjYiJafihXrduHfr06YPDhw9j6NChhklNREREZAViPGMwwmNEk1dSJpJKu4YYzZ07F2PHjkVsbKxee1paGurq6vTae/fujc6dO+PQoUNNbqumpgYajUbvRkRERGQr5DI5BrsOxmiv0RjsOpjFAUmuzUcQNm3ahBMnTuDYsWONluXn58PBwQEeHh567Wq1Gvn5+U1uLykpCUuXLm1rDCIiIiIyNZ0WKPoRqMoDnAIA3+GAHQsaa9OmAuHKlSv429/+ht27d8PR0dEgARITE7FgwQLxvkajQXBwsEG2TUREREQGcmUrkPY3oDL39zbnICDyHSB4gnS5yODaNMQoLS0NhYWFGDRoEOzt7WFvb4/9+/fj3Xffhb29PdRqNWpra1FaWqq3XkFBAfz9/ZvcplKphJubm96NiIiIiMzIla3Aj4/oFwcAUHm1of3KVmlykVG0qUAYNWoUTp06hYyMDPE2ePBgPPHEE+L/FQoFUlJSxHUyMzORk5OD6Ohog4cnIiIiIiPTaRuOHEBoYuFvbWnzGvqRVWjTECNXV1f0799fr83FxQXe3t5i+6xZs7BgwQJ4eXnBzc0Nzz//PKKjozmDEREREZElKvqx8ZEDPQJQeaWhn3qkqVKREbX7OgjNWblyJezs7DBx4kTU1NQgLi4O7733nqEfhoiIiIhMoSrPsP3I7HW4QEhNTdW77+joiNWrV2P16tUd3TQRERERSc0pwLD9yOy16zoIRERERGQjfIc3zFYEWTMdZIBzcEM/sgosEIiIiIioeXbyhqlMATQuEn67H7mK10OwIiwQiIiIiKhlwROA4V8Azp30252DGtp5HQSrYvCTlImIiIjICgVPADqN45WUbQALBCIiIiJqHTs5pzK1ARxiREREREREIhYIREREREQkYoFAREREREQiFghERERERCRigUBERERERCIWCEREREREJGKBQEREREREIhYIREREREQkYoFAREREREQiXkmZiIiIyIS0ghbp5ekoriuGj8IHEaoIyGVyqWMRiVggEBEREZnI3pK9SM5NRmFdodjmp/BDQlACYjxjJExG9DsOMSIiIiIygb0le5GQnaBXHABAYV0hErITsLdkr0TJiPSxQCAiIiIyMq2gRXJucot9VuSugFbQmigRUfNYIBAREREZWXp5eqMjB7crqCtAenm6iRIRNY8FAhEREZGRFdcVG7QfkTGxQCAiIiIyMh+Fj0H7ERkTCwQiIiIiI4tQRcBP4ddiH7VCjQhVhIkSETWPBQIRERGRkcllciQEJTS7XAYZFgYt5PUQyCywQCAiIiIygRjPGCSHJjc6kqBWqLE8dDmvg0BmgxdKIyIiIjKRGM8YjPAYwSspk1ljgUBERERkQnKZHINdB0sdg6hZHGJEREREREQiFghERERERCRigUBERGQGBEHA4sWLERAQACcnJ8TGxuL8+fMtrvPqq69CJpPp3Xr37q3Xp7q6GnPnzoW3tzdUKhUmTpyIgoICY+4KEVk4FghERERmYPny5Xj33XexZs0aHDlyBC4uLoiLi0N1dXWL6/Xr1w95eXni7cCBA3rL58+fj//3//4ftmzZgv379+PatWuYMGGCMXeFiCwcT1ImIiKSmCAIWLVqFRYtWoRx48YBAD755BOo1Wps374dU6ZMaXZde3t7+Pv7N7msrKwMa9euxcaNGxET0zCF5rp169CnTx8cPnwYQ4cONfzOEJHF4xEEIiIiiWVnZyM/Px+xsbFim7u7O6KionDo0KEW1z1//jwCAwPRtWtXPPHEE8jJyRGXpaWloa6uTm+7vXv3RufOne+4XSKyXTyCQEREJLH8/HwAgFqt1mtXq9XisqZERUVh/fr16NWrF/Ly8rB06VIMHz4cp0+fhqurK/Lz8+Hg4AAPD482bbempgY1NTXifY1G0469IiJLxSMIREREJrZhwwaoVCrxVldX167tjBkzBpMmTUJYWBji4uLw7bfforS0FJ9//nmH8iUlJcHd3V28BQcHd2h7RGRZWCAQERGZ2EMPPYSMjAzx5uPjAwCNZhcqKCho9vyCpnh4eKBnz564cOECAMDf3x+1tbUoLS1t03YTExNRVlYm3q5cudLqDERk+VggEBERmZirqyu6d+8u3vr27Qt/f3+kpKSIfTQaDY4cOYLo6OhWb7e8vBxZWVkICAgAAERGRkKhUOhtNzMzEzk5OS1uV6lUws3NTe9GRLaDBQIREZHEZDIZ5s2bh9dffx1ff/01Tp06hWnTpiEwMBDjx48X+40aNQr//ve/xfsLFy7E/v37cenSJfz00094+OGHIZfL8dhjjwFoONF51qxZWLBgAfbt24e0tDQ89dRTiI6O5gxGRNQsnqRMRERkBl544QVUVFRgzpw5KC0txbBhw7Bz5044OjqKfbKyslBcXCzez83NxWOPPYbr16/D19cXw4YNw+HDh+Hr6yv2WblyJezs7DBx4kTU1NQgLi4O7733nkn3jYgsCwsEIiIiMyCTybBs2TIsW7as2T6XLl3Su79p06Y7btfR0RGrV6/G6tWrOxqRiGwEhxgREREREZGIBQIREREREYlYIBARERERkYgFAhERERERiVggEBERERGRiAUCERERERGJWCAQEREREZGIBQIREREREYlYIBARERERkYgFAhERERERiVggEBERERGRiAUCERERERGJWCAQERFRh9TVa6ETBKljEFktQRBQp9Whtl5rksezN8mjEBERkdVK3pEG39MaKOR2cHawh8rRAW5ODvBwUcLH1Qm+bk4IcHeB2sMFCjm/myT6I50goPhmFfJKK1BYVonim1UoqahBWWUNyqvrUFlbh5o6LQQARZfPmyQTCwQiIiIyiDqtDmVVtSirqsXVksbL7WQyBHq6IMTHDV3VHujp7wFvVyfTByXD0mmBoh+BqjzAKQDwHQ7YyaVOZbYqaupwIb8UFwpKcalIgyvXb6LGREcGWosFAhEREZmEThCQe6McuTfKceDXawAAH1cn9AvyxoBgH/QK8IQ9jzBYlitbgbS/AZW5v7c5BwGR7wDBE6TLZUYEQcCV6zdxMqcYp3OvI6dYA3MfkMcCgYiIiCRTfLMK+8/mYv/ZXDg52CO8iy+GdPVHrwBP2NnJpI5HLbmyFfjxEeD2j7uVVxvah39h00XCtZJyHLmQj7TsAlwvr5Y6Tpu0qUx/9dVXIZPJ9G69e/cWl1dXV2Pu3Lnw9vaGSqXCxIkTUVBQYPDQREREZH2qautx6Hwe3t2Vjle2/IQd6RdRVlkjdSxqik7bcOSgye/Cf2tLm9fQz4bU1mvx06/X8NbXx/DatiP4/tRliysOgHYcQejXrx/27Nnz+wbsf9/E/PnzsWPHDmzZsgXu7u6Ij4/HhAkTcPDgwTYH2/brKbi5tr5+iQsMb/NjEJH52XUto83raG7q4NnT8FmISDo3KqrxTXo2vs24hMFd1fhT/84I8naVOlaHaQUt0svTUVxXDB+FDyJUEZDLLHC8ftGP+sOKGhGAyisN/dQjTZVKMpqqGuw7k4sfz+WioqZe6jgd1uYCwd7eHv7+/o3ay8rKsHbtWmzcuBExMTEAgHXr1qFPnz44fPgwhg4d2vG0REREZFN0goCjWfk4mpWPAcE+GBsRii4+blLHape9JXuRnJuMwrpCsc1P4YeEoATEeMZImKwdqvIM289ClVXWYNfJSziQeQ11Wp3UcQymzWcCnT9/HoGBgejatSueeOIJ5OTkAADS0tJQV1eH2NhYsW/v3r3RuXNnHDp0yHCJiYiIyCadulKMN78+hg/3nkKhplLqOG2yt2QvErIT9IoDACisK0RCdgL2luyVKFk7OQUYtp+Fqaqtx/bjF/DKlp+w70yuVRUHQBuPIERFRWH9+vXo1asX8vLysHTpUgwfPhynT59Gfn4+HBwc4OHhobeOWq1Gfn5+s9usqalBTc3v4ws1Gk3b9oCIiIhsyolLhfg5pwj39Q3G2IhQOCrMe84VraBFcm5yi31W5K7ACI8RljPcyHd4w2xFlVfR9HkIsoblvsNNncyodIKAQ+fzsP34BZRX10kdx2ja9Bs1ZswY8f9hYWGIiopCly5d8Pnnn8PJqX3zGCclJWHp0qXtWpeIiIhsk1YnYM/pHBy7WIApQ3siPMRP6kjNSi9Pb3Tk4HYFdQVIL0/HYNfBJkrVQXbyhqlMf3wEgAz6RcJvs09FrrKq6yFcLSnHxoPncLGwTOooRtehyYY9PDzQs2dPXLhwAf7+/qitrUVpaalen4KCgibPWbglMTERZWVl4u3KlSsdiUREREQ2pKyyBv/Zewof7j2F8upaqeM0qbiu2KD9zEbwhIapTJ076bc7B1nVFKdanQ7fZmQj6aujNlEcAB28DkJ5eTmysrLw5JNPIjIyEgqFAikpKZg4cSIAIDMzEzk5OYiOjm52G0qlEkqlsiMxiIiIyMaduFSICwWlmDa8L/oFeUsdR4+Pwseg/cxK8ASg0zirvZJykaYSH6X+gkvFtjUEvk0FwsKFC/Hggw+iS5cuuHbtGpYsWQK5XI7HHnsM7u7umDVrFhYsWAAvLy+4ubnh+eefR3R0tElmMGrP1Ih3wqlTie7MGL97RETtoamqxb+/z8D9A7rgociukNuZx1WZI1QR8FP4tTjMSK1QI0IVYcJUBmQnt8qpTNMuFuCzg2dRXWdb13IA2lgg5Obm4rHHHsP169fh6+uLYcOG4fDhw/D19QUArFy5EnZ2dpg4cSJqamoQFxeH9957zyjBiYiIiJry/anLuFRUhr/cNwCuTg5Sx4FcJkdCUAISshOaXC6DDAuDFlrOCcpWTqvTYduxC0j5xXaHvbepQNi0aVOLyx0dHbF69WqsXr26Q6GIiIiIOuLX/FK8+f+O4bnYgejkpZI6DmI8Y5CM5EbXQVAr1FgYtNDyroNgpSpr6vDf1NM4e/WG1FEkZd7zghERERG1043yaqzYcRxPjwpD70AvqeMgxjMGIzxGWMeVlK3QjfJq/Pv7DOSVVkgdRXIsEIiIiMhqVddp8e/vM/DUiH6IDFVLHQdymdxypjK1IXmlFfjXrnSUVNTcubMNYIFAREREVk2rE7A29TRq63WI7mGdV/al9su9fhPv7Eq36guftRULBCIiIrJ6ggB8+uMZAGCRQKKrN8qxamc6KmpYHPwRC4QWtGf6Rk6NSpaMU5YSkTUTAHx64Awc7O3MYrgRSaugrBLv7DzB4qAJ5jFBMBEREZEJCAKwbv8vNj9Lja0rrazBu7vScZPDiprEAoGIiIhsilYn4IO9J3H1RrnUUUgC1XX1eG/3z7hRXi11FLPFAoGIiIhsTnWdFu/t+Rk3q2qljkImpBMErN//C65cvyl1FLPGAoGIiIhs0o3yany47xS0Op3UUchEvk3Pxs85xVLHMHssEIiIiMhmnc8vxddpF6WOYd10WqAgFbj0v4Z/dVpJYpzJvY5vM7IleWxLw1mMiIiIyKZ9f+oyegZ4ol+Qt9RRrM+VrUDa34DK3N/bnIOAyHeA4Akmi1FWWYN1P/wCwWSPaNlYIBhYS9NEcgpUMgecypSIqLFPfjyDReOj4OrkIHUU63FlK/DjI8DtH8srrza0D//CJEWCIAj45MczvBBaG3CIEREREdk8TVUtNh3KlDpG88xkmE6r6bQNRw6a/M7+t7a0eSbZjwOZV3GG09q2CY8gEBEREQE4cakQGZcKER7iJ3UUfWYyTKdNin7Uz9uIAFReaeinHmm0GCUV1dh67ILRtm+teASBiIiI6DebDv+K6rp6qWP87tYwnds/bN8apnNlqzS57qQqz7D92unzw7+ius7Mj7aYIRYIRERERL8pq6zBjnQzmenGjIbptJlTgGH7tcOZ3OvIuFxktO1bMxYIRERERH+w78wVFGoqpY7RtmE65sZ3eMMwKMia6SADnIMb+hmBVqfDlqO/GmXbtoAFggntupbR7I3IkPizRmR5BEHA4sWLERAQACcnJ8TGxuL8+fMtrhMSEgKZTNboNnfuXLHPyJEjGy1/5plnjL07Fk2rE/DV8SypY5jNMJ12sZM3nCMBoHGR8Nv9yFUN/Yzgp1+vIb/UDIo8C8UCgYiIyAwsX74c7777LtasWYMjR47AxcUFcXFxqK6ubnadY8eOIS8vT7zt3r0bADBp0iS9frNnz9brt3z5cqPuizU4cakQl4s10oYwg2E6HRI8oWEqU+dO+u3OQUad4rS2XosdGZeMsm1bwVmMiIiIJCYIAlatWoVFixZh3LhxAIBPPvkEarUa27dvx5QpU5pcz9fXV+/+m2++iW7dumHEiBF67c7OzvD39zdOeCu2Iz0bz/1poHQBbg3TqbyKps9DkDUsN9IwHYMIngB0GtcwDKoqr6GY8R1utCMHQMO0pmWVNUbbvi3gEQQiIiKJZWdnIz8/H7GxsWKbu7s7oqKicOjQoVZto7a2Fp999hlmzpwJmUx/SMeGDRvg4+OD/v37IzExEZWVLQ+9qKmpgUaj0bvZolNXipF746Z0ASQepmMwdvKGqUxDHmv414h567U67D6VY7Tt2woWCERERBLLz88HAKjVar12tVotLruT7du3o7S0FDNmzNBrf/zxx/HZZ59h3759SExMxKeffoqpU6e2uK2kpCS4u7uLt+Dg4NbvjJWR/MOmRMN0LNWxiwUo5dGDDuMQIyIiIhPbsGEDnn76afH+jh07OrzNtWvXYsyYMQgMDNRrnzNnjvj/AQMGICAgAKNGjUJWVha6devW5LYSExOxYMEC8b5Go7HZIiEtuwAThnSHu7NSuhASDNOxRIIgYO8vPHpgCCwQiIiITOyhhx5CVFSUeL+mpuEbz4KCAgQE/H7CaUFBAcLDw++4vcuXL2PPnj3YuvXOF8269bgXLlxotkBQKpVQKiX8QGxGtDoBBzKvYmxEV2mD3BqmQ826WFiG3BvlUsewCiwQzERz00/GBYabNAdZDk5ZSmS5XF1d4erqKt4XBAH+/v5ISUkRCwKNRoMjR47g2WefveP21q1bBz8/P4wdO/aOfTMyMgBArxChlv30ax7GDAyFnV1zc/pbAJ3W6o9AHPz1mtQRrAYLBCIiIonJZDLMmzcPr7/+Onr06IHQ0FC88sorCAwMxPjx48V+o0aNwsMPP4z4+HixTafTYd26dZg+fTrs7fXf1rOysrBx40Y88MAD8Pb2xsmTJzF//nzce++9CAsLM9XuWbwbFdXIzCtBn05eUkdpnytbG67I/MeLrjkHNZwAbSXnMFTX1SMtu0DqGFaDBQIREZEZeOGFF1BRUYE5c+agtLQUw4YNw86dO+Ho6Cj2ycrKQnFxsd56e/bsQU5ODmbOnNlomw4ODtizZw9WrVqFiooKBAcHY+LEiVi0aJHR98faHLuYb5kFwpWtwI+PoNE0qZVXG9qt5ETnkznFqK3XSR3DarBAICIiMgMymQzLli3DsmXLmu1z6dKlRm33338/BKGpOfKB4OBg7N+/31ARbVrG5SI8frcO9vKWJ4DUClqkl6ejuK4YPgofRKgiIJdJNJRHp204ctDkNRQEADIgbV7DCdAWPtzo+EUePTAkFghEREREd1BVW4/MvBL0C/Juts/ekr1Izk1GYV2h2Oan8ENCUAJiPGNMEVNf0Y/6w4oaEYDKKw39LPgE6Oq6epy9dkPqGFaF10EgIiIiaoVTV4qbXba3ZC8SshP0igMAKKwrREJ2AvaW7DV2vMaq8gzbz0ydu1aCei2HFxkSCwQiIiKiVjiTe73Jdq2gRXJucovrrshdAa2gNUas5jm1cqaq1vYzU829LtR+LBCIiIiIWqHoZhWu36xq1J5ent7oyMHtCuoKkF6ebqxoTfMd3jBbEZqbnlUGOAc39LNg5zi8yOBYIBARERG10q/5pY3aiuuaH3rUnn4GYydvmMoUQOMi4bf7kass+gTlkopqFDVRtFHHsEAgIiIiaqWLhaWN2nwUPq1at7X9DCp4QsNUps6d9Nudg6xiitOLBWVSR7BKnMWIiIiIqJUuFWkatUWoIuCn8GtxmJFaoUaEKsKY0ZoXPKFhKlMrvJLypeLGrwd1HI8gEBEREbXStZIK1N02Y45cJkdCUEKz68ggw8KghdJdDwFoKAbUI4GQxxr+tYLiAAByrt+UOoJVYoFARERE1Eo6QUBBaUWj9hjPGCSHJsNP4afXrlaosTx0uTTXQbBygiDgWkm51DGsEocYEREREbVBXlkFgrxdG7XHeMZghMcI87mSspUrr65DeXWd1DGsEgsEM7frWkazy+ICw02Wg6TT0s8AERGZXpGm+Vlz5DI5BrsONmEa28XZi4yHQ4yIiIiI2qCpayGQ6RXzdTAaFghEREREbVBSUSN1BAJQytfBaFggEBEREbWBpqpW6ggEQFPFAsFYWCAQERERtUF5DU+MNQc8Qdl4WCAQERERtUFVLT+YmoPK2nqpI1gtFghEREREbVBbr4NOEKSOYfNq67VSR7BaLBCIiIiI2kh729WUyfRuv6I1GQ6vg0BEREStknUjq8n78vJC2Jc5SxFJMidOnIDCnhdAk1JV/iXY36yUOoZJycsLATT/u2goMkEwr2NkGo0G7u7uKPm1K9xceYCjJbxQmm3ghdLuTHNTB8+eF1FWVgY3Nzep4xBZHY1GA08PT+iExt/Y2snsmmwnIuNo6XfOUO+DPIJAREREd6QTdNi/fz9UKpXYdvbsWUydOhUrRr+Fbl7dJExHZBuybmRh4c4X8dlnn6FPnz5ie3l5OUaMGGGwx2GBQERERK0SHh7e5LeT3by6oZ9fXwkSEdmmPn36YNCgQeJ9jUZj0O1zDA8REREREYlYIBARERERkYgFAhERERERiVggEBERERGRiAUCERERERGJWCAQEREREZGIBQIREREREYnM7joIty7srCnnVRnvpF6okzoCmYDmJn8X7uTW3wszuzA8kdUQ35tvm2u9vLwcQMPFm4jI+G79rpWXl+v9Pt76v6HeB2WCmb2j5ubmIjg4WOoYRGSBrly5gqCgIKljEFkdvjcTWQZDvQ+aXYGg0+lw7do1uLq6QiaTQaPRIDg4GFeuXGny6o22hM+FPj4fv7P150IQBNy8eROBgYGws+PISSJDu/29+RZr/ttjzfsGWPf+2eK+Gfp90OyGGNnZ2TVZ+bi5uVndi9xefC708fn4nS0/F+7u7lJHILJazb0332LNf3used8A694/W9s3Q74P8qs2IiIiIiISsUAgIiIiIiKR2RcISqUSS5YsgVKplDqK5Phc6OPz8Ts+F0QkBWv+22PN+wZY9/5x3zrO7E5SJiIiIiIi6Zj9EQQiIiIiIjIdFghERERERCRigUBERERERCKzLhBWr16NkJAQODo6IioqCkePHpU6kkn88MMPePDBBxEYGAiZTIbt27frLRcEAYsXL0ZAQACcnJwQGxuL8+fPSxPWyJKSkjBkyBC4urrCz88P48ePR2Zmpl6f6upqzJ07F97e3lCpVJg4cSIKCgokSmw877//PsLCwsS5j6Ojo/Hdd9+Jy23leSAi42rPe8yrr74KmUymd+vdu7deH3P4G9WefWvN+9DIkSMb7f8zzzxjzF1ppK2fmbZs2YLevXvD0dERAwYMwLfffqu33Jw+a7Rl3z788EMMHz4cnp6e8PT0RGxsbKP+M2bMaPR6jR492ti70ay27N/69esbZXd0dNTrY5DXTjBTmzZtEhwcHISPPvpI+OWXX4TZs2cLHh4eQkFBgdTRjO7bb78V/vGPfwhbt24VAAjbtm3TW/7mm28K7u7uwvbt24Wff/5ZeOihh4TQ0FChqqpKmsBGFBcXJ6xbt044ffq0kJGRITzwwANC586dhfLycrHPM888IwQHBwspKSnC8ePHhaFDhwp33323hKmN4+uvvxZ27Ngh/Prrr0JmZqbw8ssvCwqFQjh9+rQgCLbzPBCRcbXnPWbJkiVCv379hLy8PPFWVFSk18cc/ka1Z99a8z40YsQIYfbs2Xr7X1ZWZopdEgSh7Z+ZDh48KMjlcmH58uXCmTNnhEWLFgkKhUI4deqU2MdcPmu0dd8ef/xxYfXq1UJ6erpw9uxZYcaMGYK7u7uQm5sr9pk+fbowevRovdfrxo0bptolPW3dv3Xr1glubm562fPz8/X6GOK1M9sC4a677hLmzp0r3tdqtUJgYKCQlJQkYSrTu71A0Ol0gr+/v5CcnCy2lZaWCkqlUvjf//4nQULTKiwsFAAI+/fvFwShYd8VCoWwZcsWsc/Zs2cFAMKhQ4ekimkynp6ewn//+1+bfx6IyDDa+x6zZMkSYeDAgc0uN4e/UYZ6/7z9fUgQGgqEv/3tb4aM2yZt/cz06KOPCmPHjtVri4qKEp5++mlBEMzrs0ZHPw/W19cLrq6uwscffyy2TZ8+XRg3bpyho7ZLW/dv3bp1gru7e7PbM9RrZ5ZDjGpra5GWlobY2Fixzc7ODrGxsTh06JCEyaSXnZ2N/Px8vefG3d0dUVFRNvHclJWVAQC8vLwAAGlpaairq9N7Pnr37o3OnTtb9fOh1WqxadMmVFRUIDo62mafByIyrI68x5w/fx6BgYHo2rUrnnjiCeTk5IjLzOFvlKHeP29/H7plw4YN8PHxQf/+/ZGYmIjKykrDBL+D9nxmOnTokF5/AIiLixP7m8tnDUN8HqysrERdXV2j1ys1NRV+fn7o1asXnn32WVy/ft2g2VujvftXXl6OLl26IDg4GOPGjcMvv/wiLjPUa2ffxn0xieLiYmi1WqjVar12tVqNc+fOSZTKPOTn5wNAk8/NrWXWSqfTYd68ebjnnnvQv39/AA3Ph4ODAzw8PPT6WuvzcerUKURHR6O6uhoqlQrbtm1D3759kZGRYVPPAxEZR3vfY6KiorB+/Xr06tULeXl5WLp0KYYPH47Tp0/D1dXVLP5WG+L9s6n3IQB4/PHH0aVLFwQGBuLkyZN48cUXkZmZia1btxpuB5rRns9M+fn5LT4P5vJZwxCfB1988UUEBgbqfWAePXo0JkyYgNDQUGRlZeHll1/GmDFjcOjQIcjlcoPuQ0vas3+9evXCRx99hLCwMJSVlWHFihW4++678csvvyAoKMhgr51ZFghETZk7dy5Onz6NAwcOSB1FMr169UJGRgbKysrwxRdfYPr06di/f7/UsYjIQm3YsAFPP/20eH/Hjh3t2s6YMWPE/4eFhSEqKgpdunTB559/jlmzZnU4Z3sYat/+qLn3oTlz5oj/HzBgAAICAjBq1ChkZWWhW7duHX5cap8333wTmzZtQmpqqt6JvFOmTBH/P2DAAISFhaFbt25ITU3FqFGjpIjaatHR0YiOjhbv33333ejTpw/+85//4LXXXjPY45jlECMfHx/I5fJGsxsUFBTA399folTm4db+29pzEx8fj2+++Qb79u1DUFCQ2O7v74/a2lqUlpbq9bfW58PBwQHdu3dHZGQkkpKSMHDgQLzzzjs29zwQkWE89NBDyMjIEG8+Pj4AOv4e4+HhgZ49e+LChQsApPlbbeh9a+59qClRUVEAIO6/MbXnM5O/v3+L/c3ls0ZHPg+uWLECb775Jr7//nuEhYW12Ldr167w8fExyev1R4b4vKtQKBAREaH3u3ZrG+3dJmCmBYKDgwMiIyORkpIitul0OqSkpOhVTbYoNDQU/v7+es+NRqPBkSNHrPK5EQQB8fHx2LZtG/bu3YvQ0FC95ZGRkVAoFHrPR2ZmJnJycqzy+bidTqdDTU2NzT8PRNQ+rq6u6N69u3jr27evQd5jysvLkZWVhYCAAADS/K021L7d6X2oKRkZGQAg7r8xteczU3R0tF5/ANi9e7fY31w+a7T38+Dy5cvx2muvYefOnRg8ePAdHyc3NxfXr183yev1R4b4vKvVanHq1Ckxu8Feu1afzmximzZtEpRKpbB+/XrhzJkzwpw5cwQPD49GUzlZo5s3bwrp6elCenq6AEB4++23hfT0dOHy5cuCIDRMX+Xh4SF89dVXwsmTJ4Vx48ZZ7TSnzz77rODu7i6kpqbqTelVWVkp9nnmmWeEzp07C3v37hWOHz8uREdHC9HR0RKmNo6XXnpJ2L9/v5CdnS2cPHlSeOmllwSZTCZ8//33giDYzvNARMbVmveYmJgY4V//+pd4/+9//7uQmpoqZGdnCwcPHhRiY2MFHx8fobCwUOxjDn+j2rNvd3ofunDhgrBs2TLh+PHjQnZ2tvDVV18JXbt2Fe69916T7dedPjM9+eSTwksvvST2P3jwoGBvby+sWLFCOHv2rLBkyZImpzk1h88abd23N998U3BwcBC++OILvdfr5s2bgiA0fMZauHChcOjQISE7O1vYs2ePMGjQIKFHjx5CdXW1SfetPfu3dOlSYdeuXUJWVpaQlpYmTJkyRXB0dBR++eUXsY8hXjuzLRAEQRD+9a9/CZ07dxYcHByEu+66Szh8+LDUkUxi3759AoBGt+nTpwuC0DCF1SuvvCKo1WpBqVQKo0aNEjIzM6UNbSRNPQ8AhHXr1ol9qqqqhOeee07w9PQUnJ2dhYcffljIy8uTLrSRzJw5U+jSpYvg4OAg+Pr6CqNGjRKLA0GwneeBiIyrNe8xXbp0EZYsWSLenzx5shAQECA4ODgInTp1EiZPnixcuHBBbx1z+BvVnn270/tQTk6OcO+99wpeXl6CUqkUunfvLiQkJJj0OgiC0PJnphEjRoifIW75/PPPhZ49ewoODg5Cv379hB07dugtN6fPGm3Zty5dujT5et16TSsrK4X7779f8PX1FRQKhdClSxdh9uzZkn4B3Zb9mzdvnthXrVYLDzzwgHDixAm97RnitZMJgiC0/ngDERERERFZM7M8B4GIiIiIiKTBAoGIiIiIiEQsEIiIiIiISMQCgYiIiIiIRCwQiIiIiIhIxAKBiIiIiIhELBCIiIiIiEjEAoGIiIiIiEQsEIiIiIis0Nq1a3H//fcb/XF27tyJ8PBw6HQ6oz8WmQYLBCIiIiIrU11djVdeeQVLliwx+mONHj0aCoUCGzZsMPpjkWmwQCAiIiKyMl988QXc3Nxwzz33mOTxZsyYgXfffdckj0XGxwKBiIiIyEwVFRXB398f//d//ye2/fTTT3BwcEBKSkqz623atAkPPvigXtvIkSMxb948vbbx48djxowZ4v2QkBC8/vrrmDZtGlQqFbp06YKvv/4aRUVFGDduHFQqFcLCwnD8+HG97Tz44IM4fvw4srKy2r+zZDZYIBARERGZKV9fX3z00Ud49dVXcfz4cdy8eRNPPvkk4uPjMWrUqGbXO3DgAAYPHtyux1y5ciXuuecepKenY+zYsXjyyScxbdo0TJ06FSdOnEC3bt0wbdo0CIIgrtO5c2eo1Wr8+OOP7XpMMi8sEIiIiIjM2AMPPIDZs2fjiSeewDPPPAMXFxckJSU127+0tBRlZWUIDAxs9+M9/fTT6NGjBxYvXgyNRoMhQ4Zg0qRJ6NmzJ1588UWcPXsWBQUFeusFBgbi8uXL7XpMMi8sEIiIiIjM3IoVK1BfX48tW7Zgw4YNUCqVzfatqqoCADg6OrbrscLCwsT/q9VqAMCAAQMatRUWFuqt5+TkhMrKynY9JpkXFghEREREZi4rKwvXrl2DTqfDpUuXWuzr7e0NmUyGkpKSO25Xq9U2alMoFOL/ZTJZs223T2t648YN+Pr63vExyfyxQCAiIiIyY7W1tZg6dSomT56M1157DX/5y18afXv/Rw4ODujbty/OnDnTaNntw4IuXrxokIzV1dXIyspCRESEQbZH0mKBQERERGTG/vGPf6CsrAzvvvsuXnzxRfTs2RMzZ85scZ24uDgcOHCgUftXX32FrVu3IisrC2+88QbOnDmDy5cv4+rVqx3KePjwYSiVSkRHR3doO2QeWCAQERERmanU1FSsWrUKn376Kdzc3GBnZ4dPP/0UP/74I95///1m15s1axa+/fZblJWV6bWPHTsWy5cvR9++ffHDDz/gvffew9GjR/Hpp592KOf//vc/PPHEE3B2du7Qdsg8yIQ/zlFFRERERFZh0qRJGDRoEBITEwE0XAchPDwcq1atMujjFBcXo1evXjh+/DhCQ0MNum2SBo8gEBEREVmh5ORkqFQqoz/OpUuX8N5777E4sCI8gkBERERkA4x1BIGsDwsEIiIiIiIScYgRERERERGJWCAQEREREZGIBQIREREREYlYIBARERERkYgFAhERERERiVggEBERERGRiAUCERERERGJWCAQEREREZGIBQIREREREYn+P3dBXCpr0kbbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sim = getSim(polarization, 0, 0)\n", + "\n", + "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))\n", + "\n", + "# Left: epsilon\n", + "eps = sim.epsilon(td.Box(center=(0, 0, 0), size=(99, 99, 0)))\n", + "ax1.imshow(abs(eps).squeeze().T)\n", + "ax1.set_title(\"epsilon\")\n", + "\n", + "# Right: structure\n", + "sim.plot(z=0, ax=ax2)\n", + "ax2.set_title(\"structure (z=0)\")\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can interpolate points around the K-points and run a [Batch](https://docs.flexcompute.com/projects/tidy3d/en/latest/api/_autosummary/tidy3d.web.api.container.Batch.html) simulation to execute the simulations in parallel." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGfCAYAAACqZFPKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAShNJREFUeJzt3Xlc1HXix/HXzMjhxeHBIXmkmWab4WqiuR1umLlu51Z0aqRIpqXSYSSeYGiaUmZeZKYdaq2dlh2k7VbaYbC1aYZmairgySgq6Mz390c/aUlQB4b5zjDv5+PBY5svn/nOe7775Ttv53tZDMMwEBEREfFRVrMDiIiIiNSEyoyIiIj4NJUZERER8WkqMyIiIuLTVGZERETEp6nMiIiIiE9TmRERERGfpjIjIiIiPk1lRkRERHyayoyIiIj4tHrVedLs2bOZNm0aBQUFXHzxxcyaNYvu3btXOf7gwYOMGTOGFStWsH//flq3bk1WVhZ/+9vfzur1nE4nu3btonHjxlgslupEFhEREQ8zDINDhw7RokULrNba+/7E5TKzbNkyUlJSmDt3LnFxcWRlZdG3b182bdpERETEKePLysro06cPERERvP7668TExLBt2zbCwsLO+jV37dpFy5YtXY0qIiIiXmDHjh2cc845tTZ/i6s3moyLi+OSSy7h2WefBX771qRly5Y88MADPPbYY6eMnzt3LtOmTePHH38kICCgWiGLi4sJCwtjx44dhISEVGseIiIi4ll2u52WLVty8OBBQkNDa+11XPpmpqysjPXr15Oamlo+zWq1Eh8fz9q1ayt9zttvv03Pnj0ZNmwYb731Fs2bN+eOO+5g9OjR2Gy2Sp9TWlpKaWlp+eNDhw4BEBISojIjIiLiY2r7EBGXdmDt3bsXh8NBZGRkhemRkZEUFBRU+pyff/6Z119/HYfDwXvvvcfYsWN56qmnyMjIqPJ1MjMzCQ0NLf/RLiYRERGpSq2fzeR0OomIiGD+/Pl07dqVhIQExowZw9y5c6t8TmpqKsXFxeU/O3bsqO2YIiIi4qNc2s3UrFkzbDYbhYWFFaYXFhYSFRVV6XOio6MJCAiosEvpggsuoKCggLKyMgIDA095TlBQEEFBQa5EExERET/l0jczgYGBdO3alZycnPJpTqeTnJwcevbsWelzevXqxebNm3E6neXTfvrpJ6KjoystMiIiIiKucHk3U0pKCgsWLODFF19k48aNDB06lJKSEhITEwEYMGBAhQOEhw4dyv79+xkxYgQ//fQTK1eu5IknnmDYsGHuexciIiLit1y+zkxCQgJ79uxh3LhxFBQUEBsby6pVq8oPCt6+fXuFC+O0bNmSDz74gFGjRtG5c2diYmIYMWIEo0ePdt+7EBEREb/l8nVmzGC32wkNDaW4uFinZouIiPgIT31+695MIiIi4tOqdW+musDhdLAuP48i+z4iQprSo30sNmvlF/HzFsrsOb6YW5k9Q5k9Q5k9wxczV8Yvy8zK3NWkLZvJ7oNF5dOiwyLISBhF/y69TUxWNWX2HF/Mrcyeocyeocye4YuZq+J3x8yszF3N4Hmp/PFNn7zQcnZyptf9n6jMnuOLuZXZM5TZM5TZMzyVWcfM1AKH00Haspmn/J8HlE8buzwLh9PhyVinpcye44u5ldkzlNkzlNkzfDHzmfjVNzOfb1rPP2ae+fo2/bv0pkV4RLVfx512HShiZe7qM45T5przxdzK7BnK7BnK7Blnm/mfo2bTq0PXGr2Wp76Z8asy88bXHzL0+XFuTCYiIlI3zRk0iRsvubpG8/BUmfGrA4AjQpqe1bh/XNKXc5pWfq8pT/t1XwH//PqDM45T5przxdzK7BnK7BnK7Blnm/lsPzO9gV+VmR7tY4kOi6DgYFGl+wotQHR4JM8kjvOaU9McTgdf5Ocqswf4Ym5l9gxl9gxl9owVX37Aiq8/xKg08e+Ze7SP9WiumvCrA4BtVhsZCaOA34/YPunk4/RbR3rNCgfK7Em+mFuZPUOZPUOZa9fRsmM88vIU7n9hfHmR8fbMZ8uvygz8dhBWdnImUWEVD8SKDo/0ytPnQJk9yRdzK7NnKLNnKHPt2Fywjf5TB7Pk329isVgY2e8e5idN9urMrvCrA4D/l8PpoHf6Xfy0eyujr03mwX4DvL6F+uKVGn0xM/hmbmX2DGX2DGV2n9e/fJ9HX3mSI6VHadY4nNmJE7iiUxxQ+5l1NtP/qK2F8fcnk/jm5+9ZdN+TXBN7udvmKyIiYrYjZcd4fOl0ln7xLgC9OnTluXsnEhnazGMZdDaTiIiIVMuPu35myIIx/LR7KxaLhYf6D2LU3xK94pui2qAyIyIiUkcYhsHStSt5/NVpHD1eSkRIU54bNIm/1PDid95OZUZERKQOKDl2hNGvTuP1L98H4IoLuvNs4gSahzQxOVntU5kRERHxcRt+zWfIgjQ2F27DarEy+rohPNB3AFarf5y0rDIjIiLiowzD4KXP3mLs8pkcO15KdFhz5gxK96kL3rmDyoyIiIgPOnS0hEdensKb33wEwF8v7MmsxPE0bRRmbjATqMyIiIj4mO+3b2LIgjFs3fMrNquNx28YytD4O/xmt9IfqcyIiIj4CMMweOHTfzLh9acpO3GcmCZRzBucTre2F5kdzVQqMyIiIj6g+MghUpY8wcrc1QD07XwZWQPTCG8YanIy86nMiIiIeLncXzaQnJ3G9r27CLDVY+xNw0n6awIWyx9vFemfVGZERES8lGEYLPhkGekrnuW44wStmrVg3uAMurTpZHY0r6IyIyIi4oUOlBQz8sUMPvju38Bvd+eecffjhDZobHIy76MyIyIi4mW++fl7krPHsnN/AYH1Aphw8wgSr/iHditVQWVGRETESzidTuZ8/AqZb87hhNNBm+bnMD8pg86tOpodzaupzIiIiHiBfYcP8uCiSeT89wsAru8Wz/Q7U2lcv6HJybyfyoyIiIjJ1uXnMfT5sew+uIegeoFkJKRw11+u126ls6QyIyIiYhKn08msDxbz5DsLcDgdnBfZmvlJGXQ6p73Z0XyKyoyIiIgJ9tj388CiiazZ8CUAN8ddw9TbH6VhcAOTk/kelRkREREP+2zTeu5/fhxF9n3UDwjiidsf4bae/bVbqZpUZkRERDzE4XQw870XmLFyIU7DyfnR5zI/aTIdW7Q1O5pPU5kRERHxgMLivQxbOIHPNn0DwO2XXsvk2x6iQWCwycl8n8qMiIhILft0w5cMe2ECew8doEFQfabe/ii39Ohndqw6w2/LjMPpwH70MAAbd26hT+de2Kw2k1OJiIivcjgdrMvPo8i+j4iQpvRoH4thGEx/N5unV72IYRhcENOO+UmTaR/Vxuy4dYrFMAzD7BBnYrfbCQ0Npbi4mJCQkBrPb2XuatKWzWT3waLyadFhEWQkjKJ/l941nr+IiPiXyj5XIkObElq/MT8V/ALAgMtuZOItI6jvR7uV3P35XRW/KzMrc1czeF4qf3zTJ48fz07OVKEREZGzVtXnyknBAYFkDRjLDZf08Wgub+CpMmOttTl7IYfTQdqymZWucCenjV2ehcPp8GQsERHxUaf7XDkppH5jru36V49l8kd+VWbW5edV+Arwjwxg14FC1uXneSyTiIj4rjN9rgAU2ffpc6WW+VWZKbLvc+s4ERHxb/pc8Q5+VWYiQpq6dZyIiPi3Jg3DzmqcPldql1+VmR7tY4kOi6Cqi0VbgBbhkfRoH+vBVCIi4ou27d1F5ltzTjtGnyue4Vdlxma1kZEwCuCUQnPycfqtI3W9GREROa2VuavpM3kAeds20iCwPqDPFTP5VZkB6N+lN9nJmUSFRVSYHh0eqdOyRUTktEqPl/H40ukMmpeK/ehhup77Jz4d/wrP63PFVH53nZmTHE4HvdPv4qfdWxl9bTIP9hug5iwiIlXaWrSD5Ow0vtu+CYBhV9/FY9ffR4Dtt4vpV3YFYH//XPHUdWb89nYGNquNkPqNALggpp3fr3AiIlK1t775mIdeeoLDx47QpGEoz9wznviLLq0wxma10atDV5MS+rdq7WaaPXs2bdq0ITg4mLi4OL766qsqxy5atAiLxVLhJzjYfy7lLCIivuto2TEefXkqydlpHD52hLjzLubjtCWnFBkxl8vfzCxbtoyUlBTmzp1LXFwcWVlZ9O3bl02bNhEREVHpc0JCQti0aVP5Y4ulqvOJREREvMPmgm0MWTCGDTs3Y7FYGHHNQB7++2Dq2fx2p4bXcvmbmRkzZpCUlERiYiKdOnVi7ty5NGjQgIULF1b5HIvFQlRUVPlPZGRkjUKLiIjUpn9+uYqrM+9hw87NNG0cztIHsnjs+vtUZLyUS2WmrKyM9evXEx8f//sMrFbi4+NZu3Ztlc87fPgwrVu3pmXLllx//fX88MMPp32d0tJS7HZ7hR8REZHadqTsGClLJjPshQkcKT1Krw5d+SRtCVd0ijM7mpyGS2Vm7969OByOU75ZiYyMpKCgoNLndOjQgYULF/LWW2/x0ksv4XQ6ufTSS/n111+rfJ3MzExCQ0PLf1q2bOlKTBEREZdt2rWVflPu5ZXP38FisfBQ/0EsH/EMkaHNzI4mZ1Dr15np2bMnAwYMIDY2liuuuIIVK1bQvHlz5s2bV+VzUlNTKS4uLv/ZsWNHbccUERE/tvSLd7km8x427fqZiJCmvDZiFo9cm6QzXX2ESzv/mjVrhs1mo7CwsML0wsJCoqKizmoeAQEBdOnShc2bN1c5JigoiKCgIFeiiYiIuKzk2BEeWzqd19a9B8AVF3Tn2cTxNNe9lHyKS9/MBAYG0rVrV3JycsqnOZ1OcnJy6Nmz51nNw+Fw8P333xMdHe1aUhERETfauHMz10xJ5LV172G1WHnsumRefSBLRcYHuXxYdkpKCgMHDqRbt250796drKwsSkpKSExMBGDAgAHExMSQmZkJwKRJk+jRowfnnXceBw8eZNq0aWzbto3Bgwe7952IiIicBcMwePmzt0hbPpNjx0uJDmvOnEHpuhmkD3O5zCQkJLBnzx7GjRtHQUEBsbGxrFq1qvyg4O3bt2O1/v6Fz4EDB0hKSqKgoIDw8HC6du3KF198QadOndz3LkRERM7CoaMlPPLyFN785iMA/nphT2YljqdpozBzg0mN+O29mQD+/mQS3/z8PYvue5JrYi9323xFRMT7fL99E0MWjGHrnl+xWW08fsNQhsbfUeEf4OJeujeTiIiIGxiGwaJP/8n415+m7MRxYsIjmZeUQbe2F5kdTdxEZUZEROos+9HDpCx5gne//QSAvp0vI2tgGuENQ01OJu6kMiMiInVS7i8bSM5OY/veXQTY6pF24zCGXHWb7g9YB6nMiIhInWIYBtmfLGfSilkcd5ygZdNo5g3O4M/nXmh2NKklKjMiIlJnHCgpZtTiyaz6z78A6N/lSmbcPYbQBo3NDSa1SmVGRETqhPU//5ch2Wns3F9AYL0Axv/jQe698mbtVvIDKjMiIuLTnE4ncz9+lSfefI4TTgdtmp/D/KQMOrfqaHY08RCVGRER8Vn7Dh9kxIvpfPz95wBc3y2e6Xem0rh+Q5OTiSepzIiIiE/6cnMeQ58fx64DRQTVCyQjIYW7/nK9div5IZUZERHxKU6nk2c/XMLUt+fjcDpoF9mKBUmT6XROe7OjiUlUZkRExGfsse/ngUUTWbPhSwBujruGqbc/SsPgBiYnEzP5bZlxOB3Yjx4GYOPOLfTp3Aub1WZyKhERgd+20evy8yiy7yMipCk92seyLj+P+xeOp7B4L/UDgph828PcfunftVtJ/PNGkytzV5O2bCa7DxaVT4sOiyAjYRT9u/Su8fxFRKT6KttGNwpuSMmxIxgYnB99LvOTJtOxRVsTU8rZ8NSNJv3uVqErc1czeF5qhT8SgIKDRQyel8rK3NUmJRMRkaq20YePlWBg0KtDV95/bKGKjFTgV2XG4XSQtmwmlX0VdXLa2OVZOJwOT8YSERFOv40+aWvRrwQHBHosk/gGvyoz6/LzTmn7/8sAdh0oZF1+nscyiYjIb860jQZto6VyflVmiuz73DpORETcR9toqS6/KjMRIU3dOk5ERNxn5/7CsxqnbbT8kV+VmR7tY4kOi6Cqk/gsQIvwSHq0j/VgKhER/3bccYKMN2aT8cbs047TNlqq4ldlxma1kZEwCuCUQnPycfqtI3W9GRERD9m5v5CbnhrKsx8sAaB3p55Y0DZaXONXZQagf5feZCdnEhUWUWF6dHgk2cmZus6MiIiHfPjdv4mffDdf//w9jYMbsiDpCV59cKa20eIyv7xoHvx2CmDv9Lv4afdWRl+bzIP9Bqjti4h4QNmJ40x+8znmffwqABe3voD5gzNo3TymfExlVwDWNtr3eOqieX57OwOb1UZI/UYAXBDTTn8kIiIesG3vLu7LTiP3lw0ADPnrbaTdNIzAegEVxtmsNnp16GpGRPFBfltmRETEs97LXcPIxRnYjx4mtEFjnh4wlmtiLzc7ltQBKjMiIlKrSo+XMWnFLJ5f/RoAXc/9E3MHp9OyabTJyaSuUJkREZFa88ueXxmyII3vtv8IwP197iT1hqEE2PTxI+6jtUlERGrFW998zEMvPcHhY0do0jCUp+8ZR5+LepkdS+oglRkREXGro2XHGP/60yz+1xsAxJ13MXMGpdMiPOIMzxSpHpUZERFxm80F2xiyYAwbdm7GYrHwYN8BPHJtEvW0W0lqkdYuERFxi39+uYpHXpnKkdKjNG0czuzECVzZKc7sWOIHVGZERKRGjpQdI23ZU7zy+TsAXHr+n3nu3olEhTU3OZn4C5UZERGptk27tjIkewybdv2MxWIh5W/3ktL/Xl2IVDxKZUZERKpl6Rfvkrp0OkfLjhER0pTn7p3IXzp2MzuW+CGVGRERcUnJsSM8tnQ6r617D4DLO17C7Hsn0DykqbnBxG+pzIiIyFnbuHMzQxaMIb9gG1aLlUevTeKBa3SjXjGXyoyIiJyRYRi88vnbjFk2g2PHS4kKbc6cwZPo2b6L2dFEVGZEROT0Dh8r4ZGXp/LG1x8C0PvCHsy6ZzzNGoebnEzkNyozIiJSpe+3b2LIgjFs3fMrNquNx65PZlifu7BarWZHEymnMiMiIqcwDINFn/6TCa8/Q+mJMmLCI5k7OJ1L2nU2O5rIKVRmRESkAvvRw6QseYJ3v/0EgKs7/4WsAWNp0ijU5GQilVOZERGRcnnbNpK8II1te3dSz2oj7aZhJF91OxaLxexoIlVSmREREQzDIPuT5UxaMYvjjhOc0ySK+UkZ/PncP5kdTeSMVGZERPzcwRI7oxZP5v3/fArA32KvYMbdYwhrGGJyMpGzozIjIuLH1v/8X5Kz0/h1fwGB9QIY948HGHTlLdqtJD7Fb8uMw+nAfvQwABt3bqFP5166gqWI1EkOp4N1+XkU2fcREdKUHu1jsWBh7sev8sSbz3HC6aB1sxjmJ03m4tYdzY4r4jKLYRiG2SHOxG63ExoaSnFxMSEhNf/ac2XuatKWzWT3waLyadFhEWQkjKJ/l941nr+IiLeobHsXGdqMyNBmfLf9RwCu63oV0+9KJaR+I7NiSh3l7s/vqvhdmVmZu5rB81L545s++YVqdnKmCo2I1AlVbe9Oqmetx+TbUhhw2Y3arSS1wlNlplqXcJw9ezZt2rQhODiYuLg4vvrqq7N63tKlS7FYLNxwww3VedkaczgdpC2bWekf9slpY5dn4XA6PBlLRMTtTre9Oym8UQh3/eV6FRnxeS6XmWXLlpGSksL48eP59ttvufjii+nbty9FRUWnfd4vv/zCww8/zGWXXVbtsDW1Lj+vwletf2QAuw4Usi4/z2OZRERqw5m2dwB77Pu1vZM6weUyM2PGDJKSkkhMTKRTp07MnTuXBg0asHDhwiqf43A4uPPOO5k4cSJt27atUeCaKLLvc+s4ERFvpe2d+BOXykxZWRnr168nPj7+9xlYrcTHx7N27doqnzdp0iQiIiIYNGhQ9ZO6QURIU7eOExHxVmd7R2tt76QucOnU7L179+JwOIiMjKwwPTIykh9//LHS53z22Wc8//zz5OXlnfXrlJaWUlpaWv7Ybre7ErNKPdrHEh0WQcHBokr3I1uA6PBIerSPdcvriYiYoah4H0+/v+i0Y7S9k7qkVu/hfujQIe6++24WLFhAs2bNzvp5mZmZhIaGlv+0bNnSLXlsVhsZCaOA389eOunk4/RbR+p6MyLis/7949dcNfluPtu0nsB6AYC2d1L3uVRmmjVrhs1mo7CwsML0wsJCoqKiThm/ZcsWfvnlF6699lrq1atHvXr1WLx4MW+//Tb16tVjy5Ytlb5OamoqxcXF5T87duxwJeZp9e/Sm+zkTKLCIipMjw6P1GnZIuKzTjhOMPXt+dz69IPsse+nY4t2fDxmMc9reyd+wOXrzMTFxdG9e3dmzZoFgNPppFWrVgwfPpzHHnuswthjx46xefPmCtPS0tI4dOgQTz/9NOeffz6BgYFnfM3aOE/d4XTQO/0uftq9ldHXJvNgvwH6F4qI+KTdB4oYunA86/JzAbjrL9eTfuso6gcGA5VfAVjbO/EET11nxuXbGaSkpDBw4EC6detG9+7dycrKoqSkhMTERAAGDBhATEwMmZmZBAcH86c/VbzjalhYGMAp0z3NZrWVX+3ygph2+sMWEZ/0yQ9rGf7CRPYfPkjDoAZMu3M0N3XvW2GMzWqjV4euJiUUqX0ul5mEhAT27NnDuHHjKCgoIDY2llWrVpUfFLx9+3as1lo9FEdExO8dd5zgybfnM+uDxQBceE575idNpl1kK5OTiXhetW40OXz4cIYPH17p79asWXPa5y5atKg6LykiIv9v5/5C7stO4+ufvwfgniv+wYSbHyQ4IMjkZCLm8Nu7ZouI+KIPv/uMES9O4kCJncbBDXnq7se5rutVZscSMZXKjIiIDyg7cZzJbz7HvI9fBaBzq47MT8qgTfNzTE4mYj6VGRERL7d97y7ue34s3279AYCkvyaQduMwggLOfDaoiD9QmRER8WLv533KyMUZFB85RGiDxmQNSKNf7BVmxxLxKiozIiJeqPR4GekrniV79XIA/nzuhcwdlE6rZi1MTibifVRmRES8zC97fmXIgjS+2/7bPe/ui7+Dx28YWn57AhGpSGVGRMSLvL0+h4eWPMGhYyWENwzh6YHjuLrzX8yOJeLVVGZERLzAseOljH/taV781woAurfrzJxB6cQ0iTQ5mYj3U5kRETHZlsLtDFkwhh9+zQfgwWsG8si1SQTYtIkWORv6SxERMdGKrz7gkZenUlJ6hKaNw3n2nvH0vrCH2bFEfIrKjIiICY6UHWPsshm8/PnbAPRs34U5gyYRFdbc5GQivkdlRkTEw37avZUhC9L4cdcWLBYLo/52Lyl/S6SediuJVIv+ckREPGjZ2pU89uo0jpYdo3lIE567dyKXdbzE7FgiPk1lRkTEA0pKj5L66jSWr3sPgMs6dmN24kQiQpuanEzE96nMiIjUso07tzBkwRjyC37BarHy8N8HM6LfQGxWm9nRROoElRkRkVpiGAavfP42Y5bN4NjxUqJCm/PcoIlcev6fzY4mUqeozIiI1ILDx0p49OWprPj6QwB6d+rBrMTxNGscbnIykbpHZUZExM3+u+MnkrPT2FK4HZvVxmPXJTPs6ruwWq1mRxOpk1RmRETcxDAMXvzXCsa/9jSlJ8poER7B3EHpdD/vYrOjidRpKjMiIm5gP3qYh1/K5O31OQD0uagXTw8cR5NGoSYnE6n7/LbMOJwO7EcPA7+dadCncy+dWSAiZ+RwOliXn0eRfR8RIU3p0T6W/+7IZ8iCMWzbu5N6VhtpNw0j+arbsVgsZscV8QsWwzAMs0Ocid1uJzQ0lOLiYkJCQmo8v5W5q0lbNpPdB4vKp0WHRZCRMIr+XXrXeP4iUjdVtu0Iqd+II6VHOeF0cE6TKOYnZfDnc/9kYkoR7+Huz++q+N3RaCtzVzN4XmqFjRFAwcEiBs9LZWXuapOSiYg3q2rbYT96mBNOB11ad+LjMYtVZERM4FdlxuF0kLZsJpV9FXVy2tjlWTicDk/GEhEvd7ptx0mF9r00rt/QY5lE5Hd+VWbW5eed8q+q/2UAuw4Usi4/z2OZRMT7nWnbAbDrQJG2HSIm8asyU2Tf59ZxIuIftO0Q8W5+VWYiQs7uhm5nO05E/MOBw8VnNU7bDhFz+FWZ6dE+luiwCKo6WdICtAiPpEf7WA+mEhFv5XQ6mfXBYtKWzzztOG07RMzlV2XGZrWRkTAK4JRCc/Jx+q0jdb0ZEWHvoQPcOTuFyW88h9NwEtfuYixo2yHijfyqzAD079Kb7ORMosIiKkyPDo8kOzlT15kREdbm5xKfMYDVP6wjOCCIGXc/zpsPz9W2Q8RL+eVF8+C3Uy17p9/FT7u3MvraZB7sN0D/qhLxcw6ng2dWvci0d7JxGk7aR7VmftITXBDTrsKYP14BWNsOkcp56qJ5fns7A5vVRkj9RgBcENNOGyMRP7fHvo/7F47n3z9+A8CtPf5G5u2P0DCofoVxNquNXh26mhFRRKrgt2VGROSkf//4NfcvHM8e+37qBwYz5fZHSOjZ3+xYInKWVGZExG85nA6eWrmQme8txDAMOrZox7zBGXRoca7Z0UTEBSozIuKXCg7u4f6F4/nip28BuLPXdaQnpNAgMNjkZCLiKpUZEfE7q39Yx/BFE9l36AANgxow7c7R3NS9r9mxRKSaVGZExG+ccJxg6tvzmfXBYgAuPKc985Mm0y6ylcnJRKQmVGZExC/s3F/I0OfH8tWW7wAYePlNTLxlBMEBQSYnE5GaUpkRkTrvo+8/58FFEzlQYqdxcEOm35XK9d3izY4lIm6iMiMiddZxxwmeeHMOcz56GYDOrToyPymDNs3PMTmZiLiTyoyI1Ek79u0mOTuNb7f+AMDg3rcy9qbhBAUEmpxMRNxNZUZE6pz38z5l5OIMio8cIrRBY7IGpNEv9gqzY4lILVGZEZE6o+zEcdJXPMuCT5YB8OdzL2TuoHRaNWthcjIRqU0qMyJSJ2zbs5Mh2Wn8Z9tGAO6Lv4PHbxhKYL0Ak5OJSG1TmRERn/fO+k9IWTKZQ8dKCG8YwtMDx3F157+YHUtEPERlRkR81rHjpUx4/RkWffpPALq368ycQenENIk0OZmIeJLKjIj4pJ8LtzMkO43/7vgJgAf6DuDR64YQYNNmTcTf6K9eRHzOG19/yMMvTaGk9AhNGoXxbOJ4/nphT7NjiYhJrNV50uzZs2nTpg3BwcHExcXx1VdfVTl2xYoVdOvWjbCwMBo2bEhsbCxLliypdmAR8V9Hy47x8EuZDH1+HCWlR+jRvgs5YxaryIj4OZe/mVm2bBkpKSnMnTuXuLg4srKy6Nu3L5s2bSIiIuKU8U2aNGHMmDF07NiRwMBA3n33XRITE4mIiKBvX92lVkTOTn7BLyTNH8OPu7ZgsVgY2S+Rh/rfSz3tVhLxey5/MzNjxgySkpJITEykU6dOzJ07lwYNGrBw4cJKx1955ZXceOONXHDBBbRr144RI0bQuXNnPvvssxqHFxH/sHzde1z9xD38uGsLzUOasOzBpxl93RAVGREBXCwzZWVlrF+/nvj432/QZrVaiY+PZ+3atWd8vmEY5OTksGnTJi6//PIqx5WWlmK32yv8iIj/KSk9yogX03lw0SSOlh3jso7dyBmzhMsv6G52NBHxIi79s2bv3r04HA4iIyue9hgZGcmPP/5Y5fOKi4uJiYmhtLQUm83Gc889R58+faocn5mZycSJE12JJiJ1zMadWxiyYAz5Bb9gtVh5+O+DGdFvIDarzexoIuJlPPIdbePGjcnLy+Pw4cPk5OSQkpJC27ZtufLKKysdn5qaSkpKSvlju91Oy5Yt3ZrJ4XRgP3oY+G2j2adzL20kRTzM4XSwLj+PIvs+IkKa0qN9LFaLlVe/eIcxS5/i6PFSIkObMWfQJC49/89mxxURL+VSmWnWrBk2m43CwsIK0wsLC4mKiqryeVarlfPOOw+A2NhYNm7cSGZmZpVlJigoiKCgIFeiuWRl7mrSls1k98EiAKa+M4/F/36DjIRR9O/Su9ZeV0R+98e/Q4CosOa0aRbDus15APTu1INn7hlH85AmJqUUEV/g0jEzgYGBdO3alZycnPJpTqeTnJwcevY8+1MjnU4npaWlrry026zMXc3geakVNqAABQeLGDwvlZW5q03JJeJPqv473MO6zXlYLVbG3HA/Lw+foSIjImfk8m6mlJQUBg4cSLdu3ejevTtZWVmUlJSQmJgIwIABA4iJiSEzMxP47fiXbt260a5dO0pLS3nvvfdYsmQJc+bMce87OQsOp4O0ZTMxKvmdAViAscuzuObiy7XLSaSWnO7v8KQmjUK5/+o7sVqrdSksEfEzLpeZhIQE9uzZw7hx4ygoKCA2NpZVq1aVHxS8ffv2ChugkpIS7r//fn799Vfq169Px44deemll0hISHDfuzhL6/LzTvmX4P8ygF0HClmXn0evDl09F0zEj5zp7xBg76ED+jsUkbNWrQOAhw8fzvDhwyv93Zo1ayo8zsjIICMjozov43ZF9n1uHScirtPfoYi4m199hxsR0tSt40TEdfo7FBF386sy06N9LNFhEViq+L0FaBEeSY/2sR5MJeI/DpbYyf5k2WnH6O9QRFzlV2XGZrWRkTAK4JRCc/Jx+q0jdfCvSC34dusP9HliIO//51/Y/v+4Ov0diog7+FWZAejfpTfZyZlEhVW8KWZ0eCTZyZm6zoyImxmGwdyPX+G6aUPYsW83rZvFsHL08zyvv0MRcROLYRinO0PSK9jtdkJDQykuLiYkJMQt83Q4HfROv4ufdm9l9LXJPNhvgP4lKOJmB0qKGfFiOh9+99uNZf/+578y4+7HCanfCKj8CsD6OxSpO2rj87syfnvLWZvVVr5BvSCmnTagIm729ZbvuC97LDsPFBJUL5CJt4xg4OU3YbH8vnPJZrXp9GsRqTG/LTMiUjucTiezP3qJKW/Nw+F00DaiJfOTJvOnluebHU1E6iiVGRFxm72HDvDgokl88sNaAG685Gqm3TmaRsENTU4mInWZyoyIuMXa/FyGZo+joHgPwQFBTE5I4Y5e11XYrSQiUhtUZkSkRhxOB8+sepFp72TjNJy0j2rN/KTJXBBzntnRRMRPqMyISLXtse9j2MIJ/OvHrwG4pcffmHLbwzQMbmByMhHxJyozIlItn/34DUMXjmOPfT/1A4PJvO1hbrv072bHEhE/pDIjIi5xOB08tXIhM99biGEYdGjRlvmDJ9OhxblmRxMRP6UyIyJnreDgHu5fOJ4vfvoWgDt7XUd6QgoNAoNNTiYi/kxlRkTOypoNXzLshQnsO3SAhkENmHbnaG7q3tfsWCIiKjMicnonHCd48p0FPLPqRQAuPKc985Mm0y6ylcnJRER+ozIjIlXadaCIoc+P5cvN/wFgwOU3MumWkQQHBJmcTETkdyozIlKpj77/nBGLJrG/pJhGwQ146q7Hub5bvNmxREROoTIjIhUcd5zgiTfnMOejlwHo3KoD85Mm06b5OSYnExGpnMqMiJTbsW8392WPZf3W/wIwqPctjLvpAYICAk1OJiJSNZUZEQFgVd6/GLE4neIjhwip34iZA8bQv0tvs2OJiJyRyoyInys7cZz0Fc+y4JNlAHRp04m5gzNo3ayFyclERM6OyoyIH9u2ZydDstP4z7aNACTH386YG+4nsF6AyclERM6eyoyIn3pn/SekLJnMoWMlhDUI4Zl7xnJ158vMjiUi4jKVGRE/c+x4KRNef4ZFn/4TgEvaXsScwemc0yTK5GQiItWjMiPiR34u3E5ydhrf7/gJgOF972b0dckE2LQpEBHfpS2YiJ944+sPefilKZSUHqFJozBm3TOOq/50qdmxRERqTGVGpI47WnaMsctn8tJnbwHQ47xY5gyaRHR4hMnJRETcw2/LjMPpwH70MAAbd26hT+de2Kw2k1OJVJ/D6WBdfh5F9n1EhDSlR/tYfi7awZAFY9i4cwsWi4WR/e7hof6DqKfdSiJSh1gMwzDMDnEmdrud0NBQiouLCQkJqfH8VuauJm3ZTHYfLCqfFh0WQUbCKF0kTHxSZet0WIMQjpQdpezEcZo1Dmd24gSu6BRnYkoR8Tfu/vyuirXW5uylVuauZvC81AobfYCCg0UMnpfKytzVJiUTqZ6q1umDR+yUnThOxxZtyUlboiIjInWWX5UZh9NB2rKZVPZV1MlpY5dn4XA6PBlLpNpOt06fZD96mGaNwz2WSUTE0/yqzKzLzzvlX6//ywB2HShkXX6exzKJ1MSZ1mmAXQeKtE6LSJ3mV2WmyL7PreNEzKZ1WkTEz8pMREhTt44TMduR0mNnNU7rtIjUZX5VZnq0jyU6LAJLFb+3AC3CI+nRPtaDqURcZxgGi//1BqmvTjvtOK3TIuIP/KrM2Kw2MhJGAZxSaE4+Tr91pK43I17t0NES7nt+LI++MpUyx3EuatkBC1qnRcR/+VWZAejfpTfZyZlEhVW8+ml0eCTZyZm6zox4te+2/0ifJwby1jcfU89qY9xND/BB6gtap0XEr/nlRfPgt1Nae6ffxU+7tzL62mQe7DdA/3oVr2UYBgvXvM7Efz5D2YnjxDSJYt7gdLq1vah8TGVXANY6LSJm8tRF8/z2muY2q42Q+o0AuCCmnTb64rWKjxwiZclkVuauAaBv58vIGphGeMPQCuNsVhu9OnQ1IaGIiLn8tsyI+IJvt/5AcnYaO/btJsBWj3E3PcDgv96KxVLVYewiIv5HZUbECxmGwfycpWS8MZvjjhO0ataCeYMz6NKmk9nRRES8jsqMiJc5UFLMiBfT+fC7z4DfDlqfcffjhDZobHIyERHvpDIj4kW+3vId92WPZeeBQgLrBTDx5hHcc8U/tFtJROQ0VGZEvIDT6eS5j14m8625OJwOzm1+DvOTJnNRqw5mRxMR8XoqMyIm23voAA8umsQnP6wF4IZufZh252M0rt/Q5GQiIr5BZUbEROvy87gveywFxXsIDggi49ZR3PmX67VbSUTEBdW6AvDs2bNp06YNwcHBxMXF8dVXX1U5dsGCBVx22WWEh4cTHh5OfHz8aceL+AOn00nWey9w04z7KSjew3mRrXlvdDZ3XXaDioyIiItcLjPLli0jJSWF8ePH8+2333LxxRfTt29fioqKKh2/Zs0abr/9dlavXs3atWtp2bIlV199NTt37qxxeBFftMe+j9tnjWTK2/NwGk5ujuvHB6kv0Omc9mZHExHxSS6XmRkzZpCUlERiYiKdOnVi7ty5NGjQgIULF1Y6/uWXX+b+++8nNjaWjh07kp2djdPpJCcnp8bhRXzNZz9+w1UZA/h041fUDwgia0AazyaOp2FwA7OjiYj4LJeOmSkrK2P9+vWkpqaWT7NarcTHx7N27dqzmseRI0c4fvw4TZo0qXJMaWkppaWl5Y/tdrsrMUW8jsPpYMbKhcx4byGGYdChRVvmD55Mhxbnmh1NRMTnufTNzN69e3E4HERGRlaYHhkZSUFBwVnNY/To0bRo0YL4+Pgqx2RmZhIaGlr+07JlS1diiniVwuK93Pr0gzy18nkMw+D2S6/l/ccWqsiIiLiJR89mmjJlCkuXLmXNmjUEBwdXOS41NZWUlJTyx3a7XYVGfNKnG75k2AsT2HvoAA2C6vPkHY9yc1w/s2OJiNQpLpWZZs2aYbPZKCwsrDC9sLCQqKio0z53+vTpTJkyhY8//pjOnTufdmxQUBBBQUGuRBPxKiccJ5j+bjZPr3oRwzDoFHMe85Mmc15Ua7OjiYjUOS7tZgoMDKRr164VDt49eTBvz549q3zek08+SXp6OqtWraJbt27VTyviA3YdKOLmmcPJen8RhmEw4LIbWTk6W0VGRKSWuLybKSUlhYEDB9KtWze6d+9OVlYWJSUlJCYmAjBgwABiYmLIzMwEYOrUqYwbN45XXnmFNm3alB9b06hRIxo1auTGtyJivo+//4IHF01kf0kxjYIbMP2uVG7o1sfsWCIidZrLZSYhIYE9e/Ywbtw4CgoKiI2NZdWqVeUHBW/fvh2r9fcvfObMmUNZWRk333xzhfmMHz+eCRMm1Cy9iJc47jhB5ptzeO6jlwHo3KoD8wZncG6EjvUSEalt1ToAePjw4QwfPrzS361Zs6bC419++aU6LyHiM37dX8B92WP55ufvARjU+xbG3fQAQQGBJicTEfEPujeTSA188J9/MeLFDA4esRNSvxEzB4yhf5feZscSEfErKjMi1VB24jiT35jNvJylAMS27sS8pAxaN2thcjIREf+jMiPiom17d5G8II28bRsASL7qNsbcOIzAegEmJxMR8U8qMyIuWJm7mlGLJ2M/epiwBiE8PTCNvhdfbnYsERG/5rdlxuF0YD96GICNO7fQp3MvbFabyanEWzicDtbl51Fk30dESFNi21zA5DeeY+Ga1wHo1vYi5g5O55wmp79YpIiI1D6LYRiG2SHOxG63ExoaSnFxMSEhITWe38rc1aQtm8nug0Xl06LDIshIGKWDN6XS9SPAVo/jjhMADLv6Lh67/j4CbH77bwERkbPi7s/vqrh0BeC6YGXuagbPS63wQQVQcLCIwfNSWZm72qRk4g2qWj9OFpmR/e5h7E3DVWRERLyIX5UZh9NB2rKZVPZV1MlpY5dn4XA6PBlLvMTp1g8AC7B83ftaP0REvIxflZl1+Xmn/Iv7fxnArgOFrMvP81gm8R5aP0REfJNflZki+z63jpO6ReuHiIhv8qsyExHS1K3jpO44UnaM19a9f1ZjtX6IiHgXvyozPdrHEh0WgaWK31uAFuGR9Ggf68FUYrZNu7ZyTWYin/yw9rTjtH6IiHgnvyozNquNjIRRAKcUmpOP028dqevN+AnDMHj1i3e5JvMeftq9lYiQpjz89yQsaP0QEfElflVmAPp36U12ciZRYREVpkeHR5KdnKnrzPiJkmNHeGDRJEYtzuDo8VKuuKA7OWlLePjvg7R+iIj4GL+8aB78dhpu7/S7+Gn3VkZfm8yD/QboX9x+YsOv+QxZkMbmwm1YLVZGXzeEB/oOwGr9vdv/8QrAPdrHav0QEXGRpy6a57dX/rJZbYTUbwTABTHt9EHlBwzD4KXP3mLs8pkcO15KdFhz5gxKr/QYGJvVRq8OXT0fUkREXOa3ZUb8y6GjJTzy8hTe/OYjAK7606U8c884mjYKMzeYiIjUmMqM1Hnfb9/EkAVj2LrnV+pZbaTeMJSh8XdU2K0kIiK+S2VG6izDMHjh038y4fWnKTtxnJgmUcwbnE63theZHU1ERNxIZUbqpOIjh3jopUze/fYTAPp2voysgWmENww1OZmIiLibyozUObm/bCA5O43te3cRYKvH2JuGk/TXBCyWqi6XKCIivkxlRuoMwzBY8Mky0lc8y3HHCVo1a8G8wRl0adPJ7GgiIlKLVGakTjhQUszIFzP44Lt/A79dHHHG3Y8T2qCxyclERKS2qcyIz/vm5+9Jzh7Lzv0FBNYLYMLNI0i84h/arSQi4idUZsRnOZ1O5nz8CplvzuGE08G5zc9hftJkLmrVwexoIiLiQSoz4pP2HT7Ig4smkfPfLwC4oVsfpt35GI3rNzQ5mYiIeJrKjPicdfl5DH1+LLsP7iE4IIj0W0dx11+u124lERE/pTIjPsPpdDLrg8U8+c4CHE4H50W2Zn5SBp3OaW92NBERMZHKjPiEPfb9PLBoIms2fAnAzXH9mHr7IzQMbmByMhERMZvKjHi9zzat5/7nx1Fk30f9gCCeuP0RbuvZX7uVREQEUJkRL+ZwOpj53gvMWLkQp+Hk/OhzmZ80mY4t2podTUREvIjKjHilwuK9DFs4gc82fQPA7Zdey+TbHqJBYLDJyURExNuozIjX+XTDlwx7YQJ7Dx2gQVB9pt7+KLf06Gd2LBER8VIqM+I1TjhOMP3dbJ5e9SKGYdAp5jzmJWXQPqqN2dFERMSLqcyIV9h9oIihz49j3eY8AAZcdiMTbxlBfe1WEhGRM1CZEdPl/PcLHlg0if2HD9IouAHT70zlhkv6mB1LRER8hMqMmOa44wRT3prL7A9fAuCiluczP2ky50a0NDmZiIj4Er8tMw6nA/vRwwBs3LmFPp17YbPaTE5V9zicDtbl51Fk30dESFN6tI/FZrXx6/4C7sseyzc/fw/AvVfezLh/PEBwQJDJiUVExNdYDMMwzA5xJna7ndDQUIqLiwkJCanx/FbmriZt2Ux2HywqnxYdFkFGwij6d+ld4/nLb6pazjfH9WXJv9/i4BE7IfUbMePux/n7n/9qYlIREakN7v78rorflZmVuasZPC+VP77pk9eSzU7OVKFxg6qW8/+Kbd2JeYPTad08xmO5RETEczxVZqy1Nmcv5HA6SFs2s9IP2JPTxi7PwuF0eDJWnXO65XxSw6AGvPHQcyoyIiJSY35VZtbl51XY5fFHBrDrQCHr8vM8lqkuOtNyBigpPcK3W3/wUCIREanL/KrMFNn3uXWcVE7LWUREPMmvykxESFO3jpPKaTmLiIgn+VWZ6dE+luiwiPKDff/IArQIj6RH+1gPpqp7ior3YalyKWs5i4iIe/lVmbFZbWQkjAI45aP25OP0W0fqejPVdLTsGI++PJWhC8dh/P/hv1rOIiJS2/yqzAD079Kb7ORMosIiKkyPDo/Uadk1sLlgG/2nDmbxv9/AYrEwst89zE+arOUsIiK1rlrXmZk9ezbTpk2joKCAiy++mFmzZtG9e/dKx/7www+MGzeO9evXs23bNmbOnMnIkSNder3aOE/d4XTQO/0uftq9ldHXJvNgvwH6pqCaXv/yfR595UmOlB6laeNwnkucwBWd4oCqrwAsIiJ1n6euM+Py7QyWLVtGSkoKc+fOJS4ujqysLPr27cumTZuIiIg4ZfyRI0do27Ytt9xyC6NGjXJLaHewWW2E1G8EwAUx7fQBWw1Hyo4xZulTvPrFOwD06tCV5+6dSGRos/IxNquNXh26mhVRRET8gMu7mWbMmEFSUhKJiYl06tSJuXPn0qBBAxYuXFjp+EsuuYRp06Zx2223ERSk++7UFZt2baXflHt59Yt3sFgsPNR/EMtHPFOhyIiIiHiCS9/MlJWVsX79elJTU8unWa1W4uPjWbt2rdtClZaWUlpaWv7Ybre7bd5Sc0u/eJfUV6dx9HgpESFNee7eifylYzezY4mIiJ9y6ZuZvXv34nA4iIyMrDA9MjKSgoICt4XKzMwkNDS0/Kdly5Zum7dUX8mxIzywaBIjF2dw9HgpV1zQnZy0xSoyIiJiKq88myk1NZXi4uLynx07dpgdye9t3LmZa6Yk8tq697BarDx2XTKvPpBFc134TkRETObSbqZmzZphs9koLCysML2wsJCoqCi3hQoKCtLxNV7CMAxe/uwt0pbP5NjxUqLDmjNnULoueCciIl7DpW9mAgMD6dq1Kzk5OeXTnE4nOTk59OzZ0+3hxFyHjpYw9PlxPPzyFI4dL+WvF/bk47QlKjIiIuJVXD41OyUlhYEDB9KtWze6d+9OVlYWJSUlJCYmAjBgwABiYmLIzMwEfjtoeMOGDeX/vXPnTvLy8mjUqBHnnXeeG9+KuNP32zcxZMEYtu75FZvVxuM3DGVo/B1YrV65Z1JERPyYy2UmISGBPXv2MG7cOAoKCoiNjWXVqlXlBwVv3769wgferl276NKlS/nj6dOnM336dK644grWrFlT83cgbmUYBos+/SfjX3+ashPHiQmPZF5SBt3aXmR2NBERkUq5XGYAhg8fzvDhwyv93R8LSps2bajGRYbFBPajh0lZ8gTvfvsJAH07X0bWwDTCG4aanExERKRq1SozUvfk/rKB5Ow0tu/dRYCtHmk3DmPIVbdhsVR992sRERFvoDLj5wzDIPuT5UxaMYvjjhO0bBrNvMEZ/PncC82OJiIiclZUZvzYgZJiRi2ezKr//AuA/l2uZMbdYwht0NjcYCIiIi5QmfFT63/+L0Oy09i5v4DAegGM/8eD3HvlzdqtJCIiPkdlxs84nU7mfvwqT7z5HCecDto0P4f5SRl0btXR7GgiIiLVojLjR/YdPsiIF9P5+PvPAbi+WzzT70ylcf2GJicTERGpPpUZP/Hl5jyGPj+OXQeKCKoXSEZCCnf95XrtVhIREZ+nMlPHOZ1Onv1wCVPfno/D6aBdZCsWJE2m0zntzY4mIiLiFiozddge+34eWDSRNRu+BODmuGuYevujNAxuYHIyERER91GZqaM+37Se+xeOp7B4L/UDgph828PcfunftVtJRETqHJWZOsbhdJD1/iKeevd5nIaT86PPZX7SZDq2aGt2NBERkVqhMlOHFBXv4/6F4/ls0zcA3Hbp35mc8BANg+qbnExERKT2qMzUEf/a+BX3LxzP3kMHaBBUn6m3P8otPfqZHUtERKTW+W2ZcTgd2I8eBmDjzi306dwLm9VmcqrTczgdrMvPo8i+j4iQpvRoH4thGDy18nmy3l+EYRhcENOO+UmTaR/Vxuy4IiIiHmExDMMwO8SZ2O12QkNDKS4uJiQkpMbzW5m7mrRlM9l9sKh8WnRYBBkJo+jfpXeN518bKsscGdqU0AYh/LR7KwB3X3YDk24ZSf3AYLNiioiIlHP353dV/K7MrMxdzeB5qfzxTZ88xyc7OdPrCk1VmU8KqhfI0wPHcsMlfTyaS0RE5HQ8VWastTZnL+RwOkhbNrPSUnBy2tjlWTicDk/GOq3TZT4ptEFjru36V49lEhER8SZ+VWbW5edV2E3zRwaw60Ah6/LzPJbpTM6UGaDIvs+rMouIiHiSX5WZIvs+t47zBF/MLCIi4kl+VWYiQpq6dZwn+GJmERERT/KrMtOjfSzRYRFUdUF/C9AiPJIe7WM9mOr0fDGziIiIJ/lVmbFZbWQkjAI4pRycfJx+60ivut6ML2YWERHxJL8qMwD9u/QmOzmTqLCICtOjwyO98rRs8M3MIiIinuJ315k5yeF00Dv9Ln7avZXR1ybzYL8BXv/tRmVXAPb2zCIi4r88dZ0Zv72dgc1qI6R+IwAuiGnnE6XAZrXRq0NXs2OIiIh4Fb/bzSQiIiJ1i8qMiIiI+DSVGREREfFpKjMiIiLi01RmRERExKepzIiIiIhPU5kRERERn6YyIyIiIj5NZUZERER8msqMiIiI+DSVGREREfFpKjMiIiLi01RmRERExKepzIiIiIhPU5kRERERn6YyIyIiIj5NZUZERER8msqMiIiI+DSVGREREfFpKjMiIiLi01RmRERExKf5bZlxOB3Yjx4GYOPOLTicDpMTiYiISHVUq8zMnj2bNm3aEBwcTFxcHF999dVpx7/22mt07NiR4OBgLrroIt57771qhXWXlbmr6fb4jfy0eysAU9+ZR7fHb2Rl7mpTc4mIiIjrXC4zy5YtIyUlhfHjx/Ptt99y8cUX07dvX4qKiiod/8UXX3D77bczaNAgcnNzueGGG7jhhhv473//W+Pw1bEydzWD56Wy+2DFvAUHixg8L1WFRkRExMdYDMMwXHlCXFwcl1xyCc8++ywATqeTli1b8sADD/DYY4+dMj4hIYGSkhLefffd8mk9evQgNjaWuXPnntVr2u12QkNDKS4uJiQkxJW4FTicDro9fuMpReYkCxAdHsnXk1dgs9qq/ToiIiLivs/vM3Hpm5mysjLWr19PfHz87zOwWomPj2ft2rWVPmft2rUVxgP07du3yvEApaWl2O32Cj/usC4/r8oiA2AAuw4Usi4/zy2vJyIiIrXPpTKzd+9eHA4HkZGRFaZHRkZSUFBQ6XMKCgpcGg+QmZlJaGho+U/Lli1diVmlIvs+t44TERER83nl2UypqakUFxeX/+zYscMt840IaerWcSIiImK+eq4MbtasGTabjcLCwgrTCwsLiYqKqvQ5UVFRLo0HCAoKIigoyJVoZ6VH+1iiwyIoOFhEZQcKnTxmpkf7WLe/toiIiNQOl76ZCQwMpGvXruTk5JRPczqd5OTk0LNnz0qf07NnzwrjAT766KMqx9cmm9VGRsIo4Lfi8r9OPk6/daQO/hUREfEhLu9mSklJYcGCBbz44ots3LiRoUOHUlJSQmJiIgADBgwgNTW1fPyIESNYtWoVTz31FD/++CMTJkzgm2++Yfjw4e57Fy7o36U32cmZRIVFVJgeHR5JdnIm/bv0NiWXiIiIVI9Lu5ngt1Ot9+zZw7hx4ygoKCA2NpZVq1aVH+S7fft2rNbfO9Kll17KK6+8QlpaGo8//jjt27fnzTff5E9/+pP73oWL+nfpzTUXX866/DyK7PuICGlKj/ax+kZGRETEB7l8nRkzeOo8dREREXEfr7zOjIiIiIi3UZkRERERn6YyIyIiIj5NZUZERER8msqMiIiI+DSVGREREfFpKjMiIiLi01RmRERExKepzIiIiIhPc/l2BmY4eZFiu91uchIRERE5Wyc/t2v7ZgM+UWYOHToEQMuWLU1OIiIiIq7at28foaGhtTZ/n7g3k9PpZNeuXTRu3BiLxeK2+drtdlq2bMmOHTt0zye0PP5Iy+N3WhYVaXn8TsuiIi2PioqLi2nVqhUHDhwgLCys1l7HJ76ZsVqtnHPOObU2/5CQEK10/0PLoyItj99pWVSk5fE7LYuKtDwqslpr9xBdHQAsIiIiPk1lRkRERHyaX5eZoKAgxo8fT1BQkNlRvIKWR0VaHr/TsqhIy+N3WhYVaXlU5Knl4RMHAIuIiIhUxa+/mRERERHfpzIjIiIiPk1lRkRERHyayoyIiIj4tDpXZmbPnk2bNm0IDg4mLi6Or7766rTjX3vtNTp27EhwcDAXXXQR7733XoXfG4bBuHHjiI6Opn79+sTHx5Ofn1+bb8Ft3L0s7rnnHiwWS4Wfa665pjbfglu5sjx++OEH/vGPf9CmTRssFgtZWVk1nqe3cffymDBhwinrR8eOHWvxHbiPK8tiwYIFXHbZZYSHhxMeHk58fPwp4315uwHuXx7+tO1YsWIF3bp1IywsjIYNGxIbG8uSJUsqjPHl9cPdy8Jt64ZRhyxdutQIDAw0Fi5caPzwww9GUlKSERYWZhQWFlY6/vPPPzdsNpvx5JNPGhs2bDDS0tKMgIAA4/vvvy8fM2XKFCM0NNR48803jf/85z/GddddZ5x77rnG0aNHPfW2qqU2lsXAgQONa665xti9e3f5z/79+z31lmrE1eXx1VdfGQ8//LDx6quvGlFRUcbMmTNrPE9vUhvLY/z48caFF15YYf3Ys2dPLb+TmnN1Wdxxxx3G7NmzjdzcXGPjxo3GPffcY4SGhhq//vpr+Rhf3W4YRu0sD3/adqxevdpYsWKFsWHDBmPz5s1GVlaWYbPZjFWrVpWP8dX1ozaWhbvWjTpVZrp3724MGzas/LHD4TBatGhhZGZmVjr+1ltvNfr3719hWlxcnJGcnGwYhmE4nU4jKirKmDZtWvnvDx48aAQFBRmvvvpqLbwD93H3sjCM31a666+/vlby1jZXl8f/at26daUf3jWZp9lqY3mMHz/euPjii92Y0jNq+v/jiRMnjMaNGxsvvviiYRi+vd0wDPcvD8Pw323HSV26dDHS0tIMw/Dt9cPdy8Iw3Ldu1JndTGVlZaxfv574+PjyaVarlfj4eNauXVvpc9auXVthPEDfvn3Lx2/dupWCgoIKY0JDQ4mLi6tynt6gNpbFSWvWrCEiIoIOHTowdOhQ9u3b5/434GbVWR5mzNNTajN7fn4+LVq0oG3bttx5551s3769pnFrlTuWxZEjRzh+/DhNmjQBfHe7AbWzPE7yx22HYRjk5OSwadMmLr/8csB314/aWBYnuWPdqDNlZu/evTgcDiIjIytMj4yMpKCgoNLnFBQUnHb8yf91ZZ7eoDaWBcA111zD4sWLycnJYerUqXz66af069cPh8Ph/jfhRtVZHmbM01NqK3tcXByLFi1i1apVzJkzh61bt3LZZZdx6NChmkauNe5YFqNHj6ZFixblG3lf3W5A7SwP8L9tR3FxMY0aNSIwMJD+/fsza9Ys+vTpA/ju+lEbywLct274xF2zxTvcdttt5f990UUX0blzZ9q1a8eaNWu46qqrTEwm3qBfv37l/925c2fi4uJo3bo1y5cvZ9CgQSYmqz1Tpkxh6dKlrFmzhuDgYLPjmK6q5eFv247GjRuTl5fH4cOHycnJISUlhbZt23LllVeaHc3jzrQs3LVu1JlvZpo1a4bNZqOwsLDC9MLCQqKioip9TlRU1GnHn/xfV+bpDWpjWVSmbdu2NGvWjM2bN9c8dC2qzvIwY56e4qnsYWFhnH/++V69ftRkWUyfPp0pU6bw4Ycf0rlz5/LpvrrdgNpZHpWp69sOq9XKeeedR2xsLA899BA333wzmZmZgO+uH7WxLCpT3XWjzpSZwMBAunbtSk5OTvk0p9NJTk4OPXv2rPQ5PXv2rDAe4KOPPioff+655xIVFVVhjN1u58svv6xynt6gNpZFZX799Vf27dtHdHS0e4LXkuosDzPm6Smeyn748GG2bNni1etHdZfFk08+SXp6OqtWraJbt24Vfuer2w2oneVRGX/bdjidTkpLSwHfXT9qY1lUptrrRo0PIfYiS5cuNYKCgoxFixYZGzZsMIYMGWKEhYUZBQUFhmEYxt1332089thj5eM///xzo169esb06dONjRs3GuPHj6/01OywsDDjrbfeMr777jvj+uuv95lT6Ny5LA4dOmQ8/PDDxtq1a42tW7caH3/8sfHnP//ZaN++vXHs2DFT3qMrXF0epaWlRm5urpGbm2tER0cbDz/8sJGbm2vk5+ef9Ty9WW0sj4ceeshYs2aNsXXrVuPzzz834uPjjWbNmhlFRUUef3+ucHVZTJkyxQgMDDRef/31CqeTHjp0qMIYX9xuGIb7l4e/bTueeOIJ48MPPzS2bNlibNiwwZg+fbpRr149Y8GCBeVjfHX9cPeycOe6UafKjGEYxqxZs4xWrVoZgYGBRvfu3Y1169aV/+6KK64wBg4cWGH88uXLjfPPP98IDAw0LrzwQmPlypUVfu90Oo2xY8cakZGRRlBQkHHVVVcZmzZt8sRbqTF3LosjR44YV199tdG8eXMjICDAaN26tZGUlOQTH9wnubI8tm7dagCn/FxxxRVnPU9v5+7lkZCQYERHRxuBgYFGTEyMkZCQYGzevNmD76j6XFkWrVu3rnRZjB8/vnyML283DMO9y8Pfth1jxowxzjvvPCM4ONgIDw83evbsaSxdurTC/Hx5/XDnsnDnumExDMNw7bscEREREe9RZ46ZEREREf+kMiMiIiI+TWVGREREfJrKjIiIiPg0lRkRERHxaSozIiIi4tNUZkRERMSnqcyIiIiIT1OZEREREZ+mMiMiIiI+TWVGREREfJrKjIiIiPi0/wPxAi1MSpsn6gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Creating K points\n", + "pointsPerZone = 10\n", + "\n", + "createPoints = lambda init, end: [\n", + " init + (end - init) * i / pointsPerZone for i in range(pointsPerZone)\n", + "]\n", + "\n", + "KX = []\n", + "KY = []\n", + "\n", + "kx1, ky1 = kPoints[0]\n", + "for k in kPoints[1:]:\n", + " kx2, ky2 = k\n", + " KX += createPoints(kx1, kx2)\n", + " KY += createPoints(ky1, ky2)\n", + " kx1, ky1 = kx2, ky2\n", + "\n", + "# Visualizing the K-points\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.plot(KX, KY, \"-o\")\n", + "\n", + "\n", + "sims = {}\n", + "for i in range(len(KX)):\n", + " for pol in [polarization]:\n", + " sims[f\"s{i}{pol}\"] = getSim(pol, KX[i], KY[i])\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d704ec8f12824e339f1c6a110a1c5b44", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
15:21:18 -03 Started working on Batch containing 30 tasks.                      \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[2;36m15:21:18 -03\u001b[0m\u001b[2;36m \u001b[0mStarted working on Batch containing \u001b[1;36m30\u001b[0m tasks. \n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
15:21:56 -03 Maximum FlexCredit cost: 0.750 for the whole batch.                \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[2;36m15:21:56 -03\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.750\u001b[0m for the whole batch. \n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
             Use 'Batch.real_cost()' to get the billed FlexCredit cost after the\n",
+       "             Batch has completed.                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mUse \u001b[32m'Batch.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit cost after the\n", + "\u001b[2;36m \u001b[0mBatch has completed. \n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e70c28c6165b44e78f551d53d0a25ae2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
15:22:19 -03 Batch complete.                                                    \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[2;36m15:22:19 -03\u001b[0m\u001b[2;36m \u001b[0mBatch complete. \n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "6614bdf124aa4dbba371bdbb225c2409",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output()"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Running the simulations\n",
+    "\n",
+    "batch = web.Batch(simulations=sims, folder_name=\"hexagonalBandDiagram\")\n",
+    "batch_data = batch.run(path_dir=\"bandDiagram\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Band Diagram Calculation \n",
+    "\n",
+    "Now we can sum the signals from all monitors and use the [ResonanceFinder](https://docs.flexcompute.com/projects/tidy3d/en/latest/api/_autosummary/tidy3d.plugins.resonance.ResonanceFinder.html) plugin to track the resonances for each simulation.\n",
+    "\n",
+    "We will apply a mask to filter out spurious resonances."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Sum the signal for all monitors\n",
+    "def getSignal(sim_data, polarization):\n",
+    "    signal = 0\n",
+    "    for i in range(Nmonitors):\n",
+    "        signal += sim_data[f\"mon{i}\"].field_components[polarization].squeeze()\n",
+    "    return signal\n",
+    "\n",
+    "\n",
+    "def ftField(field, **args):\n",
+    "    \"\"\"x axis in nanometers\"\"\"\n",
+    "    dt = np.mean(np.diff(field.t))\n",
+    "    fmesh = np.fft.fftshift(np.fft.fftfreq(field.size, dt))\n",
+    "    spectrum = np.fft.fftshift(np.fft.fft(field))\n",
+    "    return fmesh, spectrum\n",
+    "\n",
+    "\n",
+    "from tidy3d.plugins.resonance import ResonanceFinder\n",
+    "\n",
+    "# Analyzing resonances\n",
+    "dic = {}\n",
+    "FTs = []\n",
+    "for i in range(len(KX)):\n",
+    "    for pol in [polarization]:\n",
+    "        resonance_finder = ResonanceFinder(freq_window=(50, 200e12))\n",
+    "        sim_data = batch_data[f\"s{i}{pol}\"]\n",
+    "        signal = getSignal(sim_data, pol)\n",
+    "        fmesh, ft = ftField(signal.real)\n",
+    "        bm = (fmesh > 0) & (fmesh < 300e12)\n",
+    "        FTs.append(abs(ft[bm]) / max(abs(ft[bm])))\n",
+    "\n",
+    "        resonance_data = resonance_finder.run_raw_signal(signal, sim_data.simulation.dt)\n",
+    "        df = resonance_data.to_dataframe()\n",
+    "        dic[f\"s{i}{pol}\"] = df"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Finally, we can plot the band diagram. \n",
+    "To match the results with the [reference papaer](https://www.flexcompute.com/tidy3d/examples/notebooks/Bandstructure/), we will multiply the frequencies by four, since the original lattice constant is 0.25 µm."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAidNJREFUeJzt3Xd4U+XbwPFvGtoy2zI6KVA2gixBa9FiGa9lqGApMhVRUVm2Iqg4yhBFURGQjUhxgAoWfoplQ6EKVEVBRUBEZgcFoS2rKz3vH4fE7pW0J2nuz3XlanLOycmdEJI7z7gfnaIoCkIIIYQQdsxB6wCEEEIIIbQmCZEQQggh7J4kREIIIYSwe5IQCSGEEMLuSUIkhBBCCLsnCZEQQggh7J4kREIIIYSwe5IQCSGEEMLuSUIkhBBCCLsnCZEQotwef/xxateurXUYeUyfPh2dTlfu+wcFBREUFGS6ffr0aXQ6HZGRkeYHJ4SwWpIQCWHjdDpdqS4xMTGmL3edTsesWbMKPd+IESPQ6XRWl+gIIURFqqZ1AEII83z66ad5bn/yySds3769wPbbbruNmzdvAlC9enXWrl3La6+9lueY69ev87///Y/q1atXbNA2pEmTJty8eRNHR0etQxFCVCBJiISwcSNHjsxz+8CBA2zfvr3AdlC7fwD69etHVFQUhw8fpmPHjqb9//vf/8jMzKRPnz7s2rWrQuO2FTqdTpMEMScnh8zMTElOhagk0mUmhB0KCAigadOmrFmzJs/2zz//nD59+lCvXr0yne+ff/4hODiYWrVq4ePjw8yZM1EUJc8x7733Ht26daN+/frUqFGDLl26sH79+gLn0ul0TJgwgY0bN3L77bfj7OxMu3bt2LJlS4Fjv//+e+68806qV69O8+bNWbZsWZniXr58Oc2bN6dGjRrcddddxMbGFjimsDFEv/32G48//jjNmjWjevXqeHl58cQTT/Dvv/8WuH9MTAxdu3bNE2Nh45yMz/vzzz+nXbt2ODs7m55zWV+7devW0bZtW2rUqEFAQAC///47AMuWLaNFixZUr16doKAgU4IshJAWIiHs1rBhw/jss894++230el0XLp0iW3btvHpp58WmnwUxWAw0KdPH+6++27mzJnDli1bmDZtGtnZ2cycOdN03Pz583nooYcYMWIEmZmZfPHFFwwePJhNmzbRv3//POf8/vvviYqKYty4cdSpU4cFCxYwaNAgzp49S/369QH4/fffuf/++3F3d2f69OlkZ2czbdo0PD09SxX3ypUreeaZZ+jWrRvh4eH8888/PPTQQ9SrV49GjRoVe9/t27fzzz//MHr0aLy8vDhy5AjLly/nyJEjHDhwwJTs/Prrr/Tp0wdvb29mzJiBwWBg5syZuLu7F3reXbt28dVXXzFhwgQaNGiAn59fmV+72NhYvvnmG8aPHw/A7NmzeeCBB3jxxRdZvHgx48aN48qVK8yZM4cnnnhCWgKFMFKEEFXK+PHjlaL+a586dUoBlHfffVf5448/FECJjY1VFEVRFi1apNSuXVu5fv26MmrUKKVWrVolPtaoUaMUQJk4caJpW05OjtK/f3/FyclJuXjxomn7jRs38tw3MzNTuf3225WePXvm2Q4oTk5Oyt9//23advjwYQVQPvzwQ9O2gQMHKtWrV1fOnDlj2vbnn38qer2+yOef+7E9PDyUTp06KRkZGabty5cvVwDlvvvuM20zvmarVq0q8rkoiqKsXbtWAZS9e/eatj344INKzZo1lfj4eNO2EydOKNWqVSsQI6A4ODgoR44cKXDusrx2zs7OyqlTp0zbli1bpgCKl5eXkpaWZto+depUBchzrBD2TLrMhLBT7dq1o0OHDqxduxaANWvWMGDAAGrWrFnmc02YMMF03dhtk5mZyY4dO0zba9SoYbp+5coVUlNTCQwM5Jdffilwvt69e9O8eXPT7Q4dOuDi4sI///wDqK1SW7duZeDAgTRu3Nh03G233UZwcHCJ8f78888kJyfz7LPP4uTkZNr++OOP4+rqWuL9cz+X9PR0Ll26xN133w1gej4Gg4EdO3YwcOBAfHx8TMe3aNGCvn37Fnre++67j7Zt2xb7eCW9dr169TK1LAH4+/sDMGjQIOrUqVNgu/E1FcLeSUIkhB0bPnw469at4++//2bfvn0MHz68zOdwcHCgWbNmeba1atUKIM8YlU2bNnH33XdTvXp16tWrh7u7O0uWLCE1NbXAOXMnOUZ169blypUrAFy8eJGbN2/SsmXLAse1bt26xJjPnDkDUOD+jo6OBZ5LYS5fvkxYWBienp7UqFEDd3d3mjZtCmB6PsnJydy8eZMWLVoUuH9h2wDTOfIz57UzJnj5uwGN242vqRD2ThIiIezYsGHDuHTpEmPGjKF+/frcf//9FfI4sbGxPPTQQ1SvXp3FixcTHR3N9u3bGT58eIHB1wB6vb7Q8xR2rBYeeeQRVqxYwbPPPktUVBTbtm0zjbvKyckp93lztwQZWeq1s/bXVAityaBqIexY48aNueeee4iJiWHs2LFUq1b2j4ScnBz++ecfU6sQwF9//QVg6rr5+uuvqV69Olu3bsXZ2dl03KpVq8oVt7u7OzVq1ODEiRMF9h0/frzE+zdp0gSAEydO0LNnT9P2rKwsTp06lacUQX5Xrlxh586dzJgxg4iICNP2/LF4eHhQvXp1/v777wLnKGxbUSz92gkhCictRELYuVmzZjFt2jQmTpxY7nMsXLjQdF1RFBYuXIijoyO9evUC1NYJnU6HwWAwHXf69Gk2btxYrsfT6/UEBwezceNGzp49a9p+9OhRtm7dWuL9u3btiru7O0uXLiUzM9O0PTIykpSUlBIfGwq2rMybN6/Acb1792bjxo0kJCSYtv/9999s3ry5xBhzn8eSr50QonDSQiSEnbvvvvu47777yn3/6tWrs2XLFkaNGoW/vz+bN2/mu+++45VXXjFNL+/fvz9z586lT58+DB8+nOTkZBYtWkSLFi347bffyvW4M2bMYMuWLQQGBjJu3Diys7P58MMPadeuXYnndHR0ZNasWTzzzDP07NmTIUOGcOrUKVatWlXiGCIXFxe6d+/OnDlzyMrKomHDhmzbto1Tp04VOHb69Ols27aNe+65h7Fjx2IwGFi4cCG33347hw4dKtXzrIjXTghRkLQQCSHMotfr2bJlC0lJSUyZMoWffvqJadOm8cYbb5iO6dmzJytXriQpKYnw8HDWrl3LO++8w8MPP1zux+3QoQNbt27F3d2diIgIPv74Y2bMmFHqcz799NMsXryYhIQEpkyZYqrfU1INIlBn5AUHB7No0SKmTp2Ko6Njoa0+Xbp0YfPmzdStW5fXX3+dlStXMnPmTHr16lXqCtQV8doJIQrSKTKiTgghKtXAgQM5cuRIoWOghBDakBYiIYSoQMYFdY1OnDhBdHQ0QUFB2gQkhCiUtBAJIUQF8vb2Nq17dubMGZYsWUJGRga//vproXWUhBDakEHVQghRgfr06cPatWtJSkrC2dmZgIAA3nrrLUmGhLAymnaZGQwGXn/9dZo2bUqNGjVo3rw5b7zxRp7prIqiEBERgbe3NzVq1KB3794F+t0vX77MiBEjcHFxwc3NjSeffJJr165V9tMRQogCVq1axenTp0lPTyc1NZUtW7Zwxx13aB2WECIfTROid955hyVLlrBw4UKOHj3KO++8w5w5c/jwww9Nx8yZM4cFCxawdOlS4uLiqFWrFsHBwaSnp5uOGTFiBEeOHGH79u1s2rSJvXv38vTTT2vxlIQQQghhgzQdQ/TAAw/g6enJypUrTdsGDRpEjRo1+Oyzz1AUBR8fH1544QUmT54MqOsEeXp6EhkZydChQzl69Cht27blp59+omvXrgBs2bKFfv36cf78+TyLKgohhBBCFEbTMUTdunVj+fLl/PXXX7Rq1YrDhw/z/fffM3fuXABOnTpFUlISvXv3Nt3H1dUVf39/9u/fz9ChQ9m/fz9ubm6mZAjUlbIdHByIi4srtFZHRkYGGRkZpts5OTlcvnyZ+vXro9PpKvAZCyGEEMJSFEXh6tWr+Pj44OBgXqeXpgnRyy+/TFpaGm3atEGv12MwGHjzzTcZMWIEAElJSQB4enrmuZ+np6dpX1JSEh4eHnn2V6tWjXr16pmOyW/27NnMmDHD0k9HCCGEEBo4d+4cvr6+Zp1D04Toq6++4vPPP2fNmjW0a9eOQ4cOER4ejo+PD6NGjaqwx506dSqTJk0y3U5NTaVx48ac+/57XGrXrrDHFUIIm3HzJkyYAAcPqrednCAzE1xcYOtWqFFD2/jKYPvOnbzwwgvkHx9i7A94//33+b9b6+4Vd38gzzlKe39RBEWBrCxo0gRKWbk9v7S0NBo1akSdOnXMDkfThGjKlCm8/PLLDB06FID27dtz5swZZs+ezahRo/Dy8gLgwoULeHt7m+534cIFOnXqBICXlxfJycl5zpudnc3ly5dN98/P2dk5z6rRRi4NGuBigRdVCCFsnsGgJj3OzvDEE/Dyy3DffXD6NOzdCyNHah1hqRgMBma/9x6ZRezXAW+//z4DBw82Ldyb36ChQ6nh4kJERAQJiYmm7Q19fJgxYwb9+vWzfOD2ICcHrl5Vk+xyJkRGlhjuomlCdOPGjQJ9fnq9npycHACaNm2Kl5cXO3fuNCVAaWlpxMXFMXbsWAACAgJISUnh4MGDdOnSBYBdu3aRk5ODv79/5T0ZIYSwZQkJsGABPP881KwJ2dnw1lvg4QGtWoFOBx98oH6BdeyodbSlFhcXlyeJyU8B4hMSiIuLo1u3bkUe169fP4KDg4mLiyM5ORkPDw/8/f2LTKKE7dE0IXrwwQd58803ady4Me3atePXX39l7ty5PPHEE4Ca8YWHhzNr1ixatmxJ06ZNef311/Hx8WHgwIEA3HbbbfTp04cxY8awdOlSsrKymDBhAkOHDpUZZkIIUZKUFFi0CFauhIwMtQtj9mzw9obbboPcP1oHDoT0dLWVKCsLHB01Crr08vcgmHOcXq8vNmkStk3ThOjDDz/k9ddfZ9y4cSQnJ+Pj48MzzzxDRESE6ZgXX3yR69ev8/TTT5OSksK9997Lli1b8qwU/fnnnzNhwgR69eqFg4MDgwYNYsGCBRaJUVEUsnNyMMgKJ5pydHBAb+YMAiFELjdvwqpVsHAhpKaq2+68E0aPhkaNoKiWj+rV1S6O5GS19aiSGAyGcrXO5J90Y+5xouqStcxQu+FcXV1JPXYszxiiTIOBxGvXuJGdrTYXC20oCjrAt04dajs5aR2NELZv3Tp4+20wzsRt1QqmT4fQ0NK1+syYoXavrV4NlVB1Ozo6usD4HR9vb2bOnFni+B2DwYC/vz+JiYkFBlWDOobIx8eHAwcOSPdXZTOOIWra1KxB1a6urqSmpuLi4mJWOLKWWRFyFIVTKSnonZ3x8fDAydERSYm0oQAXL1/m/NWrtKxbV1qKhDDX4cNqMuTjA6+8og6aLsussb//hsuXYelSWL684uJETYbGjBlTIJlJTExkzJgxrFixotikSK/XM3PmTMaMGYOOwmeJzZgxQ5IhIS1EUHgLUXp2NqdSU2nSuDE1bWh6aVV1Mz2d02fO0NTVlerVJI8XotQURZ0VVr8+tGkD166p44Z27ICwMHB1Lfs5f/1VbRnS62HfPjCz/ktRjK07RQ2KLkvrTmGtTDJLTGPSQmRDdDocpKvMKuhAui2FKAtFgV271Jlhv/4K3brBihXg5qZ+AZkzOLhzZwgKgpgYWLYM3njDQkHnZakZYiCzxETJJCESQoiqRFFg2zaYNw9++03dVr06tG0LDRuqA6It8eNi8mQ1IfrqK3jxRaiAGm6WnCEGMktMFE8GY9ggv1at+P6HHwB46513mBAWVub7CSGqoJgYuP9+dUzQb7+p44KefRaOHFHH+ri6Wq6ltW9faN1a7YL75BPLnDMfmSEmKpMkRDbulZdeYuH8+WafJ/KTT+jdp48FIhJCaObsWfjzT7Ww4oQJcPQoLF4MzZpZvsvZwQGMSyCtXq2OBymGwWBg3759bNy4kX379mEwGEp8CH9/f3y8vYuc0KJDHQckRXiFJUiXmRBC2KLsbPjmGzX56dULrl+Hfv0gLQ3GjVO7xyp63N2jj8KhQ+rjZmer650VorzT5mWGmKhM0kJUVtevF31JTy/9sTdvFjy2HKa/8QZPPfus6faKlSvxbdYMr8aNWbFyJTpnZ86fP2/aH/fjj9zWoQNuHh6mrrZ//vmHZydMIGbvXmrXq0e7W8uk5Hfo8GHu690bNw8PGrdowbqvvwbgypUrDHv0URr4+NC8TRuWrVhhus/jTz3Fc88/T6/gYOrUr8/9/fpx+fJl0/49e/fS5e67cfPwIOj//o+TJ0+W63UQwm5kZ6vjdoKCYOJEmDZNnalTty60bKkut+HrWzmTEGrUUFugunSBGzcKPcQ4bT7/4GjjtPno6OhiH6Jfv36sWLEiz3qWoM4uK2nKvRBlIS1EZVWvXtH7+vSB//3vv9u+vkV+SNC9O2zf/t/tVq0gPt6s0H7/4w+mTJ3Kjs2bade2LeOee67AMRu//ZbYXbtIT0/njrvvZtDDD9MjKIilCxfy2Zo17NiypdBzp6amcn///rw1cyY7Nm8mJSWFC7cGMk4IDwfg7N9/8/fJk/Tq04c2rVtzX/fuAHz19dds++47WrVsSf8BA5i/cCEzIiI4d+4cocOGEfXll3QLCGDx0qUMffRRftq3z6zXQYiqxFih+WJCAu2OHqV5dDS6s2fVna6u6iKrDRuqCVEx54iNjSUxMRFvb28CAwMt26ri6gpXrhRYzsNgMBAREVFoQUQFtZVn2rRpBAcHFxuPzBATlUESoirk6w0bCBk4kK63Frl97eWXicw32DF84kQaNGgAQFD37hz+7Td6BAWVeO5N0dG0bNGCp26tM+fu7o67uzsGg4F1X3/N8d9/p2bNmnRo356nRo9mzRdfmBKiwSEhdGjfHoBBDz/Mth07APj8iy94+KGHCLz3XgAmjh/PzLfe4vTp0/j5+Zn9eghh64xdTa0SE3kHaHRre0bt2jiHh6stRCUMKI6KiiIsLCxPS7Gvry/z588nJCTEMoEmJMBrr6lroeVqIbbktHmZISYqmiREZZWru6eA/L9Wcn0AFZC/2vJff5U/pluSkpLwbdjQdNu3kGJpnrk+PGvWrMm1UnbVnY+Pp2khScqlS5fIysqicePGpm1NGjfmjyNH/ntMT8+8j3ntGgBnz57l0zVr+OpW1xtAZmYm8QkJkhAJuxf93XeMefppFKAZajJ0EfgQWHTtGis6dyakFMlQaGgo+evvxsfHExoayvr160uVFJXYwpSZCRs2qN10//yjDuLG8tPmhahIMoaorGrVKvqSv9Jmccfmr35dq5bZoXl5eRGfkGC6fb64hCwfXQnjDRr5+nL6zJkC2xs0aICjoyNnjU34wNlz5/DJ199fmIYNGzLmiSdISU42XW6kpHCP/AoU9uzwYXLGj+dSeDjVgXrAL8AzQEvgDeCKTkd4eHixM7UMBgNhYWEFkiHAtK2kc4CaVPn5+dGjRw+GDx9Ojx498PPzIyoq6r+D2rZVhwwoSp6lPGTavLAlkhBVIQ8PGMDXGzbwy6+/kp6ezltz5pT6vh7u7pyPjyc7O7vQ/f379uWvEydYtXo1WVlZXLx4kT+OHEGv1xMaEsJr06dz48YN/jhyhJWRkQx95JESH3P4kCGsi4oi9vvvycnJ4erVq6zP/SErhL0wGGDzZggJgX79cNi4kUE3blADiAfOAMuBW2vSoygK586dIzY2tshTxsbGFvujqDTnMLYw5T+PsYUpT1L0wgvq3/Xr1fFEyLR5YVskIapCOnbowNuzZvFgSAh+rVrRpXNnAJydnUu8b88ePfBr0gT3hg3pcGsMUm6urq5s+fZbVkZG0sDHh67dunH8VjffwnnzyM7OplHz5jwUEsL0114r1bikpk2b8sWnnzJl6lTqeXnRpkMH/vftt2V70kJYuWLr71y/Dh9/DIGB8NRTEBcH1apxrmtX+gBHgRSg8J8p6kytohS3rzTHlbmFqVcvaN9enUEbGQn8N20eKJAUybR5YW1kcVeKWdw1LY2mjRtTvZyLzmnt+PHjdOjalfS0tBK7xKxdeno6p86epamLiyzuKmxGifV3Zs+GhQvVHa6ual2f554j5vx5evTsWeL5d+/eTVARPz527txJ7969SzzHjh076NWrV4HtMTEx9OjRo2wxfPIJjBqlDvSOizPVJZKFVUWhZHFXUZE2ffcdvXv1IiMjg6mvv85DDzxg88mQELbIWH8n9y/OTkDmrfo7Hy9cSPBDD8GWLWrr0FNPqSvSA4HNmlG/fn3+/fffIs9fv359AgMDKyz+crUwDR0KL78MiYnw9dcwbBgg0+aFbZCEqIr5cv16Rjz+OA4ODtwXGMjiBQu0DkkIu5O7/k414P+ApwF/YBcwEZj55pv0/u039EeOFFnh2RzmzvDKXwixKHmOc3JSC0WeOwf5JkfItHlh7SQhqmI+XbVK6xCEsHtxcXE4JibyMjAEMBaeyAT+RR0ofSwxkdg//ii0yys2NrbY1iGAf//9l9jY2CK7zMqV0OQSGBiIr68v8fHxhY4j0ul0+Pr6FmyleuYZtSDtmTNqVW3p4hY2QgZVCyGEhXl++CH7gedQk6FLwDzgNuAR1NliOaiztQpj7oBoUBOa+re64IpSXLebXq9n/q2Fo/N3uxtvz5s3r/Burxo1wMWl3EsSCaEFSYiKoyjkyJhzq6CAWuNEiEpU6hXajx1TB4cCZGRw0dmZHGA38CjgBzwP/JPvbhcvXiz0dOa27lhKSEgI69evp2Gugq+gFn0ttqijTgcxMeoYouPHKzRGISxF2jKL4KTX4wAkXLiAe/36ODk6FllLQ1QsBbh4+TI6wDF/hW8hKkiJM8SuX1dXm1+zBn75BaZPh0GDwNmZxD59uG37dk5Aoet4Gbm7uxe63dhdVVwdoUaNGhU7qNoS3W6gJkUDBgwo+1po69bB4cOwdCl88EHxxwphBSQhKoKDTkdTNzcSr10jISGhclaOFoVTFHSAb5066CUhEpWgsBlioHZRLRozhtsDA2n8yy//dQlVqwbJyeqCzjVrUveOOyjNYjz5W16M9Ho9w4YN49133y3yvkOHDi02KbFEt1vueIpLmgo1ebK62PXGjfDqq3BrDUUhrJXUIaLwOkRGiqKQnZODQV4mTTk6OEgyJCqFwWDA39+/wKKk1YBNQIfcG/381NpBo0er12/9cDIYDPj5+ZXYwnPq1KlCkxpz7w/lrCNkSYoC/v7w00/w3HPw0kuWfwxh26QOkW3R6XQ46vU4ah2IEKJSGFdorw50Bb6/tb0a6gyxdOA7oOVbb9HhhRcKnTJvHJA8aNCgIh+nyAHJlLzsBmBadqOoZKbcs8QsRadTl/MYOhQ++0xNivKv4SiEFZGf3EIIYZSRgcOOHSwEfgO+Qp0Z5oa61MQLQFMgFDji51ch9YPAMt1dZs0Ss5RBg6BxY7h8Gb78suIeRwgLkIRICFFllWqWWGYm7NgBYWHQsSN3L1tGCFAbtV6QK3AOdYHVX4GkW3crboaXcR2wouhKWK3eUrPMyj1LzFKqVVNfV4CVK9UuEiGslIwhovgxREII21TiLDGj//0Pxo0z3VQ8Pfn86lVW3bjBXgourGrsaqrI8TvGMUQldXcVF0P+85V5lpilpKVBSAhZffuyOiWFU+fP4+fnx6hRo3CqoBY2YSNkDJEQQlSswmaJ6YEWiYlcHjOGI0OH0m72bEhPhy5d1G6dXr1g6FB0991Hze++Y1cR438URSmxq8ncLi9jd1doaCg6nS5PUlSe7q5yzRKzFBcXXrzjDtZOmUJtRSH11uaZM2fyzDPP8Nprr2kTlxD5SJeZEKJKyb+OWDdgNmp31xfASKD6+vUYbt6EOnWgTRv46y/4+GO4/35wdjY7Bkt0eWne3WUhL774Iu+++y5XbpXPMH7pGHJyWLxkCbNmzdIyPCFMpMsM6TIToirZt28foYMH8y7wEJD7f/Rl1BliXwGTt27lvvvvL3D/kqa8l6a7ypJdXpp2d5kpMzOTmjVrYjAYqAu8BNQHInIdo3dw4OTJk9J9Zo+srMtMWoiEELbt5k3YswfeeQcUheSkJGqgDoaug5oEfQE8DPgCj6HWE0oooopzSVPeFUUxTXkviiVneBm7u4YNG0ZQUJDNJEMAixcvNg0cb46aEI3iv8VuQW0pWr16tQbRCZGXjCESQlglg8FAXFwcycnJeHh44O/vryYDigInT6prZcXEwL59kJGh3um++/CsVYsc4F1gDnAAyCrk/B4eHoU+rqUqPBu7vMLCwvIkWL6+vsybN89murzMcfLkSdP1n4G9QHdgDJC7o+z06dOVGpcQhZGESAhhdYqaIbZ8wADu+O47OHcu7x28vCAoCHx9Sa9enTPA6XI+tiUXVi33OmBVRPPmzfPcnouaEI0A3gdu3tru5+dXqXEJURgZQ4SMIRLCmkRHRzNpzBg6AV2AXcBhoDoQBHwM4OgId92lDoLu2xc6dVK3AWvXrmX48OElPs6aNWsYNmxYge2WnvJuz3KPIQJ1jMYxoCXqOKKPkDFEds3KxhBJC5EQokIU2eWVX04O/P03HDxIzs8/03r9ev7kvwGO7qhFETNQk6Nn69dn0Z9/ond3L3TRZXNbeCw95d2eOTk5MWnSJNMitTnAPGAR8BRqcvvMM89IMiSsgqaDqv38/NDpdAUu48ePByA9PZ3x48dTv359ateuzaBBg7hw4UKec5w9e5b+/ftTs2ZNPDw8mDJlCtnZ+UupCWFfSlWhuQJFR0fj7+9P6ODBjBs/ntDBg/H39yc6OhpSUiD3oOUzZ6BHD5g8GYcvvqB5djYOwFlgA7AHNSEyXpb9+y+xf/5ZaDIE/63hlX8ws5FOp6NRo0bFruFVVaa8W4M5c+YwZcoUUwIZiTrQvTEw7/77pQ6RsBqadpldvHgxzwf1H3/8wf/93/+ZqreOHTuW7777jsjISFxdXZkwYQIODg788MMPgPqh36lTJ7y8vHj33XdJTEzkscceY8yYMbz11luljkO6zERVUuoKzcUodetOEY9vLIroALQC7kBdKLULancJwcEwfz5k3Rru3LcvNGzIMTc3Zmzdyj7gPGqLQmGK6u4yioqKIjQ0FKDQFp7SJjW2POXd2mRmZrJ48WJOnjzJ8BMnuKtWLfSjRkHXrlqHJrRiZV1mVjWGKDw8nE2bNnHixAnS0tJwd3dnzZo1pg+2Y8eOcdttt7F//37uvvtuNm/ezAMPPEBCQgKenupEzqVLl/LSSy9x8eLFUjfDSkIkqorCKjSDujApwIoVK0pMisqVUGVnw7//YmjQAH9/fxISE/kCNRGqXcjhSteu6DZsgFq11LE/jo7g5ETMnj1mLXmRW1RUVIEZXo0aNbKbGV5W7/p1tXWwTh2QJNM+SUJUuMzMTHx8fJg0aRKvvPIKu3btolevXly5cgU3NzfTcU2aNCE8PJznn3+eiIgIvvnmGw4dOmTaf+rUKZo1a8Yvv/xC586dC32sjIwMMozTdFFf0EaNGklCJGyawWAwJSOF0QE+Pj4cOHCgyFaOkhKqlQsX0qdlSzhx4r/L33/DqVPQuDEHZszgsZEjqYZa+6cDcB11UHQcsP/W5dMdOwjq1avQ51Bl1vASxVMUtev0xg01KRL2x8oSIqsZVL1x40ZSUlJ4/PHHAUhKSsLJySlPMgTg6elJUlKS6Rhjy1Du/cZ9RZk9ezYzZsywXPBCWIG4uLgikyEABYhPSCAuLo5u3boV2G8wGIh4/XVcAA/U4nmuqJWdFdSkqGl4uNoaVJjkZC5cuMA11AHQzwFXgSO3bueWmJxc6Cmq1Bpeong6HSQkwJw5MHkyNGmidUTCzllNpeqVK1fSt29ffHx8Kvyxpk6dSmpqqulyLn9NEyFsUHIRSQaoC5t6Ae0BZc+evDvfeQcefJCsLl34PimJo6gDmb8CFgJuuS5/Z2eTVbu2Ou5jxAiYNQu+/hqOHoWLF3Ht3JlE1EGze4BfKJgMgX2s4SVK4dVXISoKli/XOhIhrKOF6MyZM+zYsYOoqCjTNi8vLzIzM0lJScnTSnThwgW8vLxMx/z44495zmWchWY8pjDOzs44W2ABRyEqTGqqWnzw9tv/27Z/P8THq1WZjZf0dPViMODRs6fp0OeAAKABamtPff779ZOzZAncmsmJwQDHj8Mvv5C7wToFuAjEA9lA8q2/w4DlS5YwdOTIQsMO7N4dX1/fEru8ipvhBVLQ0G688ALs3Anr1sGLL4Krq9YRCTtmFQnRqlWr8PDwoH///qZtXbp0wdHRkZ07dzJo0CAAjh8/ztmzZwkICAAgICCAN9980zQTBmD79u24uLjQtm3byn8iQlhCSopadfnGDTh8WB1rAeqsrGLWz/J/9lnaeHqSfOECnYH78u3PBq44ONDgttvUc9atC05O8Nxz8Nhj/JqUxNAXXiABuEHRM7y8fH2LjMGSXV7S3WUH+vSB225TWxg/+QQmTtQ6ImHHNB9UnZOTQ9OmTRk2bBhvv/12nn1jx44lOjqayMhIXFxcmHjrP8u+ffuA/6bd+/j4MGfOHJKSknj00Ud56qmnZNq9sF1vvw0ffqheN64F5eAA778Pv/2mDj50doYaNdTrxsvrr/NtdDSPjRpFIGoX2QUgCUhAbeVZu24dIbdmbeZnyQHNMsNLlNrKlfDUU+ryK3FxUM0qfqeLymBlg6o1T4i2bdtGcHAwx48fp1WrVnn2paen88ILL7B27VoyMjIIDg5m8eLFebrDzpw5w9ixY4mJiaFWrVqMGjWKt99+m2pl+E8lCZGwGpcuQUCA2jr0yScwcmSRBQiLYk4yYqn6PSAzvEQppaerA6qTk2HBArjVIyDsgCRE1kcSImE1pk+HFSugfXs4eNC0PldZmZOMSOuOqHQzZ8K0adCuHWzdWuYfAcJGSUJkfSQhElYhMRHuuUcdLL1uHRTRtVUZpHVHVKqLF9WZiw89BOHhanewqPqsLCGSzlohrMWCBWoydOedMGCApqHIgGZRqdzd4Z9/1LpE169LQiQ0YTV1iISwa4qiJkM6ndp1UM6uMiFsll4Pbm5qKYicouY4ClFxJCESwhrodPDGGxATo05FFsIe1agB+/bBsmVaRyLskHSZCWENcnLUFqKOHWWhS2G/9u+Hp59Wx5MMGQL16mkdkbAj0kIkhNYiI+HPP6F2bfUihL269171R0F6OqxapXU0ws5IQiSElv78U13PqX9/9UtAWoeEPdPp1IVeQa3DlVHYSnhCVAxJiITQ0rvvqn/79IF8hUmFsEuPPAI+PmqR0q+/1joaYUckIRJCK7/+Ctu2qctyTJ+u/hXC3hnX1wNYvvy/tfyEqGDyCSyEVoytQyEh0LmztrEIYU2efhpq1YITJ2DPHq2jEXZCEiIhtHDggPpBX62aWndIWoeE+E/dujB6tLqETWam1tEIOyHT7oWobIoCc+ao14cOVddvEkLk9e67kJUF586pZSnkR4OoYPIOE6KyGQwQGAgNGsBrr8lClkIUpnp1tdusZk24cUPraIQdkIRIiMpWrZraHfDjjzKzTIjiODiopShWrIDkZK2jEVWcdJkJUdmys9VWIQ8PaR0SoiSjR8POnXDzJrzyitbRiCpMWoiEqCw5Oep04s2bwcVF7QoQQhTvmWfUv59/riZFQlQQSYiEqCzffqsWmps8We0KkNYhIUr28MPQpAmkpMDatVpHI6owSYiEqAzZ2fD+++r1sWPB21vbeISwFdWqQXg4ADcXLWJjVBT79u3DYDBoG5eociQhEqIyfP01nDwJbm7wwgtaRyOETfnG3Z2rOh01kpL438SJhA4ejL+/P9HR0VqHJqoQSYiEqGiZmfDBB+r1554DT09t4xHChkRFRTHw0UdZemsJj2dvbU9MTGTMmDGSFAmLkYRIiIq2dq1aXM7dHcLCtI5GCJthMBgICwtDURQWAOnAZaA6YFzhbNq0adJ9JixCpt0LUZFu3oQFC9Tr4eFQr56m4dgbg8FAbGwsiYmJeHt7ExgYiF6v1zosUUqxsbGcP38egPOAD1ALqHFrvwLEJyQQFxdHt27dtAlSVBmSEAlRkZyd1WrUX3wBEyZoHY1NMTeZiYqKIiwszPSFCuDr68v8+fMJCQmplBiEeRITE/PcvgJkA3XyHZcsRRuFBUhCJERFcnCA++6DRx5Raw/ZCEskAuacw9xkJioqitDQUBRFybM9Pj6e0NBQ1q9fX+J5LJFQgSRV5vAuZDbmdcAL6A58c2ubh4dHJUYlqiqdkv8Tww6lpaXh6upK6rFjuNTJ/9tDiNIzGAzExcWRnJyMR4MG+HfujB7UOipOTqU+hy0nI+aeo6hkRnerblNJyYzBYMDPzy/PY+c/j6+vL6dOnSryNTE3htznsURSZa+M/5bx8fGmf4u7gP3ANaAr4Orjw4EDByTJtEU5OXD1KjRtqq5dVw6m7+/UVFzM/NEpCRGSEAnLiI6OJiIigoTERFyATcDW2rXx++AD+j/1VKnOYevJiLnnsEQyExMTQ48ePYqNEWD37t0EBQVVSAxguaTK3luYjK8jgKIo6ICjQGtgBnDnihX069dPwwhFuVlZQiSzzISwgOjoaMaMGUPCrTEPzwAtgP+7do1BY8YQFRVV4jmMH/z5v4iN3TwVfY7cM3ryM24LDw8vdkaPuefIPYi2MIqicO7cOWJjY4s8Jv+4k7IeZ4kYLPFagvrv6efnR48ePRg+fDg9evTAz8+vVO+FqiIkJIT169fTsGFDQB1IfauIBVPq1aNfcHCpz2UwGNi3bx8bN26U4o6iAEmIhDCTwWAgIiLCNA24HjDm1vVZQKZOV+GJhCXOYYlEwNxzmJvMQOHjTspynCVisMRraYkE2ZoYDAZiYmJYu3YtMTExZUpGQkJCOH36NLt372bNmjUM37wZpV49al6+DJs2leoc0dHR+Pv7Ezp4MOPGj5fijqIASYiEMFNcXJypZQhgPFAb+ANYS+UkEpY4hyUSAXPPYW4yAxAYGIivr6+payo/nU5Ho0aNCAwMrLAYzH0dLNXClPt85U1GLMESLV16vZ6goCCGDRtG9z590I0bp+5YvrzE++ZvwTWS4o4iN0mIhDBT7im/nsDjt67PRJ0ibFSRiYQlzmGJRMDcc5ibzID6xTl//nzT8fnvDzBv3rwix+FYIgZzXwdLJMhGWne7VVhL1/jx6kSFQ4fgxx+LPCx/C25uUtxR5CYJkRBmyj3l9znUonE/A/k/5isykbDEOSyRCJh7DnOTGaP8406MfH19SxzMbIkYzH0dLJEgg/bdbpZs6SrQyuXuDsOHg6uruk5gEfK34BaIg/+KOwr7JgmREGby9/fHx9ubesCwW9tmAMaP+MpIJCxxDkskApY4hznJTP7z5B53snv3bk6dOlWq+5sbg7mvgyUSZEt3u5WHpVq6imrl+q57dzh2DIKD1RlLhSht0UYp7igkIRLCTHq9npkzZ3IZGATMB3KPSFAUpVISCWtJRix1jvImM7nlHncSFBRUpunq5sZgzutgiQTZkt1u5R2DZImWruJauR588kmivv8eatVSl8kpRGmLNkpxRyGVqoWwEB1wGogACv+tWjzjF2hhNYTmzZtXpmTE3HMMGDDArNo3ljiHMZnRkrkxlPd1MCa3oaGh6HS6PK08pU1uLdntVt66Vua2dJWqlWvSJAb88gv6r7+GwEBwc8tznLEFNzExsdBxRDrAx8cHf3//UsUqqi4pzIgUZhTmMRgM3H/nnZy9cIFM1EUocydEpS3kl/t8WlaqFtajsGSkUaNGpUpuzS1QaXx8S1QNz11pOv95ivu/UdrncKF7dzz27oUXX4SwsAL7jbPMgDxJkbH9bYUUd9SGFGbMKz4+npEjR1K/fn1q1KhB+/bt+fnnn037FUUhIiICb29vatSoQe/evTlx4kSec1y+fJkRI0bg4uKCm5sbTz75JNeuXavspyLs1O/r1hF94QJvACkUbB0qS9cEmNfNY8lzCO2Z021n7HYrTnHdbpYYg2RuN258fHyx8RudbN1avRIZCVlZBfb369ePFStWFGiJ8vHxkWRImGiaEF25coV77rkHR0dHNm/ezJ9//sn7779P3bp1TcfMmTOHBQsWsHTpUuLi4qhVqxbBwcGkp6ebjhkxYgRHjhxh+/btbNq0ib179/L0009r8ZSEjStPJVuPTz/FGXUF7qvFHFfaLgwhcitvcqvX6xk2bFixxwwdOrTI81lqDFJISAiTJ0/GwSHv142DgwOTJ08uNrm7ePFisec2+rlVK/D0hORkKGLmXL9+/YiLi2P9unUsXrSI9evWceDAAUmGhImmY4jeeecdGjVqxKpVq0zbmjZtarpuHIz62muvMWDAAAA++eQTPD092bhxI0OHDuXo0aNs2bKFn376ia5duwLw4Ycf0q9fP9577z18fHwq90kJm5V7LTIjH29vZs6cWfSH5m+/4XPoEAZgGhQ6RsGotOMphLAEg8HA2rVriz3miy++YPbs2YUmRZYcg/Tee+8VaGkyGAy899573H333UUmRe7u7qWKoZ63N0yYAK+/DitWwCOPQCED0vV6Pd26dSvVOYX90bSF6JtvvqFr164MHjwYDw8POnfuzIoVK0z7T506RVJSEr179zZtc3V1xd/fn/379wOwf/9+3NzcTMkQQO/evXFwcJC6EqLUyl3J9t13AdhavTq/FnHu0swIEqIo5Z3hVVILD1BsC09FT/03Kq7bLf8MvaI0bNgQxo6FGjXg6FH4/vtS3U+I3DRNiP755x+WLFlCy5Yt2bp1K2PHjuW5555j9erVACQlJQHg6emZ536enp6mfUlJSQWmS1arVo169eqZjskvIyODtLS0PBdhv8pdyfann2DXLtDrcXrzTRSdzqxigkLkZ06VaXNbeKxh6n+ZxkHVrw+jRqkbly4t9j5CFEbThCgnJ4c77riDt956i86dO/P0008zZswYllbwm3n27Nm4urqaLo0aNarQxxPWrdyVbOfMUf8+8gi9n3/eIsUEhTAyt8q0uS08lqhrZW5SZoyhuKQsTwzPP692lSUkwPXrpXpsIYw0TYi8vb1p27Ztnm233XYbZ8+eBcDLywuACxcu5DnmwoULpn1eXl4FKoxmZ2dz+fJl0zH5TZ06ldTUVNPl3LlzFnk+wjaVq5JtfDz89hs4OkJEBOh0FismKKqW8nR5WWKGlyVaeMwtsmmJbjdjDPlbiho1alQwhlat1HXNtmwBqSgjykjTQdX33HMPx48fz7Ptr7/+okmTJoA6wNrLy4udO3fSqVMnQK05EBcXx9ixYwEICAggJSWFgwcP0qVLFwB27dpFTk5OkYW2nJ2dcXZ2rqBnJWxNuSrZNmwI27apywYYp/xiHcUEhfUob1HDsnQ1FfV+s0RxRzCvyKYxKSupDlFJ4+vKFEPXrpCaCufOqUlREQmhEPlp2kL0/PPPc+DAAd566y3+/vtv1qxZw/Llyxk/fjyg/mcJDw9n1qxZfPPNN/z+++889thj+Pj4MHDgQEBtUerTpw9jxozhxx9/5IcffmDChAkMHTpUZpiJUjFWsi3qY1MHNMxfyTY7W11UsojZLEKY0+VlqRlelloXzpyp/5ZYrLfMMdSqpSZDP/1UqjiFACuoVL1p0yamTp3KiRMnaNq0KZMmTTJVFAX1l9C0adNYvnw5KSkp3HvvvSxevJhWrVqZjrl8+TITJkzg22+/xcHBgUGDBrFgwQJq165dqhikUrUodSXbnBz1Q7ZVK6hbF7y9JSGqwspb8dtYobmoVh5LVWgursq0JZ6HpZhTcbtcfvsN7rsPHBzU/6/lrIIsKpiVVarWPCGyBpIQCSi8DlFDHx9mzJjxXx2iTZvgmWegRw/49lv1l6ioksxZw8vchMbcJS+sUaUmZVlZ0KwZnD8Pb78Njz5aMY8jzGNlCZEs7irELf369SM4OJi4uDiSk5Px8PDA39//vw9tgwHee0+9fscdkgxVYUWt4WXs7iqpu8lSs6vMHf9jTSp1fJ2jo7qm2ZQp8NFHMHKktOSKEmm+lpkQ1sRYyXbgwIF069Yt7xfOhg1w4oQ6dmjy5ELvX94ieqJiaDXDy5Kzq6SUQzk99RTUrg1//w07dmgdjbABkhAJURpZWTB3rnp9wgQopKSDOUX0hOWV99/DEmt4WWLKO5i3uKvdc3ODJ59Ury9frmkowjZIQiREaXz1FZw5Aw0aqMXf8jG3iJ4oyJzWNq1neGk2u0rkFR6uDqzetw/++EPraISVk4RIiJKkp8MHH6jXw8PVJQJysUQXi8jLnNY2c/89LNHdBdLlZRX8/CAkRB0/tGeP1tEIKyezzJBZZqIEf/8Njz8ON2+qhRhdXfPstvQU6aqivLOKihrQbGxZKSmZsLYZXlpPebd7J06oM5mcnNRSGTK42nrILDMhbEyLFhAVpbYU5UuGwHJF9KyJuV/i5Z2yXlLrjrFY64ABA4qMx9pmeEn1co21bKnOED19Wv1RU7Om1hEJKyVdZkKUJD1dnWJ/xx2F7rZUF4uRJWaqmTv+xpzB4eaM37HEgGaZ4SUK0OuhXj0Mf/3Fgd272bhxI/v27ZNubJGHdJkhXWaiCGlpastQnz7QuLE6oLoQluxiMacYoCXOYW53lbkVmteuXcvw4cOLjRFgzZo1DBs2rNgYLPHvId1dVceJBx6g2XffMQ34+NY2H29vZs6c+V/hVVG5rKzLTFqIhCjKihXw6qtqgbdi/qNZakaRJWaqmXMOSwwON7eFxxKtOzLDS+QXFRXFh999hx54iv+W5ElMTGTMmDFER0drGJ2wFpIQCZGLwWBg3759fPfZZ2QvWaJuHD1aHZBZDHO7WCyRjJh7Dkt0V5k7fseS9Xuky0vAf/8vPgauAH5An1v7jP9Tpk2bJt1nQhIiIYyio6Px9/cndPBgTr/0EtVu3uREtWpsKOUgTHOK6FkiGTH3HJYYHG5uC48lW3ekqKGA//5fXAeW3to2Ntd+BYhPSCAuLq7ygxNWRWaZCcF/q90rgDvwxK3tr2dn89Xw4ax3cirVF2l5ZxRZIhkx9xyW6K4ytvCUNH6nuBYeY+tOYeOgyro6uszwErnf7wuBF4CuQGfg11zHJScnV25gwupIC5GwewaDgYiICFPz+USgBuqH5fpb2yq6sKIlkhFzz2GJ7ipLtfBI646wlNzv9wTgi1vXx+Y7zsPDo7JCElZKEiJh9+Li4ki49SvSB3j01vbpgIHSdVeZyxLJiLnnsGQyY4nxOzKgWVhC/kWab61IyL2AsTNc7+BA165dKzs0YWUkIRJ2L3dTuSOwD9gPfJfvuIosrGiJZMQS57BUMiMtPMJa5K83dBgYBuT+WWDIyeHnn3+u7NCElZExRMLu5W4qPwNMAC6jtg7lVtouqfKyxNgZS51jwIABZtffkfE7whoU9kPmC8ANtUX4xq1tMoZISGFGpDCjvTMYDPj7+5OYmEhNIAs4B+Tc2l/WtassEY+5yYgUFBRCVdTadtWAxkAD1P/v69eto1u3bpUcnZ2zssKM0kIk7J5er2fus8/yz7RpRKIOps6dDEHZ1q6yRDzmtqxI64wQqqJmPjYBvkZNiAZ5e+Pv769ViMJKyBgiIYDuP/7I48Br1atzNdd2KeQnhG0ramxdPOANNASW9O8vLahCWoiE4I8/4LvvQKejx44d7MrKkq4mIaqQwsbWpQOfu7jwfFoanePiQFGgiBmawj5IQiTEu++qfx96CH1AAEEO0nAqRFVT6GSB1q3V8Su//w4HDkBAgNZhCg1JQiTs28GDsGMH6PUQEQGSDAlRZRU6tm7kSFi5EpYulYTIzsmnv7Bvc+aof0NDoXNnbWMRQlS+SZPUvzt3wsmT2sYiNCUJkbBfP/wA338P1arB66/L+AEh7FHbttCnjzqG6MsvtY5GaEi6zIT9atMGRo0CZ2f1Q1EIYZ9mzoTHHoN27WRwtR2ThEjYL1dXePFFaNJEPgCFKEaVL/R5551ql/mZM5CeDjVqaB2R0IAkRML+GH8BXrumJkU1a5Z8HyFsmDkJTVRUVKFLwcyfP79q1eeqVk39PDh9Wr3u6Kh1RKKSyRgiYX82b4YhQ+C336BuXWkdElbNYDAQExPD2rVriYmJybNQaWlERUXh5+dHjx49GD58OD169MDPz4+oqKhS3Tc0NDRPMgQQHx9PaGhoqc5hUz79FIKD4euvtY5EaEASImFfDAZ47z11MHVcnDSNC6tmTjJjvH95ExqDwUBYWBiFLXdp3BYeHl7mBM2qpafD5cuwfLnakizsiiREwr588w0cPw4uLur4IWkdEhWsvC085rbOmJvQxMbGFnjs/Oc4d+4csbGxJT0VUzzmtHRVimeeUbvQjx+HPXu0jkZUMrMSooyMDEvFIUTFy8pSW4cAxo0Db29t4xFVXnlbeCzROmNuQpOYmFhsjGU5ztyWrkpTrx6MHq1eX7ZM21hEpStTQrR582ZGjRpFs2bNcHR0pGbNmri4uHDffffx5ptvkpCQUFFxCmG+9evVAZN168ILL2gdjbAB5rRqmNPCY4nWGXMTGu9S/mAo6TibG4cUHq62HO/dq7YUCbtRqoRow4YNtGrViieeeIJq1arx0ksvERUVxdatW/noo4+477772LFjB82aNePZZ5/l4sWLFR23EGWTkQEffKBeDwuDBg20jUdYPXNaNcxt4bFE64y5CU1gYCC+vr55VojPTafT0ahRIwIDA4s8t02OQ2rRAgYMUK8vWaJtLKJSlSohmjNnDh988AHx8fGsXLmSZ555hgcffJDevXvzyCOPMHPmTHbv3s3Jkydxc3Pjs88+q+i4hSibqCiIjwcPD3juOa2jEZVEq/E75rbwWKJ1xtyERq/XM3/+fNOx+e8LMG/evGKn71t6HFKlMbYgf/MNpKZqG4uoNKVKiPbv30///v1xKGHhy4YNG/L222/z/PPPl+rBp0+fjk6ny3Np06aNaX96ejrjx4+nfv361K5dm0GDBnHhwoU85zh79iz9+/enZs2aeHh4MGXKFLKzs0v1+MKOhIbCtGkwfbraZSasnlbTzS3RqmFuC48lWmcskdCEhISwfv16GjZsmGe7r68v69evL7EOkSXHIVWqe+6BGTNg40ZwctI6GlFJyjyoeu/evSQnJxfYnpWVxd69e8scQLt27UhMTDRdvv/+e9O+559/nm+//ZZ169axZ88eEhIS8vwHNBgM9O/fn8zMTPbt28fq1auJjIwkIiKizHGIKs5ggBEj4IkntI7Ebpg7/kar6eaWaNUwt4XHEskMmJ/QGM9x+vRpdu/ezZo1a9i9ezenTp0q1X0tNQ6p0ul0EBGhVrC+eVPraEQl0SmF/QwqhoODA56enmzYsIG7777btP3ChQv4+PiU6UNv+vTpbNy4kUOHDhXYl5qairu7O2vWrCE0NBSAY8eOcdttt7F//37uvvtuNm/ezAMPPEBCQgKenp4ALF26lJdeeomLFy/iVMrMPi0tDVdXV1KPHcOlTp1Sxy9swM2boNerVam9vGTsUCmZu1SDOdWNjclM/o8mYyJQ0he5wWDAz8+vyKRGp9Ph6+vLqVOnCn1Oa9euZfjw4cXGCLBmzRqGDRtWbAzx8fGFtjSVFINRYa9jo0aNmDdvXpmqRGu19IalXgfNZGaqy3nk5IB8N1heTg5cvQpNm0L16uU6hen7OzUVFxcXs8Ip17T7oUOH0qtXLyIjI/NsL2NuBcCJEyfw8fGhWbNmjBgxgrNnzwJw8OBBsrKy6N27t+nYNm3a0LhxY/bv3w+oXXnt27c3JUMAwcHBpKWlceTIkXI8M1HlLF0K3burhRjN/M9SWSxRr8VWW2esYbq5JVo1LNnCU97WmfzxBAUFMWzYMIKCgiot+bDU66CZS5dg6lR1kHVOjtbRiApW5oRIp9MxdepUPv30UyZMmMCkSZNMH1RF9XcXxd/fn8jISLZs2cKSJUs4deoUgYGBXL16laSkJJycnHBzc8tzH09PT5KSkgBISkrKkwwZ9xv3FSUjI4O0tLQ8F1EFXbmi1hI5d05dm8gGxgJYol6Llks1WEMxQGsYvwOW6a4C7ZIZS7HU66CJ2rVh2zZ1+v2OHVpHIypYmRMi44daSEgIsbGxrF+/nr59+5KSklLmB+/bty+DBw+mQ4cOBAcHEx0dTUpKCl999VWZz1UWs2fPxtXV1XRp1KhRhT6e0MjSpWpzbOvW8OijWkdTIkvUa7H11hlrmG5uyVYNS7Xw2DqbfR1cXGDMGPW6FGqs8syqVN25c2d+/PFHUlJS6NWrl9nBuLm50apVK/7++2+8vLzIzMwskGhduHABLy8vALy8vArMOjPeNh5TmKlTp5Kammq6nDt3zuzYhZW5dAlWrlSvv/oqODtrG08JLJGMVIXWGWuYbg6WbdWw9RYeS7HZ1yEsTB2HeOCAuiC0qLLKnBCNGjWKGrkWxPTy8mLPnj306tWLxo0bmxXMtWvXOHnyJN7e3nTp0gVHR0d27txp2n/8+HHOnj1LQEAAAAEBAfz+++95Zr1t374dFxcX2rZtW+TjODs74+LikuciqpiFC9UB1R06wNChWkdTIkskI1WhdcZappuDDbdqVFGarYXWuDEMHqxeX7q0ch5TaKLMCdGqVauok2+0vbOzM6tXr+bUqVNlOtfkyZPZs2cPp0+fZt++fTz88MPo9XqGDRuGq6srTz75JJMmTWL37t0cPHiQ0aNHExAQYJrddv/999O2bVseffRRDh8+zNatW3nttdcYP348zlbeIiAqUEICfPKJej0iAhwdtY2nFCyRjFSF1hlrmm5ujMcmWzWqGM3XQps0Sf373XdgbTWThMVUK+2Bv5WyqbBDhw6lfvDz588zbNgw/v33X9zd3bn33ns5cOAA7u7uAHzwwQc4ODgwaNAgMjIyCA4OZvHixab76/V6Nm3axNixYwkICKBWrVqMGjWKmTNnljoGUQVFR6tLddx5Jzz0kNbRlIolkhFLtc6UNEW6NK0zoaGh6HS6POcpazHAwqbtl2W6eUhICAMGDNBkurmwnKLKMBjHxVXKwOw774R771Vnq65cCa+9VrGPJzRR6jpEDg4OeT7gjB9uiqKYtut0Outak6aUpA5RFaMosH07+PlBUJDW0ZSKJeq1WOIcxi8foNBkprRfPpaon6NV7RxhPcytKWVR27fDDz/A//2fWjdHmM/K6hCVOiE6c+aM6bqiKNx+++1ER0fTpEmTPMflv20LJCGqYq5fV6fZN26sDoasROZ8iVsiGbHUOWy5GKCoOmJiYujRo0eJx+3evZugyvjxk5UFp0+rnyvl/AIXuVhZQlTqLrP8iY4xM7fFBEhUUQkJ6geVo6O6iGslf/maU50ZLNNVZKlzWKKryTj+Rojysrq10Bwdwc0NkpLUmatlrL0nrFuZl+4wqlOnDocPH6ZZs2aWjqnSSQtRFfHss2rxtLfegokTKzUhMne5idws0bIirTOiKrC6FiKAqCiYOVP9vLGRMYpWy8paiCQhQhKiKuHIEbj/fvX6Dz9At26V9tBWNc5BiCrEKtdCe/VV9UfXHXfAt99WzmNWVVaWEJlVmLGsS3UIUWHee0/9+8ADkGvR4cpgiRpCQoiCrHIttAkT1K6zX36Bgwcr73FFhSv1GKLOnTvneUPevHmTBx98sMCK8r/88ovlohOiNH79VV1vyMEBZsxQ/1YiqxvnIEQVYqkyDBbj7Q3Dh8Pq1bBkCXz0UeU+vqgwpU6IBg4cmOf2gAEDLB2LEOUzZ476d9Ag6NSp0h/eEjWEhBBFs7qaUpMmqQnR1q1w5gzI5KIqodRjiM6ePYuvry8OlfzruzLIGCIbtn8/hIaq0+x//RVuv73SQ7DKcQ5CiIr1f/+nTuJ4/HF4802to7FNtjqGqGnTply6dMmsBxPC4o4fV/vzhw6Fdu00CcEqxzkIISrWCy+of9etg9RUbWMRFlHqhKick9GEqFgjR6pLdcyYoWlNEEuuji6EsAHBwTBiBLz9dqXXPBMVo0xLd1y4cMG0zlhVIl1mNiwlBVxdwcfHKoqkSf0fIezMpUtqocZ69bSOxPZYWZdZqQdVA7z++uvUrFmz2GPmzp1rVkBClMpPP6m/ypo3VyvHWkEyBFKdWQi7U6cO/PsvZGZCvlnXwraUKSH6/fffC0yzz03qEolKkZMDL78Mx47BggVqXRAhhNBCRoY64+zAAfj0U6v5cSbKrkwJ0YYNG/Dw8KioWIQonW+/VZOhOnUgJEQ+gIQQpVIhXdoZGfDBB5CeDvv2wT33WCZYUelKPahaWn+EVcjO/q8q9dixkG8QsxBCFCYqKgo/Pz969OjB8OHD6dGjB35+fkRFRZl3Ynd3ePRR9fqyZeYHKjQjs8yEbfn6a/jnH3XckHHaqwUZDAZiYmJYu3YtMTExGAwGiz+GEKJyGRdfzr/ETnx8PKGhoeYnRZMmqX937YKTJ807l9BMqROiVatW4erqWpGxCFG8zEwwDtp/7jmwcPdthf2CFEJoxmAwEBYWVuiPeuO28PBw8378tGkD/fqBosDSpeU/j9BUqRKiAwcOMGrUKJydnUs89saNGxw5csTswIQoYO1aOH9ebaIOC7PoqSv8F6QQQhOVtvjy5Mnq36gouHzZvHMJTZQqIXr00UcJDg5m3bp1XL9+vdBj/vzzT1555RWaN2/OQVkBWFSEOnXUZGjSJIvW/KiUX5BCCE1U2uLLQUHQsaM6uHrVKvPOJTRRqllmf/75J0uWLOG1115j+PDhtGrVCh8fH6pXr86VK1c4duwY165d4+GHH2bbtm20b9++ouMW9qhfP+jeXS3iZUFl+QUpNYaEsC2VtviyTqeWA9mwAbp1M+9cQhOlrlRt9PPPP/P9999z5swZbt68SYMGDejcuTM9evSgno1W6pRK1Tbi8mXw9FRbiSxo7dq1DB8+vMTj1qxZw7Bhwyz62EKIilXpiy9nZMCZM+oai6UYZmLXbLlSNUDXrl3p2rWrWQ8qRJmsWaNWpe7bV12mw8Iq7RekEKLSGRdfDg0NRafT5UmKKmTxZWdn9XPq0iVJiGxMqWeZCaGJlBR44w113NCPP1ZIafzAwEB8fX2LrLWl0+lo1KgRgYGBFn9sIUTFq/TFl8+fh4gIiImx7HlFhSpzC5EQlWr5ckhLg1atYMiQCnmISv8FKYSodCEhIQwYMKByFl9evVqdbZacrA62FjZBWoiE9fr3X/joI/X6q69WaPNzpf+CFEJUOuPiy8OGDSMoKKjifuSEh4ODA3z/Pfz5Z8U8hrA4SYiE9Vq0CK5fh3btYOjQCn+4kJAQTp8+ze7du1mzZg27d+/m1KlTkgwJIcqmWTMYOFC9LoUabUaZZ5n9888/NGvWrKLi0YTMMrNCSUnq1NWMDPjyS3jkEa0jEkKI0jMu9OroqI5/lIXRC7KyWWZlbiFq0aIFPXr04LPPPiM9Pd2sBxciN4PBwL59+9i4cSOJr7yiJkNdusDDD2sdmhBClE23buDvD1lZ/3X9C6tW5oTol19+oUOHDkyaNAkvLy+eeeYZfvzxx4qITdiR6Oho/P39CR08mHHjxzNx61b+rFaNffffr/7CEkIIW2NcgPrzz+HmTW1jESUqc0LUqVMn5s+fT0JCAh9//DGJiYnce++93H777cydO5eLFy9WRJyiCouOjmbMmDEk5Cqdfwjon51N99mzZR0xIYRtevhhuOsueOwxdTyksGplHkOUX0ZGBosXL2bq1KlkZmbi5OTEI488wjvvvGMzhexkDJF2DAYD/v7+eZIhHeAGnAeuWrqKrBBCVCZFgYsX1Sn4NrqaQ4Wx9TFERj///DPjxo3D29ubuXPnMnnyZE6ePMn27dtJSEhgwIABZgUm7ENcXFyeZOgdYCrqG/MaFlyJWgghtKDTqQtTV6umjicSVqvMhRnnzp3LqlWrOH78OP369eOTTz6hX79+ODiouVXTpk2JjIzEz8/P0rGKKig5Odl0vQ0wAjUZWgvk5DrO7JWohRBCK87OcOCAWrn6rbe0jkYUocwJ0ZIlS3jiiSd4/PHHi+wS8/DwYOXKlWYHJ6o+j1xTUaegJkPfAfvzHVea7leDwVA5VWiFEKIsEhJgzBjIzlZLiHTqpHVEohBmjyGqCmQMkXaMY4jcExPZDBgAf+Dgrf2lXYk6KiqKsLAwzp8/b9rm6+vL/PnzpbCiEMIizPrRNWKEulD1gw9KsUYjWx9DtGrVKtatW1dg+7p161i9erVZwQj7o9frmTlzJlNu3d4A/HLremnXEYuKiiI0NDRPMgQQHx9PaGiozFITQpgtKioKPz8/evTowfDhw+nRowd+fn6l/3yZNEn9u3kzxMdXXKCi3MqcEM2ePZsGDRoU2O7h4cFbZvSNvv322+h0OsLDw03b0tPTGT9+PPXr16d27doMGjSICxcu5Lnf2bNn6d+/PzVr1sTDw4MpU6aQnZ1d7jhE5evXoAE9gWxgJmBssizNOmIGg4GwsDAKa+g0bgsPD8dgMFg8biGEfbDIj64uXaB7d7XbbPnyCopUmKPMCdHZs2dp2rRpge1NmjTh7Nmz5Qrip59+YtmyZXTo0CHP9ueff55vv/2WdevWsWfPHhISEvJ8ORoMBvr3709mZib79u1j9erVREZGEhERUa44hEbmzgXAYdgwFuzaVaZ1xGJjYwt8SOUms9SEEOaw6I+uyZPVv19+CdeuWTJMYQFlTog8PDz47bffCmw/fPgw9evXL3MA165dY8SIEaxYsYK6deuatqemprJy5Urmzp1Lz5496dKlC6tWrWLfvn0cOHAAgG3btvHnn3/y2Wef0alTJ/r27csbb7zBokWLyMzMLHMsQiNvvQWDBuEQEUFQjx5lWom6tLPPZJaaEKI8LPqjq39/aNlSHTfz6acWjFJYQpkTomHDhvHcc8+xe/duDAYDBoOBXbt2ERYWxtByrEg+fvx4+vfvT+/evfNsP3jwIFlZWXm2t2nThsaNG7N/vzoHaf/+/bRv3x5PT0/TMcHBwaSlpXHkyJEiHzMjI4O0tLQ8F6GhevVg/nxo3brMdy1t8U9bKRIqhLAuFv3R5eCgjiXq0AG8vMyMTFhamafdv/HGG5w+fZpevXpRrZp695ycHB577LEyjyH64osv+OWXX/jpp58K7EtKSsLJyQk3N7c82z09PUlKSjIdkzsZMu437ivK7NmzmTFjRpliFRXg5k11nTKdDtzc1L9lFBgYiK+vL/Hx8YU2aRtnqQUGBlogYCGEvbH4j64xY2DUKDh7FjIzwcnJjOiEJZW5hcjJyYkvv/ySY8eO8fnnnxMVFcXJkyf5+OOPcSrDP+y5c+cICwvj888/p3o5p9uV19SpU0lNTTVdzp07V6mPL1CnWw4YAE8/DTduQM2a5TqNXq9n/vz5wH+z0oxKO0tNCCGKYvzRlf/zxUin09GoUaPS/+jS66FGDXBxUT/7hNUo99IdrVq1YvDgwTzwwAM0adKkzPc/ePAgycnJ3HHHHVSrVo1q1aqxZ88eFixYQLVq1fD09CQzM5OUlJQ897tw4QJet5oavby8Csw6M972KqY50tnZGRcXlzwXUck2bYIjR+CHH8DTs1ytQ0YhISGsX7+ehg0b5tlemllqQghRnAr70aUoEBkJv/xS4qGicpS5y8xgMBAZGcnOnTtJTk4mJycnz/5du3aV6jy9evXi999/z7Nt9OjRtGnThpdeeolGjRrh6OjIzp07GTRoEADHjx/n7NmzBAQEABAQEMCbb75JcnKyqeLx9u3bcXFxoW3btmV9aqKyZGfDe++p1595Bnx9zT5lSEgIAwYMkErVQgiLM/7oKqz467x588r3o2vGDHX6/eHDsGqVBaMV5VXmStUTJkwgMjKS/v374+3tXSBj/uCDD8odTFBQEJ06dWLevHkAjB07lujoaCIjI3FxcWHixIkA7Nu3D1CTs06dOuHj48OcOXNISkri0Ucf5amnnirTeCapVF3J1q2D8HBwdYXjx9UWIiGEsHIWXR7ojz+gfXt1oPXevWq1ZntjZZWqy9xC9MUXX/DVV1/Rr18/sx64ND744AMcHBwYNGgQGRkZBAcHs3jxYtN+vV7Ppk2bGDt2LAEBAdSqVYtRo0Yxc+bMCo9NlFNmpqnuEBMnSjIkhLAZer2eoKAgy5zs9tvh/vth2za1pWj2bMucV5RbmVuIfHx8iImJoVWrVhUVU6WTFqJK9Omn8PLL0KABHDsG5ahdJYQQVcK2bRAcrA6y/uknyFWLzy5YWQtRmQdVv/DCC8yfP7/QKc5CFEtR1MUNQe0yk2RICGHP/u//1Jaimzfhk0+0jsbulbnL7Pvvv2f37t1s3ryZdu3a4ejomGe/LKQpiqTTqQnRmjVqd5kQQtgznQ5eeAFGj1ZnnI0dK3WJNFTmhMjNzY2HH364ImIR9kBR1NYhKXUghBAwbBi89hp07AiXLoGPj9YR2a0yJ0SrZHqgKI+TJ8HbG5yd1dllQggh1M/Ev/5Sx9L8+6/W0di1chVmzM7OZseOHSxbtoyrV68CkJCQwDVZvVcUJi0NHnoIHnhA7SuXJmEhhPhPzZpQp47ahZadrXU0dqvMCdGZM2do3749AwYMYPz48Vy8eBGAd955h8mTJ1s8QFEFLF8OKSlgMKgrPQshhMirRg24eBE++kjrSOxWmbvMwsLC6Nq1K4cPH6Z+rllCDz/8MGPGjLFocKIKuHwZVqxQr7/6qvqfvggWLXomhBC2JCkJevZUfzj27AlVqLSNrShzC1FsbCyvvfZagYVc/fz8iI+Pt1hgoopYsgSuXYO2bdXBg0WIiorCz8+PHj16MHz4cHr06IGfn5/MWhRC2AdvbzAWPF66VNtY7FSZE6KcnBwMBkOB7efPn6eOFDUUuV24AB9/rF6PiFAHDxYiKiqK0NDQPGsEAcTHxxMaGipJkRDCPhiHnWzcqM44E5WqzAnR/fffb1prDNTVfq9du8a0adMqZTkPYUMWLoT0dOjUCYpY/NBgMBAWFlZooU/jtvDw8EKTcCGEqFICA+GOOyAj478fk6LSlDkhev/99/nhhx9o27Yt6enpDB8+3NRd9s4771REjMIWGQzw++/q9RkzIF8BT6PY2NgCLUO5KYrCuXPniI2NrYgohRDCeuh0/7USffqp+oNSVJoyD6r29fXl8OHDfPHFF/z2229cu3aNJ598khEjRlCjmAGzws7o9fDZZ/Dzz9C/f5GHJSYmlup0pT1OCCGsWYmTR0JD4aWX4Nw5+OoreOwx7YK1M2VOiACqVavGyJEjLR2LqEoURV3Zvn9/NTkqgre3d6lOV9rjhBDCWkVFRREWFpanVdzX15f58+cTYhxW4OgIzz0Hb70F169rFKl9KvNq95+UsADdYzaYzcpq9xa2eTN07qyu3Ny4cbEJkcFgMHW5FvZW1Ol0+Pr6curUKZmCL4SwWcbJI/k/53Q6HQDr16//Lym6cUO9XLqkliopYsiBzbOy1e7LnBDVrVs3z+2srCxu3LiBk5MTNWvW5PLly2YFpAVJiCzo+HHo1Qvc3OCXX8DPr8S7GD8ogDwfFoV+UAghhI0x/vArarxkoT/8FAUSEtRK/1V1uSMrS4jKPKj6ypUreS7Xrl3j+PHj3Hvvvaxdu9asYEQV8N576n9kf3+1dagUQkJCWL9+PQ0bNsyz3dfXV5IhIYTNK9fkEZ1OXQR77144caISohTlGkOUX8uWLXn77bcZOXIkx44ds8QphS36/XeIjlb/I0+fDg6lz7dDQkIYMGCAVKoWQlQ55Z48Mm0afPABPPywWsZEVKhyLe5amGrVqpGQkGCp0wlbNGeO+nfAALjzzjLfXa/XExQUxLBhwwgKCpJkSAhRJZR78sjQoerfb79Vl/YQFarMLUTffPNNntuKopCYmMjChQu55557LBaYsDE//QS7dqkDqCMiytQ6JIQQVVlgYCC+vr4lTh4JDAzMu+Ouu6BbN9i3T1309bXXKili+1TmhGjgwIF5but0Otzd3enZsyfvv/++peIStubdd9W/gwerlamFEEIAauv3/PnzCQ0NRafTFTp5ZN68eYW3ik+erFb6X7MGJk2CmjUrK2y7U661zHJfDAYDSUlJrFmzRmrF2Kv0dPDwUNcqe/11dQyREEIIk3JPHnnoIWjWDFJT1aRIVJgyT7uvimTavQWkpqrr73TsKAmREEIUocRK1YVZuBAmTlRn7n7/fbG13WyKlU27L3OX2aRJk0p97Ny5c8t6emGLsrPVqfYtW0oyJIQQxTBOHimTxx9XW9+dneH8eWjSpCJCs3tlToh+/fVXfv31V7KysmjdujUAf/31F3q9njvuuMN0nE6+GKu+nBx1ZlnfvtChg/RtCyFERahdW10XskYNSEnROpoqq8wJ0YMPPkidOnVYvXq1qWr1lStXGD16NIGBgbzwwgsWD1JYqc2b4cMPYfVq+OcfaR0SQoiK0ry5urZZSgoYDFWn28yKlHlQ9fvvv8/s2bPzLOFRt25dZs2aJbPM7InBoFalBnjiCahXT9t4hBCiqqtZUy1psnWr1pFUSWVuIUpLS+PixYsFtl+8eJGrV69aJChhAzZuhL/+UtfYefFFaR0SQoiKdukSBASoA5H37QNfX60jqlLK3EL08MMPM3r0aKKiojh//jznz5/n66+/5sknn5Q1p+xFVhYYB8yPGwdSbkEIISqeuzvccYfaQr9smdbRVDllToiWLl1K3759GT58OE2aNKFJkyYMHz6cPn36sHjx4oqIUVibdevg9GmoX18tFCaEEKJyGMfpfvWV2lIkLKbcdYiuX7/OyZMnAWjevDm1atWyaGCVSeoQlUFGBtx7LyQkwMyZ6lRQyllbQwghRNnk5EC7dnDsGLzyCowfr3VE5WdldYjKveBUYmIiiYmJtGzZklq1ahW6PouognJy1AUHW7ZUC4UBUVFR+Pn50aNHD4YPH06PHj3w8/MjKipK42CFEKKKcXD4r5UoMlKtAycsoswJ0b///kuvXr1o1aoV/fr1IzExEYAnn3xSptzbgxo1YPRo2LsX3NyIiooiNDSU8+fP5zksPj6e0NBQSYqEEMLSRoxQxxMlJEC+BddF+ZU5IXr++edxdHTk7Nmz1MxViG/IkCFs2bLFosEJK5SerlZLrVsXg8FAWFhYoa2Dxm3h4eEYDIbKjlIIIaquGjXUCS06Hfz2m9bRVBllToi2bdvGO++8g2++6X4tW7bkzJkzFgtMWJmrV2H4cNi2DdzcwNmZ2NjYAi1DuSmKwrlz54iNja28OIUQwh5MnAiHDkF4uHSbWUiZ6xBdv349T8uQ0eXLl3F2drZIUMIKffQR7NkD587BqFEApu7SkpT2OCGEEKVUv75aEPf8ebWCtZkDikU5WogCAwP55JNPTLd1Oh05OTnMmTOHHj16lOlcS5YsoUOHDri4uODi4kJAQACbN2827U9PT2f8+PHUr1+f2rVrM2jQIC5cuJDnHGfPnqV///7UrFkTDw8PpkyZQrZky5Z15cp/NS9eeUVtrgW8S1l/qLTHCSGEKAOdTm2xP3NGHU8kzFLmhGjOnDksX76cvn37kpmZyYsvvsjtt9/O3r17eeedd8p0Ll9fX95++20OHjzIzz//TM+ePRkwYABHjhwB1PFK3377LevWrWPPnj0kJCTkKf5oMBjo378/mZmZ7Nu3j9WrVxMZGUlERERZn5YoztKlapdZmzYwcqRpc2BgIL6+vkUu5KvT6WjUqBGBgYGVFakQQtiXRYugXz+YP1/rSGxeueoQpaamsnDhQg4fPsy1a9e44447GD9+vEVaAurVq8e7775LaGgo7u7urFmzhtDQUACOHTvGbbfdxv79+7n77rvZvHkzDzzwAAkJCXh6egJq4ciXXnqJixcv4uTkVKrHlDpExbh4US0Vf/MmfPppnoQIMM0yA/IMrjYmSevXr5cK5kIIUVF27oTevdWW+x9/tK11JW25DlFWVha9evUiOTmZV199la+++oro6GhmzZpldjJkMBj44osvuH79OgEBARw8eJCsrCx69+5tOqZNmzY0btyY/fv3A7B//37at29vSoYAgoODSUtLM7UyFSYjI4O0tLQ8F1GEDz9Uk6GOHWHIkAK7Q0JCWL9+PQ0bNsyz3dfXV5IhIYSoAAaDgZiYGNauXUuMgwNKhw7q53RkpNah2bQyDap2dHTkNwtP8fv9998JCAggPT2d2rVrs2HDBtq2bcuhQ4dwcnLCzc0tz/Genp4kJSUBkJSUlCcZMu437ivK7NmzmTFjhkWfR5WUlKS2CgFERICjY6GHhYSEMGDAAKlULYQQFSwqKoqwsLA8M3zD6tZlHsAnn8CECVDK3hGRV5nHEI0cOZKVK1daLIDWrVtz6NAh4uLiGDt2LKNGjeLPP/+02PkLM3XqVFJTU02Xc+fOVejj2SwPD3j3XRg8GB58sNhD9Xo9QUFBDBs2jKCgIEmGhBDCwooqhLvkyhXiQR3i8PXXmsRWFZR52n12djYff/wxO3bsoEuXLgXWMJtrXAW9lJycnGjRogUAXbp04aeffmL+/PkMGTKEzMxMUlJS8rQSXbhwAS8vLwC8vLz48ccf85zPOAvNeExhnJ2dpURAaeh00LMnPPZYka1DQgghKl5xhXAzgYXAbEBZvhzd0KHq57cokzK3EP3xxx/ccccd1KlTh7/++otff/3VdDl06JDZAeXk5JCRkUGXLl1wdHRk586dpn3Hjx/n7NmzBAQEABAQEMDvv/9OcnKy6Zjt27fj4uJC27ZtzY7FrmVlqbUtatUCGWguhBCaKqkQ7jLgOmA4dw7++afS4qpKSt1C9M8//9C0aVN2795tsQefOnUqffv2pXHjxly9epU1a9YQExPD1q1bcXV15cknn2TSpEnUq1cPFxcXJk6cSEBAAHfffTcA999/P23btuXRRx9lzpw5JCUl8dprrzF+/HhpATLHiRPwyCPqmmUvvwzS/SWEEJoqqcDtFeABYNLMmTzYoEGlxFTVlLqFqGXLlly8eNF0e8iQIQWKJJZVcnIyjz32GK1bt6ZXr1789NNPbN26lf/7v/8D4IMPPuCBBx5g0KBBdO/eHS8vrzyLher1ejZt2oRerycgIICRI0fy2GOPMXPmTLPisnvvvw/JyfDrr1L9VAghrEBpZnLHAG7t2oGiqFPaRZmUug6Rg4MDSUlJeHh4AFCnTh0OHz5Ms2bNKjTAyiB1iHL54w8IDlb7n3/4Qa1BJIQQQlMGgwE/Pz/i4+MLHUek0+nw9fXl1MmT6M+fh7/+gvbtNYi0DGy5DpGougwGA/v27SNx8mQAcvr3B39/jaMSQggBao/I/FvVqPOvDmC8PW/ePPRXr8KAAfDQQ+qsM1FqpU6IdDpdkf8IwrZFR0fj7+/PW4MH4/377xiAfj/+SNTGjVqHJoQQ4pZSFcKtW1dtbcnMBAuWyLEHZeoy69u3r2mw8rfffkvPnj0LTLvPPcbHVthzl1l0dDRjxoxBAb4Aut/6OwJQdDqpNi2EEFbGYDAUXwj3q6/UlQXq1VOX87i1ILfVsbIus1InRKNHjy7VCVetWmVWQFqw14TIYDDg7+9PQmIiLYE9qPUsOgFHydUnfeqUFFoUQghbkZ0NLVrAmTPw5pvw+ONaR1Q4K0uISj3t3hYTHVG8uLg4Em5N5TwBDADaoCZDoC7Weu7cOWJjYwkKCtImSCGEEGVTrRqEhcGkSWq32WOPgYMMGS6JvEJ2LHdBSz3wF2q10/xKqn8hhBDCyjz5pFo25Z9/YMcOraOxCZIQ2TFjCYWGQG0gFbhRyHGlqX8hhBDCiri4wJgx6vX//U/bWGxEmdcyE1WHv78/w+rW5e0rV/gEeC7ffuMYosDAQC3CE0IIYY7wcLV8Sps2YDDIqgMlkBYiO6bX6ZhesyaOwFUKtg4piqLWtZD/REIIYXt8fSE0VG0tulFY+7/ITRIie/bNN9SJjycNmKN1LEIIISxPp1NrE127BqmpWkdj1SQhslfZ2SjvvQfAIqCwYdM6nY7w8HAMBkOlhiaEEMKCoqLg//4P5s3TOhKrJgmRvVq/Ht2pU1wG5hZxSO5p90IIIWxU3bpw5QqsXQvXr2sdjdWShMgeZWTAXDUNmg9cKuFwmXYvhBA27MEH1UKNV6/CZ59pHY3VkoTIHv35J6SkkOnmxvxSHC7T7oUQwoY5OKhFGgE+/lidcSYKkITIHnXuDFu2oF+9mjq+vkUu0qvT6WjUqJFMuxdCCFs3apS6ttn58/Ddd1pHY5UkIbJH6eng4YE+OJj589U2ovxJkfG2TLsXQogqoGZNGDtWvb58ubaxWClJiOzJtWsQG6sOqqtbF5ydCQkJYf369TRs2DDPob6+vrLSvRBCVCUTJoCTE/z6Kxw/rnU0VkcqVduTlSthzhy1UNfnn5s2h4SEMGDAAGJjY0lMTMTb25vAwEBpGRJCiKrEywuWLoXGjUHGhhYgCZG9SElR/yOAWo/CySnPbr1eLyvaCyFEVTd6NKSlwdmzkJOjDrgWgHSZ2Y9ly9T/BK1aqYPrhBBC2KdatdTLpZKKrtgXSYjswb//wkcfqddfew2cnbWNRwghhGYMV6+SPHo0md26Ebdtm6xGcIskRPZg0SJ1Yb/27WHIEK2jEUIIoZGoqCj8br+d5D17cLp5k52jR+Pv7090dLTWoWlOEqKqLikJIiPV6xERBcYOCSGEsA9RUVGEhoZyPj7etGTTaOBiYiJjxoyx+6RIEqKqLjFRnU3QtSsMGKB1NEIIITRgMBgICwtDURQA1gAXAG/gIUABpk2bZtfdZ5IQVXWdOsGGDfDJJ+DoqHU0QgghNBAbG8v58+dNtzOAhbeuP3Prb3xCAnFxcZUdmtWQhKiqu3EDXF3V2WVCCCHsUnx8fIFtS4GbwO1At1vbkpKSKjEq6yIJUVV18qS6iN/Vq+r6NVJkUQgh7NbFixcLbLsErL51/clbf//999/KCsnqSGHGqmruXNi4EX7/Hdas0ToaIYQQGnJ3dy90+1wgHtgO6ID69etXYlTWRVqIqqKjR+F//1OvT5worUNCCGHn8q9XaXQCeBNIBGoCXl5elRiVdZGEqCp67z1QFOjfH7p1K/l4IYQQVVpgYCC+vr6F7lOAFKCJhwf+d9xRmWFZFUmIqprDh2HLFnV9munTZZ0aIYQQ6PV65s+fj06nK3T/3cD6GjXQL1xY6H57IN+WVc2cOerfhx8GO870hRBC5BUSEsL69esLtBQ1atSIWWFhuJ05o5ZoycjQKEJtyaDqKsBgMBAXF4dh3z4CY2JQqlVDFxEhrUNCCCHyCAkJYcCAAcTGxpKYmIi3tzeBgYHoc3Jg/XqIj4d162DkSK1DrXSSENm46OhoIiIiSEhMpBUwA7jk6IjuxAlCOnTQOjwhhBBWRq/XExQUlH8jPPccvPSSuhj4iBFQRPdaVSVNCDYsOjqaMWPGkJCYCMBJ4FngqZs3CR08mKioKE3jE0IIYUOefhpq1YITJ2D3bq2jqXSaJkSzZ8/mzjvvpE6dOnh4eDBw4ECOHz+e55j09HTGjx9P/fr1qV27NoMGDeLChQt5jjl79iz9+/enZs2aeHh4MGXKFLKzsyvzqVQ6g8FAREQESq5ttYFU1NkCiqIQHh5u1+vSCCGEKAM3N3jiCfX6smWahqIFTROiPXv2MH78eA4cOMD27dvJysri/vvv5/r166Zjnn/+eb799lvWrVvHnj17SEhIICQkxLTfYDDQv39/MjMz2bdvH6tXryYyMpKIiAgtnlKliYuLM7UM9UStI9EANSEyOnfuHLGxsRpEJ4QQwiY9/7w6/vT779WadnZE0zFEW7ZsyXM7MjISDw8PDh48SPfu3UlNTWXlypWsWbOGnj17ArBq1Spuu+02Dhw4wN133822bdv4888/2bFjB56ennTq1Ik33niDl156ienTp+Pk5KTFU6twxvVmdMBUoB1wFfg+33GFrV8jhBBCFKppU3j9dfD2Bh8fraOpVFY1hig1VW3fqFevHgAHDx4kKyuL3r17m45p06YNjRs3Zv/+/QDs37+f9u3b4+npaTomODiYtLQ0jhw5UujjZGRkkJaWludia4zrzTzAf8nQO4UcV9j6NUIIIUSRpk+HoUPBYFCL/NoJq0mIcnJyCA8P55577uH2228H1FYQJycn3Nzc8hzr6elpaiFJSkrKkwwZ9xv3FWb27Nm4urqaLo0aNbLws6l4devWRQ9MuXV7CZBQyHH2vC6NEEKIcqpdG2rUgBs3tI6k0lhNQjR+/Hj++OMPvvjiiwp/rKlTp5Kammq6nDt3rsIf09KuXLlCCNACuAK8V8Rx9rxysRBCiHLKyoLISOjXD27e1DqaSmEVCdGECRPYtGkTu3fvzlNB08vLi8zMTFJSUvIcf+HCBdMCdF5eXgVmnRlvF7VInbOzMy4uLnkutqaBqyuTbl3/ECiqY6yoFY6FEEKIIjk6wmefwd9/w9q1WkdTKTRNiBRFYcKECWzYsIFdu3bRtGnTPPu7dOmCo6MjO3fuNG07fvw4Z8+eJSAgAICAgAB+//13kpOTTcds374dFxcX2rZtWzlPRAMdjh6lCWoi9EExxxW1wrEQQghRJL1enXEGsHIl5ORoG08l0CmKdiOmxo0bx5o1a/jf//5H69atTdtdXV2pUaMGAGPHjiU6OprIyEhcXFyYOHEiAPv27QPUafedOnXCx8eHOXPmkJSUxKOPPspTTz3FW2+9Vao40tLScHV1JfXYMVzq1LHws6wYhgsXiLr3XuJu3OD9Io5p1KgRp06dQq/XV2psQgghqoCrV6FRI0hNVatX9+1r2fPn5KiP0bQpVK9erlOYvr9TU83u7dG0hWjJkiWkpqYSFBSEt7e36fLll1+ajvnggw944IEHGDRoEN27d8fLyytPBWa9Xs+mTZvQ6/UEBAQwcuRIHnvsMWbOnKnFU6o0eldXXN55h6LWJdbpdMybN0+SISGEEOVTpw4884x63Q4KNWraQmQtbKqFKCdHLZp1+TJ4ehIVG0tYWBjnz583HdKoUSPmzZuXp4ClEEIIUWbnz6stONnZsGkTdO5suXNLC5Ewy6JFMGSIutaMqyshISGcPn2a3bt3s2bNGnbv3s2pU6ckGRJCCGE+X1/1Owdg6VJtY6lgstq9LUlNhSVL1L/Dh8OtKtyFrlwshBBCWMILL6gFGkNC1L86ndYRVQhJiGzJihVqMtSiBTz+uNbRCCGEsAedO8Mnn8CZM2pNopo1tY6oQkiXma24fBmWL1evv/qqWkFUCCGEqAx6PdStC+npWkdSYSQhshWLF8P169C2LQwbpnU0Qggh7M3Zs+o6ZytWaB1JhZCEyBZcuACrVqnXIyLA2VnbeIQQQtifAwfg66/VhCg7W+toLE4SIlvwySdqM2XnzuqgNiGEEKKyPfYY1K8P8fHw7bdaR2NxkhDZgrAwtWVo1ix1fRkhhBCistWoAePGqdeXL1dnnFUhkhDZgqwsGDUKgoO1jkQIIYQ9Gz9eHbbx22/w449aR2NRkhBZsytXIDMTMjLUZkpZhkMIIYSWPD1hxAgALr/5Jhs3bmTfvn0YDAaNAzOfJETWLCICuneHQ4egdm2toxFCCCHY3r49AG4HDzJn/HhCBw/G39+f6OhojSMzjyRE1ur4cdiwAc6dU1cbltYhIYQQGouKiiJ40iQigbmAsSpRYmIiY8aMsemkSBIia/Xee+qAtT59IDBQ62iEEELYOYPBQFhYGIqiMBqYBWTc2mccXj1t2jSb7T6ThMga/fYbREer68VMn66ubi+EEEJoKDY2lvPnz5tuX0NtITKuU68A8QkJxMXFaRCd+eSb1hq9+676d8AAuPNObWMRQgghULvFcssBugHLgNwFYZKTkysxKsuRhMja/PQT7NqljhmaNk1ah4QQQlgFb2/vPLcdgTnA/wEP59ru4eFRiVFZjnzbWpsdO9S/gwdDx47axiKEEELcEhgYiK+vLzqdDoBM4MNb+54GdEBDHx/8/f01itA8khBZmxdfVNctmzZNHUMkhBBCWAG9Xs/8+fMBTEnRMuAG0BYIBGbMmIHeRmdFS0JkBTIzM1mxYgWvvvoqqxctIrN7d2jdWuuwhBBCiDxCQkJYv349DRs2BOAycGvpcT5s25Z+/fppFpu5dIpSxRYjKYe0tDRcXV1JPXYMlzp1KvWxZ82axbJly2iZk8Nl1CmM8Q4OPPvCC8yZM6dSYxFCCCFKw2AwEBsbS2JiIs0MBu567DF0iqKOgS3tD/qcHLh6FZo2herVSz6+EKbv79RUXFxcynUOo2pm3VuYZdasWSxesgQdMB9oBowBjuXk8O6tmWaSFAkhhLA2er2eoKCg/zasWwfffAPLlsHcuZrFZQ7pMtNIZmYmy5YtA6Av0B61hsPeXMfMnTuXzMxMDaITQgghymDyZOjcGfz91aLCNkgSIo2sXr0aQ04ODsCUW9uWAfG5jjEYDCxevLjygxNCCCHK4t57IS4OHnoI0tNLPt4KSUKkkdOnTwMwEGgNpKDWc8jv5MmTlRWSEEIIUT46HTg6gpsb3LypdTTlIgmRRvz8/KgGvHDr9kKgsNqezZs3r7yghBBCCHPk5MBnn6mLk9sYSYg0MmrUKIbqdDQFLqGuGpyfXq9n3LhxlRyZEEIIUU6ffQbvvAMffGBzY4kkIdKIk5MTfe+8k0xgHnClkGMmTZqEk5NT5QYmhBBClNcTT0CdOnDy5H8rL9gISYg01OOLL/j4kUdYlK8itV6vZ8qUKTLlXgghhG1xdYUnn1Sv35pJbSukMCMaFma8fBk8Pcl0dWXx4sWcPHmS5s2bM27cOGkZEkIIYZvOnIHmzcFggC1boH37wo+TwoyC6Ghwd4e2bcHFBScnJ8LDw7WOSgghhDBfkyYwaBB89RUsWQI2Uj5GuswqW1oaTJkCAwfCH3+As7PWEQkhhBCW9cKtOdTffQeJidrGUkrSQlTZPvoIUlKgWTPo00fraIQQQgjLu+suuO8+dYD11avg7a11RCWShKgyXb4My5er1195BWrU0DYeIYQQoqLs2KEmQ/HxJR9rBaTLrDItXaq+Odq0gZEjtY5GCCGEqDjVqkGtWurQEBtYzkMSosqSnAwrV6rXX39dxg4JIYSo+pyc4NIlePttddaZFdM0Idq7dy8PPvggPj4+6HQ6Nm7cmGe/oihERETg7e1NjRo16N27NydOnMhzzOXLlxkxYgQuLi64ubnx5JNPcu3atUp8FqW0cKGaIXfsCIMHax2NEEIIUfEyM+HBB2HFCti8WetoiqVpQnT9+nU6duzIokWLCt0/Z84cFixYwNKlS4mLi6NWrVoEBweTnqvpbcSIERw5coTt27ezadMm9u7dy9NPP11ZT6H0WrWCBg1g2jR1ATwhhBCiqnNyAuN3snEMrZWymsKMOp2ODRs2MHDgQEBtHfLx8eGFF15g8uTJAKSmpuLp6UlkZCRDhw7l6NGjtG3blp9++omuXbsCsGXLFvr168f58+fx8fEp1WNXSmHG69chKwtatpSESAghhP1ISAA/P/U78Ntv4Y471O1WVpjRascQnTp1iqSkJHr37m3a5urqir+/P/v37wdg//79uLm5mZIhgN69e+Pg4EBcXFylx1wkRYGMDPDxkWRICCGEffHxgWHD1OtLlmgbSzGsNiFKSkoCwNPTM892T09P076kpCQ8PDzy7K9WrRr16tUzHVOYjIwM0tLS8lwqzJw58OWX6hT7ylwWRAghhLAWkyapf7duhbNntY2lCFabEFWk2bNn4+rqaro0atSoYh7or79gwQK1YmdCAuj1FfM4QgghhDXr2BF69lRnmlnpWCKrTYi8vLwAuHDhQp7tFy5cMO3z8vIiOTk5z/7s7GwuX75sOqYwU6dOJTU11XQ5d+6chaO/5f331e6y+++He+6pmMcQQgghbMHkyVCvHri6ah1Joaw2IWratCleXl7s3LnTtC0tLY24uDgCAgIACAgIICUlhYMHD5qO2bVrFzk5Ofj7+xd5bmdnZ1xcXPJcLO6PP2DTJtDpYPp0cLDal1oIIYSoeMHB8M8/MH483LypdTQFaLp0x7Vr1/j7779Nt0+dOsWhQ4eoV68ejRs3Jjw8nFmzZtGyZUuaNm3K66+/jo+Pj2km2m233UafPn0YM2YMS5cuJSsriwkTJjB06NBSzzCrMO++q/598EEoJjkTQggh7IKDg9o6lJUFSUlWV6BY04To559/pkePHqbbk24Nuho1ahSRkZG8+OKLXL9+naeffpqUlBTuvfdetmzZQvVc0/M+//xzJkyYQK9evXBwcGDQoEEsWLCg0p9LHgcPqmu46PVq3SFpHRJCCCFUNWvC/v3qsh6dO2sdjYnV1CHSksXrEA0dCrGxMGQIrFkjCZEQQghhNH8+hIfD7bers7CbNZM6RFXW2LHQpYu6ZpkkQ0IIIcR/hg1Tu8v++AN++UXraEzk27oidOoEGzdC27ZaRyKEEEJYFw8PePRR9XpkpKah5CYJkSUpCmRnq3/r1lVnmAkhhBAir0mT1FaievXUJTysgKaDqqsURVFXse/UCZ57Th00JoQQQoiCbrtNLVicnW01S1pJC5GlbNmijppfvVpdpkNah4QQQoii1aundp9JQlSFGAz/1R0aMwYaN9Y2HiGEEEKUiSRElvDtt3D8OLi4wIsvSuuQEEIIYWMkITJXdja89556fexY0LpCthBCCCHKTBIic61fD6dOqbPKblXaFkIIIYRtkYTIHDk58OGH6vWwMHVwmBBCCCFsjiRE5nBwUItKPfqoOtVeCCGEEDZJEiJzNWigjiGqW1frSIQQQghRTlKYsbxSU9Uqm46O4OqqdTRCCCGEMIO0EJXHtWsQGAjjxqlT7J2dtY5ICCGEEGaQhKg8VqyAf/+Fv/6Chg21jkYIIYQQZpKEqKyuXIFly9TrU6fKmmVCCCFEFSAJUVktWwZXr0Lr1vDYY1pHI4QQQggLkISoLC5dgpUr1euvvipjh4QQQogqQhKisli4EG7cgPbtYehQraMRQgghhIVIQlRamZmwebN6PSJCnW4vhBBCiCpB6hCVlpMTbNoEW7fCgAFaRyOEEEIIC5IWotJSFNDr4emnpXVICCGEqGIkISqNQ4fUYoy1akGdOlpHI4QQQggLk4SoJH//DQ8+CAMHqrPK9HqtIxJCCCGEhUlCVJL334ecHPD1BU9PraMRQgghRAWQhKg4f/4J33yjXp8+XVqHhBBCiCpKEqLivPuu+veBByAgQNtYhBBCCFFhJCEqyq+/wrZt4OCgtg45yEslhBBCVFXyLV8UY+tQSAh07qxtLEIIIYSoUJIQFebaNXVV+2rVYNo0aR0SQgghqjipVF2Y2rVh7Vo4dw7atdM6GiGEEEJUMGn6KEx2tvr3nntAp9M2FiGEEEJUOEmIclMU+PRTuHABXF3VytRCCCGEqPKkyyy3Xbvg5ZfBxweOHJHWISGEEMJOSAtRbvPnq39DQtQWIiGEEELYhSqTEC1atAg/Pz+qV6+Ov78/P/74Y9lP8tdf6oDql16S1iENGAwGYmJiWLt2LTExMRgMBruMQQghROWrEgnRl19+yaRJk5g2bRq//PILHTt2JDg4mOTk5LKfbOxYdd0yUamioqLw8/OjR48eDB8+nB49euDn50dUVJRdxSCEEEIbOkVRFK2DMJe/vz933nknCxcuBCAnJ4dGjRoxceJEXn755RLvn5aWhqurK6murrgcPy6LuFayqKgoQkNDyf9W1N1qpVu/fj0hISFVPgYhhBBlY/r+Tk3FxcXFrHPZfAtRZmYmBw8epHfv3qZtDg4O9O7dm/3795ftZM88I8lQJTMYDISFhRVIRADTtvDw8ArturKGGIQQQmjL5meZXbp0CYPBgGe+RMbT05Njx44Vep+MjAwyMjJMt1NTUwFIGzkS0tIqLlhRQGxsLOfPny9yv6IonDt3ji1bthAYGFhlYxBCCFF2abe+sy3R2WXzCVF5zJ49mxkzZhTY3qhDBw2iEaXxwAMPaB2CVcQghBCioH///RdXM2eH23xC1KBBA/R6PRcuXMiz/cKFC3h5eRV6n6lTpzJp0iTT7ZSUFJo0acLZs2fNfkHtWVpaGo0aNeLcuXNm9+XaO3ktLUdeS8uQ19Fy5LW0nNTUVBo3bky9evXMPpfNJ0ROTk506dKFnTt3MnDgQEAdVL1z504mTJhQ6H2cnZ1xdnYusN3V1VXenBbg4uIir6OFyGtpOfJaWoa8jpYjr6XlOFhgEXabT4gAJk2axKhRo+jatSt33XUX8+bN4/r164wePVrr0IQQQghhA6pEQjRkyBAuXrxIREQESUlJdOrUiS1bthQYaC2EEEIIUZgqkRABTJgwocguspI4Ozszbdq0QrvRROnJ62g58lpajryWliGvo+XIa2k5lnwtq0RhRiGEEEIIc9h8YUYhhBBCCHNJQiSEEEIIuycJkRBCCCHsniREQgghhLB7dp8QLVq0CD8/P6pXr46/vz8//vij1iHZnOnTp6PT6fJc2rRpo3VYNmHv3r08+OCD+Pj4oNPp2LhxY579iqIQERGBt7c3NWrUoHfv3pw4cUKbYK1YSa/j448/XuA92qdPH22CtXKzZ8/mzjvvpE6dOnh4eDBw4ECOHz+e55j09HTGjx9P/fr1qV27NoMGDSqwWoC9K83rGBQUVOB9+eyzz2oUsfVasmQJHTp0MBWyDAgIYPPmzab9lno/2nVC9OWXXzJp0iSmTZvGL7/8QseOHQkODiY5OVnr0GxOu3btSExMNF2+//57rUOyCdevX6djx44sWrSo0P1z5sxhwYIFLF26lLi4OGrVqkVwcDDp6emVHKl1K+l1BOjTp0+e9+jatWsrMULbsWfPHsaPH8+BAwfYvn07WVlZ3H///Vy/ft10zPPPP8+3337LunXr2LNnDwkJCYSEhGgYtfUpzesIMGbMmDzvyzlz5mgUsfXy9fXl7bff5uDBg/z888/07NmTAQMGcOTIEcCC70fFjt11113K+PHjTbcNBoPi4+OjzJ49W8OobM+0adOUjh07ah2GzQOUDRs2mG7n5OQoXl5eyrvvvmvalpKSojg7Oytr167VIELbkP91VBRFGTVqlDJgwABN4rF1ycnJCqDs2bNHURT1Pejo6KisW7fOdMzRo0cVQNm/f79WYVq9/K+joijKfffdp4SFhWkXlA2rW7eu8tFHH1n0/Wi3LUSZmZkcPHiQ3r17m7Y5ODjQu3dv9u/fr2FktunEiRP4+PjQrFkzRowYwdmzZ7UOyeadOnWKpKSkPO9RV1dX/P395T1aDjExMXh4eNC6dWvGjh3Lv//+q3VINiE1NRXAtHjmwYMHycrKyvO+bNOmDY0bN5b3ZTHyv45Gn3/+OQ0aNOD2229n6tSp3LhxQ4vwbIbBYOCLL77g+vXrBAQEWPT9WGUqVZfVpUuXMBgMBZb38PT05NixYxpFZZv8/f2JjIykdevWJCYmMmPGDAIDA/njjz+oU6eO1uHZrKSkJIBC36PGfaJ0+vTpQ0hICE2bNuXkyZO88sor9O3bl/3796PX67UOz2rl5OQQHh7OPffcw+233w6o70snJyfc3NzyHCvvy6IV9joCDB8+nCZNmuDj48Nvv/3GSy+9xPHjx4mKitIwWuv0+++/ExAQQHp6OrVr12bDhg20bduWQ4cOWez9aLcJkbCcvn37mq536NABf39/mjRpwldffcWTTz6pYWRCqIYOHWq63r59ezp06EDz5s2JiYmhV69eGkZm3caPH88ff/whYwLNVNTr+PTTT5uut2/fHm9vb3r16sXJkydp3rx5ZYdp1Vq3bs2hQ4dITU1l/fr1jBo1ij179lj0Mey2y6xBgwbo9foCI9EvXLiAl5eXRlFVDW5ubrRq1Yq///5b61BsmvF9KO9Ry2vWrBkNGjSQ92gxJkyYwKZNm9i9eze+vr6m7V5eXmRmZpKSkpLneHlfFq6o17Ew/v7+APK+LISTkxMtWrSgS5cuzJ49m44dOzJ//nyLvh/tNiFycnKiS5cu7Ny507QtJyeHnTt3EhAQoGFktu/atWucPHkSb29vrUOxaU2bNsXLyyvPezQtLY24uDh5j5rp/Pnz/Pvvv/IeLYSiKEyYMIENGzawa9cumjZtmmd/ly5dcHR0zPO+PH78OGfPnpX3ZS4lvY6FOXToEIC8L0shJyeHjIwMi74f7brLbNKkSYwaNYquXbty1113MW/ePK5fv87o0aO1Ds2mTJ48mQcffJAmTZqQkJDAtGnT0Ov1DBs2TOvQrN61a9fy/Bo8deoUhw4dol69ejRu3Jjw8HBmzZpFy5Ytadq0Ka+//jo+Pj4MHDhQu6CtUHGvY7169ZgxYwaDBg3Cy8uLkydP8uKLL9KiRQuCg4M1jNo6jR8/njVr1vC///2POnXqmMZhuLq6UqNGDVxdXXnyySeZNGkS9erVw8XFhYkTJxIQEMDdd9+tcfTWo6TX8eTJk6xZs4Z+/fpRv359fvvtN55//nm6d+9Ohw4dNI7eukydOpW+ffvSuHFjrl69ypo1a4iJiWHr1q2WfT9adiKc7fnwww+Vxo0bK05OTspdd92lHDhwQOuQbM6QIUMUb29vxcnJSWnYsKEyZMgQ5e+//9Y6LJuwe/duBShwGTVqlKIo6tT7119/XfH09FScnZ2VXr16KcePH9c2aCtU3Ot448YN5f7771fc3d0VR0dHpUmTJsqYMWOUpKQkrcO2SoW9joCyatUq0zE3b95Uxo0bp9StW1epWbOm8vDDDyuJiYnaBW2FSnodz549q3Tv3l2pV6+e4uzsrLRo0UKZMmWKkpqaqm3gVuiJJ55QmjRpojg5OSnu7u5Kr169lG3btpn2W+r9qFMURTE3exNCCCGEsGV2O4ZICCGEEMJIEiIhhBBC2D1JiIQQQghh9yQhEkIIIYTdk4RICCGEEHZPEiIhhBBC2D1JiIQQQghh9yQhEkLYDJ1Ox8aNGy1+3unTp9OpUyezz+Pn58e8efPMPo8QovJJQiSEKLPHH3+8wPIh69evp3r16rz//vsV9riJiYn07du31MdHRkbi5uZW4nGTJ0/OsxaSEML+2PVaZkIIy/joo48YP348S5curdC1ACtqNfXatWtTu3btCjm3EMI2SAuREMIsc+bMYeLEiXzxxRdFJkPGlpqNGzfSsmVLqlevTnBwMOfOnctz3JIlS2jevDlOTk60bt2aTz/9NM/+3F1mp0+fRqfTERUVRY8ePahZsyYdO3Zk//79AMTExDB69GhSU1PR6XTodDqmT59eaHz5u8yMLWDvvfce3t7e1K9fn/Hjx5OVlWU6Jjk5mQcffJAaNWrQtGlTPv/88wLnTUlJ4amnnsLd3R0XFxd69uzJ4cOHAbh48SJeXl689dZbpuP37duHk5OTtFYJoQFJiIQQ5fbSSy/xxhtvsGnTJh5++OFij71x4wZvvvkmn3zyCT/88AMpKSkMHTrUtH/Dhg2EhYXxwgsv8Mcff/DMM88wevRodu/eXex5X331VSZPnsyhQ4do1aoVw4YNIzs7m27dujFv3jxcXFxITEwkMTGRyZMnl/q57d69m5MnT7J7925Wr15NZGQkkZGRpv2PP/44586dY/fu3axfv57FixeTnJyc5xyDBw8mOTmZzZs3c/DgQe644w569erF5cuXcXd35+OPP2b69On8/PPPXL16lUcffZQJEybQq1evUscphLAQy61HK4SwF6NGjVKcnJwUQNm5c2eJx69atUoBlAMHDpi2HT16VAGUuLg4RVEUpVu3bsqYMWPy3G/w4MFKv379TLcBZcOGDYqiKMqpU6cUQPnoo49M+48cOaIAytGjR02P6+rqWmJ806ZNUzp27Jjn+TVp0kTJzs7OE8uQIUMURVGU48ePK4Dy448/Fng+H3zwgaIoihIbG6u4uLgo6enpeR6refPmyrJly0y3x40bp7Rq1UoZPny40r59+wLHCyEqh7QQCSHKpUOHDvj5+TFt2jSuXbtm2t6uXTvTmJzcA6CrVavGnXfeabrdpk0b3NzcOHr0KABHjx7lnnvuyfMY99xzj2l/cXEYeXt7AxRoqSmPdu3aodfr85zbeN6jR49SrVo1unTpYtpvfD5Ghw8f5tq1a9SvX9/0etSuXZtTp05x8uRJ03Hvvfce2dnZrFu3js8//xxnZ2ezYxdClJ0MqhZClEvDhg1Zv349PXr0oE+fPmzevJk6deoQHR1tGmtTo0aNCo/D0dHRdF2n0wGQk5Nj0fMaz12W8167dg1vb29iYmIK7MudOJ08eZKEhARycnI4ffo07du3L2/IQggzSAuREKLcmjRpwp49e0hKSqJPnz5cvXqVJk2a0KJFC1q0aEHDhg1Nx2ZnZ/Pzzz+bbh8/fpyUlBRuu+02AG677TZ++OGHPOf/4YcfaNu2bbnjc3JywmAwlPv+RWnTpg3Z2dkcPHjQtM34fIzuuOMOkpKSqFatmun1MF4aNGgAQGZmJiNHjmTIkCG88cYbPPXUUxZp3RJClJ0kREIIszRq1IiYmBiSk5MJDg4mLS2t0OMcHR2ZOHEicXFxHDx4kMcff5y7776bu+66C4ApU6YQGRnJkiVLOHHiBHPnziUqKqpMA6Hz8/Pz49q1a+zcuZNLly5x48aNcp8rt9atW9OnTx+eeeYZ0/N56qmn8rSI9e7dm4CAAAYOHMi2bds4ffo0+/bt49VXXzUlhq+++iqpqaksWLCAl156iVatWvHEE09YJEYhRNlIQiSEMJuvry8xMTFcunSpyKSoZs2avPTSSwwfPpx77rmH2rVr8+WXX5r2Dxw4kPnz5/Pee+/Rrl07li1bxqpVqwgKCip3XN26dePZZ59lyJAhuLu7M2fOnHKfK79Vq1bh4+PDfffdR0hICE8//TQeHh6m/TqdjujoaLp3787o0aNp1aoVQ4cO5cyZM3h6ehITE8O8efP49NNPcXFxwcHBgU8//ZTY2FiWLFlisTiFEKWjUxRF0ToIIUTVFhkZSXh4eJ4uJSGEsCbSQiSEEEIIuycJkRBCCCHsnnSZCSGEEMLuSQuREEIIIeyeJERCCCGEsHuSEAkhhBDC7klCJIQQQgi7JwmREEIIIeyeJERCCCGEsHuSEAkhhBDC7klCJIQQQgi7JwmREEIIIeze/wOixl29BWkhSwAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "\n", + "for name, df in dic.items():\n", + " pos = int(name[1:-2])\n", + " df = df[df[\"error\"] < 0.25]\n", + " sct = ax.scatter(x=np.repeat(pos, len(df)), y=df.index * 4 * 1e-12, color=\"black\")\n", + "\n", + "# light cone overlay (air background; ± branches)\n", + "idx = np.arange(len(KX))\n", + "# convert reduced coordinates to |k| in m^-1\n", + "k_mag = (2 * np.pi / latticeConstant) * np.sqrt(np.array(KX) ** 2 + np.array(KY) ** 2)\n", + "# frequency in THz: f = c |k| / (2π)\n", + "f_light_thz = (td.constants.C_0 * k_mag / (2 * np.pi)) / 1e12\n", + "ax.plot(idx, 4 * f_light_thz, \"r--\", label=\"light cone\")\n", + "ax.fill_between(idx, 4 * f_light_thz, 800, color=\"red\", alpha=0.1)\n", + "\n", + "ax.set_ylim(0, 800)\n", + "ax.set_xlim(0, len(KX))\n", + "ax.set_ylabel(\"Frequency (THz)\")\n", + "ax.set_xlabel(\"K-point index\")\n", + "ax.set_title(\"TM band diagram\")\n", + "\n", + "ax.legend(loc=\"upper left\", fontsize=\"small\")\n", + "plt.show()" + ] + } + ], + "metadata": { + "applications": [ + "Photonic crystals" + ], + "description": "This notebook demonstrates how to simulate band diagrams of hexagonal lattice structures using Tidy3D.", + "feature_image": "././img/HexagonalSupercell.png", + "features": [], + "kernelspec": { + "display_name": "td2100rc2", + "language": "python", + "name": "python3" + }, + "keywords": "hexagonal lattices, band structure, matching dipoles, Tidy3D, FDTD", + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.13" + }, + "title": "How to model hexagonal lattice bands using Tidy3D | Flexcompute" + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/case_studies/photonic_crystals.rst b/docs/case_studies/photonic_crystals.rst index 81caec95..44bbf9c8 100644 --- a/docs/case_studies/photonic_crystals.rst +++ b/docs/case_studies/photonic_crystals.rst @@ -12,3 +12,4 @@ Photonic crystals utilize periodic optical nanostructures to affect the motion o ../../BistablePCCavity ../../NanobeamCavity ../../TopoQuantumPhC + ../../HexagonalLatticeBands \ No newline at end of file diff --git a/img/HexagonalSupercell.png b/img/HexagonalSupercell.png new file mode 100644 index 0000000000000000000000000000000000000000..c6cc2670cd83a07f859eacf93470a02fa60e1771 GIT binary patch literal 151418 zcmb@tg;yJG*F78{SaAsM?oM%c_h7|}ySrO~0>xd5Td?BAp=i)z1&S7TmjZ=;>HYlP z|KJO2k-(an%$#$sBYW@bqo%q7#v7710000(Nl{iC0DyM}0N^H3;9>tk89?LR5rQ>Sj<@?^l8er?<>TJ#KY3X5Y?c!UDw8Ck_Bm0hDB= zbp7&AdyZ1+N8LFNDLM*zAYE|qMN}zsCa20aBrjiY;BVM&GH-0l9BI=8fl{XMK$M8( zz?%B{`m@sGs8bX!ifU?DhYr%j-N+u7^pyeSD~+*$y>V`QM{-BHs>v zo2@_TeSJEqKO2YCo^;yh9(n!bQ!~tz(+Vp(jcxefJ-v_~#e68uo7yjYy(+wa4mMe` z24`9mb1kTe<)~8RiyPEu&L6d~O*FBcKwKE6taz#+5T>}OT3J5n)BhRgbBKZ9)AgUd zfadeAbGKy#03ebE?gKXV7p8b&Eij?A7D#TMFaB}+cHqdO(eAi{DZYuV2I7!gQGe3J zCbLC!V>j`i* zGS36S#SV#kn;HWol|j{xU1u)wnC~qUicw+>GQjf-X;3eooOG~ZhV?q%{L$?|By!Cn z%XOtHj_GAx^Vh ziJd}&^SyWT0_!<%^_{$ReKdeOipxG1Y9*XEm0Q7417WFwS~VGPsB35t#>;tN(ppHb zlrYK5`235fqnQsOl7gMA<$fU$12V?aEB-|Q zDEsA8oIZ#2tT^$n#>b-pP~;>fF)H-D-`X?GuXynnyiKcMo2YQ9Xg+diHR8yMAEt>) zK4y-ip{|#=`d^ejVO3JTNyMG?=~_Q;Lp@pORYg$-OvlPn!CQG*mC;E8gZYKR=j#C3 zR0MUvXk&QkXcbU$^s+(^0?ln#NZ+c7i3vOn4U#N69N?*!Grq~?_|ZwcaK^UT5UlTQ zBH%4nFa>jzMPv5N0RY=lwaqDFdDcYq-&(n?EThCubm7k%d^NZGI2NWnR5hZ$7FDiz zO-^T#OV(E{$t`devc(w{D>+tC{a1|m%Qk6d1?njd_Amvug({NWYOC{V{gNX9Wh~Jw z+?}PyLAZcp|K`zxyFeWlWyclvxsMjT*_<{vD_+9%B~eYZL;s7ml*5>aQh=Mk|BAQC z)1(V{%gR{W5eK9_HLr5KfM4YOU@mR(%?pdVh}U)CgIT%TtJF*HPi(3}SvGcMznN-v zZWMxoJ874Tn96H5Wgcs8l-maJ*XKLA9>}$joc$%=dvZC4dF!pGFPYVt<1penNOg%e~vh9 z#BUF!5bQJ%To~?dF?B@=!hI z{Qe|aM5>bBljnNgO&T8Fi%)v=Vw4a2}o1fnQk528*DZLxBicjCJ0LIlQLJgAH;t^XG zjn+Pu5A*POKk9i?6^djkgY~-d%g2S``jf7gkc-gJ=o#rZV+3-_)anEd{aiV!nKgSy zM@K>8uDJ}(F=~wXmGg`vVBGS8P%22O$tix;kF~SL>kb#EDYvI{j()gX@&Kx|1aBzk==doYV8dKwJmIt zbJ2nfE6~TVr{0UC(H$g#iuVA36fCX9gFNeMAdq8V6)fHD?pk>_VNPRe z*G66TWyMZJ%~@NLP_)u?cHZR(Bg$S265^yW?Bgh9;Z66<6MCUx9%!2x?dZ-x{|psF z$F@vxc3So6T8&_#00Pqax6-Y(1dfWfl?(~w4EepA4cPP;YxX>HXqu>_U!EaB!gr7+5MD98}? zacRLr?6CSGt>HHSKt!~o^Fv#iwf>leo=+`T308@~>I`Xnsq4dFaQWF6=*S{1{@?G1 z|J9(E#-rCACIDGtOx`N#MYDHw#pdsC%l(xcMDj=6@>@LCQx15#o(6*l{9#Gqojml) z%$4ZEmFz@h0X15VT9a-z*5gzRH^K+W=gwMCf;QYT8rEe?o2M%N%Fl_}(}B1(OJ1lV ziduzlLz{B0A$hSfL~xd;Fk1$$Iq?f)6LF2ihRMN#-+^JuNm%7TT^9^qTy)}BVG=1& zpYIq#wZ^wlNdMQuyjFSrbqC=ro!q&!@5~?ENLEg?st^wLO<0e zb>(%${;bWc_?4T3{1?-)$X4TAu@VZC@!Y}sopg$mF17Q|#Tt6wnsOc;{FMORo+EEO zrybp?CTxe;s#u?m>xkcUPd{a}i3A!60Lv*Y;O&LvajKjxVV-|EKR%92`ivswkxsDSmEZp4lWfpx_|8oG%yX7I4(Q7QH_eqeobqm ztxMnTxw5Yt?B)}rn-z(pzVS*!s}>F{><&oDhZiMiyBJ+Nvhbd;C#p}Onsx)krQqu8 zTy&nhiBkM%Z;yooBx7i85T-{o#{Vlb0%|(2dbf0hK77j)27#oy3XvCOpZ>(L{#Ry0 z(bhxBoLBEpPgVOY7;5k>75gH(@M*?;)aj^VbBj(~;oUeiR8a3xc0YTdu&4e+NRQy5 zG!SHCA^vvF>;KnngT}4b?y43-Xdn*3(#t@*(rRuhqS%`B%g9}cSBWB0#Eax!nc?~! z83YZQ+&~8p4^10d4NWEg9GT!<9fu34HW?i&INx*;SY5xrzQ!eDM)PL`;A+8|Gg!eg zP`8~|;$^OBs?LLYrEUPZ3e+c>R9#0^+WyxnrdB>Dm9C!oG;fs6Ouw7pw1iI6d5qpk zU5_Hgn=!0??V^`aU!ni_(0G7HZtPyLMU%T#pBrgdGdPKS?3(HDU3v1?W}w?0^HM^% zVRb`z8XnUwpX?O12l*GBCwyx>V>o*_haV?M`i(^x*u-B`Uiwj~hRf*1Y`HIh_7`c5 zoT`$JY4@tXRxZln0R2SFBh$Pmeu5htYvO~pC_&K{{n+qbEc?wX4z0PI1UD<)F2`P- z^G?EQ4akZs!@-+1>>@5diS5fMN!C5d=u7hQ^4c85xT?|g%XyXG;4%$W48oWGG;m_T zl(Xv0i`CH}W>oB-ARERVTX@LkX+cjE^Dw)aM}nSj=~*$WS|z2j`lD1a?UQ@NB}taV z7eY`W`2&9v=x@AL8liqjVhLO(`cpC?S0VPTosRKXBscUj6gJuIYpdV9qwlBnkN)M)u+-t_+>D;DOM`aYYljn{P) zR}#xh26hM}!$X^<6Cdxg0QP}+_fR#Tl|!h)H7;W0WKm>i57bv|^2nm!TCkkysgjb6 zl5|Z@j@Q0VoIziWsO>HvTl+>a%kKE`OpBE5gMjlVpj5e06MXCYPEVzmkzDkAA-IJp zb2$BWM%#YCXUfbza?8`_UT2XTD4wyInVA1I5Jv_F(!@5w(t|>PkSW(8Y*>(=&qjb2 z8odomM7B&7Otla636ij79h&Ghn2JItlqpsGTsriXdn=4yOZZS~D}_jEc#cFc1{KHq#5OTed$AvD za(cr{8|cup-{#H46!KG4#6XKp!HWWGg6o=rxsr%>-xyS1sd4NhZ<$sQma;x!8o2X; zl3$>NO_Sqsdp@s%mA!d_inkFklF z-#Mm0l_9O7dXMhS=rWF(0?E--Ic(XS+;yHAJ-+`^h!-|VXCXv6{1xiV!RcUVo@S)y z+ZJx~YTy|~v&!A^5xU2${&Z{TSkdf~0(9O}?bWS2m6FnfNAVDx`^_5eT6}J^XUnc@ zKVscawWcDrl;na?=P_Fwa>TGqzQvOb3WgTirj%4Tae9OntQy6C-&{I{E)Z7mtfe!GR~Muq2G1~GF<05+yRW;6G%0Fj&Qr(Z_@4RE|+Yh!t)i-Bh-&`+sxa-wzwvs*~ges z@97Nd1duUrwgQ$ zCBBI%zM?*BVi9@-^=Pcht6++2A#bZc>8wxFC;m4(OHjj}@vQS-EsCbHj6h%b3Iu#$ zeR~pi*38zES?(Obk5+mt<1n&3tu^o?ywM(2YS5=go=>FkeI^*Fozpy`$(33QV176M z>GWag(eG__%&k>499i<)RWBR_tznfBjrwu_usz40I~I)c*#i!G^@rrs@Drzs(49p+ zVJ7PbI2KI?Gyj(PytlZ zWgPb=zRQ#V7n~F(n&?|X?D3MS6WG`TEvtrfvc)$+D&~(II)W}Qe|ZVB$Mb-wqmtRy zZ(YJ>Ltte;)VK3MFu>oxW5o#|s!YANtyW$>JSbWsH@4e`VsbO}(Kd~8l7FVmi@Y%> z;$|H_hxEsr2ga*Zzp%YZ-E4*`Og60pQvRv_L?djpxj{JnvHSd=Sxhggq>*8k^-)A@ zt;qPiliLf(;iN_1of+Q!*jZo~@_;K(8<%WWo=wVaj~L+M5B|}kG#v=}5avleVLm~i z3%`kVg%`-KGJ?4KMiJ8Hz+1wF@#iv#kttE-sr`s*&ful&H4#_?!r^|Qj|2EQt+t*0 z$n$2I2@F7phN#c}fDPEyFvLS}_-J=`_jb3%2{v)|9Dd$8Tv;(( z@&;J&LZb;3Hy6g{-ST5EL?01%Lt5*MS(4!wzeluC-l#-GQSj)z*6}L*!O-ignQm3= z51ZLdJJ!Z(Ay5Nd=SF>Qw%QtfXQ7%U=|(iTIEF}AGNCz0g0^oV2f!6)g771>R01H4#W2^JhL>?qY0Vb^H;3zhd;}!-N;CETUhTd1>6?+17sA0 z89mAMwG29Xlbi0MY=W{?~(?+Mm;%{-&y z{;n1}I+fEm(i4I798Out`JN4ub3pZH-Zx%Ky`}r{osV2KFZa&qd+wB87k$HmDY0zt z1OF#x1`fDkKc}S8d%wUgh9VjuydtN~g(anQ)ky$P&ZO_V%nK<5<%$K}rh2_L;>hd2^bXD?`foiQS&) zn`Y~nF&KdzIFvuBoqG*rszzLo8FH}=?+WJ0B$Tsby8$aJIdC55eAu3N`~A+hQ+`zf zek59(4gv-65C^bdkLRj|e5LVcn;8pKJEgGQlsqWhpaQbMQ-w>&u^3(I@A?t%N5{NW<(egw}kxMyo=Q?y)6?5{DI50JQ4W<5hxUDd&nnp zPebyxWY~)8pDP)Tp;9DhvbP2z%gICG`b(DyL4+QpdW%KqR5~x8BZVpd3`yRygy$5e zCY&LypDtLLr52QiZ%11@4~QO=apk+aNrqVbS{KpngS$dKF=ZHw9+}GIYf;=tN+wh~ z-vb`IN27?{iQNX7Em0~f+0`` zH=Xq|C`VqE++-qi!6mR*fc3EL>%+H594ds`)P+FYSOtNUrNViWvU?I7sV}zSoXyvq zxX!UU+8nrAn|H7=>f+(~<<(7)A}MC@YT4T)fgAN}XMJu(^>HVz@-y*x6MFV;;%HT| zTAKee8DFQWDR&Y6+Y6F|!&l)y3}#L~^woq~yBChah2WuY0d{&u#%2Ghq z9?t~TB~2_alf6W(c2ESN%kUtk) z48PTz@0XiK7hnA1=E4{7sl~fqJN|)sgs7`+-KlM9Nq=ccAn(kkeVsf>fhLaox>wbG z3P0$(KNAdFv;*s>*}yQDc~nn1!=j0_RuFzbPugW7b54RIn3U)ZApi1qqc7ZBVLW}{ zWAIw`WVGkw015ApEe3n11w@p+&yy~xUwC5Mb=dqOu{`hJr2i%yJ~Y#Pm!mbscCdh& zq$R$ifJVFdl7Zvd8-mVO=amVgW}tPSzy6x}~|R%@uMYyWvm zuB5eeSC*q%nReuqd4C4z_tU;obY)n7M*%r=PMtw*Mw61sF;a=m8V#z( z0fr=1kE@qh2Cmf#*xJs_n09~d=-oKG2WWz*@l8Q;0dzog>g01OpelBk#OXs!aDP~= zt*vb_3Jjl0q7XCU$h;Zuu0O_B?JQ24_V9>!;EkuEh}z4qmg+Z>-gmdo?{d8EJz z)r#KV4E+4GLN5VSU!mbbTlZ#t=aoW(?Paob2U{Ag4zi*W5*pD?h6G@fEIFJwnjSPC zo}B#8`5gKaD^8g~ykM|eu8nX(xxghIVdK&&4BysJdLV#dHh=c~waqj5;2}~h0|TcN z>VmkXEECSCQ;Ts&qJ}nkNU*;(WC-0i;=ndgXZh`P0cQUTjz4o+vYer z&@r4k&hJFad3huM(P7&wdHZ(W&==(4n#n`N2Y6$IU;&osTp5J<1g-ab$G|7&V|Q;;_siEnL_cvxUhWHfjRNeU}iXAaskVB z9d30Dbt|dXpYrXN(siHq%?nOW&Y9`yjpwVtBnoi|WE_}JY#x$^ex%=*CLJ7%aGpX~ zG5tzwJJ6LGSn&~Vk|;>v%0dqsx#rj+QgV80yQj6BIIoO)`HR&gw3>-=|vhU?AliTREWh2^>oR`kpL?kE3 zfGh1fnbzwI-Y^PiN`Zxc%A-*<*ew^`P)xGXKKB;9!c%gp_?H!y=WegBJ=#}u?2rH{ z#@kK2X>yZr*ze65FW>jdq+B3sqE;8pldm>66ZSn$xqcS)pSvT6hj5_NDD$*K21U`v zQ{OG;%-Y!)D>vCEommI^2L?VL&X)Ra1|RI+wy>$VcI`4WD`^Z!Ho_B`-J~T^)#Qm% zMHYxlfU0Q(Fbv4fl@IdW^eh#;$=feb_9W3=dmqav!j*<`ZYU#2m7N>J&}eE~_p%3Z zCF(-ZT7)Ef;X$`v_wM!SRzLde`C0n*Fh3a^sefPp#Lc5w#0C$H6-}_GS}W7DDTUAp zjX5BUo#kuUydUAayMG>NMJ;vml4ND5fLK=a3oXjL673XBL5^&4ez5M;8Ifp}^-A2v z?1URiMa6RCQkALIAJu-WaDhNr#!J{H9-Z2RgL&m>)?+W6M>5j$JMh(ib6Hw=NWthtt<yvKN0 zwt~d+yVfX8WYnHuGUnUa#2ac+NAh_HFkUibOfVFr36(rHT0r7fY!Pe+(-8G?RDK$3 ziSS(2$e2f3-WOjIM75m~MoB!WPKoXsLED$y z$Sb3t|DHxMFT1q2@({e)?hNZSy>Ew-F{sTA^DEsh-SV%w~UF#{066r+SR?ch4kg9)e8C?kL`m7s=WIJdb+{RSIZd7S- z4*8kpj9Yq`j)io;3dj=SYJ`WEej9i1KVnlDG!GOlGw)zBtunU{0!HrE)@8co&9Gue zPA?baBt+)Fw_)oH$@V!MSo9kax2gNlRNZp}Fcxo92(Cm@ER!_%8?zY$Y}a!B9b+cb@kyPCiL-ofA~nke%yYi*X|@>t;Z7DNMc&W+9R z2kMdnKq@GUg}fEcNP5+quz{m(bt?3g^Y0#v6_#V_FDq;=Ugjr>b2``eF$zzMXK_Gw z>6r|}fuhv%SuK4h%$(5EJW2?{jGoxU;f9(u*-<&NQh4#wN1b*J(++>x@oEMMtI2(| z-EDmQD##~K@(bl8i+B6caEBLlTExhxIDaF zQUZcg&)(<~fzh`877km^2kqgC2u20D_n6{o_5)DD(|$>r^@!(9G0a2DU=;Yu!kriY zJB}iWezvB^++2cYn2&gXe(4qa{QdtH_t&wa)-$*(5=HAkqe2ivivwaCi&}>*j z5I7+eHYM;IPK{^MUdtjbug!uCPRyMdD_NwhWkj*FLHC#sr3dTIu(CFJK0I1dPCf7% z!>x$bRMTUA}e}q z7%IcOiM1hrnvHng3~V-YG6H)CAZQ57xWlFrn`W;{;ZLIopI?KHLbeaD{JKpxb4ggZ zr@h`HtGuFGv6IHeSX zaVI6tbxcrDN*T~rAXze%6k$XHC-?jionw5*!lkyzvDOnl@B`9KEq5>8&STpb8O+-+QINblVppR<9P4c^8_BKReXcA!QzL5 zjldf6Zs+<_cN02RT{xZ51nM8OC5zb|T$-W+P#X$Wu3l&mpEgDutMsC#eX~9pa}Cp{ zUizyzjI2@1P*Dn3R~N1x2jr9_ANV3gZ=HYheh|0Wy;h5lJyDog!H)kmva3u#j7eUNZ$t2oWKUv9te zS1+&!yDoa)fe=eM4c$P|aB|IFL3@UnZIr+F#fBe(eH!`8cc zO^ZIkaE;8+GK6yvyNpj(J-p^SiEhp5tF_IBX{|5!QbDNcg9)}DTUY!squXkW+sr)H zsO%F}c{-o{j!8n}J_jCA#v}@6>x(P1j6rVRPMI1m_y#gU$Z(1Y=#-OrCZB8iKUFUo zqE9!kAf{MccQU4{CHb1PuQ<)ER>4QZ#0(%JY*;E*oBwaD?#P~*Kl=F3%xN%bMc$OQ zPou-H9i?FyBCJ6c{CI7>`QWmcBgtc}Ba4g1HRTU&Kj4*xm$I_7Yc~CRt=|WW-lT_^ zp5Ar%-*A!1bb`8s6v7gZ94|nr{_Mf_wg68nyifAY-X%SkrMi8 zq_jP)h9v4>Tx(J0mN02Fo3IKhw!se)wUt2L(}KgsmebNznGti}JH zN-Aka=;}CFiO$4l^!PL@^oQKZw(-UZIyQyv{qxBjGHo|7Ez%(CMUFUX0eVp_y*9n# zndeu_L*Z^~jMM`uEMGhbED0#NM8QDYTLu`vW5TY_{A#oa2J20g+2`7b7s7%ZMkUhu zYof?M(awtv&GudtiUt21wZjw!9Jt-_DDLP7Ny$_?2vrZH10UY^{oPH|5P!OBXzy~) zT{*Uz|H5=Qhuh9IOlOC$EN5=p_HK?NrYW0=rckqCgd5u&fPin`o9*GJ$oBL+vfOs%GA|f^uVsFSld2GJbueq;yezaZu9Xg>OV@9K>Ii z_jxI7c!&xfdsuvAx$+a1$4d)U(Dl*x;FXKl37|SYnFvGk${4 zY)DhVrJI+mfWCaVnmCfbI%?g5$v-?>jbaq3!x^BDkcs)U8;B}-t%rf!bU zuF-u9!|2Uk#q%Y3g>vdagC}I(EnP{YE!CQ-4?*KSp=Cx++3|=8VLb?u=gQcIGwkcr ze3M(}JeA+Cb@Yav+Qmb4Zb*2N zTItP?r!Xl*hp~F)yw{;@K(W&`KBMS86B_MH;CGl0V5%%nPmw=hWBcRYVb%TkiC7da zxz7et>W!a(rY5VwSHoEn&nthsHk^=ba%V!dK4b!za6e?5Gblcl)DZY7pdA~j$pci} z)2;WcYr}x{6RC+c#X1~0hx<=YE6uhr*B_4z%LmJ=5a5H=V|fN1MwgynxX7D0tBFxC z-L23gZvOQ@j;}vT$>UWT8;qH=cCD+MbPCfs-kil#-2=+*%r-qQEd z4yNSf;DAX_d^h|V&CTu47Y_#luH**g5CxsCJ(6aC1W(j&j7(U#cjHgaQ5p*{It<dAReJ>SD}!4ca^3tn>>c#uf(^XEm`*I(OzrJ@)_g&NI==pxdGz~ z5B508Z(=+sC|jZKzdy->m|+lLePjU}E4UCRP7@@jCEzVg)`&vgQ*;I6TwqIwfpb}j zX_Zfn$7%qSg<}`vwds}~>*C_lS+BFQJLmQr37}cLZzbH|xmX}op_1DP6MwY#y__}M z&R8_Dd6wr9HX4wptLF$@w*1uUu5gmI3qi+)1ESMptg%YJcvwpnZ7|Ls!LiXRAGry3 z3yQpB*S8lS-D_f+k3fEdlubqLtFrG5)J&{o;1QPvjuoXb0>~9^hB2QWJF z**>90ZY2I;1-3xjN!LG(7j2l1R9FGkzwBGCfSqM+xVY#gEG8yoQc%l~rX=i0LvEJu zQPds(I|jA!0YjmyzN@Flc{THWG-J=Z%Y9q!*^CY~faHSsCn(PB&B2Vs>+hYHkOsI} zVBvX+l@EZHt|t`X|-aviHl=JxrHk3={e8 zLT`H>LjD}qDWutGgTnc0P+ASQOyW&_>pWG|DxxIzR&Dj^I`EUuuKd-}YiTl?py78gEfKwW*lwJaiLR)sK0Y|OXK`FX{* zuqWV7nN@ps2B4IaPt8ArGAWlIM}Kei#@N7{di{J>Z?{`Vu7LHeeJ^}H#Ij9 z_v(5Z7TY(Es(8HJPVip<878;~#qYDPWF$nW5b;ITQMpcH98u4|Gt8x4d7t4p&1j<5 z-N4ksNAs1NK`(dB2Q$8_CRzmHculHS)RGBNE@pthMLtZRBnn(437)!bKOI?DeP54B z!%`tk@VZ?9OQ)BY15W%p@2ENm^2uEiMTpvr1t1$*!rAUZwB4>;SuIMs$mr^JUGM3o z@Nk2sVmRH@Pu*1C-sTcr(8eDLADh14{l<*gV3O2CB(%da)`BeAr!u|?ODfhm%l=qi z)p4{!X1*R@PR2cEC zV&mb<2k&Xn`Bv7@wu$P;^+@A}8=C>C|PoEG>FM!2e0 z{NtOz8GBYdhIM+3m6b38&RU3`OTB(4u-Wne=Bp)d{Ve@%YT+tewH4tOd*0>vOpp{X zZ%sHpOOP$;3ppa%EKVUoM~SpmeQ)JRb~ z>p##b9qAd>7DFp_hgCBcn!%2A-us%Ic%QtJ_CX6$>mIug)kbv=hAskKtJf4cnOhdW zs)Wdm)TVLE-XrAW4s0&YSXs(oTZ-Oa`8f&Xc{^C4RN+;i$Qfq9)KbDZ>J@2TYoY(7 zQ@6LfR;@;F)08|gVUte%jsz|1Ju*wmfO=XuVIIZjrT$R>W}eQ~ zGbC?%6+UaCYC@YWuj?yPlj-RRTWxJPX4Hr9oncO-Ozx&Da0mdf#l*^j)JW#KdVhR; zT-Uw{srh-QL*sw~=s@Zh+{vxpmCXq+KSoOS4yEd>EpI^7mMR{KVq+Wc(@bbtcjpxbUVQI)RbOIMmrfmesuaeMw$Si1Fg564Nt^R+1zaG_dIL_ zw!4sMsV(bqg?SOvWA>=B^K_tcNce;i>}THz7YBmq_HUTruch==ZR_u$ZxZ*|RY z>IBC*8;*#+cxCG5{lLhU2)H_Fd`8EOmUVbU5y*-jVlJ!m>HP;dm#`d z-kfRJ1_dXcf(00;2mXoEWmHE1+ZBPM4@PulSr;HvdnQ9SC8K~?n{V*se18nW_0Z;vTg!PXP6+=oMgzny36zHb7+SFhX?Xzm}~S0_?^S2{m0`RW+*d~AB1$*w}g}WX3A6OTvUB^tNFtwAcQzMzolL2}*?856|Sksr8c@lE*rWrugLJUg>baUQN_{ zC%Fjx2wJ!V0lNs9L^7ZsaF?a-$Vugu8-EpVYQSk`NBC7B}Ns2 z-{)RY;C|MJ-k+}A-FYW)JHP*7MVV?3#{(0~1B$XeoS|Xc8bv7sII3nUF+09(iZbA-^iSI?$Ns-La5 zbx=ig<8&uT}wU}9gxf&MXE#8ET!NT`}jdI)|UP)-9<3^SWit6=g&W$I)O~etl~n-C?17 zq_sd}R&zHeIh{WXzp~rK#$^Y|b8M3H$+sEyecG$QJez!1l(9>eykB~NsuZ~rM=xHk z?Kb@*`-VWUFO{^b49c}zNg$%S2>ta<)djOyO)>9pNqpdUwFFws(Q9Cu(xs6absoBu zXWM#uTC-VtT4M4N0~}>$YMfKjSx8@{VAP2~+__S=fY#;%Atz`5jDAj`(x39jPc(0w z_Z#==F24K3F2ZulaLtQLOf0kOlugAN15)`fyc`>i<0eETr^+?Buv0hl4q1yIM9pTK=dVex*lBRBV3xZ=< zQN~#aO_0AI!#UDjGX*`bxBtE7{CmARBktIxCzNc#!V{!dOpO$-OoPwLVuGwN@Y`s$k*??r> zSB{AqtJi+<)476B@|-i$%NvFugJMlgmwjJgR8q)&b7Any-IDXF1A7owH8W%j!6Bo{ zlX{@qf!Q3n=Q=>&pElA4p=2lWhx|4%3>z~2d+yuU)!D7R!ea68wg}M)TFPTWl!)SY zaF*`-o@gi!!#olBGm=bfc|s$Dr-@}#-dM#6j`l5Fq~pn3tO~?OM+fu9LhX{}kVzDuqU+Nr&W*j_=TF3_2>3prYyz>AQF~ zeMjSVkjwuYEghBC1oK=X1Gx-s*b@*n?4d9spOH}UG_jq*FiZrSVqR_}{@%22hD@yH zi1HJ~e-HVwNBSXeD6{1b_?RBgBrmF@f+I^xumX{mmn0(Y9k$wV@$GwFzkp56C7u%2 zY2)EJ!YZdF0X)oxNaOsr#nMP7Me~|Pm{PT#zV1ajHc3@QY8u6L*aCe~@4}GgSGH0! z_%!>*I=++3XnJAf;ad@wv$83Y6S$f2cuRfwnrEIfnqo|6`bv6B@wI%rcU&1?AIHA1 zOaz{Nw;K~(5}J<)c3D#u;8$c;f6slMI)+Eez2NinOKedxQU&C38txnOyanCf+c)p_ zO60TY+1S6KN@X^BCMQECtN(=KGFc9_qNV+DgQ#*->2C-c3Kyuwmk|Awa>ZSzgptQ* zJ~f}c`U2*?l$zDct98u+~Iv1?U) zV&$^=B{a0g%HO}L@bp7cI1KP^oA@ySmwtj3Kp`sAMVaTARWy%}Jryf-Gqfobi(|p^ z0)Q>5Ou?!&x(}CXfbTg=`KXV_*NYObn}2^#wQt@AH`M;H&}m3}{4CpcDZ3LGxk~Js zE+_OEDp^)9E8?Yzr%~oxC6j5_yb|=XxRiG{B6z4pE?Q<7FhV}N)n_v+1c)@aep~Yu zht~q&Ym`M(&b5*--1P-D#Iy>iYf~HoWm6wjdWYh?)OL2|CQ61G14FY+DrKr)=py@7 zJAm(dU6b@j0H=`tB8$A{S_3TrDm+uPU6LW(J-9nK`* z+0h||QMWC%X{duTC<=Syyw#0l@{t;8{6yK%8dzY1Nei=_@!sW6d_eT{m+0FwF)loq*vhR(8KBKt# zKOT2o9RIy7{Hvq0v{eTG2y&Tu8#OSYESHTsW-ktc7aa42pSHmc=r~4}j&I3bPhSaWfUoB}~!* zv|+wP{z<2f46W#-LNR46ID2(SD^@KP4h-1cGf}m(?AmADHLMiOiS8FroU?c0g)bly&}xvId*iXs3YjFUcM9yU zkjy?g+1S)Ec-?5cI}An8@`^24rW5BU2&z=%H0?I1)4O>2-2+4KuE}(!R$Ov^P)OKuxxVjrGwTy#pCziL`b72a zH~yH`rI(=T57EjhbMaeDzp3xEf^DPgKE8p0H^n?;$nFX&lRdMLca;mXa0A zl-s^a_!B2Jr;m`;5Ef$P^u9Wp<|2k9`nwORo*#2{uTrUfahHcKjZ(#TQkVuB^RPr^ z$|3_wgQ$rg*2L0SLoWmF)4pA98D;KfXov(ad5qYa(++&+`=p7Y2^!Ap_6MEgCDLp^ zPI$)cdh_*UtKzO>eByrw+j|6(S<4S8I3ruF5(lHun1z2lZWCz5| zi_;(myz5QArQnWN{ao2bi#-5?oEiHbclYn*2SaQ|YBr&F@MWvDom2w4-`rgacsG|7 zioXd@(L5G$xqgeLgX#{&dnqZOKfhk>jMk)ql{vjq?fNmmVSnh{MQGS2tLIl32cY>r2~gHnaG{DdHnx{@`?^a*ef?*NP#@TCg7tIlHwGlNnn0~a zr{G~l>dSgA*@WOem?HIga3VenZ1_WsH*XrY@tv~g&Q83Luo!!#5GkJ%>1B$}k(!;LH5Kpa=l=(pL1w<>WKRIGE)pqg zgY2{+5mv*vgSL|kOd?Ai2c{GN*_uwBkhy#pvbgBG$em9H#&)BDZihNZW;A;-;-4br zclJ9fheSs3>|E-vI7OKy=oq{39a5zd#Zt3~mFmqh}%fdPtKj(BJF zjFlu~#2reJCV7q$FU&K$!4;e1lQ2zK4Yss+-5bbjQ`08z9w%A2|NtzYWRMx9-epl#dh>+7dapPoHG zyScg9@ArHzBSM*8gpf}@V}3yKnB+W;bUe0Q*YCEwi;Iiz9)I`t+i$=1)?3TvvZ)&k z;!2V+9r6IcpSr-KuS*8~WYhWex*_nImIGkaLnKhdJG(;}T)16Y2I_*-buQCL$|fMx z*{G1FE@F9slFmG-L*|}pU0RxNIsqWc5lbX;&q9@?BQl&!0Ll%+cXUM~+1^$4j zX_}#hVv*g1(8aZRSi9ML<314)a0G5=$JAtD>(dw-JD#ZM*C1>uQy$JsFFIw9MmnofqZJ3*e?07glee&ex%a;!xJb3%9w@)9O zHgzK=o@oT&`r)U6eMXh$evJrIxMym&VLEVGT^;H@$`=67D`#z+_J-PDzfe%8iir+% zT$MU}5J3iAI-IIXk2(ak<{6YC5K*w%?52mGP8L-FQ4%m`OFkP!Yw%@y|C}+0qzWK# z$DxR3GYq%M<0fEPX4!DTa=E-C1l}yVCpbz(FJHclk@pjmNXdcuWot$zA6P2p08#)5 z0*2{iT7*LVEr_Q5rSrRG@sKPRSuirglbbO@EU+L8YRWv3To(dLHYf=A@)BZHfZ&#n z_S$#N1B@&zfpH=LNN+XDB$^0h1_^0#@ z>+bfuPe1*1yQh zXV1^BF0W2bPTqh2{gcy^;k!Xddv7s##(<&LYtjH^)u3Yo${0buy-n72rXwQiIO(Lj zqsuUeu)joF}E|li%I% zrd+-lM43>9PfX`*KCz_DYWD`Pb^whftZASZ4IzXF4<5jqP4@&xV~p2V*Xgs3mLwGL z7m+yN<-8eqGNqhC7($p%r|GaqebxvO5z}kE5dtfn24U_4u~M9BjSvIb@#o1^m9$7+ zU>ZPhxgPFEgDu~v^lHzvmP`i7Y7dBIS(ZgZ5HA>syor%sp1=I+tFI_V6U!jAIH+K8Y)w{^~E^e)~t0$piyxa2@1Xb=c&?>-*(^)ax%vg;fC7QFNo@ ze<7PMF16mRC{^h^)&kr`T5gmYzFsGm$qA65sqaZPr1IWX$XAP3nA8ME9VWN%J&p~F zw*oDqgX;6Y>pRifGdZjG=x#S1IFO;YqB15`RW+SX|3ItW6uKukdN>@`n|0s!C=OM~ zM^^z=Y*6r*z%6lSaS{fc&*x2DW1aw_kevO(PMf>P#M&OIpdnv^d46>IXv{T%G=L%z zITer9U5XHbNO8Pq1u3s1gNs+hX8@Dv&~9O=wvaPU<|j&>uV1uagQd<=az1?*87JYGX)!j{ zK=mdfnZO?Mbm+OM>EGAnNy&oJSc2571A>w`B^T3+OX1C?dvXrLZnxWRwyNd~FXwoW z-@wbsebqt4fMK~>E*1-PGTr2|f6f&`AfCizoakTv5bY5s;?vnXB;HkZ3IXXn2LWLD zP6iBeN{QBKc*rXV!(y>WTiLwx%JtXDXm=swmIu)R%98uVF#T>Mn{cxNHIcykPV>efSkPUhuS{KT6S}sh&j?-DpP!$9_0^Z>=jUD5 zlX!7JM$&0?JbfJ|p-vdTNbQ5HEmvNWc>*owad{qW}~qI#oa^F0YS{cxPd8oS#6?r$dcoH2+VI*9mNeYun_Q5SEDH^ zO)=wBt_sPln9t^KcyJW%jXioi95$P^6P=Jgc-2?~8@bZQo}Qud1(1ezHk++hC&`-x zS;B&lliuJamExNGiUdG0?R`x3^2?_TjY&mYL<~Sca)>>EDy?K^q5I&7TVU*4A^=XZ zKmeFbC-eCn?0D}BSYmZi*FTi}gfihJ7(%_o9wbSAu62(-nv%}!__V$}^zOl!X z$J>H%JXlWJvefn)W5tmUI%Jf#1*r&U7?b^%&bSa3i$Fw?2t@7{cQXL!>~dYYzPfJP zwk%5)7A)>vJqUxb5U+wxGlv9O*SzKBYzQ3@br>paXJg`wF*k_L^~dk={oofLeD>Sl z9^00sCnD(E_MAm3-9Rx%QOjdhLF_QOjM5RO$CFI|D1ka|ThcjzDBj%M9FJdiUH9I5 z@0DfAqb!(-xx$g*5Gu=28DU1J$OL7oGqo7V9o^MO9L|ygF1gZ7&PbOG_r>qc6HiCN zW*`9M32SO)X7DOqQ)Pn4*X5d=WQo%u&=d~`$4P(;*L>c2+p7aGc*`o>846i2`8~v1 z2jmTvNj{lOhN1B{kKXk5{Tpew-`}p+_T6T_;0^1FUS_4ge!c1=szAYHGI{Imx8z;T zdauG~GDtFQQPn@SoXC`JRlwyz0x@5?+{mgvX&tF3lE?J-s5OhBK#`;cedRm2TJ5h;#6DrY#>h0X#&Up)Z;1UrV^_MZ%i==Sz@y~CW3L{$lhjHAN8^t(SF*I3KHJLK2lx61t_B7(!=kWPE%=9sW1U&Cuz z;i815{YxCy9k5LLtQrj3?7=l1tz2Se=5F@aSz+R4v0={hg%tbJ%7fp{gEYX=wfyA9P-9-VpHNNskheY z8UV^+HylH80g7k&$T5e>MuwmBScHa{1RzSD^j+*=2edY@8bsu>(3{1`H;|aUGHOVc;}sW7R#kyLg`WBvv16q1zD9AbRm`n z&W$Md7-|wkiZP0Fi4j)km%;;E;2UPp=`b|SeJ6Qs zzVi?MKQiWmS19tXs_IK5>s)VOB;-fCzJLDgxi1D}3z6b(w@a*0g+R;&u3VZ(`J)oLRB@98pY+8ziAxu|XLv;{Vr$-1cN z(8ERUOO|;}uW^1_BV4~VDj`@oFzI4<1Xqu&l}vNBA-Bol5 zktl(s^8)b@dK^+QfQSztK79W#-oNY4(5aMDP`cQ8porq>zIs;2? zGFh!?4k9#YXy@8O3=bbYn$D&GfaxWXPSTKXby7iWjWGt;>QF(TqFx+&nd+iz6Bq!b zC1@YqI?}Jl!{NpGi!6*PoXIT&##G+{mhWWZ*fTA$BT^)a4pTkuv$Qq@aNRZ`E0`f| z7jsAK0R0aD4*LUmwwTmYYr}R?IC7^T z^Pm6xUw`(m#?`zk@8*|3IE(JvMd~5657jg3WxpS+i$*o zaemIDncH0%3lQAW%f?IWEv+IeN7kM*{S)d)Ysun&LvpiE{SY*`F5P0Jb5=Dt$mfqJ zCvPM8_yUM-3g)G7x=YT2RF=pTy3;7nGr=>IN1QZqO-jO34@JrDFi)S9=1S1cnes04 zTrbLmpEPg!;ks}?;-kmo@#XnT)p$gZ@+?PzN|PzFw}q9{JV_5+7H%5m>2&(nfAiO$ z{`S+hYkB^0tOr6mZ6!k^ibP?!7d%(UMPJRq*CYoK0S4YXqPd)Iz3Tz%nUL1liP^^l zfRoAO(W6IoRV7P}^soZQFOZTV#XS5b`IfGo>1JCR+DVSz%AMfDiuSBV{xYu=4`sXG z?YVr-g^q;5dP-!+!U1uPG`Nlrq=OScP?RV2?7t%I`u42vE>p`f4L;?fl1!+p7A8^w z^&AIOZG-nb8Doj)cs%m4GTuZ`_70WwY#dVw;yJ+A-0YMaX`Uz((r}N@I_SndZK|;D za6EkW*=N7}E2}2yTPODXlReeslk$%KHJ7Is= zfA!^8lgZ@tHU+|Dw%0&l;3sgxL0hh;h`4-y)EP`tC+bx6YYM!E;M&P; zCMTWT6Hd$k0LaqP>Lg@Ow@A|&)x~}iKu8)1X8bT@v6b{v04+qj zsg`-(`%F#|QDBq9&C-D#X+*M|h8Ijsi&6rj%<;W4GiUSJn;##&4>)>#eciT4l3B$h z6E#g+Qe{>}XEw+-Ye8{A)I&sk|NZxW`jel2{F{$;j_FEBlFQx=;^zywdV$CtfkZJ9 z>S4B~kxP?xlRuHBoJce$xe58O>;$Um;9LZd%yNM!EJ8RvJv}`=O|s1Izg2_)(YQabX`VTd_Pm6Ohac|0CO{U^~UKmtgaSVm=R(lta?Ppdxh zSUqA%yMcm=>fOcZ{{aBI+n@Ef|Br-|l)oli?z%#CT*!DaU;u)=dnd7|?>nN1;ZD{* z0+8$+M!17H1Bv5>QToB0t17^GL`H+P zj3sXIdaasgU#?p!Yr*49nruPy|q9mJG2> zX$C@fd|~=0%1Op53PAKA(jCdU5HZbzWSWY&$z~7f@1jWqu2w5}cZ~{{L&;|Em!~TZ~xopzyF*gUNZGPHY*TDq5=Q`BgFy> zaq@7Z(%WOmt!k2eV5CV0nIftIf0Co_l1PdyUI_pqARp^Ia5Obd^ZsAH-_%WNo5)|* z2E|?!l`u6@IAZ=-VDFP^A=w)7a$l2U%@OC@MD{?QcY}ZtV&6x3(V*Cu!h}0W3KU5d zRg>w-9st)V_Zrb^@?-8%sEX=cfDY(L@kr1G;3J175C2buwr|hc&HrTvkZ8wVD-Dcc z`t|eY&%JqQVZJ|*sqQeIWG354_+Hy2AQ|_hxG93FXHRg%P8*a)rf#ady}Z19^7zS5 zfBMt1EWt4{{eyWcoWUiIACc~2Zi4gkIP8~Sm=%H^YL2Qds3w|I#z+TLEn1nTmhog& z2zt4ZG3gOw+--MP*H;%87q4Eu+N?Ki*Y;f>0%8bh%tI)6+%O#euu^LbU3XRmw4j1r`d=!iuKVFED0umPwD+T;RAr`QKT zAPDvU24M>EirOzBbiO+h?_r1}p!D8N@hyX>5Fn;T#sHD6CfrTB>J;)bz-9ep<)pQs zbIoa#D#7!5p=;Z(zWnmD&pzwgPT!eKDM|r^nJU1nmXT$x#W__}E#nqMe@K>qy@8UT zrGr6qZcRZn*E^ep08gJjJvlvj`>nSWp%Np7hsH4)a>_IiWv;u&e%G}p&Jx3NRZ~(W zibU!w=D8ak1ks>;G{x1d^Q?tLblC4NFRz|Hefs3dlkIks_KO!qkzNu&#Lm_%h#-uT z6@;;m$9Qay?FKg2*Vm7qJYFqV4<0@^Jvmt{mrc|74QA32$a3TCS0~5p{S6?hivvsa zsG0c(WZB#q8!3O%OeT{Fyz%sBkE3ndZZ@0PM;5t|!+}YVT=~gWWiN{mY*mhUk-+lKTS4??>;v!$#Wx1p!U-kVtCA7m#L)4Duc}u~y|OnSQ`Hp0gHRM-U-s;1g^j*bs?k zL*P|R(7?;RaKkyNuqxWcB#JWbiPb_%j`Ek zt41cqq1+a@C>=rd@qz|SgKdk^mM{hk!Zv~L|4MKAAGBF6sw%BFot2f@mJ*e1n!prOB1niJh#3!f^Bux_ar|@l z6Ze9dZEZ5+OH+t?xHs;JGx%}$?{hyVBA~9L@rcgD@oxb~4-O7i&B}SD>XlAum^QcZ zkebUA-1bu0*n)RvX1;v+@&`Zo;Nak3|M`A)fci#HqvOUm%~kkw(X?i#uJ-W1rm0d= zI*MII1|bN&g4S8jb-YIMJs3?XUAVA){rdHOua9`kRX>=MZ(6o`@eiCyl$f>dI4Lc< z>X9gHNpZrzga*T37VgxYPW|c^4N4Fo=EbWelitLlc{yUvLXGD2_!Iw2x@^5pTe=a+YPcb(3vEVTf~ZEF;_?CGo+ zE>ii~`r}&8-mO+`F&&=W0&7~`lg8FR#`+)d7&GE1D`%%?4-?hEqV!4^7IX*r8K3Lt&2uvY$?=f zedJIjh{jf3l^F^t@v>q;XD}GFR};RG$GOMR)oS(Z*|WSWQmqjwErSeu9YjpJA|-=` zn~;jhGaV?NrdYe3?mO?iv%kOpcYpVHi{-+x!3z3Tc%k6pB~nu?(~7R)GvEPL80rfN zNuorBKXs&t5537fv=@y{r_&oZZce9D4e!FLS*!=9)mm91@a!mQ5z!afH$_}na$fPX zVyjqzj2DL+xjK$yBgui2vDGRzZ^j8rk39|Mb&O7xM)%wKIFbPIZ0or}XM${Z|oW zZoSvKXF(rC81w{M>adz;$1rED2^Ntr?|r$wz1{6}eV{QZZda8)+3Y=KYno&-ROqGKYW)oQi>{Q2$MxBvOKzs*mV)HgL{dPhFWqIKYvHiY0? z{7!fGeQW_F%w)A(J$v@-<;$15d%KtSE>CCEx~d}If+s2TsxTyimqX#0$MW+8SGOib z@;w}sn1{o2uvwS>4dCd>$;r{-q47tjPH~nZDZ>^IqD{^K4%JW(D_)che>58Y>G%Hh z==kUtzxc&`KG%!H5KWj!8j_0i!GNO9ReQv04C>sIs+Q62Z0`s|S=G&e797s*fd=Ic zQLoT+I(hTWH+Ob-^7EaM#xYe_o!ob2Hi+D-6*Fr4t#Af9tZuhA7!C`E8!#K)RNsTh9t4@PV~#FUj5QCZf7%B%O0(+B&AhdOP!ke zqI$YNB%=B9=-S@PAOqjl_~_{{rDi-_^m5F&5LLX*9R?X_m zFYi5k^e}tYcJe%kUPwfmyi5!oaRo(+n3$!B8;%IGgy`R>Wa4B>YY&SLjy_0Pg)G4? zIFzLqFJ2rS9d)<6@e+69kyyKU5cwI+g0Na}>1j!QQAFIahyo$P3g-=0!uPn*0kA~2 zbDLE8g3 zK7Raou~>M1&lRSmlh~6(LFpN^n1B*xVCFmTBek8)WvNfV6(0w3K{NEBHG%Tz4i9nySuwps#qE!ekWP50afhKsm(;m?N z+@)^+=3w+L5zXiK$v1b0&6(mn3`soCDCp31wa??Ch*e~iXZ2WCkE>LThu0bJs$MRc zh|lK4#D~Y4yI!r*qbK7kHC5Hrl~i?8S5j3?O3ml@W{1aJBKq)0U(~7bRMTls%T0VX9bT*r%{PH7s`IxG09f3VUq&{LIg@$-J))Ct0H<&huop)^Y z$IT5y&~akI+o(hij}AZn_~Va0`e?aWa^fmgYP>5)OG!Y7q!<*sB298KmhC0(48w*HALkaj6|w#jeM)Sg8PZzV+75 zrJa0dm|jHK79sc=mUtpi71D`cS;ec%V{DD$Cq)^Uu(1mFuufm$iL_+VzR<->7wfvV zSYLlo`RVdu6R5ZZZ-j)IG>xRH2)wF#rs7zh_z>L77i)pKXc}DuN@uI*$jePoC3Wj| zyWMWr5*z|DK}_S};;kFcmn*I+S}xO4A1fAuMV8~!nuw~ZIXSMYx~Y?-YE@U>(C@#T z-n}>Nbep$tKD)4e5+V^YNCn&m^o0l1L_J!U`sq(kA1PwpdTR&a&lv&E>xYHdHVF}jhi>R-L5z5oA<-?g`tu$yzryxMF3O{ zgegJ-n_>BFEphC*cwp@XCpA)N^U_H3{Mqx5KKkh6fBJZ}T6H^J^p=rAgOV404G=~| zRAdxd@;Xqcys5d8UywTyS)Bbar;u?Q{)&1irbL zTg}h9_PX8*#u{|Yl)u2IHN%NHjG*8W0@DELj;VTaL(StykAC{mN5A{+?^er|GS%1( z+tCeoVil?WV-boexrp=T;+TZ6^q3e&jFgZlK%9s?d-iO(Sl+mC$~J`2}Lfu8V=#fp)Tz7vfo_?Q3#00--o zgeqdXgqQ|{!L8SC-F*G#pg+JuEg_9-dpM#%j3ckp3)@qm9n&tEb3o_gHHIUE@HDzA z6`Ij=+s9~c1`YN#91h>Ob?d9IzFME|R_EiH9O7pJlDlmz2<1gqXR8I4Hf;g4HO~VZ6dn7bNKDIp85(_2vQG^(xbJ1e+MG%C=P&V%H^11UDR7M88ZptJUh@<-ue! zv3i0!qh2LsA@|NI|*@{>4(poHxrp&{aPac(-Orin(xn~UxDG$$ zvlHU==(>=P;a07gNC1Xu!@~c;Sz&(S21y83z{re= z5hgrtJrJdqps++l!kk9K(fjZJ50@@o`p19#*`3cm%kP{KXirf3u&NLZ!2&5P?J<6r zsMB^kSGdzW53cUiJ3BkKZr$45+pYZha}i3Z3=1F+1QG>DG(W4sL~s!79VR!sKqP~& zAy68MH5>OAatBoI(-EOgr}M@eZ~ntiexfhI7AMi+D;E4>2*@NP$*>>KO|+hH>YDVi zfvEM>st2(qe4-*WEp*IT1w6CRU@++Qdh6s&Wt(rRGB?k7>=Ozh2k7?ztb3f@i${Bx zj_32L+gXZee)w$ezW(K*uEI(~`v?6hHFeb>MXUq=#c!_6SO3coe*EK~{`ddYHyH)u zRp7kMymLKBH{AUJv5J++sv9VaX+z;bwScH8Loq}*NfA&r;vbW46(A9jqoX6wpl7`i z?{yf3MXSo>at!KpR+(9$?s21{=n4)IxJH0{B`GDE7RXBB=SG_6`_F&!4?p?%m_OzdVdZ((Y3l}cBML^0e+4`gh zu2Rwn&-iQ%VDk8Tz1|;j^bdYCO>=Z~baHwc_-5EC5WH?ax1Pnf2#JG!+w6vEHU#v| zL{^~F>0ZBneQRs>`kgzUeDcZNyLXGVH@IXf+t81&2y@@&fYhBenl^Db_aX9hHhtsP z8`rK~>-BrZnq?fW5r-1(u+L}hHbl0Zu|odO=4ZqTsCzjfvEDiHSYbC}Eh1 znRj=0uU)%#=gu7sZL>ci^wU5^-7E=-Wq|Xi?B>+H>B=`V_pnlq-Vh$S?I^(@E|_E$ zi6wW#hXOma9wx4;YA_hoRn73q)^(d7POcj)K?z&PLJq5e_F=|^x}7DYt3$IJcn1CD zmEFVDD)oEK(NS?%Zc36;Q&r7;(IKL$8gx37)#_AanZ=m5WHa&Zl|P?uzqeW(K7IW6 z^OJ`}q)*-#EK7SgEluJZYQ$IljSvwgL^*dRBwz^z3xGTGe$8 zHSx5HRUS1_&wxv^Jsl7W$W-7~m}{gMoG%)3Q;~)NVlo9*gz`i}M~6qh_{A@Nef!r< z(*WJ|vGQ(B##;lniAYLj-u>JB_=Y;^2v=;+WZ;WE_et2|bJC@KEQ z4WE!(P;RCAN=6+&p&UP#sfiu?{+NG_C&-YYcVtp-lxfAD0N*o@{JHt z;DH^B1k7}RgV)Yi^#Ex*?hTN z)^#n0cB~>THv5Qg+;NU^l$oDBd)BP*9!jU_5}_$( zY|W^wjskg*_zfAYz>di5Ux3^mkuY;zceb~-zyJO3zwyQ!pMU=O{V%_K_~_Be$q8lM z0{`=Vw^RNJuNG~cK^x1|e7kr)VwuUo_Xn5n9&n>TLUdi~a?cRnR@cPY$D)U~aW zCLl01pByY&gc5V5C~m1hCQJXeeVjQy1!vNgA>{!D7C6fxN-51|vu?NB+7cWlD1=bf zS&xcLbcL5Ox89nCQmR4h#(M$-0NYS^T&3pH*8Si7<~R91MIuV6uBuLl#tbnJ$2am% z{o%E`Ga^|qEt}?yc|o!uTJ`!j_HO(~B0AXr=-}D^sjlAg<=6%v7C-?Iu15x?frMGN zsW?+O>!<@HMA9^kKK?o~Miq#&K4eN68ouGcI<-xqUhX1~r7Z+(jlsL(9>Yk6H1g=t zqo4o$=g*%%FC^sE7Oas~O%%6HX579g_au4O$yp<*xdAhS1T;Lbb@XCSvI_Fqv*-8j z-FxGWH|o0P0EYohF<@fyCnmCSEd5=A0!Z+;Fu|14a5UUJH{ZPD9OLM6xqSNMX>_K( z8fZ{~!dYibbqIFiYHcusKOUXf<*-a>m7XvcNkrXFcXwxZdwctxx8HvJ_{r0!PrtbL z#lwdWvk_23*_?`Q;cEyrvIij{s!|#ZhO^o9!i9@FyF1%kTb*tr!oV_ZG`L9miC0rKj3j$Y2wjQ`OITK;yI_y__pCgE7Tb@j&Km5@TA3b_>cyy=> z)eHw3(q`hECVvykcM8R%V8R3rbkqS#gD%Hn{I!**T0xj z>h>;FRh56$XW2Ka0f3fdQCC~5=8Sk5vaTdVTf6^harV2@gTG^9ahVxmi7|(-3*=eH zEbCCh^DRwMzD6L@cesk}OdwDrFr_&>!Gu;W>6+{ZwYs`y?TEQg->yHrOAbR}d;19Cp<6sCnuEI25 zef8CBHrw0XRi9Sy3-`tprwR6Hv9=kPfw6T_H0#FwUjJM?%!tl4j=tD`@$%rME&gYK z(uoP`B*{TG{h1il9VcDuIj3;>rUP2cDuvTa5NlFCe!Wh?eTcr>-VaZ z+I-Bqs{-8hT z=a&U4_Yc%F_z|b)*$X)7%Ri$-6jmuBk1jloTLmD;RX>O}3&a*OsKv+KNa8aHoUj_~ zlkJ)GdhinshJ){a|NCFu`{Ik=e__ChjTnB|t6fCV-})$el4N?}-&a+?Qx6yOXBeLL z&vF=s@8)qdHKoO|E(I{tfw4Jcs_SZNYb!4uSuQJLgM=Z1iLfJOJNU73@v~2Am|^zY zepMQfS1Ap-;>4*t{IML*P;N$K z2_CUJg8MMw&&Yjrbo9|rKUyxAHc_S|Y*lg;HAov!lh!6>?Z8G~;}Fq_5I&mGXeygS zRH~vNP>|f$ntqGXvfcv?P$vu*hmPh?fvHbTpRd{LVY3(GS8t?Ey}{qi|pnx?+N*GEQKy{_#G8p+PU(TCux_k(29dgf zn<$NSxTN7aiishLe9m+UBO(%4nNofvOuSmH?%%)v@X^BpX-)Vgttr+B5QYYfb8^L) zA9jh9+83Q)_`&H0cu7J13a+4QEBC*=f9cYt$ryL*!qZWq1Li>)`7QGs0(aIHk&ZfX zuixA7+c)w!A5ruAF`v(mj*e_q4&IJ~m)E~~mSWyZFL6h!%7?t6;b~NEuUr`=vUUXf z^a_zwBt40CIU{A27<==oloPo*ncJzWIzuV=U72S?N;CJ()!ijP-VF}Cq2LhqlNCf; z7TFW9(QFOE5Ib*;iINzzF{2|+00_*0h}fRtZv+TCt#EbzsY=!BH(&qoFFu^jw#+HS zJti7~+7}dHro8$^M4is1{9&~^^JP=f|4@g-3hXEUi?UV#pS7#w@%YlEOXW6wQx*7G zG6lot8kJnj-HJ-zQUb=a98IOg9&n}D{IV%^nDPP|nd++Q^?DoHf5jn$6ovOlkVOyN z$}f=BV*lje7l+UO^J;a_G>tS851+@f4jr9Mw@m|#3wEFb&NbClRo93OgdF`CHMv4& zITq`t6sIF_1#<_1%xsX6^+}-oVU~luL{866?|gRW;NXDPHYlh%h7Ku~dj*76q>#6( zc1dSieT4Pe_*x*U1A#-cGXe0Kh)zyUo;-e{FJ%h$f*#xFqSv4?@J)v6ab)mFlgVTQ zllw*<=M_g!Pft&dkIjL=^Qwp9oarLfdh?d#cEWl_+)msvg@h%+28?TqQ+uduNU|_I zX7r(`ht(i*RS62GmJ$*ys6VQaVuqhFUmWZ}TS6=LD;Yh&s!374EK+<5P%7}o#(+Uj zg0rw_hMY^7Qw(6h8!UZ|W0TaK`a6H}oqzZ5|J~NsmdQks&q)UCvE`siL}ax(e01;s zIC}A$#r%=OrvgKs7FA~37nYh z(Petg!OMgDU*2CXma)7bv6L@zNm>Z*q+jWgQGeqI-mXDm3-txlgwaIY788`_&;4;2 z=%yABX&yd&n4dfo!ERkESTi8LozN{H2$16agiI-=^YRb|I@dU=@u(N~Dn^!nCnonT-fpMUVPDGg5dai@vf{#kx5c4|mj}7RN*z%VzliaB@(Fda72JAjI&lp%^JF}> zeJ` zL?C-H|AZaa2Dt*r0fI^-ok;PJkzLnpQFC)f8)jIvfElNdJb(WDs|R1HKPeoEAys=S z;`udg^uUk9TcpTz*acoFf>>2i8}lrfWfgsJ3ME2^hX*fTzBCBuAPP5`!0CeKt9l!q z)y32xis5KD7!2r~9On{8Mdal84CW_*G5BOb6KtrCZtwj5mPV;KG% ze__zpkD^nSD#Xb(t%S>z@@u;`a(E#~BSbe2brt~x9^rL{k1FK=ji^TvF-K{FVr#jw zu;tZl(Q73HSHt1({rBJh@WT&ZyZ&0S(IEx^(f<+zpHi(ilwU88*`_b)o zFJ8RZ?lTvKfd?B#88IM0WD)x`&6&qH78zv(Z2~OfqDX>VR6fs!>#oNnw6(p}>vbva z5rx(=e1n>2IS$*|qxuB)6b_Yw!x(wk8UTg_`*p?k{JT5I>P%;6XLs&=My189ReMO8g=<%Gt%C0ljUQi_(N2~-r!u~ZU0Vd)}ia{Dh{>@Sx~M?_Z=olB4Q-FD2# zqlYSb#KhzASZ@VB568L0(WYr0KYG-x^oDC3zURnkAcbG?*Aux6rH}X%Dv9<~C>HBA z9@iCJvEBLMS@}fPtm&!+F&Tn`UBQL;HSzGs2DO>Fp(o}!V(3xk^FQt&FkS?5S@Qm#F_XezF!&7+B78hDCVf$;YL2>001BWNklw%M8_w`FJ8VN%ZJ-!l~d;X@=zU_RJ~93S&D)N zw^*9ZWL+$MQv?vMFV0NWi=z8E6W$1l>#FL}@$t#&DTG!~m@rew+?Gr-7&nHE%Tslp z7Dwrv-uE(}&mTT|L=@C0*hTTlK_a*tl5pOfmtGj1n>hwIIffDX%84%%0voa`%vx-f z;l9HR65e;*9OenT;OvaLm4mS%Wo<``;FeMQqwu zO-XN3%3HZ4rCz&JcF&^Eu_Urvh%sU=1kTLeZg*?8wS8fGFc_qiT)l{}^~Jqu$V_Bi zP>&mfNWWf6M#E%}?$HjFWrTzi!aL+~ zb!a`lF%&}ArCc~`VrrT*prGF9l}L2}4}?>?*))2$C})kylbF4>KFXp|r6s>1DNpBM zFqlneDdqmM8=!R<7G98M3IHa#)dG{e|g5pmkl-~*Jj?Dp7br_Z$ZkG`ZAl^k)xIj~9B5XA>8?+7((Q3ImK0cmJ zXVH}4@7M$%A41~j8HHO+iKLWjJUQ!J9On{84-O7aPfktAZToDwZ$|I)GxNbjw=^N2 z!WLKeT4rThyPX#cl#E7MHMpmky?!aZs$dPqs}EqJ0QYu#o81bDPC;8Zde@#J2OMwviZ$ha0*nSQC(&|F2 zx_I&8cs#D_8lo^MnMW*dO7)?yQw>2k@>sL*ZEp2C(>Kr^od(;QQ4GX4Q31(_LPtR& zO0e(sdbe)f`t`4Wy}@&F)BznHhv9~i2r*M5x>cTtNK!RkE}jcX0ER(%zJ9P&W;K=@ za7aU#WRF@Un4>7XIc6hW;XI5vO{SB{bfO!k4BbWS(HX(oF&rdC?AMY5LW+eQC?hpa zDN)1}iWQBS{HY;2Ljc!SlJNM$veDKdBH?ap&!9r0?DQgROdv38hc^mR2^tjU77&{s z^bxZf`A^d{CnqQNEEMNYuJ9ZHJk%dSSIQ5>RaMoU&Uty55uH;Ueg6D;)2z&ikotL_ zF3*pJjY6LCLOR!g$7&AF#sAH4!|e99=8F}7vQ|^Lw#=fgx2PUTD2AxvZcYqIH4o@z zE;U#qy5vt`HQe*N=rk!)I9mmA{229L{kY!!ZQU`AN4*RZ;Y>5)Ey`mLh`@&x+bBrU zgq;SF({>d;F0JeO%9ShITib8F_12v`cfPuR|LHS-m3nkiB9f|}^`)3=5eXA&s^YN( z5i@r>ozZBtwY4>wOgfzo!UY=@T#hS;O{voqYFu55K4@=&MA4s-`d0WET#nb##5pKx z^(ppZp*D>ghQC&XshDC!vg8)vv*$R?hMW?{ zq?h_^Djo-rv6waD3Do5D^lY_SF)+{sO)0rR!_bS7XpL=nj(Py1WDg2q^4o+UhSCy{ zT_8MG5M0Up8j@wXeM|%k$=TW2YPCw8`~c3N7M5Rg@q}BmP)fb07-ka@RaMpRpPPs4 z(s{(u)oS(P#f$usX9*ceSPR+t{BdKTM9y%DkaEfAi9CyF^vzZlBd>Y|Wo&sC`&Uz& zVc9H(sz7VgJTeIMJg}`P8g|Fx;|EltmBS ze9$>!&C3y7s4g{`H;jN9J+@wGuny-XxRGEu9Nc>S*5%8W_n+^7`Q?}Y{M&!t-`^Jz zX`0;WR1fRA$J~u_E)jI?z_?OM{a$}O9!+Pn(P-4^bbNoT>V|skkN{Rn!M-CD@nZ6t zV<4gnSH>$!#elGMii&F)np)0<*APyc<_1^lWtez47~Z;d>leTLrAmPPU*n_g@Ljv_ zKj1P7C~k*7K&n zeig0|?})Op|Snddr|_udza|0L#W_35P(*li#xo~pBPB7 z0;dTgvI#PhY%6&oS16&=*+JOMLD+F#h=@~_M#Ir)IJ|uM@_X;S_vrDXyPw~E_Wapm zu{b(98cpB7eEolJn#JLZU!ES{3;4hkgiuUt;(otB8jU8C$!Ij{^?C`*Zno58YzN$k zplR`aw^2{b{l=NdPM?W%!yjJgZQ?E{d>i*O02Pl@Hg6Rs&YYV>erE1lF|Vqsy}irV zu0Fm0)%~`MkMnG4`H&m7gpJOS?RDqQ*~vXlb+bIM%>m@89e+};)t8Ljw$|VyPPy_h z5sgNp*Iv6`cWU$bP#7??_3c-tONIWUrJ!$x2!kAgQ5Oixg>pH|ceP{ICoVyr02*O? zTD|3&ms1&%VX1-f*Hx-~a|e-#q?D>u<;TqSy1l`0Fz63@ytzz!g1(hHgr!24-^H&^I!sZ!W z?e@BFy!pnHr%!bEmI0&=weXCQH)LsmW4K)iEshUZnUcV#;9S z$rN`{2~; z^?JSTY&N^vTz&9l_~7yJ;Zg6+H(yJ%y;?0-O{0E}xvHwFsycN?Q8OQL8UwY`H6cqZ zL$>PCVn)Gq4rg#VSuycEdRqV?m*6tVi0YrEWLLTUHcp%TMTI8i%kspvC_B^1Wb*F2 z?|$;hCyT|R)H_eH77P3ZZbI3~TAhYfT3r*x)aq+=n*=G55R){N@&i&@`_h;& zdSPL%((dl=l`B{3sxDG202!x-r45-zNBc0_jwvF{rC7=lNMso4kQujYIOs-C!o{QB>) z^_Z5DwcZ&sWfDr<%EPvk-g=E;Cq@9-n4o_Frp(taS2zHSLp)fOE@eOd*ck0E7C@2A7 zw$Rf;VS?11PCotg(*noU+iub~^sJ0l z6(E{sNwkWp-3X-?OL9#Xp+=EXBquNxZ`+X#5z%xqef{;R;rN28H%G8dr)0+%ng<^c1W7{Jy%6;P%nkiIn1 zgw+A~iaMzRhK*xSlfcAkj4>9K_)Ssh=8PU1J(ba0DYSy;r(yi zoIr63RZ_MDQAF4?WQ#-#%Ta8tnW6<|5SV+xD*%v*y?pL~DUwE+7+u6^Qyc5OK+I5A zs3rNCJR#BN2Db#eu0U%#FoaH_tTVkJe>lKpYnm3%a-vskFCO~9srtN~Gr zgQUSLcXE(4olM_;`|X`emy)qJAtK$yoe8tkVh+6(pHEw{4(Q|hXxv4hGhrN>A7NOT zPI{r@@h1wl!QD=GcX!uOHkh7umWnyfO*&Cs&YD`x` zKTCbf(duL}sZw|lZiq)ga&ylqcn5DWlI?u1O4T`f^JqTK8IB&jJn%2;-q(~J{yoNI zf_#D~aEcJMR3GNSMEN0D#in0Uqtd2K{otLgIZuBg97eCou)tWjdv@rpW(b3hiRVMw z8xtH8Hp(TyP7qym=tS(npf?&2CYlEc6|K072v=FCLYf+dXgF3P;Sqx-Ov8QnqcBmk#Q)0%NmN9B28XhiITv-mj;0D=1$;PbF&+j2*ABYviwA;*WP>v)u+|HB zDzD{nV%McOqdHvb19ENwXsu*fCo}i^{ad$gz4qE`@h#sj6A2m{+Q4}gQzK2YI`w&p zP--6APdG-!76B8~NRz43Y&LuItv7e~c2iZM4%4xW7;!*FXoU02;sck?2`H}yDYIQrnh zgIE40t$)iSQgTeQ8n3B88M+Mqg%IP>5Z% zSjhaN!#1rQrl>C8^->mHiIf*Qu(Uu0BHPd?6OV?Y*KfXl{rdIR&PnsOo4euF3K2Cj z_eLmq;XJ$8bnj@1Av6&jnkK&hoQN)7y!g(y-nnx5N?q5bSZsj8;fE*ys!X9Jv6$ahe* zVM+*4+!w=Svq28c$Q zOO4jsDhJ!{nvEoe<~qvo8Yv>Il?KL;JGfjq-4Nd(mQfZw!{mjc5x+5yK8yIw>tJGh z$molS2J=U7<{ZlV;yMC_;turz8fyv=12;qk@%yXBqHi|J2!6Jc<;UUc6WE{x^8b$bF;;p_=3G- zcb>`3c#v6%>4t`zTu4lr^qTdEB_yJGT6AS9YSx;$-PUaD)~#Em#ER`Xxokj92X8#` z-=LE$+O#lJ5Qn;qV=ln)Qv6p(Pylb_^dVX`BFD^ITU(t@C*n1=Vs|(W2~x^>tJfHb zMN@TM+lvU#%W>Xt^iIIh(yKDPLhfr+-p;vM0DZDHL#JI0%?6wv>hx2|N#Pp>^?O3Z zdk}h|a}a{z4z^%OPBNk0&!Bj9ygPG)ZI(lJOAP0mH%ltd5_5R8$L$`QWkis`-z$+Phv_u zo6X+&*0|DN#!s;pGXs1Q6p0y^;SJ7&>#s1ugp(vfiT=r*gI(%(uB( zs-NtRFCrou4Eo>s_P3)j17f)=C4RaHL z2)BGW1Oh9xaxo~DcxOTz#LyY-xwuJt%kVrd7c?!nVO#}am$!S(rTCcQGquA|^0m`4@vG_z}NVPP`$B&+Z^<;@#-D%yNK5s@S&_g^6&C zk&ro54T({UET-tf^^vPyf z1~{`3wc_uFge`Wr1eo9Ul2yCFbs{3lFWwPmX&Ujp$L6A1g2`MZJQvqyX)qjaZEZ!J zlr@>OWSpTi>b$dF{YrIJ4Tk6GAq;fBaCEg=6)0ziIG21CtgIg!gDMXvgC(MT(XfQ_ zsD{avFnbI49Jy4!Ra8V;h>?xh@XlSE#A~Va5ERBtaH(ig%KO;@bI$FBGzbZ^fofr)N`RuiUDkrvJP7Pu5v;4aUqJb`S_XFwIfur)a1Sz=a z@j(ixZe18W7d|64_nK`Po0Mb_NFNa;N~6)}=8c;dFJ64|W<64`S0xm`GEMb4T9JzmqpiWFAMPwAT2%dHBNvHBrZHCGgkw>3c(wy)lgyKD*YdxiSCIQUO8xj?edBj z`tKI=tj7TyC4-I>Gw34;3hATLMua<^&em*eGM?=2?ml|-=*g2O%jL3JH3I(_1Cir{ zPmW&x)BNPi<77a3LZZ^andTJ6Eq>-QC+A4u|>nn>CDqC<1?L+i#== zm~RtfkdH&9<$fb1TM;`DPYbkyh+OUx*g$I{Z2wxf+kNMqcRu>rM^B$VB}USfDN#~9 zW)gj0FDQ9S2!w0MfX}>2E~}b>XJ3$zq?E*73B^(btcbZq196yxKA4dR>l&Q6t~-}6 zU#_bf?1p^y?Q2*|4KyU`Bp#XMTm0zUJ%oYI7mj}M#TUi*jc6BtT`S3(ethNSEmQp0 zwF6r&!3^HjerBbKrchX1@J8(#E_$Mem)6W!K5H1z;tS)gU}9L=joy(k2T!5PToXlI1TLE~bz*+ZG{leDF!h!I}e;U|*HFPIGf; zldalff;LTV?sHvN)9G|H8tv`vJ%9H6;PBx1`1s`b7+T}%w_3cIpM6C{%!v{i-LZu< zm#`2g?)AEp$@J2tOM82}TU*vrdC0?~#<(+b5=CEVjg{;cNowU?K|^i@|ar zRmCq5IVJ};j6&sz+=ANMpu96eM4Xs~wzjtZ{LlaVumAe5my2awW(qN)Zjlv5ay53d zF9s15FbZ)#qv!@r6)R7sZG@#3644jT;9;b;pevGh@QJ38NrV!ot5>gX&1NyF%aC0d zcRR~sDHB|!&)m1|3Cuj3P5+3af51aG8La`AA72lvC3Zv?)Gqmopkpv)3#k>+yr{R7HOZK{CbdvmP5+arc&P((a$`FB7xE6PcBWu_uY#xzgpUMGn zdyZQ3WkQB7u~1#rlksFU9L?wRlhc#qV$rq8;>a?JGA?OsQ#GIJWyT}vkyL8pb2Ln@)8$vU; z;nQX46fI15C}RqY#>@qPN7_)5n_u0j-+B9;d-v}B{O3O}S~TcvEi_^Uz>GJ)88~ku zGIFKK=IjkTFCv+&=<<=hur9L!jtgUXuq{Q^f#r*5v+1>KSF3X0S#&a>zZU5RH|5YP zP}Lj&3lUd!H5!kbra50wdY*9f^Shsa-Os%CRaz%n!1c99tG3O^L0q17^LhoMTLA=- zh*-$9kiCFmQbZvqu0&{ zhn-rSxZ-Ls81(!7t*tF-WWJc6oSd8-pPZbYEEbDqakgAG^RxNc{A{^gu9hny>G%4* zUa!~h4Tr<=cs!jAAp%V2OWL##9d^d3tu&q_C@3bBR%I(pM7@6Z>a}ab z(FjNn_?A+UvN^0NHyVkfG;Ecss?OcwD4io56_Hmyaq(4{w+5wObLr-SEr-HuKXGxE z*XmoZw$!Y+*G&qG6#QC_VjZAcfEwB_yKAer*0Na5;KkCeT>4b zP3t29cc<{cr8Y)d;#VWdLSSK^RbFr+Sv7jo3mIxbWJdWZ(gVww1#Axx%XmzoH-|1u zxSl|>-81?kq6g3zCz*$Xr}SCWR>^-a2!#p2lMqyZ5YiF_`p4L}?dp7`zO}Wi=(Q`4 z%8IF?LDlc~`dhQDMw(`|nv5>i^;t%al#)o(G{Q+=vr|=7m8z=JH`yh98;QMOZX>~< z7~4^t0PO#=pW+1B$N-HhzKFUlm^3vm!ZH|&rH9aZ;B!vSh+SBI5M(H85f+TGjR-Px(C%7v%HEH@TltY*l83wmzNHI0afdc9u0IhfAXac*#Qxm@a} zXdLU(4vwu=pv;4WkKcH!lvQ@Y?xnUwUeN`1?PKgp#)pR=Sb_O<3ihYQcIB>?= zxU3&n#Y>BhlH1Y}F~YukDyv?{Tw_-^VzL@KJq$y?A?S`cC<&xO6+93<)^-Yp23g=3;G>+UlQWV8q z%Wk+CgxOq>Aukit*4Ebb*Iv`@(;3E_oVHz8qsSY`yQ7~Ke0}YPh>1IOr+cp6n3j)o zlY>4u2v62!{P(Kk6+dnC&O)2c{_EP3@SmUjy6TGl*;6kAtaylFPCud!QCRq7xDA2v za#U9$ve2dsoNZH&Ewo@|h<$?*6Xo}*iRPLDOqE_@lVmI}#8#FevB-WUAS#9(a!PIa zM(@|QS~d{M|647SiNO-cmN^Sti}T+=U&Jp0D4_uM(JR4GP)mUIVs zMk57Z;!+pl_ph6%@y*wpfUgEhdM!Cd+FQO`lVOm|aLR>*tn%znIkA8NNSv@WXJ4L2 zCygrks3c%;U_3Iq);=C zRf$U5P`NF(TyG{%1ejl=4vK^>%3`ydk2o+AqBSAKvpNArh?v6UVkB&c&cng*&;IPs zzW@F2kH_PzvC_^0!6xt@+1!c4AwB|(sXR-p zWw4&)5g9;w4^n!xk!~#>v_)S;y5=rdi(ZmqKy#pb;sAEU2&N8uH&k# z{r8H-HeM8e!a|@rP-(C+$BM;Y$qTm$8aso_U(4hPdO(Jn_`wCX>j=sUS}|T=tFa2+z7*NoRu+Y&^InAhWdTz_P0V>8R6)StiMH!V!9Dl5+l$Pr*aGG5h z-o0RPq)aIQ8Jl91S{qEO_)ymDlH{n;K3E=)$KU(jpMLOz4Y9xOMPNwcSR zbU3Q^Rb8LQeMaX7NAKOc_y50=!ae^>P^@$^*uNjL!PQy=UsE@eS|`YHX^Cp#W?38x z7YlNZRcNjiVicY6FOd{ddv8S?UhDF-N z*JX?)2&(-?|ge_cPCZJfU_74p` zX+T&u;8&oG>p#hQ$yb2KzjVB!jRS6AIqg+~!7I%FG#^ci&^t zEzX1tpx5I$LPnV^e=Zx%^UKoaEJcsl+XfHvts**Lu%Is>;V ztxa%D`q&I9bZ@cHN6GiPE0hwSN39!vHcGK@t&mGB)5hKQ7Yf0>ISbve8eggdRLMiM zgrp@R$&}f30tRc!sb>uoLsug6Ri@DvfN}|)d&xcT^?L7p`@P|4c>CA4fB(hro2Ic} zfxAWmb$|%~>gg6@$>&7}7jAR$1%A;DNBWG6JcCV6-Ut&*O6ls=Yj3^%)^sxER1jQK zFu_PRr!-tdFT#)5T!$k7f(I_ai`m#5Jz9OkLJ3h=pz<4I#Dp9ZHXahV z857(nM@U2di#O30wodzwgMv~!8d=L$O>m+D;RoC`vT|_P`Q6=ZBHEgq>|I*rYHh!z z4a%4UgrN?}mt%{L+q0JJnXXP1?5gzxtr$Wocd_6&vH`f?auQ9V0$SzH7=<0I^EJM` zvp8IY>wrz(ZVTIRvDf&uPV@5aQKwpVyFRF*`e?so4m?1Ui6Y*t1?&=XowKTubd3X2 zbJD3bzrn6!?9ieW#?(Q6E+)cV6Pe~JqU4|lY*firma)|p-)(Bl^qgdqFmt!tedE>} zv*~Q-cRROl-?o=?z%$U=yMUl1*qlvzpNz}ggk~YWCWD2D?C#O9RhVTs9KHVf>({T} z7z_p>cLD{r)e6nl7OD$U7c5xBLWq#a@y+B+RHbSlFr5ZOp`pRG|uP%MWG zObTz_2!t2X*2O<3;iSynAPxP|$^}pwTG3MCyr3u?dJTg|=n%#T5GVANqJt2kvoqZ~ zU)NF$0qZmz9--QY)Ln zLC+~r?W=2d|L(~fG1N2m83pL$=c1MHBp!{L^n`(>R!Lsa)#&PI3GBA z_wL;dXIp&m6{s4mzc7eb&s3mGn~yaE{klWKmf*IxC8Drb)-)aoh`hHAedWm zeF)<&bjv+Xeo`RZRxIopxrjmQvxYpXgwL@ZlMuN!w&TR0h7tnoh}=-yx&qo*_f zam1WN8cb~oP2ycZctZ|6jGsXDB&c7pSP)%f-MK;WP~pS z!5iv~^9!@V90(^K3}$7UH<6hdw$$-oQ?>aT4mKFa@2vdTiqB6r-AdisA zKd^YDbBoZKXwYjCA1#;J3uF+|5fv$c-~@y6L?0CApNTAm5Zx+K0CDx_3Hv8~Xxei{ z?LcDIo-R{%&qWqjr$eUDh3F~Ivj5tbV*67(+-5YKF%Rp5iZOVc9RO#TZziI;k_}D7 zDS-QKEO0UE0hm=wfVd|FA`H(V&Zf9Fe5q_ zI4UA94_>y-qg0^{f-l|kD?v0uLOio^Dw$sO+bh7k-Igw1C2QZli9Jfr%_KbdKJ=*mVuK1vA*cykmf-l3RBZmmS?jhm>N8}N<^@M!xi>P zTJK{_&r_xQo1t!cGH1Fb6YH10FTr;Jv|szanm@cbHM@w1TOn@9%$g z|Eo_w{dB&Vua>LTY6T6`EEk$Zq5?IVw-MV;MU zA-3>eDBwbXDr$FI zJ3=&RzK=PBC>&_HieGpN^P9?_d}KKTZm~!%YWZ)5)Yi#RDKuf9`gL?fhhmT#-w?1~ zn^Q5TAu)LyKPX0`^{Q@KC~LTD;gNHhFd_p{*I%Oi{!5A{%`%-9tnGZ#>2gqN{i0eV ztuA;IMh7K&hOne-ph}rW<^kIN01CZ!J&oP)lqMMi!5L511=B@==ZCtB4V~XtceS|BQrhOEEYS-VU%S_jU@+2KrJsh%!AJyM)-2qE9z$V=L&p(xjMcs}ncO5S)4(yZ48U z$gn2gL)Omw7qa)}`~&N8^ zr>>{7>0~l_?fPr;`TX?c^yKv9?DXvT`1t9wr>7^Ui^U@0eE_Mds#JBlonEik@AZeH z;dnG24EmjJx6|oVsfr_V^+0Eejc56fI1>^=SdM(WDML1#0J9jO#ov&)2D_pFPv`JB z2RQop@#C*AQ25#Mh{1OAUnJG1F*@ABScGU?Qvlu|oV@exY-HKfbJ&HF7swV`A?0x0ut6kI7039XtG11PZ? zgP%|z7*WS)cY)7Y9vOAQi9A{^>+|nIOaX}%A&jJlxr6USDmPAyDoOHa5>BoRJzWlk zj*-n}m=W`HHpgw!W+>QF`GUg<*=>O~6s2FQJZ)i!WYZkm%@sLApdx#rHAKrQMMIFR zpYxuR4GdyOFC;=K_>{q_L57$(wWg4b02OH&ye$(KbL>bN=LK;sQ_>}TvGRr7Y#`WF zl_j0H!<}xYGa8QaZX;=AwOTE6ws*N|nueK~IaR67Ycw^izSywlGvQ&duAye{V^He% zcLl3u+hCB@KA4ZGIv3+8u$BzJhr_`i_Zj`6j^FMqxR|R)>JBxj*e1)W8eZLIHWnl^Y|-`Yer{&Ci}ce}3=Y7Y`mh zI669>FXmNBsjAEpVmrFBliK>8g8?6=P$SKJKA+F$$4AFco<7;$-oAL@;?~yIU^qxA z6+Ru|b?N6k{_qWdWZv99W`AeVhys&&YLI;QK9N=v(Q1Xq!2m3c`>)^3;IW`CD;3z! zh>=WgYX4G1GXWZN|7`aVMMVsr%4ZPQc~X3B$-vOZbJQs31k0DC(NAWkhA0)Uhcw_W z?8QJ7&A0cI1(0JxtP(X*h?q{#>V6N85uw(klE*Ek14KmBgm;g4`5+Gc8*SV$Pr|oY z*d^y6ic5+uOH>NHsH(7bj9xqM-@cxb?t$!7&nLR1% zBSV$3z|)HM1db5PXXgHegcghW)2Giq`~0&9Up+WDIB1%ts;Z1%f|qI2djE=nmMfDS zOhvPFOeBlN;_>6hFZTDR)7j4M&d#Mvoo*KafN_=*L<#r#;IZmD9u!CNPcrk!;s}eB zFn!!7;}hp@j)`cwgb2|F;LE<4Bq2_ACxVGU$|*1~2|@~gfOGAh6#4>hX_dIkHy;D{ zTC6GNezv1bDaxBzd_?52grTNKvFw7Ouu@3IX-W{Kh{Oe9@-p*zy8Gqy?w8XGTPNRr z?;(-j1`6Ore=<8k7i_S3yt-Sh)d9egfx6#O<4hxTPn|uHDUbMEZ8mEFA>bn14{asO zwb+<+{eRhe^X^EFaC`q z^t2NDBB$BSYO+{`I&cFCBr@Fg54YoI5s@gcMLnYWwHFG=jPUTo+{}Jv=0`Y^^lf67 zBjqXx_-nr%$MWtb_d%gsIPX|1l~fO?n(i<`FXCx(`G|TX*vX1@iPq*3zHNDxkyLU3PB}IxP)8(+dP*&LoGOO8SHAa+jBu zT-P2l-RLVgQX|D{WMbQ@0sjS9+NxHGvK5`Bl;fl0&p-eCvtNI9e01EFmPAJ5v9FcQ z4RjD;E09QKJdRw5MIols-Ds`CGM``V@9!TUA3xuF{=M&gZ)0;~)HGgZvY?q*)Q?Qv zM-5B1t_1PdbeXTl30E(z?hzrHU5rVDXjBE9ZPi8%nS&l1Yu1gwsUr~mpd z|GM{l@ABfZ?pHzYQzSyFR25)D&fh2~P2t}n>}W&kseI&mXI zQ>q#jTaisCVY=muP+B0C2d1Z@E zzxEAFw;f0I_1)LN8Jd=zTZ9ah(ly}wZ%Ls&V;!S5Pa~7Qq#vSe{RV}p=rRmy#czb& zD{^{z`pKuC{Oo5xJ3cyc%NL+4Di9JXBqL#emwm&jY~msXPUto%s1jxh+})s#^6sNY+gn@gvmGe$SX*CYLVstcgdNOGIk3~fY7io(*@YgGJ{m155=-1P zmyj)b#(o##S3Xj>_{G!=sEU}e1x>DGA|n_~DT#f6?mCf4Jy+^cB|8>Q44>Ba#VzD) zB_2cW^17J$6{UAoTXj!6t>_dL&Rv4)>B{2m`}23-KC8_EpU=n>wS@^o4u72urcPP# zC1Jdi;7F`+36&lp7VM>qrB8_@YLL^`IEIPTi5389pIq=_1;NkhLq70kPgpC0hqDdU z1^$xaC648Q@^Kmodze?Ee9d5Izi@2*WN42zkXgvh1qh;8>*^zF|G6H3U94e!pOfGWCH~|MD;Y-_L*Xi;LN8G#WP})46paoy`n}az|8Fo4Gz>EvrIb zWz9i3_H`so5_FA(+C{s!_x$4W@`Lx^-`UxTou<&2&}*jjNH@=9DGam36+=7->XuLi z@7}v;Msj|>G9G99N~nfEoz~!)sZ#9(+`1TK3JA4^Lj`Ij(^HgJXm{btl$wqX24+*M zQCoSe!v8`{B7oG|WQ72%#+0(Q&`aQ$!GfnKA*i}LrsgeV9c>+rij81+)jo#}<>MTq zQb~^%%7#f8A;?7mv0es~zoDg*CsR{@TfD@f)TxmN-e5enKdqjNmbY@VG(s7(S=k-Pq8Yme~n6HGW?!qTepGOB!6wkq)wC7Y z>!BaIMU_&H4i7)OT73B7hdcLnMx#+ui>74|lfxtrwdk5xeD!@-nF2jL5dGnMhj+GC z&u5cN*zCXJq@F8k2{i=6q~(KOVfEHRK$WPbYTV)T`eDM-i?&0?V$3224Whsz>iTp&sN;Au8HH=B3J{P6lgf4 zYe|rEZ*UxJW6hA|(?ejgTRDkx0C!AjdsT;I?zuZ0TVP3|m~Pa9DGE;lVO(u&#_TDO2CuV~5gg5o_O0Cz=jo)_HI-6c zy?XWE{^q~^>%aW#;_6DdT-*V5yzM9~@qaG(y7WU*gvmuINd`Nh5mC}X{#4b5r>Ccn zA3r|WKWG;%W&LZDMOq-t^Tg~(2p^~dZ-Z}x6QF4AkO(anum~{$w8f%3%R#|7fg$st zV5kFeE8l9wev{#G1a^rjxv(N00*J?gJnm>Zo!Av58%HRECN&QDBAnb-5 zX$G6GYmMTcxFykY5*jtds?+A`2<}9p==DVT zKwMo#&W)n0_g;*<#EdO1RZUavyf+;dJtWN|&RXm!5=~Uzu>h$r`>G9r$#f1D1w=PP z3iw7mUgY+Rb`cr{!e)v9u@jqLYK=fWFrq!C1rMnf%Elv^QK-<%R@8X>rXIpTw;V^? zwp|8U$}*k13_m$3dvxTm!%#PXTn1)g6-;)qxhA1@&Uy!%<#NR?k^X!!*B%ROc6 zF^ti;Xs3c$9Y=q8g97C(Jb?3a2m-71P-!)}0sY5_0 z3Clq|u})|mP>Vz%MfFQC_rQb!6VdVU@&EXT|M9C|{m;^t&TVranUoag&+|;fHmK1-3Pou5n#;g(;}e@xeg^jGYt? zwXf_=xmI|65X4`q3T=<XSF3})_xo^sF6;QZ3r~I?oCFqI-`j$x5-7ieU~;@y zE+1@(LI{Ox)!=3Z$KtVs?5?ByL9WY|v8s6%mHle?!<6^DVq}b(t`zK_Eqr41)D(Xe z^Q)^Quw|`mUN9W~Orz_pneoM=m`aG$GnQ<*Oh&C@elU?{Q%>6)Yj%T~{w4;Snwkns zSvUVx$FE=GkxEoK>@o69XfSD(=8?Ab2xP$4$MJHHT=7S!!<=@7XfcP*x)sVEK9 zpj%zLb7lV*Xr+^0<1}S2Fi)kkgmxBGpwS960Nhs9&CR7QeOYYykEvVo6k5Xe#_aO9 ze+z>mhKSezMQGiz*4P9N^IVBxsFcO1l!{VXQk2;7Mz$FxJ(uxmr)KbaZ(6%exEtvL zG4pWV<>^fWbj@=#j#Um24FbmWbq5-0qRX46q3nh_{c$%%g16 z<2tsL%2b9|snMZ9?|nUQ^nEY&?P}|?M{+n!C0ayeWh585R6RvQk5~K?CSGB;)DJ$< z1ZK>;moFE!lYy!piI^QRET4~6v6!R?v|6*Vv2VK{;qin1buv;FdnFqy8n?2A=4qkz zz*?!~(nq$~7-6Yf%`looZ(Mv7DRIsKkBDkcUSlB8&9R}lOc89?)Yj3_nW8@nkGLB) zoJ(2$t4J;y7L-|nPs0bu5B7e4Fl5V}ag8V}#Kks)TZ(zBq>6ewFAOZZG4m~gIpo6q z*pKXIASy*M6Ka3N+&bqexq)avVIe8QwFX~bb6^ga7;J|B_Cz$GGiaRms%*e&$2E!< zHmGs#Ciz)3oQUQ;`OoAJtL3f^Mew6N7-vgE)dKRwYZ^!gDr>b1)5;bIKFRd?&ru(y z^t~?oABC){8rYJ}lVC869Y$x)q`DkCvr#SqN)wKvf2)7@RQR{GD8h1QM6t88pG3>H zVvF;CuIm1c4xk~7PWlvT;fmnB8SQj2gL!svIB@n}J{Z&F%%oHs9a^Ml)u2_#zA2Dj z{TLW3PQswqdmsFI`vE{Sn-qTO!WOkPaN%e=fv^qxC9Ui$kmG0=BKears%X|WwU9?D z{x!wbp*1@Dr`Fe^{}|oZ_Wc8zg{);*i&sPYs=fM|{WhWCvyl>=>XUSI)6>(YjcW(Pz(Z*%PA1wkAF7Gb zw*ir+v}rG(?w%N$e2~}&QY_o+Id!t-MiS@Dm6_9YNLLwZzMFVxA6INY2lDVk;We1d zQi^vBKMb87e4g&!oTmO_=YRd|-@5pYN0iodXSi5lv?u?U8V)^X^_dfl`*!$w6`IkM z0t5zi*SuktR9(*i?iJH7&Ts{UK+y}CbJ)S*pQSJ&s(1dhqG{z;L)ZZT_z3ZD{qAJ`3ElEAdI$LvY6IqYBt`8{i7;c6hK7y~ zDLdskNJg-*M5nwNKHEsc+zMo68Q5BUSrjTk`$; z_{+=7f32C_N1n!68#ZNAzC-8%MDx!=&W_@k5F>DAL{vnqIhfj)>r=5-V@Da5&Lx+Y zLs474Bo+AA<0s<)-SPU$)ia;(fnUQXv?cX9&z>WaKgG-?(_&*ZZGpA|qTq5dj$32- z98<$ESk+(RA<^gL8uV&i7ak@>36yODQ8vH|+qiaqdRo!o|Lcoo$xpG+zq0}{#DS2u z`C`e-$Hjw9BfYAorlz{Oy0*Hus%p{o{J62@eC~CJ@n!Z52}{lczXE47ECBgn^<-HT zfU1_-Xs6b!Nzt?G1jPbCab?0@LB-IwTFeCoPWWawCb2IHuoJc^m!AI^sj$%O*x4i4 zlGrD!_8!7 zQ)r`M>HM1D9o!*YQ=`@REgKz#SKIi!F!H0klIG^-kiUz-j5Nj3p-$tII@*vYrWukt zk=IoDv-fb1GWMH!_Jv~Ef>?!75YItBB6?&+dXL4%V z(Ecb`&AS6;=Lv(2p!V1pPbRTnWDsD=c0acL877^+N&_qSg47+B{C!^(G&2bHkV03Z za$8+X%Sz0*Z_YQ=$;XG!{sG%?{pPxPX4we=WN)kfkOla|9L|xLRuAOSQZWdtU1AH^8(h7BPF$`f=S`DP3 zHSURP(n2D@J3JhTk(sHrH;x&#C}M_CDo|RES*4W*-5`Nim6N6uBW-aQOt$yWqc7Sh z&jddJ6G`4o2Gx>u8#6gs`96>K0{9jufVHy6gR?h_9e#s^)Yw^ccW*>6YiJ`2&g;F) z9OI&@J8eo%?$_mZduM$;pN57-Tlt88CG$!+TnE3lVrfNzrufFlC`18h_xuGm5>ofw z^*b~HuFMEib_*TOtTXc+%zNi7tHz-A*42J^=&1`l?&>^A zp^O?FLZFi4VBZ@>$IJX>UGh$a8_>!$rK7=+f8P!v7ulLa=<^&Km-q$sjlc^l&4Q_h zw<4Y!HU0FQV&g4gii~YTtheN|iQxP}A_9NsG=ISg`uOzppah+V>2poA zD~fM8k3%wEvSqb!M)jLy0FxBFlR73GCS2MfnA=x1T^$JV!~pt0!tI>u5$Vc(P0olX zI~8LWxx~osO-%Zix7LD{K5f-eo39;)WtS>@y*XA&ICE`GMDEIS4HT$$bFyFMN>2raC*c0;H z|Bk%3xAX5XD^+vs`w)wdu*!WXXXHQBfa-7`7@1z)PxDnol4B&LBE;+1 zKEwx4!F63hsd!;R?MDY(^3}a2GRQfP-%fM45JO9$eer9~0cbT!LbjmlD@C-$5|oOT z-|<)>4OT@k&M%J9O<^dU?eL#}HYJ>3S=Bm!dv13Lb8b)_lKG|_HOYhZYkPC5&?)mn z!P}c%N{*muHYUL8W4~o4dVVEfo|H7Ljq9$Q1g3LJvWO}D+z(fm`Ng0kL(lt_pTF91 zgcA%?&TvUhmpeR6)G$Gx12co}w|R9B&1-cJQwv+MrNR#>ht)AE#ogo#VwecoX|u+{ z!osOb-FnT0e+44nn+0gHGer6wTTN~=FAbW za{%@)YHDhDN1p0Uvhnn=V6(i(C}{OeBlK*BVEW6gf8P$bYdNsx&3V9fVFUfMj;1VH zCKy5HXbbb1e``|cmti^H3+*!x(di(oXt8<^m~#HAmrRtEOdl>4RF7>>aW{M6^r&2Ycoe2V_}ySYTjnj`y=?j%IRr-++9Pr^m;CEO5$CjAG%Q5bubd14iGa z6^+>t+1P9_F2-+e8cS!U zb#ZGBLkM8$>YL(#ahakExbY+o6A&ya&>gatA8AS{e9g*ADpFUl32O)l&WSZ(cd{9( z@+cR1!MWg6k^70_Y~Oj9dE0zU0R}wVYJN?r^3aAyC9u4hnjn%DADt9TKBpB#pK6GV z(Jh)xa*&0rRnyYIB61;(#Lq&J`6lL86B| z8xtGG)S+l`^$sg(_jIR9@+HXDOQZBJsv&re+GP|nE?(a3sp--MwD3!?cjba~)1P{T zig&L~6v4(Q=6#~vdCr1{fppy}RQYl+eS`OE&IpUv^hCg$47d=zf#SU3VbOKejiFUQ zJv2a6OS^~i#D936eFY}%6Ljq0^8$zlvR%xqtgLvj^BayfC9yhcCXrYruLRi{lc;wt z*6MehdC)QN5duu9TstW2Cp^*h`cY32Vckm{K+;U`Q2LKxv1SM6g?HqjxBCyv2b+v(znEgUFH%Fb-$qB z0g9_BUkNtpyvFrftR#Jff2l{-tS?=M)H%FH{Re+%Vq${)R}L^aL53~=F!!YP-W*&U zJe>_koiWN4=vw2EyzMOR6Jwtj@W)z`L^)TGc#38uwIc^4i z?mVId+RIs{m9xOd6>QkHYDV>``<9)nSDwKuxMD}LG;2%7!=a6W-<5;Sa6U8lJF(?} znM^9relH=+${pX5$C*?Qzj%|}Jab0+CJgzL0P<7<7V6bH)~iF36sLA03b%jSiBxR2ZZ1D{E5|6LL!dxyd7a`+z z*3DBnALK~<DXX3&#h}bvS<~7&Ou26+*xv&_u6B2)_wkX|G#U)p8zQO& zObH1&d3iaxxaQMJ^0SL5!;O!Z$fYBuA}o}CaJUk87)uitwP5DN*a7Lz-3$-8qGf?M6*a{YgdH z3w8u!nxt2_Y%?EKkl{6~mQraM0e0ziDwAS9zq%Z#OqL zC$Gg6^!}(RWMs3eZ~45x5M@gfe`<|c0_7CI8>?Ki(e-PS2-qy4s&x@W`- zkT9M&QdIRCQ(r8H+xufs8l+6_DR-h`@co-OZ(K79j1UPSGUc`oiK@CZo7oRkvTr5K zBdzC#1L(U^F-GxJZK|xM55WQ1j=`rFu+HA{N-hRkcLq~kWJKy4#?5ok*6kp<+M`c?xKY^L#g!Zo8eLJajbP9gu)2+HU0$woKYb!>*!Vx|9g6^;~&?ZCYqSi3b z(#&_SubJIrVYaj}+xx)LrF_pFPU!r)ab?|R#h8GC_8Bv{7Cc4ruKf^!*8d?)d+NwW zvSR~ueoLv>mQjn>#@{+!J6UD{t-`tJ6PZ^RVYqFGPeoWB&C0-bvzb9z8vf3trln`_ z9hMNOy`w{uMzeBE>gU~05a=a))}`8HE(*wNimeS%qaVZe$AWz-SXklkr~35#Jc9lU z>!&SEz?9^5yOaoIs&5%C0`}^_Dlg*LKsoCWR#G%<43MB3jbo`KEaQL5TT4qz{k#2c zOuAY+mEsCug1h(bvlqB`;E!7&`Mnqu^by%oj$T~6eA)OpRhQeDyEQN-RDmc%b_v(} zL((I^rBKP(rQ%vPvFyUz>cIu-SIz+=?`w|VDJPNwv*pO%@2y^Sy&rkQ10trW>o+QR z9?o^=X=hD?Lm{{ln$i43>g}ex{&lJYX~gWl_KhjO8k}5??&k#>?~*qc&ybnelKfUu zO0;!`21NM2-tT~mKTGKgzSO|z%h>`E8hXywPpgM4Y@5Sh0d|5fk&D^sx4P_WR#=!c zrJ31Lmasio=;p{h+Ge#|C{GQ(zjIF*3yF{igg&Kl#^Nl?a8R>&SieH&K=%=h_-L#s zn9X=(3vI{PtTw)iE*lF~eN-@!@=$}p9ahd&Z7-L))rP5+x2_(ktb#u%i*@XGj_byV zC^7Ue2pV)wUd|VwzlxbV7yfr7rnB(hhjZ88edM?txJrTJX`go%7NpR^HqVk0OnVGE z+S<6dxH9;1WITjUD_KKgwnvhzsjn1P=4PLn-Ed6UjoxB#G!@YsB;;lX53?FHs`C#G+3F4lU{mUv0}@7_Fi>=v&C| z-$k*WDFUw%A|Kf4@y(1)L#1-O-b4WR1Zq@(oz#sMCN#VPMBcttjCz%t z^_07enyI#G?5W4Gu47$JESMsOoMk;x)HPgL@t=g-4O^RJUgc7TDc?}?f(A#(r2X_y&fJe?xZPmydqL#PkCy3hN<#!Y0qJ@)2Okdi_hon!Ni;!(8{5v zrnaKGa=F>w*x0C~SF=OH9*IbsMl~(R#*9$l-(GIOTN*E(k3NZJzXpHd67Fa6=w54w zaDNNehV=ohrzZ3nfkE<75B#E3(j@nRY<=EWr?(6I8sgtD_W~^y1b6Ad8|C(Nhy|hf*oFh|8=+krt5||Oilw7wY z!@%i6WtLh{1X0IRwvof4`ASPpV6qZ;76~W%7$rpVm zv@fP@yjwf>a#_UX^#$lt{J&{5iK_pv1?X(OyWaf|OJ6vVT3{(coaXyPTPFT@di1u# z;onzDD3QLuX+ZvM48k#;X$77-Naj}+M-B8xhZ;AO&C`u8sm=)aS(pI0D|(Z`E--it z;{kw<&CuL`C->a`W*K!$7;bhMVGXQLSLzF9lU9{-;}uw#1Elrl#|r(p=ZqM>F?1wD z%eL^PigJSj`mM`L3j^c|yUwaO^~{1@d8-1{EisF3njTpblIWoTbv5{skRU1^c6e!Y zWJ4uTG+i8UeidFJp~5+iqm`acLW02W@_%wV&F+1!FK-TC560J=Oy*UyMbHl6fAo3B z-eSqX55P1E+QmEg_~^1d%5aD9-rLW>KAl{Zfnntwd65zj8pZZhzv!IQO0 ztmYyTk;U4@X<7qV5J2(&>U}-E+53x+hc|VUDr(G>BcbCp%BM@{Bv<4gBk*SF<;IuG z4?Kgve|sH|E~mS*-<~e*tgYq2@4iI#>FWexZgMCqHB#4n!6j)F4NIg1$O6jHvFw&g zz@Wt0z2R**vfL#5v#Fp|a>-bfxV6xCmisKr*{Qa~a6g{)_~pcY^E+?Ce3NYRS^Qm> zvaijRHE6K$xj-mV;Yq?*Sub^LA4fktH!9q$u^*d0x>wK5eX0z47cQ~Yugut7uTgnj zwK~uoVTA2+wN3tM{p?kt0u()RYE8(xfLJ zu4%sUh)9TS^Q70x1pa9rwqU4Q4AMJ(>wgPy8BSe+?KgStm1J9g|LVO`ZMv;)d3mq; zQBH@H(@HC75Lh#U1pQzW-`7ek7i&hI;tLlpCl3(8*83{bz%V{z~ zS7> z=dHX}(l89Aj748!|4)j@?>i;5@rYmPK^1|_usP^p(r`k%RTFUnj3(3sZ zE9)=0;jIFvGkax`m|roe{YTBe)WDiM<_fUDdP*3)02F;hV3o^Ok<~dE>hTJ@ zO5j^6(&&V_pi=^tf4dFtCIFaOcjvnvcQZ31T>+~%##!K|;}3S|+*yj>bqMR~)399A za#&AZOs!9mL?x9kOD88MPR^Q=29Xs*#Bs;x zSe%0i$fKHCYWlnhM8M+jIrHT65~&AZsRv$s7zH7jri*<}opP$4uq}0Yb5JMPq_v&@ z@L)yLK*x0E?oW@ej{(=l%l6%mp11xjZr71L#UK zkf-Sx8JViHhlY>WX2l4bodc^}$&WxbC1^jaTi4Yk+wQOIr(Q8fJChD)j?;||oll|% z4yO}QO|E&&sw@81NeItw@^!mNsp2=xW2?4-h~)2^dE1iZyQbbY-96Gn*$TD6nQlcR z4Ky`YEv*6Z$`D9~7P!=7f-*Lz*e@!(;%J2euxb)PmQC`#enB{bM7kK?k@$b?OCdN4ewoq=@D;YABJ;omWcGc1-;&@L##KSl=_h5%HV*s6CmiuwK7whZc<|ZLhcvH3; z;@GuZH?H4CzGZNb7F>F4DR6#oG_oHO2FsU)}zqMAAy0rwdg;> z7!e@ScMC$c_|A9CyYUyRn3*jQ!?vV@OO%7V+lP;OO&}2d%oyrG{*K?{YHr1RuUe)R zK^zG5I}H^aDk8k@r0jXTr3u{emA+-7^%%{=>_Uo{?#_!~sTr<_(~zmM$f&NKT3S+J z8jT#g=cr7sE|3%H85#A^iBB$oj3D%2(lggtI=n=ZDpWWOA;LXL3@F;pH;-quJ9=}M zA&p!J2{UKG0;oZaxG73x&4-8iFx6fwt&$cSF49-=cy-AM5o3g!_P&$#-*8J5P`gLenE z%<4roB}$#4xCzFf)q;d&30iu2T;12~Nj#!0t9^_Fbn#x6k`ic=#S0mQ0`(yQ(xN64 zU*E6Xua{hYp!E9HA#={nS~&aZHqh*kZa$9V?>X=pf1 zUIFd5PnUAcmfGLIyt&Nm+^^B$2;RQyHE@F6wm<(_jza4g@U7RKTQ{<(| zw(bWNKIOy)es1f`s_WxqdG~lCmEJdXG)0i|9c|LFJENy(pLC{Rdu%QnBK_Zp-F}eJ zpb}`2{`UIz_U5LHC%mi^svsKt0}o^tj}l^P*i1+b8Zwn~{|ZYqedINjC7ppGRZnq$ zDKic;=zEZ^DUqe2g~CNLXI16@UKPC!dyuHiTZX6f(SenO*A${ZYa;V>x5&81R`5ls z(u9yJV2&2s+uCNI##v}$8uy(mGTu$Lek-=?b^sYO&)zU$|WonrwRiDbF zp#XqQOA~5$6EAO9t(~2nQ)PsEQ<}U1=5UBKm!yrqz)vO(dBZ^!+B1z3M+xtid>8sLG}7KFJh6LC>judpXJ-O_lLrT>AS_9==;X9SGqr^YWOu zrR`(%?808VoSsCG8Gd#uHE>thCUl7AKT15*)YAh56tT8d&=R!1gR`i6Q*EuC2WB0fP53 zTkj#fszhXoQR5?d*5HZ6=(u>k!>(1`21HREm;c0_Rq1spID7roV47$gImCgL z9z~awglz@>(QjCUusH)>ox77!bek4NM^BFt30Yz4ID{B74i>)Yo~4*yewV6NSeSTn zaDWM?c9HS}1;W(eC)7}Rr$~%7w8Tb>9`DDg-PhY+A3$DxQE)H`$`_SIr=ASP+4U{e zkHL5ctF!of=E9#skSoPMb2oFfd~ZvQW;5t&kujF_9EmM5VLTzmg%$~P%M7lud+p|R z!(|W~3~8@F(>s>Ws`wLFtbV+ApglfZ%S)$G(7yh$aa&-Iou?g|yMMjpvxV2tqVzoi z=UMp$j(&H&z%GM({%dhhMJ*7wotEyjLD{us--ns`SLwpmTjzv}h6)XFAitk*BBH>| z>&8rMOKH_Or&+LYfcSW>s7Osj&Uqsx427glM2SU9OKZsjnq5aAQ3f~OYGnzBkhmcP zAu^STvPC$|j@zJdlJlvOI=6}zYy}EHVgb9QVZD7Oam5))W3+a32Kd|refO{I&Hz_r zOuBMzfz6CvO9dF7*#G-_;O;fkf8BdDHEwij;x}p}X7su^xG;J=8t&!#eoou)l8_50;id8=g_+zY^_VF2&2ZQ< zOK$DJGTbu4=}j?Wec#;d?5<8v{|H|j%Hvg^?6CTM!)k(awg2&8uueaiPB_8zVCDOq2C!63L&j?9P%`U_>tM3n^~iG|GsRx ztC&H>H9w*y)F>ikZJ&7MCksG20@2}sFJgWxWAsaWcYW0!W zcK0D_nJ$^@5KmG8P}qRe^$d#x>SD{q(h}OO5i%8ov_n*rW}dWV)$u;i*Rzz2_l-lx zDQssDtB0N?KGZJHf>cDgh{yNleU$(6CXxIXvi!hvLiA5jlBJCwP`MA$QCCqSb5`{X zQ61so#}R`PDH*;le4g(cqd(hswmw3494!e!gT0^)B1IH2aSl};es9dE zN6PYpOX}Sp0eskQHRtM%%orqWn$xrqm5$Zo^#>m2txnggi`Ksg*>ZR&IWkzCF0o(h zX$}v8|oW3x%Z@Yh;E_Bq!VN z`C+alW0jB7o99%;gc1$J684@vRiJf7S-sIYbm7}G zJ!mMcw|>tu?Q#FX+pz=$=T|G8)3R{6&J74!?&(ZuA{Cu~iQV)?Pxb zN0OaeHIrq(_Zwb1(Vc|mvemjD%wz*%bxpO;^(XZ6KR2xtqcXAn#u^N&j+11t^g$5} zdjXw=q%l#&bIB~?YLk*%_$1I&>At|(_4V})yIwqUEYO@i$YmoPB6&#-obUMvaV-ax zl}JdkVzij-$;+Z@!D$5s-{m^`X(}Wm6}Vxzb7#DdC&RBAg+}wCsy8~*dK{eocoPpH zcEh;Ce7f)i?z|s(RF0Gxd4^-z95X*oLaN2JStb7?nmZhM|8R}{+WWdSbo9O)99Ioa zrdQ7}3U6Wa&*syvo&h+ph1`$(#u>iBaUBY>KdQQ9I8;0eI`Y!N2B3yTCoDXpM~n(cjFC1~q(ehxQqaa>q} zUos&|z~10#Pt%LPZb3Ip6B~`Zv;_V)VpS{*qagpsL-xM6>;xqPtJq zoIQ=48=Gl?q6T3UP`NtDyL_1a=_l*=9%Q%*vupWy1EUghw%a2CgxTWGNrr^WXKwC=Uhc178VSeJnc8>G(tp!0kR5W4N0GDqL0daD z?95s8RMY)2%`J`daagnwT$t^SJP>^XbEbh0Un}jD+g%7zy(3iZOjbIsWXJh$7x3vP9*X zcyXA#!e}$h(u{JqmZNSr(fa157Z9YoL*ci6Bx3_JbOH@UiGcI>o)rZpdh{Ta;Jo*3 z`Q&ms>L28~D)?JNG5#>f_vSOPyLCVuEocu0zHvET^GQ^eA9}CgzagE2Q8$ z?Qjpc{c}HWa&^1Ck~{p-<3EF5UF^SYFg`(?nnl1Dn`)(j2>RH&6JlUbA%YMhd%WBZ zZ*S{TLc)RbmLe*r#t-QC%+TTymUjW=lA(RXj(d#-WyezZZy9#@~ziMxi0e9s#g7dLQ1g1b= zZncnwI$_dMbUx*I5Q+mDv!xh;*Y&43fj0|w^ceizrVRVK3S?&r+k%=(ltF=q3(}*`ZotAHd?u$qOB5Oyg!G>qp z6Vy^i`#|!ILu2*=^O8E0jy_0hXOKiuiqMVGZv%pl;WOE$u!5Uw`La)lIQrxF9V8zy zl+#WM1aZo;yZFDF6O$03Me>KKrRg}oyjSw|6Ok|!5Qme8!gh^4q=A;>YMHHjuWIq& zAwk*S1>0R+ZSN<)05tqSz~l!bN7Fzum14^xv&fv7f=I5Y&-- zWd}nn6kxaP{K{e<=`ikr-CI(4{k^^AX7|o0T<7AVUpME zi~;A1o2-sNCL+6lhIp8BVOTsefE{QsID~8j(G4o`$oPZnf-_Q!cE_&}oC8D0_jo|py zCSK>Orwj^A0yJ!QaWV|_lX3zTGtWc48<-SxA=$_(f=8x}cjS8BOD)yG=^#i}nHp;H zLHUt|klk?b4`U8qkGX;U@SD4w20pf@1kI7;%&U-VlA9X;IR*e)YKY z%+MeB?=QfZdwE&2zlGo?@8_9fOx7`2q*xKeCh4*1O+0D$3%n*lHtU;)DRQtvW&UMW ze0Fv=!ROo$wUzTlTR z)*@rWLm&}DaO$4bQS9#{kvtP6KSx_k(y`k!=~UFGsZY^fI8lpxqKvq7RkX5$tBrD7 zxf8MELfMDyGW8x3hrG!2a<+Ko~0`h42CQ2y1ma~@Eh=NkT(a78sZ-$h*%f4zB}W>(l4cF=kQTd42*^G!qNil0Wu z64uSazqAm~;wcb75AX2^LpHN;yWo&S#Mg)O%QKxo9h@WH_kfhxU1W4N1 z*f?)tx0YYXM!4jYFL1(gDCiy*tZLY_H0PN%Q~xW|WL1OHTBQ&(S6E`hj#ee3E^~rq zVd`gI^D`A~(6TfwA{d&GI6kx&db$5{9YBuZR)8)Z zhn>^R#zrEGqBFvw+Y}p^pWKg>BkPF6dJJ5E%%<$DYt@EYdDwu!>dud59}O~hkQOIm zC#fy$Fai`LSbOzHXP-Kb2j4$0KHtalwZ0IyR9QUG4QFDX32d{5@QI{=kclPLwtZ=* zyflo>qlNrQc?xo)Vyy!vW3=bET+fBSJ30$C{d0gf8c-8`K3E~%vzC962yG;sv)4xA z5s|XQZ&gIhkjPKW{4Di-MPo|8kQVZD%~*IAm_x9&K%e7O7s+*{zt93@74&sT|Vuf{VsjoRwGF*3QH zi>Er=(qf}e46V+h8ivSt&Mc_NQGi)?_I_{9qFL{l$~6)kirx`JHoxgMcxFEjQyi?n zjo)7Zr=;&PB^5}IULvw{$u3#Wn=RMLC}_m&+cL_C2lWV|vsoP(6?K7U@0odc;3dV%Q$U2!McW3rN*EYxN>vg>Q`q7My1 z3+cc>Oe)Iub+S=0(Nd%);`6lE^%a0uP2Qc>`?E?ccL!k$9#>9`hAx$4@&`90PGs*M zkK!S;$Tho=l{I=~@5asgJsD5b6G?zc+lwxL`&K>tM!oudqI4to{qXbG=RvmU#;S)S zEk{=q3lsWT@a`ShS?J5s(%xt+Jw1JN^wtGLd*6=&!{jl;N#UEk`pTyu#?F|;OqoAe zGEn72_8tx(1+Qbu3vY0Uq}33vA%riGTM7?>4$iVs$!QvEpj1MT6+H~ zD{hj5(909~TP+(3i9ESn0#D`r1ZWmzFTXmCP!-IT&FxTJxyVTv6Dtv^JTUM9Poip4 zPb1zFEQ^WXAFEzZ0%Hj23r`a(oI5-$85UZ=d{8o1mSiPUu>!THuaLN@g(?;E-Viai zar}a{*UV#Sjy^93gos3%8X7<)CNixfa=VCeLc61e0S1=|4V93SJF6y*m|5eEo3aC; zWgeD2iaUE3a-e-8jQ7mW+}s>_uGf6N9gJ+!PxXvOqf+!bD4U{SDN3IoVs*C-Oc^-2 zLPA{5$e@@PhCjWcWG~zv()7ALmRe{VnhMMBoJc7h$9%~B9j=8MQWD-5Shtm!CcG^| zec|H*-qihW3qW24aCj4!J~~V|BuA9C-?8~UMFrw6@o%BWp>4iHh$d8miRA`rvV&bSGKC6->pVho4Pm?|9L|u%7z&P zMH8l{l~7X`&W#~RhEcNb@Op2zRpAhzs(;(JG8idrvH0Vp$Pl{{3O*7wDkexl-`4M)pV)n<|spxz*(q02f{Uq)&4)2vg2 zy9oqq0WD5TZX#TsvB5ppwS>RjE-RdUG!a)^hgBAf7$H&>~v zcisOU3WPWyC7s(($#Flq1zy9W5KfI4CUH ze0|+cZ35J11FGWkwLS(O^>i|OzWSm6er-QpZf}(%;edzsEQimObVMb5x>%LcYO#%q zT1~tRm)VHZ#wSg%j9509V}d+-*11(a1U{z`r7+(Cv;N4)NPoXzE`ee_-{j{X6JLy! zk8dJL=HQ7rq8QdDdkTc<5mV5au3`AP)w7@RoNqcNlq7p|ZqClt7A&t*(Y6B*u#iuX z`OKGbr=dT|;I>@}vd=epwe%jc%QMz6(f%b$P(fS7{H7w30f^^cxx8mGHWBPAV}E7E zxLvplVr5q zJAs$wXRo|AZ?DD5>-;M|2nLW;5=xaa+1ICjvDNeIoT)A22>V~pYU{Zm zKBg%|l6dS*j#t|RAJ?Hk=M|o}EPH$$OIAv*`7bnn_*{*@m7>de9$V|qAJX{$ycjov_ zu>q`6OpDF5i9u`o1#iYc3;{Umz<1~6f*|C0po!Sct<4-mLYF{^?FV(b8{3lpama}L zH>mF~3#fh--sPQ~{p7(hn&3N~7z3fc4z5|(naW^7#e4^7&M&~k48?m=Vw*OoH>WNnKayHUwIw% zzUzG*nDM`@k>~o{0%}I{U#-auMx`C9++rdy-G`sbTPta_bDXBX(%gah>f^`u*Y)5J zAf&SPC^ixC_n?au2XE6(3Kxui4|RJ+D+FSF$9O7?F&c_Nh@*k&V!u z3DXx#eIBe{6gyg!6aOuH$rc`BPUjTY5b!C-1TorfgAD3iXQ#X>Dd7lQTarQ$1DoOV z!036MvnasYe5G6!)I{pM(!3^3RFo2cWBln*SOz(gYHcJl=F}3M5qSUfn-R&p%$iomGk=*?ei;mCH_P ztq_`Uf3W|l_ogIe4F3xX6Q4T1-0J)~@%{SsA5cIKP>2}4&%-At<+ZLL^jKXf6M}~iw94t!g-}etpn{1&Vk5wB1ROlAC4j?Yz3Z&PpLJbIT z>rUSef;DgrH~*E25U3toMsNOtq5|PjWqACzk;YM?pVJ$UK%7eX}k@2N@*#G zq9K=uQ#jU~+T7InV3abem!;)l*Ff|)G$JOo(Gn&mq=yxlySUgg`C}~mFDbZ7(|sN_ zKu^i1ZCVK>ot^ExbspMKm1-?k&yBes z=M(h3JX~B<#j9RT4^Q~rPoL0NKyaXbM*$8>vt7wl zwUZN=OrnsF6?ludc54DVVUlyh=thg6Ohg@n3!y*h{r7OpSFU+C9-rr(T|m|KxNDuQ z`^lhWpVO{e*36Nm#b#y7)~U~#(20jVqwM)TpnbSxD?L-)K8Q;$OuVbR8JH80G*QWL z8Yxy|SFq&c_1{l;n~+Zr6-MD4_Gseg+a!^PiOA)&6YHI7S+z93?ghCO&U!6lr zTRG>!;HCY$!H`!%qlF=uTDE*POGj%TnV#YCc?Bv;Z$;IAl%{Axv#&`#)7O%2)K@R-jA0uX|dDi)p(~q~OZJ#4x z?BU@FBpQs{3}7V;JjytPvQ8vK@1yjQS>Pn)`NQN0nTcMR?AO_e)@8$EsIS(jo#`3I zC?M5?^K462S2o;$tr#%6^Wv4W=L>HsQCW00!^+>O!9qJ{x4&m$LnQhpMo!ndCTDeN zTcKLVX54i=lJPTJwz;X9c7@;-JGm(qO$i6BA#`SDK%(!aWaZw4mMY?gqacDspJW5x zCtU{5Av;=jyd_GNjqqPsM1(qNO9nktyhU-C7|w*ng7a)}3-r<)C@FbCcPPhB`RvBW zLf8RLY-{NNP_q}=oG0y+BEh{NR+E~nlEg={s*s zN9%#MyQe*Q{x*0{4=*nsw*+M5D92?Dcl;4LTrQ1-VFTt(kB?GZeyXWJV2@Y${exu) z#w$QZFgjhRj~uEb+t8;}EiQJEK&7mFul z27bF)Y5kzzz?aAE15nCQ`gF9-L^oImDnhGuj6^qnbJLKZG65g=0Wa~O(B>NlJf zSdY4`TxZ#t9eILj0~}}c^Ffa@Y;Be+6febz@}c3Z);2buKL71xLB(QYVi}J73YOtc z9dJh}9CVacMQm>zG%!)_j1i&*!t;=l=QmIiPu8@9dnPzdQJ>HeGn}@&PvKH0|GXRiZL1>C(mX zi$D$?&@>(%8Y?S-F1HKd`ScL|a56S##yT}6Vg)5nv(4w)d4dpTaZV!*;X5M@Bk-qZ z1A&k(w6w{3ZU#469yHzBfHxtwPKzT?C4dCaYH67RSmuuJ@Aseg3sIW}^X^0)=9OV{ zG5MghqepFiw*BoR@_jB1se4!z6fu3{v6-C#w!)9u7anUqa7wp9intRWY-^CEVB*wF zzdF)mTzU{2xx$D2nptj`*|-S!77Hed#8_#z{lvsnrKQhZ_3s9wYyRC>h7f4Ru9z2z z!UPA3qruLvxMXv=h-Oai%rA=8uvhjcIwOe;2yG=x8NQOYL>JiQC%CzV-Lg7mGs9Oa z*e~y#$v7D{WkA+%cl&-h7j-b5XbsH{8rXYy02!}`_I2Te0q-3f8GL9wNo`2ndzQLX zN9%HM9S<9nQcs*E4`r)1krfOl@pwBG-1^IUMX+qk$JTEiDrX%-o@#%~fxXKZ;2tSz zh-_L}Z;k{IEReYw#n`b!1sOvHA-E=x&q157qQuDCM1~ohS8kvllqxI9;>GDhV05B? z@ppKrCyMP$=%QznNpGD(rL8I{1W*S+ zNakRvSCGHM{pInRX@Nl$LBmJp+-y&1qim`A5#j!e&ePcVp!YH`IT<|?idms~YhU4~ z>nrEIe3fkJl4cdga0=j$)8fw9Sp)+PL9;mHl_3TPnb2XtIztx}pV? zJrcun?0Rv(WF2DMIX9t3zAS~pbigGI2%QKHh!mDOm>$w6UhJYn=(zHRgD30T`#syK zGRND+|6_n_!s7IVz^Hd-43_05G+RD+GI}znq6NOCN-%PEQ98A}48LlpFC=FyD<$rTt$Hus^( zbj;Qn6+)^iUFGA&HPYAH=$1HDMvFh&x@*sZjXDbhVmGFKHa z&IArAq(3#}>8k>a76Zye^Y6HKf32WI9%Q^OQT4)0zQ2rVW1#5U3?<(5hXR_mYPwg8 zRgsJV(Y{)h)b~W%TJ#?^ZGYA<^3`sr8Z=_X)wpR_8Zg3^Yj1vvG z%)QuMkaAOhDmtXFq zIBl4zY^!4iB0y$2YRv`2qzZVKr+IB(Ez8yN#wLFYG;b~IAi~gn>L}Wd<#1cRrvnPO z*8=;u^qB%n19QQjs@vb9c~Rt?TBvz)NPl2-K>QvcBVC}9Rb1sH!JuZex-k+JhftUIPhi5AUvJy>_ zAb|kHB6kTB3=w@u;d6aO*KiQy;euJ9RJWy95GFpYil$@WXtd=*emSbr1HZe zFHx&}KG;#v%=}@lm~rtL>g|w1T!($jk-{g;%`4% z6dDVa??0*DT)a$Q()uV#ge4iRAJFtg0vB_?C=y5Ac&c{)m5f&YI!X~Xo)+PiW}nT9 zH9j`Nm+rV9Ulzx=d~lVT8Q~jn?yhZ6rv;b>hDIqjP{{Bxgp^B3uNt9}T`@%bb8p7R zu$qoq8>m9)r#opL_O|`jM`_oL-eU@SPPF;%57_q}+EkXuD2r&hlFvAhOflL^bbLtL zwTb=QGE7>x9%LAT#KCR%i?HKt!3p^&uuDpubxz~NM8&C4mK1-Lh}Swjk$WYeSs+4Z zqOk7dv6gfkq6&T%n-5xbE;HKN*!e zHkAO%tzY-z*{&54PAtXK<#xB{lZ`gq>h2KEK?7s;pns<~9yt!J8ySa`9nz(ZZbju3 z2m9JXBTaQ42{T5hKih7OKI~r``%$Kg{HR5QiX$)8IsP%bR`lzpb zaL>;SQ<{doS|Vd?(*TbVD{XK|7i!J3 za+zEQ*9Uw9+4IIJlcNaKUvoE4PtR51+(cIOez^7;MuQqFJ~#)ovfkxVu3<}1F`c>1 zWnP2?u3UmtirGU?x^6<->#F}AkEU{e=rC#@40>2`@YeHsQAg|C>6B_{&gn6kGln|8 z1+r;fISijhPeMZH<4JaAYb2nwhgAP4nftv?e$5Uw=omCdMyyr9Iz#eLvlj)Lf#U_C>su*b(_P?*qW!_TaZ z>%V$m7sB%x3d1Br zA^)@V$g{ZgZTmFr} ztOe$5T}>(1+e`7-tz3ddg+}C0^@|$~;YU^-F7sDAY({h~73$3tsY^(&^}57Le-}A) zjqKj$o5KtK^PQHbE+4cIi8aMTCSK_KTWp}QvH(8yL2Y&QZ9-pxDkOn#9NsrUz{=F_6Qvmsh%+ou&Gs3Y_}w;pXdAyiyqfiQ zG_^hUz7cxe&x!#BFPJ4i@G&lu^PkeC!SJkV%19a6#f{}7rq0HU4z@ntVhMh=IUdDy z=_gIZh7Hv>GGwP$p{3JIXEa1 znexnG)V01O@2gOzX^|yTa{0KeCfj9pO+@8jyCCUpLE?ivXlb-i5mw@su{A)>0o&o{ zmX$}It!wryaEKQ1o`elX-6>bIQT}#RONfKnO|JSpM=d?{7K^kym%M9IV~^BhP&rj7 zAS}Gi7BWQj#>*LHSXX^Z_9S0veR6$iMnz`v%={h3s$R917pXa_Gf0{0u^$a}!D2jv z^FHBXy9SS6i@49)ZdPykCD%exn{nnGCR-e)(STu$9lt$^%3a3Jt{P?X`F>AsLXuWN8;K^hGCK9y4oZ%W;}~oJ|%u^Y_@?Co10$mLYK7wJ zy?LLUF7kac-9%@I=_}w62rAa?Pf84&y6Yp;@xLFn$$N85{iR_nc|8aY3Av!SgyXwa zOOL(_m$oJ(xR6X)fpZRiN+ zB>n1*l@r*ps&*Rby$Q?@tR;sf%;2sm)38KLCq>>;7bFxBoW!f!NXvGx5pja^&D zA0|78fKzaFhvoQv5R8?Cc}h;cELJv!)33?WfQ^8p7eYr_q7JVO$NRAvyrVLFw)hTH z3Z}puwBH^9vKgHLk&D*DHuw$yc<1E$Z_NwQ*Jd+k1QH8oX*Fmp*kt=06sEPIzoi6v z>6|MpS!_dcv2q<-zsp1v7ebjk_I<^P-qZANV>$A~&9|p!b`C&)Ktw=z%()oMED5c| zM_Fg*vcuJ+o5eRdym13oBbTG8Y#?G(QCZ0*vuAr`g0Cq^1H&mGb&nLLur`SV!Ongy zkc6)8cVXede2FEr#O=%EnPr!BC!wCbV-pddIlOoCw(b7)@wEN*GVOc0SLwD_oUxbF z8fZj8z9y5~6vxPRxfPD!rG!|@&{Q&f_2N|HvLS^E;dCeIO(6Cm>H9~aKbD|V3sbfo zQF5S^v{`197DNSyNoi^$%#fYd`>OcBi#5#{B-Zn#n&IX3tyHJ6BmN=jjW%gR9~F85X`w<1xgTGqS2CG&KVxVFo+jEmIv>HxYLE-X=}00-aKo() zGYIPAC*_V`s(ejL{68uNl)TlpF%FD${7U-%cyHO&EaQ0lqM+i4mBg9yJ!&M27L@~-eE=HS>%*Dr)t2|;Jpiry zG-y3;vvD3=2)*ot*omT`#Q=5aw_cA4>7N7~l%1WM*_!~Pr^(z&M4d)bpVENG{h?S@ z#Gn`Nl*GTpBBoe48B|+3H1a2+nAY-Ralb&dp}|4-KM73b5DW0^6RP&?{o4N)ntcjB zcR(z?JDQ&7`d*tTwT#}61d>HPu<@=@n(XyKPE(_8eI4~Ud6JBQc zv=t|~%f#5ii>1E+7779g1EZKEH{|n0wAzc15iz8O8``!%?-nozv==gJRcDJg?wftR`eOW$2AXt0y15-=jX6Kef~|O({816x?ng=fq5-gD$fZbdSjd%Zpvbp-E=5zE}o_# zr8DEXJJ>;iOo@DR3EL)X9!8zqjfNo{#IN2sX_v?WR+|I?w4D&NAbq(Ek_n^^P=8hhgoXORJ#lu%rK@Y1-K>q{74}RK-LwZ ztF6~7Co3nTC(k&l7*fXv4VeB+GLT~)nI2&#MvjPvg@r*?$jr0Ku;4_qbFc%uAK;CB z2p7mpS`AdPry5UZLJTi`qv&V*70KI zeV*2e9JS1`8MAhr8yhQy+Q@CQPah7ozv)x8w;#N>pMC*$js_Vmom!>qI`fPWDHv4r za6_A2HqxfkJgU&sUok zjxsS+6Gb~J(Otxuwp%SPgg&o?2#AOPGM*X+)r$7ivK*i&Do|3$P7`>|sX}laxc$e9# z0vs|e4uGy7#7fbWsIBU(By46syy9&m#6*mIehReiNlwRI$cj}kVTDP{GRhv@LSs&n zf*CLVF)wIY(40C;toRAhxU^7~U+v|RI9`It`;+HSV6>-bxR`%r5u4IS9Md6Z|0oS; zkm&X7^J!f=eXX+?aywWe59LM)G1hVwL$okCPg!O}wA8hw^N$UG62nfuzx)~Y;D?c= zyy9k@=U}=)E$7h<)dn+g$A2~xp;`VRt90Zn&L{AzY;BHU#L0%yn6mNvYq6z;tv6Y( z-3+auCc)K}9a6nGtWchH7v6(Uq;|SO0Et+XP5IbJ-pRyTj-79{y;f^C}DK-YbOY2W?lwf{CXbJtau39zF!|-&)pxxU+=zOM+XMxi8M{QwlZk*wx{?4 zs<=EeD~n-^Fv6%!$bO>vxR30Qg2MkYZKdi`*=j4YP4hcDX@DU}=S3x5ZW&d1Qi4^u zss$oRyP=0=9(CgHe@Q#y-!rtw$RMpA1cDjpu`Azu9n`zgx7XLt-nw|cULH8Rvg4h` z4`yfMA$6K~j&o?$|B5L}o7qTbz>_>hj|l^8Vn)k9R5Z!C?L@>&xR5i1>DxaLA$1Dr zdy84%+WXdZSGo!mHXZSKeC?cWIaxYNEGn4v z+x>uqPE?TPiUF0eN64jOo3-6N(;!4WPNekF_sgsrJRL;C#;}gAlrO-4z(L~1Rz!yD z8lS%|Bh`s=jv1wxHS~b=uHoC?t#~`vqvJ(0GGs56UTErk-Y2Iz;mmXR^Q7z(O#njO zZXLxj&!h(o=Nv(&t=2G5ZQjv#S)bp1q50HVcQ~_(q@ylsM3&!*t7JVvhqi$rrxVE|DhedtqW5X!$J+PBiJV@H>5S(_T=AF3pJ_Zg^YgmE64fOTkWte?V6F@!0H;q)e0sb%Y3wxHNwoK6t+f*j&s;#gDU3+Fe*vtP`_1; zPWbK|lMGY7H?~Mqt)cU@9xgVH3i`I?o{vJDpW9*OrR9zKx{Q+aD>0sFUFT zC78RjXdp2$S?Uu=LT*^vb%+z0VHIEL%}7Q^+Jd;_Sjf-_3peUjAVvMI@5Gj64VTg1 z8wOF}M*%{6d8uJ22>n#)7WLlGoMS8#LmTs(FxN1(etUru6ffw+&l#tdF=X`tejVHb zC2Ad840VZeW8mNyQsSTEx`0?rFkJXwRs(B#I(5Z;m}4RM)AirKv$Xihcp_B3^JrK? zp63=_ZfD=Og!_HeRO$xxkcdM-3&7+fFv5YP?`&b2Vg-}HL1xTBN9ac=jEfHA7Ijd| z<68Cga0fVVt!}=ocYmz^`Mm$TcasLaH&Vxyn5hh%p>0y`y1DeHqayh4fzbBTfi1%) zr6+N|&b9x;0aILEXXi%&;pZ`M9HP=5jX0(Z>rvAy2g@c&Z9y;|EW@6oLs45)JaVS^ z_?wLV+Ki`yn#z`{)#-2$%lW#!mo{kv9KmxirNx3vPti}kE#2peUKb~MSL<7C?sWr1 zzcoQUkXJOm(lJ39DS3snfT2skhxRKblz)`H*V;y@nIU!|Ac(gUNt#2H3zCD{L{7f; z?Iu*iV>;4@(PyA6G$muE9+n{LbGI|P?qG#u&osYbn@0^DF5%R}+ZS$S8ctymZWO#tqd!BTUZVVNc2)cELFj?3Dc~p-M zE_x8Y9T29U{`$Vn|L5Z)w6%Kn5&=0q_$6gYEcoWk603+XmV@^wZQDxgSHFB-Mdlz? z3yh5FRu$qahD}F zW@5!HjCi6RgeVmCZp$D!>aD)SHOTmUhC@0DN}^7xo&U?yjT}<(O9%Fr_q0^X=EwveNr&*ei-`WsC zY%FZD!;n1Ar$lD-bcbOk8+0SbNi+*`kpo_`H!Pm*OrOYJ$xFLsDd>b$mP|$xtu$8% z_xdfRLzEs4@!_^k?J&ThHQd7#l}{$f6rkIg^#*?MZBl>-80-wGY^#YowTgb{u?=yP zqO68%!+-+j5zVy03lEG;JV@I~tpXqY(?Gc^f9eWI8HORGdF+m@g)TC8BHA5uKaMmV0@AQI9%g8Rh{h5a;;!97!O!vMFO9eop0=7*>qCO$@|jx8t{ZJ7U?C)dZSZ;{ZgsJKzg7-3POOu(V>JTeA`?d5iy zsIsm~11DOPVfE1U0Qks(=57K)fTX|qZ4`_>RN8?;%>=1;Hx%;q!OUOx05-Wd5LJqPT*z!tyXM+&#Rl z#a(y^L=Y&<$MUD1{m-9U>-*w9Wz?CpOIWRX`8?#Co_N#=2>8m)RuRfxvQoB8AndZe z^uD^_{l%l4!6eb8iGH?daf%>l=4%Bm>TJCr9Z>{zbVlk_L3AUP-ObZkMUbFM^-V$kDk{A4eLAk4~<<=2~8vt7?pGr{c`) z1l%}?r`0o?mL>8*SzTA>NvwSGE zN)%Xy=NTT#zy`0w{1p^<`N*P>?o2QOLmO|l0VCK*>i025o`s;+EoR0|aigT)_y-0~ zWXpB=4GQZN^zS6RiagA1)qAUvZ0B0#fUw7$H87ug~*) zO^5k#^GGWRM?f~N;EHS%DX~K67vTAF-S&LiblvK7xmc^=siK?+)Go$*BUW2C0E^H3 zhIDwrTF)DSsaJ%zxSH&+T)qA5+IYvee^X|!EDRi! zQzOZ0L%#1fqy~~!9ZAa8Kg1pmM;!HGEz}z$Pbn5%6tN6M?}f)P2qty9lcF?JlxY|M zlH!k43O}K934Rt4zQ}U;>h!D_`soF#-$Z^}j0~1)6E3Kv-FozlGXk8huK266jVPY+ z*n>F*=RFT=Tru`9P=?{FU?eG9Mmau$G^TA|W>=s6G}iOmt=?^otx+!!;f!p(wga@k z6|sN6{8QO9?00tFmCwxU;+88`ADDwSAM>HdGp-N=>sY?~mz*Zcb*G+OYwCeKyJr~Q zaiIonMx>Z_&7nAa7i%X0Heg&{NPJ<|kd(v0kzy2$YNSf}I;ayaF~LZ6SEdQcq}+_6 zW>rLCRX;YccQe#})!}(|SlM6DUrpfkun4^K`E>lImnfA@w21jQA*f6+ER9wf*5cZ1 z3Ork`?!KD>H1@4lhl4Ra&ij&0b|N;wQ+_C%8&HX*C5=Ca*MuvAo%!8SC`J6Tv>Lmt zLV+NyicPG^zZ$B@GWTWB4uQ@uV{xQ6AnOYTnn`g2Hpo9}cZq(?>vkG<)XMQRK^i&E{T_n|7Rd@M3|z zx#pR>dYm|bX>HaFXk3Ss={KYLoc-SQr|?=IEziQq$!OgFzqG55ag+UeM!V%+QrR8FqRnH3uxJR<{iE4OV|FFc(VW%||g=LOt%sr$K zRFc?A8nSRWzLEY-cSxRj#fP}~#}Wqu zr6weL6KX!uwA4N2i^<1y(KI}Ns6!6m-3%MNzA6*Bo8>YgmmllMu3)zlJ&D{WOzN6#a(xjH}#{0f!i zvZ+{D*bwd>kfz|+cDtM8w$*8Ov34}9H_sIBiBOC0=_Gt9~dC~3Zl>N z&Jz&f4C*q!qy9nL9JmTgE+ba6cjm~MVQMZ8X;7yJEJ%PCZgh0?W$A(`f5;yZPo zzli-P`+3VOS4V3*YiMOVhT*12Gp(lb)d#W`s*#U)SJ>bD3HKsG zAfxbMQfe4<3r$|M)xo-bNi{k0Etq^^XFzfW2XS zkO3!1TQRSBAfzM{IR!hFjEdgSB!!%)wUejN?MOcE24e?&MYCoN?e%Ym*&GZ$UiJYIz>la`>;N{JkG$CC;fP!~4M3go?1TJ8#2H>6qwCT&sDWJiq`gdm=V3Nm) zUZYGg*=RZ}O(4;G7VAzAp9iODN!>C>Ix5G@k&+lWD6R}VLmYTPCusVNo7u|P{p|qS z^A`D9H^)Ytuk8sxb>`Gzfu~KM3Uq6|3iqI?a!D6YrtfMP=+8waE25BP6A|-35H^Q8 zMc&WJ(bFU3@bRti0gd(lRYFW3Rrvt77w6P13JqIYAD-t);T@(#&h5$PXMM4`i;HWu zZhIF%9s?}Xt*x`H)+O~u2jsdq>=e@&sFWo;U?wjXh;VaE8pV?5<-YaS%oD=&a$4Gr zS(Vl73NZqW84aMO+2LtvlS&qcr~>>@8DI?ARXB1uR#Tz7m!p4Gq_HOc>nO{vpFMfu zq+b9#AS;NQeIN?rw`ai(m$7L~z^3WSnHXjjwMow667fT!m#{)ts=!4MSdoIfl7KAt zXO}sF62}%EXOiq8q65wJ+0=M!BY?G`+1c)T>9Xn2`Wxs})N+|WF=EdI zuv{+&I;1nKJb2OUz-tKiK;}GfH`g4e>4AKmX&+oAMV=lJ#g?Z`0?||_9jUr+K`W`$ z*iflRa8pP@NgGR3Q5h+mlm6oq(gbJIJVrps`+*{>i}EcE8p zhM1W{le7K1!8b($@F}~1^kvP3oiQ9MbwQbSV^=4q`|I6)fNG1!!*|?P#TgxfYn+Wk z#;R(Wmo+rmi>PVZa`u+EmpGp|4@^xvJDo4q9x^%pBT;k6;JO@3|6x22qpdh|79ihw z#41e(%HI-nV=G0cSW!eX)NV_X_;uvJ^Ds+?1O}^>JNZo#l^xB)5Y2!iAmwPd{?vpG zKNY$eh-jEH-p0ZoEziP6@W$#58ewd6V;HuUbJ8?Ov>r|rYr|U@_9Fk07Hh!9_nTNs zqHor`iC-QnBW0u`WG8@={3*?UXVIPcxv&O~xCOhGvSCs?ANHKeOINSaa3%siQRuIM zZcH;uDpnjzX?B3%Kuo`|5mMqWvc3F}pR&3%cltJvfhLStQNtn95Z)q4As63oJW?`I z{yM@v5GpkVexI-BRO4p|6Mhwj6^t-~3?N-0M>~mtO;MZ9Te)*~FThSInPH;VhALuk zOxr|OSo6IX!~3|hlO|6DE^-*KfbjJ--u2f`;f;L+h&0U$Rzpz1$?zc70txMAug~}E ztxiu}pO=G^RrB7OCiBcD&~C%8h&XFF#KF&A{r-72o8xN3 zXYcWFh@7L=MzQpl2aH{I1_O)~`8J94rTHXc!g{%qVU+yla%rI&UO?lyi<47#UoxtkaV2qn`u7q^wggbRWqOc(=60iiM)!@OAE_1SyQG3; zY3}II%I#MzU>i|G6aAz@M-Q94WV1`VpPnGX7z$yg3)2}eL8$q2Y^a-O&g-_xU^(sA zrtLEV+x6j3f|Rt|jt{5Ns_m7H4aWXOrWV9Ofp4s-T!Y#@V`1(OKH!^5iIL1%n9PJ%yb#x* zcTr4uW}sd$c4{MK=yUP#I6P|R-Fc#RrO5CLzb;^k*Q@&~!Zw^`%8VAN!fwESAd;&- zq=zIyM!MyN7e+DtB^%x7YW+M8ndOc3u8ga06q7Q4HJq?A*lo!keNo_ajV))a$)f}b zq|9f*)a8#l}t|T zfRyK-&h3eB9DkN-B)6>)dB;tk9nL6{`4)zu9zCQ_8D>P&C{P>!Ib#}vtQ}**5b0=H z%W@+7IGk!|ealO8G#ISu=unIU7r+v0g8u8AWWjKZ1Dk3!^OkQCJHKF}{dlp}$Y$mgjpPA0dH> z$>#i{MLz++<2E5E))prtf7^ejkv1j8ZJM9Da|99&y*w3C?p7or4YK0gSv3We#0Dr?UcbW> zhxH3sHdHkRvoCEgabNgnD*jO_^ir%XaanRL2e@36)Hg z()bj%j(y@+o@>nzwG8{6Q-kaQXl3+ zq(3&!mM0fy$w|5>0_m!UC&slLm?08<77W&Ggn$Radfg{Gq#JjbW^i`Z%EiM&@|)fF z4lOw{>v>pIK?V1Ss#U)MIYHzp6s2uvD5z=QxAkqG_nYCwlc02{Kmq%ZT8J14aVMJi zK_4rrvYEC#9u&#*tiGR#uDW4qhmnK5y`QTutK7ETcSD)BaO2sgL!epFeSo~6gd-pu(2RW;36bJf%N_f?d2fFba5)nNjc`y~z@EmIViVjh)X5R0E?y;3S zNNoo7x~}8a&7#b2W~;bzWi{#_rMwA~e^<2ZJ0vPe!Zh9Ql9@QFAal&sde4mdbnsOv z!{+wu&4WwZ)`clL69|tA8%M>#T<_{JS3Xz7g$$V*jHQ28@mY27{+*3zum+L9$EJZA z9V15{49^zG={7#&hVIBqaX91Mg-l%8tnsVS(0NhR&jw3ET%{dxioZ>iplnQFA(}C+ zr=FxG!diwj0I&0e;aNV&V5nUVcR)?WJI`d) zIRw;X9sLfMQ521lkYc)x=wWgyOcrw3;^cO4gcw7m6diQp=S}VmIxF`c9|9E%0ud$> z#tJ`b4Qc~XF;K;7pmwAd=y0olxjW*<bl@VW}Wa3X3oSHmu~W1zs^aaEe&osEyEG zUbNhJs8O!?y;e6fC9~P4%Zg;XbZ_z35r8+Enl7FK}PR~wd z`W$t-ZIAVRiUk7QoeWoWsZtz}+j$iK&{rjFwI_8&M~+he?**uk@^kqN%iBs^paw6%ouWpoGJut5^ll0MG#>|T^c)Gk{~dXw z8K*ub2J`O=F)kYIxr{k?(bPXrQr&&jNub)@c-o%MQ+rh|8MNkYJek125$+2jd^Q5R zp+VT`cVI|?i3NF|j0*t@G0mT(dn_>lBTVaA!2;UT+n+y{-NKZp)$FRL`Uf4hp8gX1 z{oGvGHI1J-;?YHT{9`L;3O?o7KQ{h5-e5;Kr}Rc6w$lVX%q07X>7|g&O8P*J2p$qy z$m!0WZK@2^b_Jp_z9MmU;555;cK4stKZkY<@bHjT&M@cliSIU?U^f*64AH)+gaHKV zs>0z#w_eH+2JghmsA9xzz^NS&vcA9xs_6+X-aY}^23PhFo{IE>xN!x%`pW(d;a@4@ zlDqO?BM18%fa~#bi`mV|!()}Pgy9y!1sR7{;etfQNU^v@P83TyPL6zIl<`+Pd!Q_o z(UsN(2-(u5ZqA#^wRd@5Z9ciUxNM9>J*-3BlGBY#$A^b7H`$yRj3Zg(tQtt(8SI{v zO}lqXjt~=}F6SLd)^_BE%)@2VG(#;shN;9&a))zck`upPCu(UAPk4Qtid3MkoqL+v zbxLCjqdH)DmlhU(TtOQUh+kU7udpV)%Ist~yC$Gtr}dNfaZT(qbkD2Y$#Xq2oAXoe zx~Zu*fR-xz2dm%E6Mg&U>=2S+oFE^Ro|cl$d=-5YkN`6{|EN%!n=l8jtLvx3ScK~D zX+TPb1NMR03@M&M>T!x5VY5o^C!YPSb9w%Ve}v@Z*jaqs2)DB4%W}3W)FA#VLdXh6 zK^~&ar^~5R-uE8WX(^#?nxC8JqI@wUen5uNpy2WdHr0hXA0> z?N_Ltn9n_*iX>y1S@@-Zx_||RHx}QGZM2Z;4g-7}6eM3kMDjf7=;4Cj}8 zOf37;llt#-;j675ZLa}>!1L`#&R4L7$g57mBDtzW=RHt<*y(%qX~or#oMzlk((FSD z>s-1BGk)UqFodG8K~^E%VY>8P3kP8mQyPt*_~^bv$4N+Uj691J-g&3(XD}!wNZR7M zXE%dM+o~<6I?g){Em{0ANy=DaSDtSCjNfM;wXn!;h^B*8g><}n#}&)_P9&bBMgm~bGHyu|~W!sXZdj?er6v zft08>g!cE_-cH)CHNLr7kv(y}dzmgK^XdxOD|NkxLg7Hq^%dXSM>mj~0g!ZMO+7)! zF3`*Lm7#r`!?9Zp>MIHzbz#9Apj`;VYZ?u5#C7fDHF;gBe}T{2{kBlc#8$A*OQb;0*+h32Lh+98fyuAY&-4A)=(jxIZu6%c;Q$Qzj5V){(N+$## z$_a~cRa;r$^q}LSqh^p2Ym0-(zdd9R?J*9g@N_N1F`jgyasPR%mXFX+rIU->?jwVo z(qK4!AuM}ZZjmOwW1hQw@L!=lJIRL+e{(PdBUfJeOqZ0)_iQcO%qq^tQ&P983bX zq%lcfdOjUBJa1?B&4L0F5zb{VM@0WrBPm##h`z($b8Mn;o+pIAeBSQ>-1c4Ik>K2E z9VK%7U+Z7tfBn{^=Gm41jV~!|T*4m*YYL6jU^8)P>=fRNNDEul`|^ZIq_#(Kx#gz; z?8`wQAqv#J*>1L>3$glWDTJXvr4Ag1_6TP5^P%diQvWz(PUsWvBBx6^yTc{l@F%q` z%^kaJOl+h;{4;NC?BhYK>9T21o3`%hk}_U&@2wGuj}Y3wYX@LNMf;1b({T@@dvh6{ zXhdKQgkX;>rX>*64vJZ^W7{X?Im)7)mjoWegWuIbRUgAv~Fd5wRy=op0l zG@OBxj>(-f2+$mpD^dGQw=Sh@2AkuDOwbce8i2e6o2#FMp*LxN*E>I7AE_6PrwfZS zmf_5+sFp#h1npFz^zL1jlC7d3qM>lM*?5}Md~!V5jl`Fk{~t}~6rNWbt?S0NZQHhu z#B zck#U*JL@gk%q0r0W1)R|S%GJ%2&u1Yp^t$Bs)WzH&eT5ob8PdB66uqc-dYV}JKF4KJ@Q92^`pLWdr*1C)Y)pRo=KUmQPj z4FUg(eW*r%q-pR=qMupS>1_+<`+u&uc*@xY^bDlzk{|rscOEB(Tv&5|0x0C4d3pJ{ zK)im)WzJoH=lSX?rs=)gcHM&=-`>&D-tNNvqYH>K;wD4@5}sxSa>uD#mSE-rL!+hC z+4wP{3FKA$a%DLr*ataxRX=+;T!e0@XRPqQOM#72am&WJ8t<5-?!Aa*@i|O!t-rvy zL<)da>Kj~FpQUd&$iy%9Ukvj08@3(RAe)d>j~Qjif<|IatC8UDqs1w8MED?RL#4r; z*Ax$(^2qeEd?k^BG3u5=#02c!U>W51A<4I%43Yg#kF;(YN5-iM*r|Yy-U-mG7V)s{$Y`g!4e~USEha`dki@WO`<~$$a$Uwnrv)yFrN*^}|w)9k3(o*mkhk$H`w zLt7|k%3`vyZ`i<_`L2KfXs%se*da-gDTwO1a7Q`U%3_BMYvSAeB`4_ZvFl7*Pv1*c2xUx*0M`RK$E9i|N- zL5YIbahB7w9tEMU-32|v09=qZrxfrV4D<#W8O=1z9{c5P8^0#!H00x4aL*0r4dNxm zv_gb}_j+|2^fQpn-D8yf$(g5#Sh32zVLiC@k%`DXA#X6$@9z#&!E{#cD8lO*j>+Ud zJ^}nBDBPzaQ7!a;bhNcKZKkfZ$BK~kV3HzVPfr#}*eLed)3<+nnn*$)Hv<4`8S`F7 zMi%vXJ_D*hAoixcf!e;03 zztWk{4EhT%uun&N|$8js8CxsgPluyyKX)lXYhq{Z!7fl z@yhg|&WuABZ(vsccPs@8z<+zc72B_?8g3xA-X4lMPWv3i_o6m$#!8s2F_afUFi57Uslzyb3M(8iG1WXkI%5Xyd74w0SltW1-49Z%`O>UB|2G?1>4rOWvERd8hmx&jTS>0YilPY`shmSzoC-ZsE=KsvZ|^X2$i52R+KVk=E6dg<8FHi(sOO8 z=RdkQrpeePPx1<6!FvAPtN=OyDrTKg1!o@9Owo4D$PXTmWz^N?KUQIAyr}+=x^+AI zPlF9^CV3FOjPD2*f;4($Cq$!=T1Cr@29f%{`w%zcAW*DHw5!cVe}p z23Vcs$WsEiIagbtZ{^8P$ah6)vS$cWh!kjrGMn-DBz0wwLBJZ--FWlM@_fHk)vo+@ z7aZdIH#dgKhmMl53{p@P^bq+Lnq>!5PVq+~i&>8p6t`Bj>w#HwwU|}=X&$7YNJy|> zv=n&ah`u>bs@5OtWqR`7pFb3<5Ujg*2gY>pNEqLB_W1dltVWVl%xkygf+SuSoqhT z!_=~rM*Qr@ao^(~=G(LUNn5Zdbt4+vo)2`i8=*_!^DQX91%00`maBDflVKmm@o3Y; ze#rW}kH42Wiq6@H>NW^ZB_#3^M4BvYXOhwx!F4xBkKuTZGB%Ae%C0;Diz0x+ehL88 z00G@Lr#+t)&RbL-7Sl=~N1P*~qy(EV{Jrs`K3A5!MI*4!I$fgE^nCV!x-8f<-4oHC zWj>Hm44PjTAxwnZ=vV$IX}?{pMJ4)mqTez-yYG^VFejnmh-L<_t+CT^H0GlKtxK(U z0PC%kd%1=iVabuaE)H_cJ`Nogl`u05?4ImThnL_6AZe5~AL>QbgKu%w-$N^7#U4cT z3O7ns%O(kNd}kA=!&cVo>YJ(ffSN%Xmm^%J$^bvi^8Xz_;WIi!7gx8! zF+rTu0Dl*op56;tv8b^ZmLS2w6QWc zBGNWp=)G)CSOMfu5Z0d49$usdn#Jre@oO23sl9_Lm#x_N2HS3*PT=HN z`;5TnUu4J8I4Y5dS-pm4dAQXIDr*dSql48ZM-16-fHwph9m0kB6Pi)1qCN}SLpv&= zBpdv@JVP^WP`_44u9zV>EYDfTb$N`w2{&B?+LmAQzt-*=IpK%-A79D|Kg(Zk|M&lX z($CM0KYu1FHWHOO?Vh`_*6D_aPbGEGxf09!~c}?`@GCJDm$#neV01J@QVQl_3r_jDbP+J%ANFWC9pA zJ8t?y*j0hwRmDq&4zPu!y~C|?GHd@7dA7F6vQlJMRj0&)$x|*2xdZ~Z14lv-_m2ec)hlBs6l3`!!=&g+ZJtd*v49{t_Dd4$6NJ9VIe^2&|@5q#Ecn zY?Y6z5D{ttv)c5`Os#&0q*_~e(?k^0%ngAEAk5RjOdZDXCb@ylK+OZWH22M0Prr+UZ=9scn= z8YZC-+*j@vW=2`HX%P|uD$9G@l^TF#RY>KbAMMnKon&etOBflqcp4=m81}82FT(|a z9La#=E^_A3cfBeG9n`HX+ufv!oRWN(uXoiF?X&Qg1>^u06 zT0H}1l7{-7T<^EEU9~oBFdFi{>TX@`ODwCBSKt`W*W%mU#bh#}StM2NvM5@WGk%J{ zDmA;{C^x^@JkhN0z#x}?#n%3-matZRg&O@`AfFeX6Fy->1C6>Ir4gKudeytCF9 zO(QT`V_e^>^|(+Fpaz8YPkPRQkTx*HsBFa+7s9Lz8%xeVN?n(+;~497L>kj zkH5V9{Pa8&_lh?NX{JD^tq$dXYnh%Y!FeMam;QKeqRiS={q=`vdh7humq$p*kTHYH zVH2>M(B_0WL!d`o6WiE;O<14Zl0s!X%;}Zbs?8&z{o?w~ON2&j_v!hMN=r+vqko}a zfwe~YU&k5Vc5T(4uo*VzSM-Q1al--psK{n6%a+>w1j+rSwp=yZv!~?#2l1^;+03Ex zPR~5M5>DqqBZn&iKMF2$PX%YvFa!vY_>;5hU1%=eB5U%CROL)39G2T~~6-ejG8O?iX@yN&Xj&@J;>py;>o;(H;{cnH&nz3e) zXE5GMZ59xuC8q9)52QZpe_gCKE;KgUte?e+W;bDc$wYT);Y9WJa^k-#8C0l=l9Kx) zNgIg;If>vC79a&V-ymRJzIFF-3thLDd{*$$HWJ4uqmH+m-Sktdugi?aO%to*H{l#s zb6yjVqt{+|P!;ay$}`;pDF9LbzYAo>&5 z3DdAKEE-8d3fCj}QTXO88~fy3-I)Ro>F%ySVu}POFxptcG3)VHkV$ID<%frHS4rZ4p>Gj{Ur8`avIc#e!mLRTBiuV*p%RVs|#;%9Ptok$AdDZFbIdOU zb>yM6q*+YBu2R%FtCO(n{X0S*K_+E=k>$SsfFNIan7Pn#J4ykZ0mIAKgjshKS7l@( zki{_kJktbLLNk;pQLvHr+A)8yc*g4oMwobE%!&qt(c($qF#;ya)M}6{r^Ll$UiXax zzdrUwtE9gXLTE1BnG{W5%?DDn)~ezY;8WY7OFUtxMN2-BOiCLe2N#pt35#G?d^=?p zex8~3vLmc7{$2Wq=YC(*I&!kvk47U@;MX>-^KML%Hx~Nn_{&!Rkd1)|35f3i;u{Gi zcIeh7JNr!6>R=oGcZnpn-&Uxx)@k{5kK>h~QIe0SHIxZVyPNhLp|F*x;7kgxb4?07 z>&@1k^oE2SH3HyAcSxxX$SE|R&#aGzE}QNC=jQLP1pM93{{^_PjX>Bfk0R$J(84>=%iou)4-(t0w-dFZNfzGZ0-#l%F{Xig`T`nhC*uX`EA^>J66ol*r|*m zs1!LpclnjB_9gbISzCBk8wyw8-l>_7hsW?HvggIdldwY6I9^+yj<_uDNLTusC!`|H z{PR3}_B-mvgQ2K)GXm3qYJPFBhV7x=vJ=>aY%^+;#MI%+~Ejc0;blJ_IQMvNNMT(5@oSJd(KSzbDrijXX)H|wnYX@0j{1iyIf&q z+I>Z%nIUOy8w*{i78=my{yU!fSO`ffwhbG+)k=sZ4grTb^%;pRF# z@Z*=ciFM~F4sd|J5&*aE17sS$r(}sC1^IEc*j>(!<_|51irj{E+6*WN!)o>Fl8S<3%_O`m- zs(h6(@Pq8vrH`j=!H9n+;CvGiJtB^JuUW^1W~IWx<71}pw; zY{ZEFZp(NNX%%MEhRD`;;Mi17#C5wm6h_W2+W1!pWFksXXIA?EUa#K99h{i4^6>D)U&kx#VFmeU;)ed) zaSxFer(BTPXg=)nmqnE!z~meJ6ZoH?;^}=ReZsuWRO&!9C3>KISGd(#)rfQn4xB&trCD7J`shdY zFM~!zUJg}r4<4=9Z|xN1DLuXVpUkay zF^1?A&olDh!?QjXhA}b%gqx;$+zC*g$Muurz_IDtD3=WkTkam}843pLH z6X1`bR$b0CPP~U;XAS`#3YP0@FENR-SK9Lo{1oKcGMi~aWdO7Sl-9tQkwfuuo+)Eu&CSQf z2l&;_nM323p2k6x`(~>wM3te?xDg+?8UN+O^L}%2(UX^(_s5G37gsjcg_-QB%`h^jq+o zz`kVs-n(hLHL9k3mg-Gp(GjJMY4c*HIR-mfE9;n_(`tV+l85}&kW|33VE2t^WX zZEY1UFGU`tpjm{S~u-&H@#y>7)>b;_o`(w#G13Y=bEPG07U zBDfs4+no=Fx3{;4hkqEm3LwNM#d{rvfDx?dY3=z4IHg*D6FLy1MLl?6vh^wZan&c} z+WsC6n|8Ne%>PB5l3su)Sr6@t0*cg}ljOPN$6cB-ss-gEVOwL2DN`)s%z4CJ+}*yp zOJo!*=C82W=P{91JMYCs|DIYE6&d;D@%%4y<+Fw8e(2-mq|6v#&1#5;=^W}9+a~Ox zEsST`c(5ciTR(P9O(v}%xP_Dm8WvP|r6e-&DzZ@1MhwFS2pHVnUun zowm|*MFkkhc5U=v5+D;9i81Z= zAdQG_RHeX*%B)YokOR9e5wGuo6%#^MF#3bZ~u_GzeYN* zdOiUPW3Gawi3KV>th%^!%`Fd{;B?d?og@p(y%j$$ypACV?aG;&jPW}8S+$q~Jv_x} z_{RR;V1qpcTX8^Sn*QrK|Ij^FbJOlBz38Gc+Bw3|hGctKBz*xHbOHQ9i~)e4o%6yM zM)d1f)f%kt2#d78T*%XN+)H`KVs-%~V={3d9#p6ypM=$IQ7K!=*OM1~eMtd!{zwkW zqoVW53mH@_Wgm8xsTNCp+A%n!F|Agsyf!h*3LR47qPd}E+is2z6YmbnsFq_ms6`*< zyt#^03wuUJueQ$}M-Ho7__C4o(Ti#B9}vgr@03n?@Y+%29j1w$jy7^@Z5ZqQ&gCOj z{yR!k3xLhw9SZ7xt@E7E!XcZoEc5JiycLytLpZ8L=pqB@eaP}~I2!twNbOPMD{v1` zj91Dt^!@h)v|TUkxa{%hpvxqV+$50oc&3adi&`0tl+b24Xj4@CIB|-xCsmjVQPlbs zi{M4UZNE!1=0ue#DQOxV$|(QNqJ^(Es9Tf+t*HvePVe_NRUbmCD43;8UhiC1p3bZ< z`g;SG(g3Es=tRCvIOHRh%Os9!K?uNhfcf7i3nB2}0e-B;SNK;B6k2t15Blrtb{if6 z;>RH^*x%dOj_{BJl8yx?t`6B5gBOLrVaIxG73cJ`R2t_^u65^Q6jNQyuVwb4l6>`+ z5Qg4v9Hb!y;MK7%t~V`8tE;DO6iVZvO$l4FOcTi4CYJOAau*ACk8Kbubz$9Q3sRBB z4@A)}0QW%8%UujI6?qZtm~uUs$?(YCA1nuV-9R^-U8PAS!j)e8_JR#MdlCk;6f1Tw^Ju)G5MQ3gH^|Yf``?(R*h| z&;1v{q?s+qwrfsxuSC9q4m}pYas*xtf;>E@?b9nI+-Yh!BRPw#y3%g4LJZJuf)qFY z9|BVrjlehM=H+#NK5cM0Zs8{k4_gf0t zqlAvAtVr=P<|cPt>GcjVE5J7KmT(+Cc@MC(j4(Jqz#E+FzGh-%EKRXKyARCTrkt17|SN=f-rOc7-43xkoQi$oJ|7C zv=0K?f4X@f4>u0{ob4}y8yU2vh}Pr=A0H-5*t)9=>4^-F`tcov%sYmW3A_cV+Lhe_ zMgkZPZQ!s0J28O8zS`>X^z*Y*ANpHv$9@s3r6A-}Iw~QS?ojBZKp#0|HqI{a83=iB z-4eRRu9y)OQ~bc2b}JeXBi`f^;M}dnnC&6Y=%dr7r5z)Ixm_xasnC5{ks3FOsi9td zRw2Z@h06(z5~R_LsVJ}@M9P{omCx^gcQRLW>ZTJ058-++$Er)as%h%K>um7mt%6Ei zQd3zaP!9*pwS>Mt?t!0#mTezfPtTPW|F(MYo8JNIFm%I}opYJTKJs=>W@|=xW7)Bc z)H=bt(tB@zc-Ov_cdN;yOFd2-eO_(NzxeItiu>5&G);pSTpBM}oULyZN*f4MPj8&? zBZ|aPM4#i!lH|#l$n4U#FNT{|Q_cEWyd_x!J?1CwH-w`qVD`hucmJH7M60D##>oP5 zboW_h?fO)8=()YVzPYx|Nrgw7qnC{CZ(12PM1aoiwW59JCBv?Hfnypf`BnAJ?%Vm8 zF_YsTT@-N)ri*;2OCzAAxcB2DJ*r7gQKleBjzef76(1o|MS0So8WSw3`l6Ltm+C8D zG}q(b!^4AT&$~Xc$zlGM{_3(-M%dVh(6e}Z{7Ehfa$r(}dr+oSYB{qCL0Bu(QxG?$ z*jS>G3&0sTHQRTCv5At=cl>U{Sz{=_9Gbal%2q*cc3i-$`vTW7nyhy`W=H`l+eTA17)pH`;D3OC(6?1tKYwu+XE%R z*S{wx%5E!_u>H194}2msKgchoGfA=I6U)d zjM-8Z95cpP;CbkXZ{_yN6~oKFLZa4L(@%3W=!+Xu{@Q+N_&;fZWK$3Yd(sQxjX;Q% zaaD||hc*F?yZU;O+Q(aj{jx}W0s@8(3XC-6-)P`62p#j9A?2JxSFVMMG1lya*O&Tz z$415{p)^BgDf_b^0cC1-!dTlYF6e}u!Ae;47x`U}C*qQ1*E%X5aX}?SagrN+8wwk} zs~{a0E*h4Ky|}$;Ea;qTwDc-}VJ=M)NNf@$=Yq2RlpRS=4^J08h2H5kgTPAXq7Ue?D`Nega9L_0KhtHQjeV47ySlheam=+l9WJA z|0C?kr(7Y0iRL|st`F!C`}uv$Nf80j*A}W!pGi1E=?j_(6nxkxlKZ zlC$wcC@G9jf`?oj$+(o%?$Z2Qu(wL)Q2@7g30EQbksZu!GaqPggZ&obgA^;O(Q(>I ztDptkfxb;7L^+74hb&bP4icJCZf|XstbD#$IJ*S~?g&a%Nft{U%u1M%qt-326^HB9 zP|J%C^xdrgu?^j;Yx8?uUn<7(kMevXTmIH+^Nl}Z1X~d?xj3U6%b(I?=b2d;3{q^M zAW=nqacmO^_t-nyH=g&@MAbtrBqlyy*5dEGtnA8{pkF$tV0f#+(r_TW;KNSLpvozO zpp@hex!eMs?YEkdCZ2{Jd8<+5-l#~W>VtAVx5^(P7R5h9*PS-J(}Qy}xoN#1H20k@ z!-1AVmelRd9CMNwuDkxPaT3+fD}7_#Jmem(G_hx+FyY#tt}l(LMZg6daZhyq*~Q1> z?eup(kR^aWFK)GZG@VRx#*t|d;h-frKZ2pkGM*L_LQU8s-F^i`mv;|q3+5{riKwJt zVrjJr(DhU=7S^>oJ?dRcc4S6+kSez<{b?c@zwQHC+|u)(geTFJ#YQdI_5yx36E5j` zqh&&-K)lMP-b@S)K~CI=({w6sAtnhU@rXlx#@*=aS)n{@`I~&zSywpnz)kHH-bnnN z>}+gYcoyhd9^r~C0^aVxrJek5AAAH6i@?~RGWF5SrnOAe;C#5E=Kyf@?{qngHb#V+ zuIBrOJzA>G<)N8Do=xec?8O@@^+z^AT;{DC>(}<)cSpQ$Wj~N=23H*Qh~lKiKDDT` zoOjwtej|p$r?~IBz`@tUir-Y0)fydh@B6ZaMOq2w5D^i0`a_BLZDxy=_b1n*$U01b zse=AQZjpmOeJ?BDt5*nmL>1s{EtCZV4`y%uj!u^_C|5a2*Nv**_1jXQd}0pj-R2%r z@l&;5Dr`|j7qw$abxR{iVlen{VCe5YAR%5=BCg0jJ4i^mt@Kws!JgOW!BmD&-Tgx* zr^K2)Rch#WI|Q7yfMg{HY~!_7F?FRWQlA%#;*`yTyb8wmtG3LiY{?A>4q7yoHUXtU zil0Fd@OR`bW%JNz=3DN))K|PKdu&mOXBe=kx~}LZG*-bp<|k=?y~7h!a|f+ZI>M|b zD#GW)r8hd;X!%JwqjpSng9#20W~ zvI9t%-0w?EP78U@W7lQ6#%(D`K4QDuWOU^ZCkK0K1SX-FCExzw!turZSC}&7>JhnJPSwGUMUvfi zD>7$pL2w1?dg4Qx6SzzaAMG>-+RI3l!Vu)8#gFb^yL_L!eO{C`9*LIuG)jpH_5!Nm zgr~zI-vUGybExf#%4dwOW9hOXb%{x`_4GD7Jg;wFjU8utipxNT&a~6tlHkHNjE%N6 zB}JE&Sh;Up6QgSC6*T6iDTm$K-(o@gV~W+%6lq1p9GfivghLSOvLIoL;gJ!;1l0;F zx@!NOz=-Ugl~#s($Bph)XvAM4aYX!Y6|*Wt++#Uy zDJOnmz-V|tqQmhmCs}nH4$?Gb&g$if&k-p?tQjneu38Lkgz5wLmHwd#uK^FWmuz0Tq*DfSh&%;qD>5wTQCamiI+ZVeqV`9D<{Oy8taW-1@_YD(PIHz z`LDYPrUhYR4Zn-A*}+st3AN;Z6=555`3Nol9Gcz(ReVbxq{LNKxH9U{%9;xbXNO*2 z0h`*)^t2k8%O*`7s-997NB^9Lb&lP8rma#@r{L>x(fcQWy2Hvj;CEQltDEi#;lrAsh z7lTJfKvniteAh*JnjQiZcl~ztX+#zQ1w| zc*isGg%LG=_ee>Rw)1{gPPhQuSdX^w(H{SP6w|PZ%6Rek#J4{bLWSZxg1bhBFmzBH zP2affMvV$Xy0*2|<$NGH*9iMEBxx&?h5=qM{&NtOkyD(N(iFu$ay=J=h3m~K0G1FY zE!v@tR+AxPg5w&8Vjj1DEJ`;|m$Ro)A3jgc7X->oH3Mvx=otxGyhLb=D&8|HYSRuZe)KgdJ4jSaGEF-Q1 z?1i>^o^9*|sRIvX!WV~+-gcW@aZ%+slq1p!Nc(wlELRg#wGpe)_1dWKAN|B}g9r&+ z!?pef&pG{bV`i#XMr8e23pt6nHuGwra;#D(#K`92jz}1qX@G2l=<_r|@cp9^Rf(FL zgJmEx+hfJ%6n;0+Ds3qLyxIYKTt+xCX}vq_4wJGWQjochIJmTk=L9rG@S8-Vl;|Kk zZoI=zHvrd|dNRZ3+>u~pyezDZ9y*AgOkBN`4Qgz(=KbBF>c3eCqeoJ4RX%f-ai7!Q z-VFf%%frNxDLn%1mlAWDxTR3YCKSzK&G^R8?xV{HHrrj!g&w!OTli0~5<+zg$U=EM zL!qW)Phh5pXiwj_gP0T7{qud|`o+W62=T;4SmpH2SHXeGD?aSFF z50}c?4n;-!B&DP*Ks^&pTCm+8Bn|&YW|&k-as)$#$;cpj4&@~;L`qDi7z-;Sc_OY| zg&X-kAiD2!Yz^4W$SFy$I{xkM8d+K%11iwV0*c?HoK!RUD76f{2@0e%mgZ z=z+=x`nS}{QP>ZPQDeXqDyt(Mpf5oM{uD4qfH`~X?qo3fFPY-v=LZaAodZ~M6*DFz zRvz_NoCoX|Qa!RuX_x}+0l2HK1z?wPb^UKZ1RRWksXagzcjBf^_yrP7VO#~hfQj*q zJnc+9HYBd1fEgy5gvUtCgtdkINt%+95*P)R0;jps|2WVP*(SRNW*REH z3C+!cTqr#_YX>llKLgy?m7aeb1M<)FTt2R8ZKl#68SXcCo1`HEQphB|c!Qh2GZ)kb z8jf?d1CR)@Czj(AgufgySWx5^ntU~DI&X*ZLic*TS_l|RT9b76jwR_dbjkHTZl&A5 zSsQj;?Jh`vAvpE9qapiwE*!lk8A<<=&>A)*D*e^cCKx--khKhM9W`w<93xX~UCVx{ zxNsFo-#$e4tdLA-lWL-Qb18@k>Xb%p&P)XH@u`sxGlJm*IsKa-oSm+8)<5N{6M9Qp z+wjM+6e-piMnj7o90ee80S@rMaDZm4w3~=VqQ`&Afn+HU4hthPLU4d{vMO zUK|QNDZY7&CYax6a|g}cj1Ex}A{P74is`=g>QAP4*?GsQn~$H{gI(Yk;Nk=P&Ad5J z`i5$S_8WBs*yV|-T>Tzf4YRetH@UejBCZ2ZTyAb|*H#xW3It#kNRXkKvSA;ylGUy9 z?frp|PYbQoLeZO&C<3Nzs%U=%67r#mI88D-pOB0T9HD_1WKX8v&%E4W8j&LNr{CY( zm7bDop#HURD{O2gmS$R8`W{mWy^e*xBO&GywKfmz^MB_IF(`hFvCnWk4H4FuBD5D@ z6&p1#Z;niiFf_hdZWn2$e4$?}s)mOOectwW^tIjC;?iD%*pS!H4NW;lBH1y=EPQ2m zBSbfZ<7*x#S+UQn-0h%T(g-o-mi@Q<6bM6k%yFr0o`LYt*%>MLKRjDe0S7F-?#@{1rrwlSuVLe$|Y|vEEzb(!F-m4@U99 zi}Idc3APddX#td~uI#Sir3Sw7f*wLhT_{J(Aj;}D=dtycqtPN4J}C_bQbc&;{ce2w z%J1T`Z#dv?fY>6-=uq3z3D)_B{w=yvnqjM2MOTij{E=?w_bbHxssBlq_cG^#W8QX? zd!??}7daP0@`8r>q~!@00>grSaFSQPfm_f35>?Q9dIiNi!iE`6&vppzpAY}ZhcTUDy8C zJ)iqM445&>xyWaE+9o_LDU4BqKI>p~%*!=V&q|-4lUx84lb#Q~;WJ>(Q-YcTlY$UQ zqWV!y{qybIQE#jLtdbze1^ssnu`(<&Tbx9Xxf;ks@ZD!Avu#r*_3tt)A_%USd0k6W z_Tk5mH20u42ohP5UwH*kak60!bs0;O2;iq5e~}vR`3`_aK9?k81I1+vC%QMMH$5Jy zOqO47OcW2r0VJg%>=_=)HwrFW#0%yKxco^O>2HY?o7muavLL%8%qVL~#A1;a3u_tA z-TXW}^#*OYk*z@yRcpe#lay5ZiY_FJh4?Td9^Z*t;l{M`ol=CO$#733)>yb&GMVy( z0s~sT>)P66p1`SWDWI45$~kXP6KMwuhV4LVEl=3jL*({m9q1x88XZ<^GQB9#gy98| ziIP~;yE0s7hxT9ozEswBw|^aGDCO}33wz|kii!%gQ+(>Ee)az4QcunfseUS)zk;k$ zqkf$EGe*fEMoW9=e2P;`c}np$nw|^T`y1La&809Zt5JsSPD``4g(;u}P*fH;y%X3;UX!5Z z&g{RM1F)ZueM}0Bsq_oUm9?j$yh@jf6Ktm%7u;M#NPi~hr@|wO>Xn-!Fv1nF(r$0bjZp>K6XKt(_$l_vW&`GEZlID-k`!&8Suf)3mU?AevF(3z+%ox3^|N2JHX zmDH^lGrTl1T%PPNg8pI68Ev-TD5bzldqIR#7@{W&X0?J>s;nyl@d5T7p_Q%c5~@#W3)ai=EnlTb@V)-7~4=0n`9VYKejbyo(&5KxE!? z$lx1B#C?~26vSge10~`ML`HGfZ|Mni^7GrQX|W^DixLZ^Xs;q5+r@ZRVPObI``yFL zrV_FK?X#~Z3~ZTXX!*R59{uO2ZNYR(; zDd2%iXq?*A)eyW0BexeUEV4Xhy4dXsTDJz~oL5FatD3H^DqqlI)d>wwk-(G@ zJiVBS9Ve-m+iY<1Pa)FiFX~~@TS5aMR4sMx-#zCJSn12P5veF>kc@dv<#snf{I_Ue zpys^L0E-i9=fw4_B=O)M9;W4wi&Ea=99fup<=ZINlo3q_fhJ+}F$UVmNZ?rlG@O9) ztx|2s1}qDGatQ8TkCPyTwV z<9#oJNC42bcW17+=Z-o?5)|E}ytu^w0n;$z0JnQ|vd;6|J^njGNlLWt4g?6FueJg7 zTz8wN>wgd8IkSNls98J144G2YL-F?(y|(&M@rY z+fDsxu;z;?=u;rxG2CBrWE8#3|C#t=$Ba+Uz;r$^U|*EZFb%Ul?M?T+)QxoPYTOn* zCnGML7gH#M8Ca7coT|bp;IK4?=u@u5w-1i3uI?Z@qt#i_ryT?`<1e}se9K?TyJqe9 zTc7zgcoxdWOUVqrRquvrC-cu*9t(@Y^9BkvNwK}?peW^o8_Sic|1XUG{5lEAet;;k z2KF~km{Sl(l(|V;@Z??ceYFFEUX%*8db5}@u!P7+;1b&Rug~q+gx{dBP!jfU2z&ag zN}Q&Alr?JnD*Xtt+nPj-cynwnDP~Zh+p3wlftvov2o+J_$1Ol&zVQnb(zL>k2)cWm z_om-ujLVRy0$=)G-uC?mDQcQ8CF*)$cc8Pg^XK{_unFulGSa7LWIOdhuxirsBpWfy z-`@Ykjv=JxF7($p$-8Ng*w8svY4(fbF@H>Q*U;0kHDu5+7(eb&c`1{Zb5!vV6P|$&3Qu%`!g6Z*I=Pp=8mS_+!xxs zrL|Lbo}JZE<5~*R*-~NQR^Iq1hMKepbG}6f1g=4OsLI#3%r?4ODGEKDiU_t1+(sJj znc80io(OKgFhY7~*-lpaepV&C0d4U~cnm>O*m|T?nD>T7i3!=-l$uX^@PhB<{=wC$ zQO%@HoeDpWwYCcRczOE?{7MDJ1)3HQ2C#Zkx!s#`GmB$H037g&KDwUOI0sE2+UY!v zRA~79i_AD7Y%UP%`S~+m($ut%yUwU!wL{G%`NQKoD;y4WG@qPMgqT>_RmyupkZGLKAKjk#xA`N>c!zXAQBZ&nzpE<;C@(*)zu{8Z z>BGzb%eMOae9!~V$=K}ZTxxpw_i37BJp8uzHo9l|-~v{RKM2D-V6x4wTkJWSoCm=n z)V5CY``EOzU(A9qr=`p!Nz)9wwTkWhtBUP0_e@OF-6!qd6&cwcIprwP9uI+};^j6D zr9Kf0(f)t)qok!!1*V3pD|v@i-OxMHFMg-k?Uqr0_kzfVn7llG8V@ZEYhUhNO%0sb z9&`AkMgI`xerErfp+5C4fW_C-8|+^J0+)%TId#)z@#3+i2elzArsEU5@Q90mvP(5b z$hrW4HU)WxiSI~|Ckgk1Zex|gX@E$^Iirvc0;Hf=-^lD zx;!{6qX|BgFOGqeO#PWD>h|HhhB_qAEMPiD7TEjD_zmq_DJn7K!)mF@@4=|rF(0r`=H)M(hwHD0Xv{3knKg8lLd|hF(W-aqwrxb6><*@-^E;tJ1Jp^dg^7G}nbz1i*W zYwv#v%u&8x628h9XH9?jZIH>zU)+|5{Xd${IjXZa+~Q$s@?_gh#$->nzS*{I+n8#y zZTpud+xBGJ_sqTPp4Mu$R)5u7?|HEIXOF8I$S7!2PHtAd&u2Wj4>W}DXHXwt>jQ8A zfDC)HYE@&Svr&HPy@Wb3CFoXe8y=_*BVIu5fI590*7l;t8NZisL`cHk?HFW4EIRgG zZ=kWtfhk;n)YFe89oRH(ba}ZscwpeaNo4%cKR3o+W7iKOhjZ$qkKcZMCfY&PeozgLC?oNwTf9!11|Y%S%p9#9 zjjkYPj+SWJt#?^7G1}cb(fp;JRqbPpyZYrvY3EK83f%QV8|s|a@t8hda|4n*pu~Fi zPN-o*z{^jxf1w+)jD(Ai?|s6~_ZHX@ z%Q6@-Zf#r5W zi({zZ`he|^xd0Iad|R~Yc>w0%r3^FVQM`-n-{BucxoCue&{V-}f)NbVvpd z={>=7{=@X5_RBT9KNfV26MB@F?g2_b+{a%#APgQDCB6fHPX`?ptS}mLJzXgNn5x=l zdk)KJc-e4V*0ynF)fGTqG=SXJ0~pR89&P2{d%*`Z@Mj|By$~XWMSf~F8q*r5v&F)o zGoeTxR^aYivN>Yq<4@{nAkrmq<)@95h*UH%;+@;i%~o*^z94#&iwTpptQl>lRD zC1V4cUFLJ}CUE2z(58!xFX{wgX3G<0^L}nsm^$%yY|$g#7}J@mj_!R21$n-a{Z&P! z$NU=P$&yZ2l5EcsD+g_Mc%PfjNI!8>-p_)?UBbwE9CP2Lp4*A)YV2?BYJ!~80fJ)> zVdbWAr79_*p-5#EHG%TKfLfOVYa2}8iSHwe2yeeI_q^#Ce3NW(4~#Vc2J>ymm#kXP zBps!gnlUh=JHQrr(3@ZF0{&b_llqCD``fr?q!MY&AH%L}#+k1O*pG(DJI-qz_HghE z&(;suR75?Wr~h_8-d#Ovy3`YA*5bhp`l%>h-L@K}4|&uz zE0oqDMS2^>$|8q?m~=~7LelOdlHMNfAtrYL$*WQV8uO)U9iXAA$iOXXgt0ZVzhN_h z<#E9Pi$3>$ji#&-%w+t&1uJ@n(b8?~MKp_k=^MbGj>Butd@5VE+SLremv5i0jmF)X z$iBL(#gJsVUl>9R^nz;mccW=u8Zl3}XFT(4&@j66{}6H{R6t8&EEqaC``+M@(i<19 z$73plNVY?{-M*{PyF~p=-&$L4e^}jQ0}X8iV(I*zm@`bs<|n!&LW(%@bWvfHeN~1(LAJZWR*g&`I^1v|WQi5Dr#ZS+WfLV^i?I}lx(Fmq!0yi`*#;vd^!_6t^n3XXl1 z5gHU0o?E%ASa}wwVLoPOIBa?{H79}enJ%sL9FbZa51|LLCaw7)30oS>%|s-K0t}O2 zGVEXn49u|No|AKhqzW=>X;E90M!deg_L?wJ0OP=yg&JQMXJ?fnDG?>9;9pa?>g^)1 z(FbM|qmdSr=R5z}$mBYp zLitN?B_M40 zvc$%9#E|g)sG2(@x{fvRAXomJ5|32OTQnh>_bIour)F~0k^KmA zR{e!a*VO(6x%+23&vUyOp;hFhw}aZUp3hMFF%(-YF|3ybhQD^qsZ~mk(*MAAvEkBt zuGvLt_8z4{2oYFymp&7>SYcd(}kbo?PZ~OrrWS^FPwl5|@ z;`A;uO5pA6{Z{k&QUgF)u0)+lQIFFqI7<`)c}SR2eodKSoRlgnwN!JPvS_t#dqVIA z^maq<_B;2mHp2rB=ZC>8#y@-4t0%Y&v|l=d@o10GDVv&icM?;@&`ph`GAU`%Jb&mi zri+_3tN^a}@IDf+hEqlwVG`X|KjN*t`Pfh^=t@|lIo*II`7>hCpk945FR#;+MLd8O zaCx!uPnEa5eYJh{UrxvI#6j)|s^%;9_5Q_}%y?#a8IV3`-r3&l30SOYGcuA!3T?hF zXN7;TILsV)JHK+04s^lU&ZdtLIgz_=%-I94Mwr3a51H!knP;9l83>f5C(Z(>JjqEEW#jEo zTfIT#>;4iVN`|J@<(7}DO$#X?#`ee;x*pd({ln1}=Uq4;1aDEZED5GSz_6mpCWFIc^6(Z|M%Q)oYiQsghJipN+-ZG(W)GdQ|WdItFt89@z%G4#|scsj0D$}uc1O{VMx7fLs9F}AbiTo1XiN0eG% zW}KS!;x59YaB@;gM-uIc!^Kq!e%l|-QF8Z$1Y@dc(G5QxD6O?eX6aB@aEats& z)Jw-rQKmwu%jCE4zGV5i6lDBFKJ~utB1CRoIK044JWBTEe#6dme&g6f8)0Yw@%0>~ ze0&M#)9hZ{-WT2W=xi2Xp80q*v-gevt#$}Gk%J@>s=UKk<`)zS9<1hIZ0S}q?l_#A zEldzZk&N26a-BE4(Ot1Hk99h_xBZbhz)b*1x5BhF82RiA6>3SHMby+5yOUq~{5ARf z%PcaAeJC)+kBe@PfT`r2A+8*azB8Pn5q##0sl18j1zd>sQ*x!K$j3S=n~9Z#F6Hc% z+28i+U%!40NlOF!<+&9gLkXA@0ICN-^JE6>PaB@;1bEzldDfp8Jiy2TP{mtaUKauI zm{i$m`&?4e;p@K#*kJt2x%Os$q=I2_{TUgn^@Wy-OIgeiPSySueO4ZC#`zDngcK^G z$JoWjD!AT+i#1$2S;A>6%1q;O7jKmI(gLuo=DF;2vbQg#-6bK=cP`Ei8OZ*G;4GlR zOdaHp-vN`Sl$;~Dx`0mGswIJmZH2y0wG&Jh^mzN0so4&B*M&`I( z-M6+m=sZl7=_|uSQa5)H(_GggoT#=Tq6f~ORVB3IIq+L7v^W)DRA1x6M*OSmf4lN% zn03BKV%pugIzMG-jsM?A;cZkcpsn#%vi-?wJjDUkh_BM6X&o5@DdEuGgFvig?_b7G zJ~@#6QakBg2g3NGErOm@T~Gn9c+KUd80E8%Oh&B4sY!RrVWN3tL5q^5m-(-LiX-Gt zl%uw*4kr$(f(H}vwQd%l&A{etuER~Dv-ovHZ2E54Mtu08F&I+SZCiqY!HGN_StJ7( zYd+pz)vC2|V#MTD7V9Gzn1sPvPjIkvIcra|>yaIWW#>9cIau>k#|lUtot>STyJ|6R zr9sq`CkfOk{P`@ML62jaR%wa-`659ugjQ zQoi{eg2w_B-M;TH7Z-9MH6g7pOy6z2&%I@Gr(#ULM?s!WAb6sf2&!l)zj ziw?jBAj1N@TZ4y3?k}xT7PxudtYpZc*;=%viOWU*eXv7S8S4(%(DYKRmK9g)1hvnz z_8w+48p~@MI}fW@iGKY`7$r8XD@p@HIiJocg5@2Q-kN0l`TXx^1v;wODQW-E{uk9w z47tD0ZG*jm`ve8QRJ>8i^N9O?%fPkVW@b>ahwdT4I zGl{^O8!Zps@wtX=&4{g@3h%|7prE`YdjAA;Z0Wq*IaBiT@@8}C+`{Q!kTuXf$|RX9 zfBrasEH1fG&)Lhjv^$SKl>>)}or9kKB6&#oTT_Mx1S-$?Jv93BcI9nn>092*Wyzf? zBCoKPF!3*g(QdQ_CFU`3FX1%rFY_hb#vJ=NJW?3>jOZcNaW2GvTdTk{OfXKnkeLXB zx$Q8^x)Vnu{x$LqIq%loSwLh&>b^0m7igVwH|67rqDN8$I#=~E3WE{C-*q00EQ1M7 z$>n{kY`6uUh*cZNvG+Y~T3YS(mx-D?P}2}Y&>Q3^3syX$gB6_s{~3hf;XQ1;l?K31>!^AUcU^{GYu$nXS;Od^w9%k8*#Ef3q`51PA&gJivVY5r?6EbBOM+L zTJt+-0M z89eyoYKaqifjc>J5g8B&n08^^ZD%|I2m1T6k|$>ha{uP*f8U8cs44qD=yt>5u+FS; z*0qt!bybtWOw41f8Z_!*F@N4grQv)vHWj)38fTvL1%);Q(&S1|0;!D>g`{v`r&3M= z`Pm?Rc@SzTxVR{}k^Fg^^1(f+c8Mr^brbBWaPpL;xkx1Dc* zIpdZf7EGwc-LpxGPA?(a&vZe~&V-`*ZtwQMJrEB+Jgq}cNy<|HfD0HP@R>F@ zw`_VGo_iam1`3Q3G^bk2$U(A~nZnj>*c1D`)O?JDhuiA%9Qh=ArKu~OtctA`SCre< zNvN^QwXn-$5=@wRU!7gqf1)LDgMga!{bcf6#L@2AaTm{LMGl-EsEeGX$Tpx|;v8Fa z0{e$2LvVgz8@*sF5{&fLX$Gmr3 zojJ5Bv&uR`pSX3ve1yRRd}Y-y0IGmVR%9IbPwROv1n^vhm(r%;7MOvh=ES<{K zRqCl%cI~KG80~P^8inav$j-E_L$syUbTpjfT#eXl!GwBpJ^f4P%2dcPumNX6JkDhX z8OR0c)aI;A-JSZ{uG3#0(?+*+HxMv!~Nu@kzH1$TK8b21NHRS()q z)XmkFf2%DAwPH0fedBZdKY+T~^!UXn=joBV*ncLN=&1H)>JCZ>AB zF6Kh)6j3NW0$k04+?BvL9)O>D2_T?VU(%oM5BQw9dwqObp@y z)!D<0B7x8IN0+*W&qJv>{-(TX;CTkWPHKVMps)oOuBWGk;B8D1^vGk!0+?X4QGhLrN)~d`m!RD37Vk`%cl50OY{mZai+TtuM=DhSRiNce18R z9cT@~-Gn`fFZg{cbz0$YS`34(vrXBuaL7}H-tg5WUCn8FkeqKq6 z^L-VNRehM0@9yUG;_Z?c*Di`o1N1H#20Dl>u6}YNF09?0ekw(jpr8TJQ?0_Bu0>b} zz#XxEDb>mh-;xXprtRu~^6nrfz2O=a8tMLeRhPz3d*NP(^t>`|`W)po#Yu-A3lb^W#fp}Uj>N%o*G2Gg+xeTHfV5kw7O?2(UOZ#`K2!XtthuyWxmZV7kA;a z6!!|cmL=up(v~?KqSOvfJDfAC=fpbs3m}`dTK}qiaeQ$!!$DgqxOQg6Y-<%6(%(&4 zNGUJp)uldWXG=9-nNF1|5M|eEuP;u6A#p859?Ta+cc-TXaZpPQkuU=hCKrD9pl+Ii z34^-9Z%YD>H^djLWys)v!~@Z60{LMQ7tlH-7`Qsmf1U?wwWhwKiN4nTrooMCI6k}D zwzsiCRI6#ktN!YfY5qQI>l4o=+SJ|s(O2|hw|`o6ZNB6Jpye(K$;KW7${X|J+*)v5WR*Xgl1A;pFhq2t3oQZ}KN*5y)nBz9GH(JMZNAS#%irxiwf4+!fh z1tf)ZAT%05v@M$3W)@V?8k@ovc-Ea$;TrUT#7%@=U7B<&5$(U$P?ZInVj=@J`MBt* z^d036di9^q-TsMn{I0kBu7RQ4dZ82{Bl!Ih9u);yAo4mcauiPa&cqkPsh-A#4%GOx z2%4tz?LV6_|9p}zCLz}vi>ZR_+?e|a8QTzo_-liQr0aObT1SP6&Uu;9S_KQ5`_+a+ zNthbp;XqOEbNayO_dJ$wZ9C~7H2Uy%_V`It^sm~mc%W@~K1(}tXFkL!Ias(nyv)J> zu=V@^>BK4F+AkEd#a{s5Upd>Qtx!ZoaUpmn6zFFU4joqO13z_$Ryu zN)`2hMh3DQX3ENjHP_}w;LTb-edq^Lya~K_A1(`42`M7p&cLiFA6z*p@^UOMd9m`! z`!v})c;*D9N??7I^3iv#H_HaGkw79E1VsnJi_hbts(7sZvQT<5ArF%LWj!GE==9zW zxF@?l{dzuM1>StQvseU0^PpIywvSsI)28q;AjqWWSvJ~hhNB1z$2yyvU0<8lI38_d zhm35gww4;Z#&F?p@@{3Mq=ij4ek(NrN;=7$!&(_+K0)lM%lIIknJb29$nnH zY~abtx<6>^g2=-6@?lNu65@aKciWWP$)Dygm~yJgGqjA-R_^VU8YJ8sEX?=_Nx`gZ zUReqp4ORyq7&6ER9$CcdEZ#$=@75Jr21n$;E)ZfzrBOh8;M>K#k=8F;$Iz#*$o*-a(@^|&3DJ4hVwdVZeM6JgYz}sgMvjs1@P*BfyENfMU=mzLiy6r># zmrL|_#@_k$B9FO>sHHFYf+|= zH&ysl>9sB!OwLOwqK1Zus;cUy$7`0~%b}le@N9dau7@haW-s;ZE0>`?qN(M%1A$S7{}ytf3YL3o8r?KcxQ z!NJMooba5c@gzPfhli6qfAbZ$i)CF|L2x6qju zQ~KjO7~+@TlLW7gi9*P)zeuBG7;ibt1@|-T(w98q5bw>|v$FLv8R;31Zx?w@nBIk0PBwdPaq=LOOX8`+$jM4tGdI$wzGv#hB`2nnnG7Y1IWI9irUE9*!s9= zal2Rt0E$2rAdX6+_8$Eoo>x1=d13Wg)(5R;fEnyOM3ON zN|?`eAu%ECrFA^z2aB!dBI6c9_|KJl+S;gIi-A`3EL4-3@dAK*EDJ~*19S^Lt*uO_ z8a|>eOsu(FTr1RPuwa#Qk&@sWf&)xsG6U<9;vysUA7}pl^+@F-K5A7Wq{1Ubu{hx( zs%mOLge?56@J-6s253vlnQ3$af`sb`Bgm8qG0Z3|`Jt6jes%Z@W~u($=d;~ih}b}} z{5?@J_IDEPW%KDJRqO7M@ZCjCZs9?=n=m4=Cn2H1b(+rAtGIO7i-=I7glX??P5~aZ zF=XntEB6ws{Uuwf7h#IZ4SQW zuP~nxhxhEUe~267UdtTifxCjK`5Gx!WQyP`oUC*bg;2E;DpQxs?(1lH#>Xm@|M)jZ zH9r7>I1OH7DXe%~S!FcerKdH=lCz-JSiDd@a-N) zLnv7)m8FR$D_}dMYPZ$?{+#u{#{Y&nRslLp!vOUAb_%`R9-WTnlj2y|K(9^6&M72u%D7yo2ce+A`QL9UtG{#?*=@h zTXK{D45bf{vhDYNs@Fj?avH!O6h6Vfilj=A;!c9dGEz45#|ZLEx5?|C#2GY_{SKrP zYMmBN2HP-=OsZY#Wj~tbs;QBY4=27qGq&%p-FL*S+pL2#bpLzZyEbc6D;n3KZMu4o zj@Fi-Q>KVvXLd9vIe}?cTV+M12fuWlV^5|3;PIIGP1iiWiZZA2B&HVGv?M$Xx1vGs z7~Ofs#qcSFvQVL+C@#5RVI9u8XsfkG&iH|sKiUKlLp!WCp96z8(a82Y)LX@_pIyp= zdHvy~Zw+Se?mSWMV^7iQQp+SmZbO5}4ul4BZHxJ$I4D;dAAzD}oMKvnT#*|pO;KYeWQ^E)uRqU$h%1+9@b7*+Jf0TNCXuVfHz{H*?h={D;T_2Yb5ANik9)<|p{i+%(Uy(J3s02QvNYr4fgD@h`h?5RRfP~?S@(;3z7#DD`cCXWAgVlJfTxomDM?a8e5M1J^H z6rto9V%sOk7$u(mJhDf1`Dnd^tuI`58iqcM+g z$hQj7<@QPBwDI$O=BW(OtRtsAi;URKtrD>DGn=bVQ$~#IJH3I88erhL+)RDE@O5}R zI=b55zccg+EdIWK7PalMn4T0IAUw{jV3v+1?%yS@U+aN`OFW3$wE~z;6)% zeJ?F7iSH?HNuehGn;Jz@XQ^Y!HTBmo=Ak($u!!mGT(M(;uN1nk7QYK)&^=5CeEtRHy(;k%#5`pip9SP|>JZ=AAjr;KP1=uk| zaYQIwSfu3pSo&Jonr3)OzSS8<+)YQ{RB%U;;9i*8Omx4iyp?Um9J4nH%kSGq*fZwJ z=+m#E9{U~?>Fel0G7M?vuzon zN`WOAJkj(J`2f5+(_kX-hG<-S$@^gR@5{?7UQLgKyZaN6bOZ=9-w$5_)pEt@ z%WBhU4PZe4KKUA5{y7;vxiR)&!(DLE0fFY&Ty#p3)1G(w!~R7c^t|tEW%K*AH?k2T zi9eIoDH~B5WJNDuUgNLHA^Wk)ive#VGm85imHfP@Eg7yhdFmhcrqI3yYZGJR#(4fd zmhq5c1v~$I3IFcvJibPT$ejxk^~)v=43w^&4h+paRh;J{2_z8%>78{)U2xQl7}K5;M3#_GkA*R-%{e()6;Bl`)?en$<-{75&pk zw{g?Tt_{Wk3TkJ?CF^Tb;1@l^S?OxIk2+}#7+MmX7;%^PL?X(E&%>oLoD+cXb^Gqq zx02jfb4TDa7#!T6!73`t>DRPQ0>Lb^-+_Nig}|VOt^{Xs0Fub@KH#`(SC3?3HlM{F z+Bt~Fhg;{d*lDMnZ(~AD(jhI@!yM@1L|ohSnW^@Kolma~FAU_Nmxk+A+$4mGbE=@~ zoPrb$`Ksj*%FKIV7TD@BO&u9gQLdRy$H>SCjJxT8$S^~G+}MAb2f#O5bWqe@eOfM; zvZ?DIUYNAv?Fwvj93AU>dU`&+KaY;g>se+>B*EGa^-$LpHj6X7niVsNkH2kh{3m6{ z50PZfe&E|E|;(umi&i_>w=)r#>DoKT>;u9?Zxs z$=c*wex~SwvfyqpwcSlrG<_157fE8*dLUMGd$~Ol=*L-yQ8dK4+kG6+wRdH3to8c8 zMH*Wr^)2(`%%_H)bqo}kI1c{dm#4P({(JMt=;aL)FcxfC2WW;DT==r&7PQM}zEmi0 zR)H}u?FkE$cI)A)vE3ObYN&pu?$%+lQ=N564tVI{h+pC1uP7ln%Tk2if2)lcVSFBQ zI&7Igk)TkU(ii*CHN2G9+HGuZeu(5{rti^(h>IM)HJj=XT{7#)4@LE#PvyD-{A6{; zjl)tX^WouR_0|JwnG}u?k1jL>8;M}=&F?hE38;oqWbLF-D%|LJ1c?k0b@dxU3R)0L zZt7T&kgyoxroKNii~TSTgELcxqVVj0E={vHH?aGD3!a}G9%nE%rSa+9zBBjcAdno5!;dXp0| zcQfm_*6fkt%&vJOZ9TShP$Z@HpSsAsRN0LAW)FsNI=7W9t(oSr>`6s4F2Nty9O!|4 zUW#Z2o36z2@;g_g3tC%@HLVh--N2F1=s^MJ8I_`@g@ta#?wOj@{(`A&fiX9hLHyDhM$_$0o+}jR(8}NDX7lk-l+?ONmf$w*A27_zy%_=x zKbYbrl~}xz_tt9(bLw)JTpHB@KYco0z`N^JmmX3`UwBR5G)#W~O^M zDU`KAW8as*FoX$HzWf~-h$_cfRYk%7OFMe2Q+F8=^)musMZGWRy)PtD$qT%^i*Mvd zah*@t#6nD|qH*1$q@)aZr!u2?TB@tRv_vMDtDGPlp=7bJRSqIE0~?6(b++>uJPtq{ zb<+M|31`_6*yJ=?eTfdGdl;nKRKUwlIc{tzPXhrjA@jXd6|RhYAR;w26?jW`2dm^u z6S}06fovttv=PLKNp+lCO4LxSQB`TlolG54kr0}=oM)$4c&ZCs&cCX|F8I>Vn1!JO z0~vPoh6<%Pb7!@w2jhq=GS3uUMw0vNsY9TVzkSv=TV@Fj|FqWof{QE& zV_EkU$bVUQdTB2v|B8P!8He#o>zwlEkA8P>MV-je}Unyp$m<| z;XTDIPb~Vz<;T?{T>MPZmbcjnhc6;b4rnQQ-d6#;iQri!CJzF(;ploL7B@OkS--mc zE*-miW}zTnJS0COW^bMw#fL+S+3t)v@93Sr6m9V;Evc;)GrR(MmI1XB7Y8w{2er#A ztmGRy%6mGaMnop-lnPZAO6Cf%iM5AAH0Gg)WtOE(8h{P2)gw5TrO{#^zHgWm?ifQ@)I=(v7Huf{T<_dJ`V1U>a`tx=)mZ`tlQW@$<$&s)=7(PN8(X< z-Pyt{BDvh_a^yBs6A`g8+Y)4P295IL|rg2eAliE4;1ooJL`Bh!zDL4CQw z6B83TA9p2oo!6e16{NNWoJ25;4+Gp*deMQ~;_rL|4y_K}z3zc5`)&mF7076p=NsOy z=PhCVd8%>ZHJ7@le@IlQYmbLjJ;JWo4wN zud1ppZ#|xfOe1ScX$(Ag`npQN^J}&sU8?;lkhx-Dj7r6Cs^vLk1@4;&O^h$pd4<96 zc0!~uTQ4})wOodY5QEsY((nr2f}mbv(D7$TT#v`UYf3yUY}O>Y75$Mi$k5l`AQE2T zK+y1$^8;$6G#>f;m?A>!FKrHo=bzy)(mxN15dS=F+LcgzuDzq&Ns)0pj5M7#B-LuZ8!^V7<)s1x`|1S!pKH6i<-nxtGq; zidU(fO!YGM9@Sm%2ehRTYW|FSr5nL_@6Au+3j)X*6;oM49vL=#gx|$&osM_^_dhUU z`uh4cgpBzu2cq@fKU>Ct)UYB4TjpuCkgS+gPHYwR%>M`If-9%DW%$2UY-+=}OowwX zU9fvbP7Lru9=csDiNWkowG$Qr#?TI&q15nk9t`(obFra?*L3;5NVG25pK`Lz3cr~L zy{i59n-tIeB5b>0`rBCZwmDB-^+~8=(jf`lQo{&-?F@(%xPBg0nct5PgtHBCEs@w?T+$oWMbtJst{t zKI?r9>ap8c5r+S~#aD3a$Q@VuNld;pn5KJk9BDK>04l z)V(a(Tf6jU%6B9_@?+hKwpRD2reRJ9;@1ndP;q~u6^Ydt+tj)s7W;LQsm5F{v4%xN z)Xp!}*kWwE-}B@7Q8_M~n9~Hpb>4!Aw=1=qaqLh5Eh^*V&q1h{RPYISbO^kUh&0Q@ zU1jqhoB?}Nq!cs{$pKm8Fke)v8LUKMzplK2<`q0Kf;`kdG^LJ5|EA=;?Ng17jS>0W z?aa(1d_|nJo7E9pq<4G1qF(rB?FUoGkFsQ4@E)c0<=CHW#gsCC#{3PSOPqy%LR|&$C`)J^jM?-ES%mZ0za1^a&#qV9ElSBl}RhtbNKCKh2W&`soxo zS@R(ohEKsDiLmHye~0cvpsb5rbDA7te3E^ek@|fwd{!e938B5~Zz3W@n6pT}6NZvU zIO}0$F=A$II^cw2fEIerXQFRUHmHJ0)bG)so6gLXj^tjC2EO%W{#BIBRgF*7ee0)g z3vkO%f|Ez$(z|r?2jMF3_bK(67pIf}{KjB4QCe1igI8H`NPE;w% z<0Gg?dHu-ra~*U%NFy}m3;z1fPVc>!7%W?;pu!~yS zA)Ps|zQLc^4@fP?^PV zAhMP)Zp~F;0i*+TVJGdo$@+Rm^4QRrKbs_VYEy}HvkE-^UkjkWp8n-mIPN!3c13w% z&mU1J7!fU7draX5`nkmHrx^kTc~5}~oCd=-2LiM$rh*akNgFmB&91t$Ecjfbdij3M zR_bGAv=`gI$Xq+=m}*agr48zn3-bH0%Zns5b33C>CPRXF=jA;! zOvZ%_QHA;U&zZJ-57)HRT0XAq{MRbvkY$UtzrwKFa10!XQ7Tb+g0LABane9e)fa-vrb!I;!MeA^*_|zHojnI@ZK+2{( zxRgMgb38jyi3P4f&fEzR7*!os8e%t53$<8_cQP+;Wym+1(5RFI(sFepuF zhlT7yC$#x`Zp`9w^K^X>Ct}R3NB0+g7v5Wsj2md|fh0+b6BST|@*Eow5Y34jD{j>F zO?&q{#o@NMpWIh6N50H0)AsQ7z z#p8hJu&;8#EGo#~j8?zN5?CK8q+#%gjlxX#_Ia^S=VJ1dkZ22GLafMxWsDI}PCkND zBdpMR!`}6lx9S%wG*Pn0w+_0h<1|S19AnL7PP>h4R>ByvKreN`S$F#vhRDwWMh0`@(mafpEp~U z?1Zms1Bq5pQ0s7N z+wnL3Xu^0H$Dx?3o7-A3;#vwa%B?k2&XucUk}*uv(7n_{U}JZ;uVlSnzaC?d_?oMg z)oFtt0Qcpu*OP(k_(082)^MI1boOL!>eEG58b#;9ZnVj`tkqls%{Bi^{l-TO3rhZO zIw@)_M^jW-7Uv;3ZRQ*rWTvy)Ae8C8{ill|hJIY0B{`Rt2FIXVJ-CwiVeOlPWwU0* zlMNKknZE+aF{VY;lQz}w%lQgd+tYMu9s=SJ&4bu@bf8^mWJJWR{NMo+F+r~fXZLW| zW5V_Q=89?@=GX!11v>}(KQ`fH79*ke`?mfkSV$_eB31G*9PEC= zktA=J-Cp4`91$9t8i)@!rrE98?&93W+7>D7C$&BkxCWPCD-A`lq!uk_`(t2PKixu) zH8>Iznt=*6Ay2RmC$j)1p0WJ^zM}~zem8&&%kleo-so@}=_Y$||8>%QCp$M>Bi1u-Tb|`B4H{aaxg)f%l?4C;{IG zanfeYf;PEb{c70ezJMTxW>6HXHe+-Wff_Yy zO30AoicXztv5H`6kp0nz z-A=Sr>-Ag%;{8{>jnA`&DI_GMn=`et@(g^b{$711e1wc*T{_I$XG8X!gD#|T-i&{H z+o`F^4%+}?X&KqMN*PsPZPVP)(a_z@t^iH(Ek0j=k9)}k3@3HqFBvk@3&`GrL@g)S zOvo!ks-c$Bh=tUz5k9eEO?uo&7TzfzJL<^VVK?hMivvKI%oK<}>vn8T zPez@?L0kudpQO!{G9suqmB`?Pm8;#z9%3BNWbp0_l4i#UAp{6v4zleqq-lh)B8kyyGCKA2%f~N{y#d+d z_Lw>RC{T}w>MpS@zeXv>k1mRm`|=iWv06$A_HpnKsD7jVedFCHG}YW9JydY4|9CW) zHS?FSd(@N>F4TEAHBoYQ8WdI~{B}BOKArbCkhSg|q`#V}5b|QinvE3sV?-30;J}qC z7ePMvUuOrHRO#tAS{?Ry0A}CSOaYJE1%PSO0(^O`zIy<0L2FIx^z^i%q5??0X2J&M z%0T|5qoX6R*a1e!?*E>rv*QMUYxD_JP*+zw1%rll-QC$7HPv>NaYK9U<#`CS#hc^e z43b}sZxc$mTcFQ8#E=bgw;{cm+fExz71&5Df%9?r znIZW0OT?;k$d)sZi+#VIrnjn`-}H2+a*FDFw)W)(5HS3d`QtS-px?Cc|AK7d#QO8> z97gHZkXF6B6LL(itNH-y z4l4*18TCxH&IftEPeo^4=X!N#W8N%~>qipW5-6)kxtrID7f=Wd0ZC038J%&<)nPU# z?Q$TgOof-~-r~ zl-xdhdss+rk29zZ9OA)b^()S|$(B9o{k`2z(e*r5OiH1qew)&awv){>-73?Ub5x!!ua{Z2++&8o6n?4yBo_YQxBu6tWQf}GNlSFik8Bi z71%495u@4UixiC1k0{Y9^F^{He!ww1fIxs3ECUa(OlpSdKC6sP{*0-ou08%kvYH*rj8x`{Gq!S#pr#!){D8dcDk z_aHaFLGgB1uGS$LJdEqp^fE2I<2QH*!<9zc?5wwVFZ$%qZkaM4G?f5wSWkYKd?%MH-O8 zKR~Wb5PsLn9{&TRL0i7v!Y@iGIM)Ag@)PMWi*_%yBl?y9kPUV&%lp-0nO1E6*suMB zg0MJ1YvaO;`C>ks=RqGH9`fCLDJ5d6Qf1IAi^XDLk3<9|*NerX_y?UYzbuq%mqu~| zzNDLzEgN$lLMIIS#C(B)d^$}RIXznoT2iuKGmYd6Ov^W|HK?PwGgwYA9*@8Co$u@) z?0@vpNAvkSA6w`lB8sXn5lI%}BE3smi_!(2QK)1r4;46-!k}?y2ne=~*JgfZ-rCx_ ze&c#xzZCnvo7Fuje9naj0QjYfP>3C7Zrk?H>!bg{*Yfi6+S*#D%MTtzDxXBepBBV` zcoN^rGOM_3A0{vwEHF3U3FHM2D8NU-gj*9i{q+0a^NViLO}i;gGsgsf2uW2{byYP@ zQ&n|J%qg`^I~WX>mX-#CL7i_hQRzjo`O=+?O@w<=pqgz1V~s9}N-xGP2S#gjFtc6+ zWLRU#Zltqr0?cC7=$H@p8AhkW`|HtLyh}_($#A^*1db~53<+%ubL#(asHMw`Sfy*} zTlNt$qcWLib08`ZkTazh=zx8LkHk%v(Ka>*DM#CPou~{1t;ij0ZD$kcdCWMMhB1f~ zXv6h`MU2t|bjdx$OLT6pumo7seM4{Jx>zi59(}w7952`!Zf1%8TP+bpQaMD8c(#f2 zRMr$^2?e&;lUrv-JZF^;BsQn6=gKM9SPPLFYZG8Tc83Q<@?PhYCQj??>wo>%e|>ax z^u?Voyr1E>2vs4W!bM3DKylCW(l{7a3W$p)OEpb7o>Q_^Rk!x~B?+9EuUxtE+P7XC z4M(OoqDe@hZSJgp1j)Vkt*4u;x6DL;=F$K7YdjurtZyVvU6-E=frw?5jwr!KWa;EDP8w_M;=|L5H2es1ZxJT;0_63b(h9MQhW}gMD zwv}VHWGKKW4$0)BE2C!8QnUMX!BPHE^xUzPP3j2Ii|(z2?Gq8K^pvLqP$yl)Dz(EU zxkQ)#EZN=G>?Kyd(DLj)QVz~+nD@Q`Us`cqS1){sOr9+22#S&&MFQ%QQ7+vXTYTs+ zvrs3riC`cSfyr?0@7aMlj*W^4#vDc;gcept-9^dXv{RWlK}GVXD&B)vdq%+0Xua`oHdeaW`)rz#Q6UMG+)> zvSCILB=m-gza<6>fKbkoFMoKTXLs@C(vCRs+S=N;UjNq0%8GF6?>LS zBFqk!$e-lL<=F_@41gmskRl1_%KZ|*`vRGZf;RWXQT5xdn{~6#ob zwrQGFrK+mhrX7v+g4ilmoH%jHCE|Q*;=FeOMQ6M$hHR;fi?}8#_yu>KDEf)_A2LtuVR~7=O z#1kWib|}tnLnSKC?&C3Uj0MPW4CycSD-V!spR&mwzvDsxI2$gh`iv-3isxrun=@DN z9>U>a7{c<9{SGn*z87x zrH08A=VtHyrP@hj%ub0E4P19Vta;0gS`E2gGn^3I~ft!jks6ieRYobX6E{91@RDDp3 z5yV!W@@S_d49msTJq1Fdl<*X%xCHtb5)iNm^3DXh1|~#Aok%yI=Lep1D17d^j+v{f z8Vm>dx~rybQc7*pw1dHLFdPmCP1`!HGILNY_Du~IH9)f)Ohj*;)-VwoaATM6I~PO1 z^^(*AK>Iy2toKGS_M9(!xQ4?(v?N~&GJ&PE8t@SbpOz84U~4&aud@PcpN2*2ChW?NFZ_s1;7RZwiQ18)!eaQtk}DhgTr~Z7jpjUv!mr+ft!vu z?68#4rQqZK%h|oqcSN`&lx%Uwv8js$Wj>$JPv$4bCq#MYF#E27e0So}XgnAU+P0~x zs;--+Z3ctEa4=|^R-g07L_#U~<*+U?$@PkjqTo$030Z)d&>%-Yc0*y%6e1%Kp2LPd zOKx_iOFMOy{0rM6a>P7D6&2#ymVtW^08>zCrg9p6Rnz2-V{{ioxTMH}9~nN?Kk>du zO5tTz96m2-90oGTnQJzr{%}0@p0Js&>={!(O06uuA&1Ln*{80_kTPUrI)vVc~| zT=KHvlR!hPT`Ex(T<#B!HHk--ko)0e8Qs=Q}pW<e@C&$q6{qn)OZ>`36{zXfOd3;=>)n%Az46{s%iEPN_jmMqqIqB z1fd2^5XIo!QMH~!$x&qFxHe=_<@21Esq!#1`{!TcPcl@`CWASkZZZtxix)5c&Hwsu zUcP+!_y5P=fBg8dnStAR)Uur~hdy*MIWs zzxa#4I6XP_=_6)O#qV@&p~lk$@NTDh+o#Z!M`Y_KA(z@AQe6xmT*u#{Ezwi|M-=>21JTRSp zo*>%nzTZk*B5mwY$LN3rosLkCLjJnu^WeEudE$Uf^1L0(-L?p?0Wq8(O zPJ+ZF#D|BZ0jvU0s{NFp@dl+aOSM=RMcQ;y!)`$dhD8hMz!afS9K-eYa`2Amlw+6Q zQz~Q0)koB-$_mgZV++%@bnUPx%x*xkaRE&7_v|orPB2p_B;~B__tTTpzy9mre(~mu zzyDAF=^y{`pSHWL#9%p|}Y0mV-?AbHP9e^yv60ZZeXe5l5drdvY{^(y6HffkJSKB|c6nLA>$tC{U>zu&W0-`?Jyot=wsBpzlnf3vy{I-AXoj*gDj zN6Y0hUk%%Chn>yFaU68WL>5v05Z*Fco6ux}ELd!s*T~?Q7gY$%Lj7R~<633IzqWG3 zSEYGSCjs0Nt#ltzFWjTUe8OI6gDWGE`JlOi^_@kANKqt|YFRj>8d12&YCkbi%br(5$BD~M|pxN4c^ks z6l0b^dNS1Z;grb0(;9`Yyz83IGG+DU1h8V*4XhX(#iqq#`Kw?3>iP5Mzxvhh|I^?9 z{rUNMH%B7Yo<`((EjT5Ws#U~V^;aQ@wk;P9iZQXd(@;f3=8O3+fBDNl|Fb`T{^EHn zM`1YO6gjA7L&Xi@9-489z#X0&3e=bq6A@dl*Pn6pzv~!=;pNL0{zn9?uB;UB2@d0D zgIJc+a7q|-xB)Mta@dHv3J$eLGRY0XLtp|@ZTRvaG3G)>dA-)?sqK}^m*p0!zP&qtiiXANb?aa^y~ zM@L7i)p9;xw5`Rn0NZgK)zg6zUo##Vhe)Xvybw%7omKOh_y%@n&D5v?i1&tDvc9t52X|EyuNy#EoUwm!vZjm2%DIO;_KF(?kl`LV|jv8yFF#hMO86+sCye85Y@)}MXg)yB-Xgvp3}?67DJ zfZ?O-L!Nqy?uwk)tFtv0OGLEB1et7_9;U5qWy3A2nYG(n+ZN*4IBSnlTr3wy>-Bnl zG+)g9-Rr|J4C6R!zYOkWv})FXf@A>VCHcsCCV6Q~y@$rCz#wHNs&!8+0epWrAWf=6 zvLLGDSCA7v$F-VK$j=8gaIuN^WSpV*v@r8R(s}3~*=q6zSW?i<+~;Xfhp(-svQP_6 z^##jG^1-e|+QK4S%0uB9LL=6PK2^j)D+CM`D7EYr)D!2r`3MN=; zY@q``Ay8akmXBa<;!E^MlGBwv^gad;78@BrJ{Y-5=9~g#lilYYzsz>~-EOyQj}Ijs zimHyYaWP-C4Nc=X48!Q}U|+3P>(zWVj~ijzEwR4(BbnrA@0RzqP!VAF%--ToI=8kE%gzAhnWahF%kCs2)lv)ViDFEiQ7fBbIda-FIQ(e zcS!C|!$;DT`j4@&XBlk@BT}s?hJtYP-mK!=7>j<~$ydwOFMjchH($KD{$H*yE-#*) zKKtscuU>!g`o)VEr>Cc@)ygItMqfrTv)y+4@$Brs{@4HdfB(ZjeE9hJ_#qeo03ZNK zL_t*X;{4+B^5XV(({9a=XeK5y4#V^3&wugtFMjbyfAswM^W|zasMcsGkSZl-1xFyF zIB-yDX^&;VG?a*x9ks8PtL5jq?tj;zs&C%B8OL$A+qoS_?Y<-R!ni7rPK-&^JP!k$ zWh3EVk5PF9&~Cc|x&_j-dlh0eDB7&pQ)3w#%qn!qf%=RjT5=o^Lf4R~_e+sTvkKUB zu$?vCq8tmF=@({Pr2g4$D1X$+Cgjb@U1;qpG-JE%ZnxdtZf@a)sxnQcD#I|eH?A)h zi}`HUl3KqVcD-6Imd;pJ@P^CSIZ|9bbk4@%%ErJIx0;ZWtPHSegKlLZqf*k!V>M3b zxoi$1l=HtLsQ1*#VoAQ}T)|2v)q(4oT5sF8u!VG#Zo2d2{4%lykRFUBw=77aZ?qQ# zvEW$VOV-@i<9HTxLd>}GV7ozXN?;EviuYMF(Okg=HkX8qW~R~5;7j0<$w4eg4k>{R zrGQ7;Ub2J$T}pNj_99{YE=6wTh0;Z2P+cq*uU@@+`SQh!moNYHH-Gx|*Iz$-{_N=J z==k`!OW>N&|MuVh+xz?bj~_q&{`bHC=9_Q6`R1Gd^FROR-~H|%?(Xj9i}~|s&%gSk zuU@};{p|U(^=dtvjoF>1Ox-lZhv@)b>5ZJ#HN~~LGRgJo5`RoYZJLgcpXh$wM`|7a zpO63eAOGWj_}~A7ud7Q&YGd=wp1a`H@t_Vu`CvfE53PC~%Mhg{1n9URPRRHrWJ3&} zg1$sAl=uB;R|+AQkkw-h1YMRkz5|>g{UoPHF_Q$jiaD)!a(&t?n@6o z?0yf(Xd8p4X=<3dTCJ9=n%2VkQaezvxCOO7~ zlj)KaqzGA%r#;&2^z`)f^z`KPoEEVtijF4p`TXDgZ~yMszy7s6 zz2oP6!OgR0&z?Phc7A?dB2mm`aC zsKa9@k-x_}bU)8ta)e1EOjkS5{ zLUCqDG45EUqeL^;CLEJ!5+yLBq=WgUAjUJ-RPBoke?D+c0b-%BqX^z~Q?cdjkS=)v z1)uri?$ob<_9Qz}bgI6$Y4d_ilvV4b0a*s@w}@$CE6N6Y6RI`PcpPSED3GRfOK|R; zPSbv~*=#nO_wU~$Szj)ftMzKVUawc{`C=|2yWMWT+i$nqySux)yUpGG{j{G>j*nrs zEHD`@rULUz78O-2OWTT_R)~>>KBw9TUf|Z~l;YlEv3U0EnLNqk=fu(D<+qS3=Bqm;~{ox|P}%o6E%n`q^gylh#x7`IJL<64^*d=34cY7Kwhs1+X(u(7(^s4lq7%8|m@%I?SV}NbtmmWWW9IO&&FSNd^ zF;Z%TLn%&c8;P^FY4WhWxH!KMmG+R~aU8M7aB>v)IElGmK$nD&HRycP&_1M86Y}pkH$GvZzg}? z5wsh}yhrgENOKa=u>Bf+p*5oqn^*|n`7LymhL zH$1U@me@=aAVQGeOpIzrp)5gY@7+K9B~ly{lIL^6ozQ4v1(*qF{Ttrz#qMV5;MMQq ztsWvGH@7#pn_G#+C@8h7A?3J=y9KVpHk?G(&5@uZO`jEj3p{frBLz{mawjbGK>wqo z_0!y}D?cxeuGj0=uU?PCxZm#(WmV!`h~chm7>YD9{JEHK0+T~p2F9305oym+bAk_p z1KUFU3rvcD2IE4b{v(5MI;nQ2;b+uqOI+l2tjJx`obxF^kA&V_a!@T%0r1Z^*RpK1 z^-;5h=;$ZjUqLZ2KIwN>cB5|!!4_*o@7~p^d?e(<-H`=SLfQ7v|NXSv?Qr7V{oUo| zrHHicj_u8KZGiLnY_(b+9j%v3Jal55&lmIgY;3o~4ny2O5I4Xl4JtNc?ac(xE(4(j z)G_YFLOun&)a9c&y7+q+9Ek(LJyxr;pTTm5YXx3o7LeCU_(I_gvDjbc7DH|x!T1W} zJeVVbSV@r`_M&+Zl7^rKisC9UHLAFVB$@b%fElN?XQfGn+9b0LC)1qaR91m`3ALAX zmC0gvv6y7G3bBhKiaKL^0e@}DUtMWQdRlJ480B#(y}11sd+}q=L}&`SRFYk0R&oV zj1_)gudcsG-9^ffYoP@cl&{1PNI&VBp3~5#5A{BTQ&0$!Aiez3$KxLwFH(LA946g~xk>rLlktqBYtW`|5e{PPZ zVx3_>vIt^4NORAbtUr}z3N%j1@wk-DQ=q)XI-*B$mfp*~WZL6gi!Lq23taa!*hok? zI)+UFArzO-tT@~)5m?K4yK;M^kS+|DL(`;U-V@qYM06OAkBwYqET86%M1r5<-zoLXkT6$25gDw zf?IbU#oB;U3W%DBpEx8!E48%EEsZBN8$AG7dEU4qh8&A~a(LdtkHVQ4IP*CkY1LKl z5jzMEVjhAv;C%r8b@8FJ?Sd<)iAJf55j|khP-+$-X+tdYPdH6%I0xGZsP6fzB?>k_ zj<48#QZ7!X3G#!52e>9McdKJ2HlU=Gy$~Uw`brdW%A$;SmtjN~%f-{&tSg@aM_0?` z?aeJd3;<=K0^p0SBJIRrJ?T*zWdyilRHZ1Q<6)s(+Csnv#SB&$)!>lLg`f}15>W~we6^v%#UrwNZ>S5>Fbi4Xu$I2KHj5ace8 zWG6)lxh0C~R1&k$XR%bng=1sC4@O7PfzTgh!cC%-psANficNWzVwOD!a2OObnfCj; z{r>*$E=to8ZB>S0oXuv-kCi`<-YrcUm|g7^Ge@$JNSZQ; zh{#Yj4PdZ=Hp%VSA0gs_{l`~I`w_%zyk3w>Wn|@d2mVsl zu8h-^XgXt3GWf`b-E@10E`vUFhhhP+?Q)@}01Z8?s{N}uLK z806>0QB{5Q>eYIEBy#pxsBK5iE#h2eUGW_GIJE^7gerB6^36#e$3UpF`Cx+hT}luR z|AO%tx-+W#2k%C5(7NnePRA*C3RIe^Eo)v z`6w3`{e*_;G^292Q)$jnX<7q9&^>u{FSgg%%AO8jg7VF>pdWN1vle9tVekQzbK@0M z@I7ukwYHJ?VSoQ{-%uw>z34Cu4Puwe$8k^{gl>l&{Bhxj z)KR%I3>1$A2IUDX7#SbsBL?{^I>j%_%{#r-F+^piOS6$=G|aejpK5?v>}fwx_H37d z*_4aD<-_REO&+k_QaReyGXi`_Xh0(mzb*_tvYf%Gvle?ZVWsh%Y2f#$#w0YRiaNH! zu^`<)Hteu-(au5Aa#{v)Q}6p=k~o~u2hJG$S0v$GY{jJ1t|>7E86Ae9J*-=vxkUn8}#C=gX)5FWIK9m|0k5f*c3Qs zBGWY8KiuCx+{@)vyQ;k-wmq|AHXB##^=i3lPfr}jaXz0fSIgCM)ozIOXC*eK(B7n6 zvxPM7lr)42D&ZLxeG9=w;%OC{HdFF8!UlAZXr#Svg|c2+RdL*4zq72aeU04Ip2YX6 zttk#TBvi1vgiC_TURJBWc$48vZR2IE)gX{?Flq%BE(l>kw|a@F_#$LnmBSH|kE_34 zn}y^UUCJ0@L?jO!%0)OjA-nNL2oHq9C6wX8X*zsXPX3#^lH#w%ETWKtjLAry5pIlr zGHOc5iwWltC#4ObQa}_zoQc_fYJASjw%h4pyS=o_20w8-tcaNEuv{&V*7?N$`Fy^Z zFB-ni=JVNXHel|QB9>BM1WW-8E9gZm9K6#Q5)a+#0JFf;TR0-Lp<{~;1P(I_5aQY3 ztQ4@^7NaP*3vsIdN1(j!%wXzIsU;aAG&PN#3myNtlt9gK~eNcgzQ8e{_x;CR*q(`KeD6+vR z5o-caxl-f~Wu@sJLLHA)_$it~>&-ZU6%&3+pq;^*Mv=p;5YVTp;9J2Ax~TM6kWx`o z6`6oGB2s6kFS1$vTvD8{D_<){veoCc=!pPZV>NM__Li;fx7+RY)pZ+Pd(b~#h&_(u z$??hhXx;9B9mm;xKASHVi}}LeUN?*}uRd005eT?g>?q3?uwH(fO0hCPA-JrHlz@pq ziI|K;lRyma7Tz7!2(#;uFnNq}5Kp-iCbgjyngubF2pt5&L<;H@=Q4k|utc#l%ceLV zcEsh` zdR5X@M(yZA1-E|D?2fbX$v%WZes&yPtyW)r@daa;=8}m=c|5~5v(ozf0r;5E?uJ~g z#A#ghDo5B88?bq#vC@Q}-wH^RnWWX0uvDsGWX@IcBy0fSG<)jQDqxp!KW5(qsI5_K zkl~_e3KM9Z+plPskn@=ECG+-`HUtS=@-dce^qKZh zPYAVy&FBmNc(N@ACRI%!8h>|}d+*iYQ_?agfi zuwfi#<2a0?HozT+)oOKobi7)v=8O3_3}buf#C$%R&t~In90yOA19-ZlZq$Nd;QXAZ zBwONj2-lsKSrkdA4fSPcN757slbD^FBVCHX(78|?CLP&W;2caap-0Q)l$CWzm(f3! zZmP)^Nzz)e5p+w{4oE1Dphe?WuO&RTghPBE{1kCTqAYKGj_awAzizRW#v2jOs)8aI zM^+p&z}e>Rz%vSJb9|e&y1rY^5)GO&ABKhCB*C)r9gDpqqb`_i;E8V#wq~j1@bi6 zXuUjfqSgxVYxVHdj|e32g{#L_ndrz+*)g8TQ9_AbBdzo;5eK6VoN>*^26IVnAR>_g z<966sY?G_2s~_!0^^L@%KTSe)7{VLJ%@8K{7AJY9NIk_IVOrY zar~LCtu&#r&oM7ih~+bg3C!Oa%{by!3keC`9+E`kbj9Z+7`h-b!ZEGu3LqL~qI9J+ zxwL|Eb#E6KmLn`CqQ+v42qU6$dV2a~7f0n&;OJLheKn5bG)-<^S?iamAW2Xy@jo;#dy=&7z`V#!!%-z%BK<&wGK(gF>5%XA_9PiGy$1G74GV~p;qx71 zVVzx3l({E0(R})+0A8yW0&M3yoQxSrxoG|evC$JU6xuw8qh>f1#;Dz z_7L%)FdSv<>{awwY%C|Rdjv%%GDNZ4&+tL3$jQlx9R{x_bNu```uy4R`FytBZY6@X zl*s91&tMA~Mra8K1|WHz%D~GN*i_*}sZD7(8U zoJsK%#Gjn&@FIi`Tp&h z60_NCxm>PRtK*}iw&@8^Fpe8zRV8oXjN;1BdepE0Hp)XbLV_zm6f3x}F1Ts5ohk`@ za+^`oQ*!Y%CbHE?zt|L8HNp$=vEHw#QY-V#Bg&aioW`G6whd$80+M8uh{fILk%I<- z95P5jgBUuVUK){Y#FDl}G8#NiJ(^sdm4{BtS(<8-FUNi-IIT7^KNb%$Z^uUqI z2;E8?L=Z@vPOi`cEr)Ezr|MML2N=i`C0x?!cz6&eX_Vlp z&StaaVzFE$W4BF(bs*DMTDsp!j< zVXn%=<|Cop+jppO)g)%l+s~T(d8Gn?37bG~dc=Ob2O zjs7g+`K9nN%(50sAT@Jkt9fJSR3+U!1c)I=kgCy=0GFzUwer-Lh;!7c!(`KJoGq76 z^bOwa`1x^kyH zySGI|$~ZPyIuu2U)_w$LKqL7#t)@Vd7_}x>&+nX)w)2#*h0lg7<$7Vr-En}TKntwJ zAiZsWYj+pot^A@y^9ds&N+KXhAOSlu);=@RQ;`6%uNT#zC<*9e25pG4xkT2&NfXki zIJrn{NrJ!!-Dy&prtVl?tOGL1hYuqbLKUIdpbI%$d3|}>A}w7L$?+-(-l=W@-hoD~ zc|a)PdXmDbTNCp=%_d^Deb{cd+w1EaRT1@DT3cab9A}H=qP@CnKAW}uO^fBC-4MH& z&&Sy;EOTi8QPmwXa5#4+6t>gtj1w|ktq<=KK26J98`~`virEo-==6-FOp6KbBxlRe zc+*qC8-?A|$+a{Qvu8Y=64nPMljFtDHpyX+>C|i|9zVm>4})O{+}j()kJe2NJbt*J z1l%4-LPyg)`f9SZ+oqrFLm1>!;OJ_#`r`E$|M0tipfohl%P6{;ad7NNTsf?K<;Kx7 zqYTyf4PmH#=wVA8I4z1XSZx)3G}>~#h*+bL9mZa9A-^xqL=hV_8yPte3gAx!)FU7j zdj)6Y&c?Vw(?^;GT(@DC*I91qMIBaN_TX`DrB$u1yl3ed)^<2bI@Pxm1V@+ok1Hk-Y9 z^JW~!-ENm<$%HeCZ_KJ5Lr``tp%`NBt5|B02+$r;TP$Y$5FvnUCP6Nd#FAVsv!KX^ z85g-2B@UhHHD(BvBqGNSNg}UBAuP}G%VLu-CslsNluqT(yq7LTvj9|Oh@CRfz@g#f zO8p-`cQnofD0#Hf1C%Z4Lv>#dpe}99OUompS{VGmxq|RP$tA*8SOIiEqv$WrMj{AE z79MH7(lBCD@)i*(2`-J0s@BmX0#@(~u@aJ6Ynt!a$?+0pD_5m-v`sF0BxF7Csl;H; zw36TCiLNG_CY!|X)tRPgx7*#`-k3;x{9#*LZLN;u*xnAiSS;uB`D`|u&1Un(e9`WR zosHu-^CTNpeoYtayk_nNUMDUU@DnCW3%oUA`_(nYGF@^tRb-KA5x|w(Sva za4RZ{#p2}nWW8QDh#hC+d^T^l#I`3+48tHQ(=-w4!LEpBBJ^Xb+~VR)P34Ey4;uW%x! zGOMzvSfwV*7#pI8c`Kg@6-6;wOyuO`=|0RzJ_U}d>gzAQSo&LEqC~+H)|0S|*STid zKK2F$Es&{a8y?8u_H6f5))0xTu`Pd@Oc0A#ty+FCO;`bqcHDYWV0@Tce2UL?`E=wQ z2x{shn&@==hT^4!&zeLY$}I$tiZr4CEM-~^mBXc@DvJ`3kOukM=*ZGLQ)!Zz!|bQ; zwfer~=y|d-B1a@)3@ffqg{%f$=&zxu&#a%I{zzq2afnm^03ZNKL_t){8key8au%DG zRH+T~!n9@*O}h;hRds3(AH{IQP~=!rqOFcqXU?P$My z%+NtZ@-h81UEorM@{%1kYf@FbMI6OX1f;O=@Np$e!mX`oExjv18+DFiZ+UvkV{^o) z$`Yl5!74KZ<@lp~lTb?Q)!CH!#Hz8;u&~8j3%NX4D6I>$I-kvsj*jFBAD;wAU%h&D zd~|$vcE*)ZP|3Q|ZfzyT`Bw??t+l9@WggIZ3;f*T&BkORPQHW!8FTPxoi>kzhsEh( znc+Jbq5|U6D7jW+F+em)TsW_qa6blx;DDHv+;abu;OdIUYEp4Loi=kO2%vOFJfvkL z$EWyB^9~@7JhvGreM1w5$33JVW&@=3T{tIJ^5MaYr?$*55X4V;d|SFS!* zx)YK)b%1H}sEPEH=`-MCZ&)D9V>Vg?Vu0W+Ds^Vdjt34^sCaA_oY{ss%BWN6(26)PEWc zSdJ`bs~4MN#Ua4QkaGDaV@#S|v6=d(@letfL!U>-$IIpNk)b`A4`DCKe$pX{30Y134ST{cO4b>C zin*9?Pf(sdcg)Dy9a*In*1i2{nx<)L_nl+)As|-Aaa=6??XV4Hm&@h)XuV#qSIgxv zjKk303_G^}bkN2O9Rv>Ni~Ka{dl(zLZ=|OIKMW!X)iFO+{e(X}Ben9>$wezlO}TVV zm}S)ERDC6(mQ{E$ULq#I(wP%P`*{aCEe1RIei@3rHyG zbznQUujO8aoK}1kgUBHObA{G0sfOG28&Do>!~D+ljN(YPa(Ja|mmh~57PA&-`Mdzq z6r&4aQYvCRNPA;WJ6mP5H2MkUL>(dr3O*E8Rp@8*m4HgZFq*;M0IN1(%y|LTih&2! z#rl*jK;ZzEveZ;yhORrP4NB0XL;+?PgzwX2)3n=ecOtjVx`r%5=s1jv#iG4~eVmQ$ zk^igZa=kuUtyZ(yY#3CBVbEdlTJiw@5+QX&bjsu&o{^tqS)br2qR3F6fxsarl~S;f zz^Ze_3`yGQlBgI0Mo;w&ETX8jQ$IVn2q^{PBSJ*opaoU>LR9qR^kl!^KV>NWB>Cvk z@zJYSuNrk}pOgYx)F2v4_~i3^M${YnZ984<$vvOm{*Cx)VUL+v1^q`PeIy6oDl2SF$=MH095{y#1VDs%E=sx7+P* zZ*RTV;EiH348vlvSglvfg+C~9zL+l;i^X!eUac03McYN}$Kd}$nMp^Ae!!fGe3WWd zjIr)_wPYK~SJ)~H!xKr~VLt1^lcgfbftvHiLl99-5(EH`5h&oXRBn4^S6&V`3q4G8 zB6cuz5sogG%h#`84La;(7hy=N+LPO-3hFZx*@u>!}jT4lGOhC1X(Dp7&N6G%NL(+wy zo9kUOh(4BKx@a%+0J4e_A~HO2;ZdbpX{f=XUu7so``NkMR)m}Y??OS8PWCw_9zgko z$)TB5faa7GQ4>)(6YDzdNx?`w4)=XGn0m_zg@BQNdm+4?oExM3Rk=V@B&t;;>~rF^ zaC{Ly!1@o}g6?!4XWBOOshG$#O`FYTv)QyRRAm@OOy7LISgls8)v7(Ccs85O=kvvK zv0N^fi^XgtVR0S4^|p4!8U%kGbbgQSg9-oD#xRN|MTgg&GNTb9nV<#C7A7I3?v- zDC~(F&T=>{mxu;y3EA_(O-`tIfFXz#^J@dN$)+hk+3hx)yAAZ;o;j>4(_}j6@zK$G zeY9Hn(-YgvVHb<}e6g6%W~0AKHcdSgb-W3&q$|*A`o#bM`@pNkl~#E z&ahF4QMP7jWJ;u7Ftr(a@if-iY_?b|o^nxFJ`s-2X0tE8_+mbvZy&ajE?VKQW>A$z ziAZM<;FFH1{X_`Hyvi zIXRfth=ega1?inA1h2}t&kNQhX)R7fHQ&l<1wo5?D2T*70n8|MO64X`QEs=>U;-G~ zq?u?WA2mBKh^1v*Ob9KCiSc*ByX2&VyBM`d9!5w5X-z~kPr_W6e7&8NnO13nDu?}~ zNlr9({5=a7KCn56p@bGYUb`FTeO|GiCm@kfw zkB*Lx=Ce8O(wQ&j^Z9(<-f%aJ?Nw1Zg;=dLlR?7A4gN}I1~6tx!{hLqzltX3;|+Q%osQ4x9b=FMWhxYb*UeFPDw`V}cJ*yTRh z_9^}BgX|-G7L~3>3(Zl|k8s6ib!kIvD1j~lO946Nsux8vl$8<`i)4`pV1Y*K~ zz{>U99FX;=k8sQGWX<1`X~q&SGn9IMDZ&HYV+v!wNaFB+^qXbPin7Kc#Zp$pI}6RE z0?N%if!UlISM=q=Y>1xYKF}Ejj;=zGF)Rc<2-EzNLO)C^)7G@IF!4exLbQVtAt8ZE zee|QtPj}PnV;03vU__fi3z&=;E}$!+w1n7x4TW4VwSR^=7u)PCMO!Pu%M5#l?l0`TaTb_IB8zA?|v$ zJ~=t@SJ#c>d^VfS{OJ?z2~fW0(Q*p9Dy~l)xC(}yV!M(wB`0#gM_-S@Cz`{4Ooo(1 z;>%js4S%;`_`E*)$#C@b>(}e``t1CSm#Gt({4=NFQPNF3;K-G55G6s5p+HS>`1p6GE}3@kJ&wP_mm79bU6a2o~;|b zqk{&lDkMy@mA04`6|(ptZh#WFQwP@c&qLB`nhZ2o9?m{TeTQxJm1nioKn z#bQI}3QB7+#>c}IX*V_$eUZe6HIMKW)mSv?3_i|JM^@K=?LZ{c-!f%ffK}0~Guz>y z`a}70q6jIQg|uN6DHFh`VLldmDHrC-R&>;0&Lr;D+3j{b{}*!J=4&>Nv)Oz;pW`ic ztMzKVUbp8u;V#(OnD1a0X;q4_+frhxkIo1}OR6Z7(Xs-ZQ&tBsJXZu275D^hpFU(| zHi?dpkAHfKp2YE~aCEU)93LOmrI)DRNt>-HthQds8^<+$19?D}m~iJO7S1Kh6N!;Q z=;AlBh+ymyuj5kzhBc_BLTeiYTN}>S`aw;k5T~pxYZauVPoNAV4r&MIc=kv&y>0_= z#9Pt&Ni>t?Vuv?^eNqz!2zWzv6&OOfmJ0bFMP?vt%x)^H3t@RhWfHBIaux?W2(EcO zfHvntlN23Xm3!hyS*4wb@g>$vR86A2(CQ=iE=o*Y#&MJK%ncfXqrSB*1X)c_C-H1J zH;bVVU#j=94KoHOxiJ10vU^~TBCm<@94&_8nql(KeE z_E>U(p}j#{L7UcYCY&*VawVu+n=+$H9k@>_#}=M54)r#)FO5Ej z%&gYBfZo1kdIkUp;X-;^ffQAQVIn>tF<7! zR2kp%1$X1C(TqHDm5xdQ2ZA@4#ZI8PM)T)7Cp&6*ST<f5hx%zkQ-L9BIvm{3AmsQ-$%W`kub5-om_jHBLFswo z;>wb$3RkO-)tVtJ5e+6dAQBEPs)L0rF4mr;>b4*%z>Z_lGKa^Kse!EQ+d9)ZULfQ@ zjRIoh;*HT(;TSe28HgfbhgLM1;kOlouNxL~S!ItF zm5xoNq(IlB<(?OL&-TmLniPNx)1?daxQz+bix~U<5G;#uCGCn48)1l}M0TMrC__dZ zrKuj5^vFuc8}R#HC2gfG#wY~?GjSizuyxdC*ak0F=b?nOKGq}#40n_>5xOv5y&~bQ z?`{b4fBgR5G92SJGEEZh6tH62*3es_o&?d6N$O>;mfx|XAjCJD!KWi-zzg_f*G86I zOi;I&dnr=D67KSAAik?WjqK*{_(8Wus}h*7kFMCOZ0aycZ1T&N zNpg~gvs*7hR^`J$zz;xvdKq-_xE?C~J!6d9?R8`B`SoW*5v(34D`@KU7=_Zd7M)L_D7y?4!`1m3ylhF^PT1o#aXv{* zH+v-=Ib9JUDea>O(;-m`tEmbL=^NO|aJ968q8&iTY)UvnEy16#2*doVNM_8T@>^YR z%$E-I;I~@tzdVFHmVW7VY$%2uRee^=YLGjzpr%)>Tks96N2fkn>P$(ETPu&k@tGE@ z^{Kh$@8lr%$d9Gs;S*+ZF{d^I`|mj=Edp(|Ynl~M@X#Wnh^gF2%M|QIL$gGc?^LY4 zf|@nW!WOK7zpdcJ26BaPy;y(PG1RJ|`tOg^m61Vg`Nz6d@ZrkgY3$m)PD3PeoIokU zJxQZ$e1hX65oYf@r6vmqosnmqKFEOe8IHj{{-6)avIh?Q!XEU_S2VAQK2oKm`kth!6@+ zEy*@0mPdY+->hL}_|FRukj1P-v`(q@gWRD#jZe$v|uSKtt}YKJn1 z(Tt}e!Khn+nZn&6v9#X7=#lj3^l7QCRM)T0G68 z@#s-7!-tXVb2y_|XRFYk5U8=2Pl;P4ZsyO>X*g}$x+Yc-8X5}FV#dbg?1u98SRx$4 z5*I44LbPrk*NJ)S)0k7o{+pX0TH!|C;{YwlD0}+Z-+!H3BwPisG3>~p#m1aP;1*RE z2PhsMUe28>wq$V9|z$yt*L}8FtI2*Y@gpr;{z^Q6oO+|S=2afsO z3c`VVTqn;#)5A0hj@M#E*OG$=rnGZI*7$vn06A>*nrH>ynO3}V6`8w@W(skn9P!GVll z%LRA=h>OnE3tuO{;>yP2vI~ufs{EGKoJDQ@??V zp(Kx4b&#{_ujJ4z`QILfF?X2N5T;^`)E z8#2{Yk9m;FMtNjrRl|nsJo!z$)&hw_mxEg9DzYT}Wz!a3rLibDXyx8TrK)I44b7d^ zlxu3UjR_X{H7^986?Y7f8(8C+nmMS+ikd9P-IcF}Q7ib7irt!8R?4~ms$u@E38JpXXnS24cwX7vC*3{Gv zio+0nx0J33tQcmA0f5*2eY0l0W?d&wm}g*&Y2pwmT1W^}S&%ly=T6G-_1X9RgR==d z8)NQ(xv}^2eSatl5R6vVe0tXGTairm;4Nx(2)u#zgEc=Q|$goL8~RI^ZzMnB&t}rV#k}d z1V#kL@N?_fXh#as`sDY#_cZpiI!()25G&epP8) zFs3X;pQFA}6xR}o31+$n^-Nf^8{8j1gR<|S{`}n<8Yp@~vH?>QRsM`}d3C$K-hx6) zI6G&nA;zTSl+?z9#Cx`%mSo%m)<-CiIY)y{r(g=K-bq<0qjVf0mM~+nz_^-|Hw3~w zeAm7iwqPk;iAf^J6`1c3;$L?Wd_CXb!@>(O#zwJKC0gYJdjmj@-SFC|mObEH1Dvk6 z^NTm29iG0z9rOJ9c5-q8Y`W0f!`{kJ<7wt8pwS0tMBUun5O2Lcy!Ag9ccS6kpLt2&vS zQ0MJI%k#TFLZE;D{y9&P3kV7Vh9zC=N*517+!Yno;(khtr+2A_K98xskEtdNH(uYD zO#1r!`=0?0+1uqksG}9IPibv!&0L!}I5=2YS$TY1IXGD8?}wb8Ar2`I*TCb=_Eq7` z1tTjraA<(eVQ?1;&W}`Hr(dAh`*Q6P5c3QM-?9vJ;x+rrf47o8fic-_9>~KhZ-?2PGgQDU|L;5)GCfrRjIRqq^P$p7l z@g?e<#ICpV5c}4MLhu61yK}C|8^PszKu7%tg?Y-DUPQg7hV%i?g@}tco9P&O6h-D} z8(j$A{E9D*0fD5yY*r=3eMpt$O#pfTUNY)$kvJVT+T&B=a-IfiCKkuhG@qAc6){;~ z0 zu<=YThqsg3H|va&S07(r-}lSQx()jY;O5phFz^9vJsh^WUmte%09~Nh{#W4Z;D76G z;qLVnn5ojjS`ZO0v0_HE6dx$`iN^k}j(t2utgN@&hhUIXNOP{=O}{hCuN*`V>$EWb zIZ8=kC@Mp{Hx>eY*t@=qri)t?x#(cbY9cLC|J-s%5zPgqsptoodyX($VMfi{OX|IO zyM6p3yQf!%v@l^tFJ}WE^1pH`-9M)B6o-wGFFz_2S!2cnt>8@pA|xcT7|%!#pSIx$ z!Z9L@vSlMJNWFdhF48T6g)3&=dceea{LB0Aj#BYj>$X6u2m;ZHO<8kH7yRB`u6vGDONknc>1T^c>L(PvHm>U zZmk}5pJa1T(1Fl#b~6f$E7TX7)2IUP-BYN2T0lzn%0!rlU$dIeXoqvl+3598cdV%D zy&E_m2Tz#=g^CQ`Lbv}4`8ItsB3gw1_y{VDPk=oISo$9_uRkm=F1+90UICTYP~bE8 zBHz`~)6v%5*52OU)&~5Ke-a3&FdxvynNR`N(XiRm+Ckj?#Jc{B+JiwqsHx0D zI^d;h_Mxj`xsfoM#MTm5t8&;$Qz1FZ z21qsT(&~ooPn2Tf?^$bIy3^^~R4h;MIgv@We|bUi8NvO{zf2oL_)r1|Itck3M6yU< zVo$)K8zxq?H?1s!pWqtS3lssr{JB}ESQ6cTOtjn*BBOI!!z;stVtH07`fd6+?`WbG zT~`7H6X31~=qFwak;c5u&&&=0!>-y4fWS+!WaX!Nz#tLOJ_i=?%^Jw9aV0A^`yG(F z@B$?4Q*m(I-T$p^+}k&{b!`9xBG1nqjBeG?Z-W_9&ol5w;6Irpsa(|43iH-$7?(fo zDk-9-$+RiHKv_%P1@(S1RM`FP&*?r{Dq~xC{GH{YBpkW#9$dK$Z6V5kd%YqNT0PWf zzIks}*;ZwwHVT#goeCDQspO9u3P#<;kreF`I7%F$MA9@Hw8IHKt%RZ*l$$&$Ibo#Q z|IGqONl(Ulz~XaJsbG(hq&nrKL36>QW6v)9&7=^OxMCs_glBU-oGOTD$8SPqJ1@+s(yio~kM>wl)N+IY`bpNi5+ zAFfjCpR16h3mX~pXs-&R{cKmx+GDM(nY?@9C)~7g-}tOfpNiIYr6E=VCLdG9v5&Us zph?}FZ}i;2GXf)n1cqnb81KjRaRhUS{%1<7!guJSs;w zjsA}bZgG-xuy5|a9ST9$g^czzq9jU6<7ypRTq6&`OZB)TN|Y*l%z_ZkYpY`H*>a{d zBpLl!zhkxuD1M({K)lFIj^GPKul(9yiY06r0M?k3-A*L{EmNZtlNM2*z?BNZ@?~t z)`)$6b#}64-alIb9aMgPep}-E=dK2UaM-^;o`=|&!10TPV|UZxdf^T2%UPu(h-C*} zpnBJNb_HYV(1W>cRaM{o!w&N+u)R@p1Cpim8wygs$%W6M<=H^<-Akd`Q2P!pQbzI? zT>RRh_|pMHBJ%>1Ul)cog|12w{EOd&<5S?z{Fz@xQL1G5Gc?039*7A^PVY0yCQY@? zKJgSgmzBzt9}2 z$m4yhxu2$pkwn&JNbZ3FqST(3VrkES12cfa5HWIS@8aR{Vb}@iKo}V4ZQ9$fy_Ng} z^2>e{2O+PQI`8E#1g#~TMR#y3mCVYva^5Z*J$>~;%ecC*RE(t}OJCa!2Ka6q~6?bu%vC}YJ z@Aa`|R~uy)QBXVYhKD1p{fiuD?TD_s$MGPFO3X=?B~val(LQUQgb!&KXjic8$*6mC z6pD-oqotcD#;2@zFI8w;H_0f4Bj*6j*>AYKq_ThW*m# zQGQTq<4t2Mv0%6Nzx%yV6d+b-PHf!WeGDya_4xYw`1rVbH*eT~+mjzy-J=>W(F2i% zo_QS^VX^yKp}f{wOei^QTUh5^qi*aZy2=aGL_He-s%cz5FgL&MPpyNiqV%1d4+5>ul3D3+3>3~-ir(}b*{X3oJRBs1Y1TQ2+7A87s<}aj z;rF-2io{s3#exKO)t0n3fK{!AS_IU*4oHTtpwl3T|HrzVyy7~(Kq5S(u^3FRhHi6v) zJor3aI#z6%n3w@UtL)rdLw$X_)~}6LUnVE2L~M7$g88T$zm;JquLcG<(snnaKiGlY!QUSi7E>M8`90>NSLxCh-d=p|%&sk!xz! zB>MNez)Tt`V2gr8WDiVa6Fk8bOC(P!3kz#T@+ayTY6hoV@FsM%4<$N=l9kwKUlOO$ z{;CAasuiX1Exf4U7F5CTYTh?ZD3<(=XR-vDNI23O=xqK1)n0yjLom0r@4IBUn8pG5 z6VAwIbXLgxc_ye@`Hh3hs8E06R`(7EpRMm;rTC@MQRG=O5F*oq3CVO272!pGYV;r} zXg?Z*9-x0t*o|cQE=4p6_dh6@B48ym{d7jNr$&QUAE+ZfxVZwl?;(XEXU=W=C_PUn zm0NH3trh@J;^M#MzP91B3dmgmM4OB5=kqm(9sxeS4#4WGr=zF4t(&_Ch`pWN-J9nv z&##-}f1J{&;6?1O{00wsWB1i}Ja-DxeRdQ@&}gBLB2X-&pRl*1#F;&Cg*dEfg4d-` z%!<$gS4$}wPaxB0xn^idf`^6tFt1&Dle($RepFbn4GKiY|Y0-h}CHfr} zs^Ssod7vS8M!Wl{oGTDL^_C-Afl4kdZh!y9a#3~{Aauf>MkgbUZ2h2A4b&Bd!Bz%Lx(iICg*d#Hp?G3hbE}WRYY|$ zp%7mrNldO$*{WGfR7k^LI*eL?k78`)aX8Tj9QC=nph1s`FAOUl5c2EE`533(1Q7Mj zP2j5?aSM>20pz0yIvrEh4swY9MYto3z0Lqi8(E}*01Rd91h*fTH_Qd}QX zFtuB6E?yeHY*?q9W(e(*Das%$uF)?`a2YIYALnX>nZSIZY_+<3s|{pYD12caCtsB% z=l}>Pv%119yc~=%@(hgm2-Uee)-`3!#ASSd{E@vB1H`kow ztkJ^`)F?~>piThHvK}U*Rhuh%`|FJh1W^I+h@qc9GR9+CQRfk@^=g2qMMr;`ywDos z6x&D~#wev`FFG4Txh3JCnURtn2+vVb5iF*da~|YV<=aA%(3n{`O@=mFRF(9L7Xc#- zYQ%IQvCXzqnyCo~o6K@(%@ANFiLA z3YBz2Zir{)PKBZDy@9<0j5^;ED+i_EQi#H#FD}Bb)h8?!XueZeKpHxgnuNwwnEWUb zK8-L*TogV`qbbgm7qR4tR*Jb1V??(ecGP$#(WqmQpfKO5o29N=8(ti6FOZ#J_RfeR z`?_E3N^X7vctDVe+GE$w=MlvU;6@Y`gal47L$L=8^{XaD*SFeGt?Em(j>YjS%RFlC+G-1C$`{QQ&@ zJEi-Od*CY_u9OM>mhrPkII+Bcp*!tv^&}w{stXec zw^MAeU%IFu!1p2~|60=x+{mZv1PT;6OAnF=g}=cn5+255w^1v)ghlsm4A9o+{8d(G zO;d$ZgPSgFHewU<{hd0Xo`5_~*pQ!BW?lydj+4LK{u({EJxbN&=NQ_t{63D6WQ6V6 zN|t+XFv~jHlo38$1WKn>)Lt3WQ>45LnGk;i)ugd+#Fh|9kwWc!j(?9F=8pMri~6|f zAEFB1A&|dlMu+kW_`baWs#dXIuXz

_dV46u5Mln3yJ~rW|SkVpzX;%DgvBUx) zYXJ#0$7p+aPIU1^5bhII7?*Y6G%{|C5hERsxi@a`bXBDVdo**f2yXQP8o?=>Kz^dk z4ETJpwf-W6+E*T0JIgkx&(vxe=iP@2SB*hN_Ynn7{+3Y$lrTragQ)t)C!0wjI(3L@ z6))7>L9w(r*EbO{|BTF%4~qTk+jqIX8wMfJzkGco z{1y}EayjbD&5?>X^2~wUtEW+I#*!1JEu&XwNX2yPUXyYqIf=G2H5le>2-cIAmDwLg z;59~s1KUeV_o~3C%;SF>4ab=-n)XX-><%Q8_HAZf6g4l6q%Z1wc;U1)xevXD)7Xl! zr?N(=P1ZeSd^kRPM)F^Bnq0QA?PhsgdN`T2q+gk4-^2uoqGU)}qI#nkVDpm)_2GO25C`K2ZshLnZs1aGZ|CLXd%k>o1>nU)x5llDKTaHp_lh|q zmk@5?UaFF7TQQ5HKCoU9Q77@qIU)3z*%5N7blSuo&rtccOR&rG&Jzgne~1Pg%CO}2 z)ddZn`b8o?3&xvhe(8NF)GzU{4{{CvTpq|&sS>VWh!$C%6b&-{{9u_}=>V0mNICMx zKjN9%NF38PtOgxK?O-!vbv0t`{#0?>_ARd)Pq}A!f{+r2559jFOOq>>g=6AoO#C>X zvJC!HUfCc9QsRIq#KSt`SCXC%NKD)E3~%{@;kc*@gW_9+1(}C#s%bqEsvTP{9f>B% z!T2so}e>IM6wD>#(bxvvS=7 zE>E|Q!{yW2-o5%!LayCJMm9D!jzx|EVEOa2Ck8=ieYVmaXMC7VS*nFI{`;jpmEl7n zP2jLXq<6pKJxn3IR@oBV$DZF74C>!8=k`~Y1B|t!!_#L$M#(2Ka*3+|P-wK)nV!!XpkgpeD+XA!^)+X#aRE~ho0-)P? ze-Bi8=Wd=Vcp>?W6J(|=tP{=hn>`P6=Q^ljUAPOr2alo2XB0gVyoF7<^>vG-Q}s@P z?TPlsoFt6reSdeF$I1(k;iC4?o$I_ukm{Odl78C0H_dU@+9}8JsnC#KbLW^O!6HDQ z5vzqw)s`_Ymcr*irDxC7f}<|OXVPco$b%Ob+7qrNf93=qbILE5&QdLSS(Nq+?d+TV zD~gsuvUYTkep$*hs2WW3a!dHO)HjE7UVEkMAIK@g}mA)tr@r$tT9<%7YnbIE= z=G)lc_~Zu^>Y)oKHxq>(UVmn$hI~)`8SXFhGkkBjd`&GthgrY@0kq!w z?{|Q8_;k3@(fWQn!F93K)6>=F4PcxOpNE+5femc&6MEDj&hx=^2RV5@nHUcV0i_;H=h#}a<$iDUh$kbbNZur zDHszfQtHxpvK3}RiW+%As0TTY!JBQyjZ@8GC#A^z17M3ZX0*z6N;i-oL}aJSgx>on zS6OT9=fq%9{vgNb@=*?tgTR*1;`=-}1FGRCNB(J6EO=clmahF6RcfXmO4c#dgjo94 zW6=!Qd`W^hS3{cLxnW*S(Qk5QYza?)87C@0pKSm5HJ=?_FguONRZmo!4h;TIaYyX2 z$M^{PgcRDj1B39D3nvF-sp`Mc(X6a&JTnFWWE}(o^}qH{fF^+6N6+(lN2^e0S7+xs zaK8GK-qa&N0FU{=UtSRia^B)~>V(%8CXPn`l7<7tf|CzPNmTK^N;eknmWCfL-bio%BwsmF zG@EmkbYOd{%@eWT#ky&3EVuG)XcoPZdcl7rm2h6saw!3oj}?39*&9>b1puw1xBKv%u(pTbY6k_HZvsmD!dwh6|tzn3yR_y$FCkr5034WVa8J|CY24>os z|66No#ty*uOiVrxJE1^&1$umZ1R!&uTMD{IK>_kB6i_(E`kKhQ4#z!3_11|$5qW^6 zEo>$jjigRKy!N(&q}Ffp^<}9B2^{_3eO5Aj%c3=H3kwog?C(9!GHDC#QoX zvJ-`qoXGxd9S-JjJf|qZN#|+E?9Y@<=mwc7ysDan-t8GcmzjUcx;b$j0TqpVwJH3q z>u9mjGS6s8i8*f4mO)Hn9I2#_dy-9KSer&3myb+hq#i(GN6%oUQ@75I8xKu`kTCR< zImKy@ES{Ia*`LuT&L-Nh*kxV9XR~Db4~0fEfdk%92DmU&8`Qa^G(*Dav!w0aR32uUj!goQ>cr-w#$ z93nFkpr3n)!P<{OJD)|)^sR(IpjpnO+NnT13$=_XxqP==jH44XmbhV* ztpsrfzWQ#~Ua7in#}RD*xCP=s2>AvME+H1-r?~3iH2yUkUEHT14+pyt4J$;#8yLgL zdt()(V;Yq5$$$ohg+iH*BwI$3w9mvSk94}tRyTBOvu~XqCP;t#=hMt;2Hvy_I++Lw>ZM=9OkW% zy3l+bAE9|1I2{{yc5IzdgZ(kzykto)^1d(b zs%@hERZbnxF_|F83*_4Q_QaEpa|lsN%D5Y}NKOPiCu^_SqM>+@%r_dS6Whmw0wNq- zZ@lvuTrOaxel!7Bk`egn9In$Ln)&2vgPKwrP569C*XQMN`;JnG!W|%!3TqLa>`x2k zH=yK;#M)zB?E%wt^Rnb5c1jKBEB#FELd|ZO*0}t@ltLZKzoXfI^0Bs%-lQc&dKa}H z{<6<5PRlOWq=)sCkuc2p&63Grmi^jb0^VTH!yxmM3jfZ3k>t&saQPre2|IESP?UPV zReEnKu3H1ObP;K40MO3h4W+lAJmtTC=r2P-Ec4UA{+4aX*808jvMNBn?9yoesld{rj>is(7PU& z-GCVx@XtjdGnCsh@uece(y?AYgcKMqZz0cl9af_5tx^-k7?8ePRdQf?E9vCg!da=g z^;7gx$1&katosze8$;@GeE-}k2svAb^OrrCwVpyXNv{OG9;vzpK9qByXsF~|xgn6^ zPi=M!qdIMS2gS=Lm4I2b!eIjrvCngTro`!!^u{T%DZCLi;1aO6#(gJjg^+cA8w*5ChQ_rF_v#*PNEq6s7y03HGb4n z7$ty^t)9xf^F=7SPLKKp*7<-#5LGWyjvBMxB=ItsE}BE0L@O%fzvd@g=txXUwTSxq z7JnA89r)g-eVvZK%mK4u!K2gIF&$oCLsOm>0OAP!_CsXZ2vDMoxj`K!(pNEuF%SgtmSAz@dbQ-!o7&fCJLFQsvn2z?djxH-v;D!9UX0LR|3kJ9l&gs72C`wA$`pJr^0`q z^TOB}wDQs2;~k-gHdm(k09%Px8Xdmr!X$jbm9q_cTIOk(Gd&Q}sB<875rJ z6&nyo^kM@90| zoPRHvPxD2h>!mp#h3@nqF1Je>!=UAygr|tw7?ee#KUuvK`K6=lV_S~L!1&!f?I4Zf z7{#oSfs`{h)q3;=5WIdb?P9mG-;-W-)D%mii6FC6%e33zkEmnjeR_Y#`U)WfHZc3V z$r)OuS0OSazx{kxU*(024#)X35W=CSZ6T3bNnRXpPGyh&AeI6f%;)uP$tq*D1#nZ= zYppqLXBa!bxJbgKI~p?-04AyU!3VDA#9{2X!vY-n`v zfV`xCH?)dLeZxCj^xzzG8=lsigfimk^Bn8E8HT>>pFfG;Gs3gm^{_2?EdslGshK>k zc6X2GN{vuU3PV_7TK-pvur19<(Z>|3wVA%E(k__O*c| zI&b@BrXh;CDc_y`dla?c)R`PyJFaOYM}P6mebTHlH5=xF`p(HwpS8^8Q+-1oe<59G zfszzaZ0>lIW#E$o>Un{lkWe!CE0>CHv=V!`C!p5MA9Y~!=leX%8|2f@t4jD?zQ9cW z0JcPYiB*bunpbs&bL&>E)+sOsx_0qY19Ryuls5zl^}(lB`XrnDHmWD495YuxE0FS) zyfUN|KCk^jq}xxdEb;pnX;n;EXt3!WP58ObnKMF;5+=bO>`ziPYY~`KG==NdPDf6T zoHQiFOUFjv)Vas07}oLPG0=t3Noy}mI3Q)YBFm-cBR@m{E2lR^Er_lx{p{Odl*P|oG_36dvA)N z5cxZiY%&P|dI#8GyZ~$tux$;#Di`4J7SP;_>jM_^SQ7O*4)z!Jtte{+G+8d2N_*UQ z-mzW0vw^+F3XgRE>N&QzoV1h4!W5rb*$Q7$bg+^K{B_8vQnayuIG)cO{M_d+WPj+- z9Nt>JQKoyOCpIknGVWE}*A+ZnvUjb%+0!!YCA8dEUyc$F=A-7g&)#35wu7EvenhYZ zGbGUYf?C7`cB>&x%4LY@?fB5Bbtg>m-g%Vwd`nn@Bdhie4;f=+aXI@`3YN)fFS_*j zZD85jhfr8qix0Hq6-L-fef~?jt7e2Y7X@8x}g63$8jT&l_(*MPd9L zSFAI~p_Idawf(w34=&Il*hf=K=Y^E-bV3u7g**s~UiTi3a-t4bg zg-`sc{~%p?FGYH;lmqdP3nJ!@-IcF&$w;M0f(?!Hr4$%<1KoS%;o=Gl{jkZL;b=#E zdkZ_F*Q(HQv^bS#p9SiJ$Q$)B-A68VVZx-^Eh&6ZO|WK!hO>9~uE`T3l7_uuzv#Dl zwb6h*p=>`wH1%u1`~;{>Rs3)CLm%hT`tlULGV4JiEAwHeABK?2zp~$i&vxq{V0+MP zu(h#KY!!h}cjOV1nA5;uli@}jPN0xUFvI2o?w7}rYC8HK4^J@(C)G6$T|QHzOn?sHKjmXlo!G-d%5?g8ZVK z$-?(&^~hZ{Bw#RLcrTcs;od(5p1ceWLMvWz;LfS^KbUMAWJg9Kygn%jy#}F21`pV+ zwb(`WoV!0Oaw)8FXlNXG_($+577|m33eNKgDQt={q{MK9Zx}xW+_S%8 z+F&VizO@cNhu9^Z<-bbUndr=3X}n^4i>VKACfI5C6+$fBs9~#69-R|Wh{wanznMBd0*P$g%EAjtjnEg=SDT6hP{mt8#!7)uTw%x_8VXM5PZ1O z^qZ(R%Ma%w6UV`!F~P1-pwnOaZSfZUWNJyQv({k1oe)+2C==p*9rsY%GT?>Z{4v2LyN z4sbScw%Fb9`!3t2j2*lJ7QC{A<;xs)8}s^W#=F?_!(#G96;-5G=`kLv z@a!=Fk53YdRW+a}F^n$Y_$UG-JRntWu^(HU9H#HusUD-MkcUZS5CT~qo9tMnmCbVU zBBMd197oVAKz3A=+GttPZc@>CmsDBum&HzeEi%k{=zJw*_D7WTaGR7&!189`Q!+DM zr+GX>O>HfXQq?fcZ{U@8GZDJx?@j?!B*5H**`V{s^F5L@%HBfaO@|X*Vc*m+?0v3cZQaB^DYR}|D zTw+|3>w9SXy6L9onjY}{K|A$jdFaWeqY3-}O_E9_<0$qSjCj#<7O-Q?U$SXcidc51kOx(0IV&k5&`9-D8QF zD|1es1phUlfT1uap^=#knoc1#kjs#ok;eau7Ht^!s}vq|l2kqHQFnOLNjoTKMLjoA zh@E^g6qo4P`7UM8CLT=_t9$d~9sMO62X`nIZ8yrJaQST15`j>R*dB*C>i&H2*!d6U zzb0*l$=vMR%$PrEG58@@xgt1~7^ce~7e$?xR4sC*`3k@$tJUn-U}BDFuc>TU2mJ$B zP0w|}i?>@FG}$4HGS$}9OvaIb>*eN=-As_r=@eW`3CwuWdZ|UER_1{Vm*~tJwWSfI zzliUju*al#M?L+!PFS0!Fd`>&8WKkjZ5(Syb|F=hHmRqdUf~JB1fSUD;iIWS;Qx~h zJZ~?cjCSL2fRfp;o4;|VofSy9j9(0S&KG!ugnWVMKPB{jW~EPLI}gN1+z_Bv_4EXq z?8wi+X1eMZTZPQ*amaPF5QVVnP)xR2Wl>#tK*Wck28ok88ZAbiJFTLFfu+K`JAtD; z>&E>0M6m~}?j-hFvV+6guw&Wl5NEFhuQ|2KZ*Jc`YHw18x2EB-0$vKtr`k-@Hr$Uo z3ltq&8<9D7x%{Y=W?PbOXLGQLLjdmLxKPH(!p^u`@aRurJgMLJ|5uM zhkhK)%$kc3W6KPSE(3r{a`!X4g!cX&kS6f%i!D8LXOB2*tPiOKwd(ua}_Bb9*n)&rbE((@6xA9eDa`WrYoEokDUld%p2?59o zh_3b>{j~228|tna$v`%}$NetKxu=(Mj{of0wPn6iF3zJHQG7khGhXlZbs%Cp(W}7>2tVJ{S zXPB<(ft}P1!}3{$BhRpXFw+fARuxm%#5X&1Dz=V{=B|9>fd3B!2sKSC^g0naZ39WPE>@bKYLmd+(d?6 zU4WsakBS$x?YB`Bk=)r?WzuW;O{BoI-AX^TW$P;gHc&ryJnJ}2JjJLmxN(Q1+ zPw5QZ-NnU}_h-~`nKACW_V>a`llqT2i_XrMols&hBeFX53abo;F@QF0-yzr7R8djE zFvqY440hgGv~DGvr~iTi`(s7;WSk|Lwu?`#VZ?#Kp%yW0%L}7@I6h-#ud6{V@ogB-FpgM#PlYB?QP0`c)m#ib_P_nGf%0^H z&>}p!ef_t!HxS-^G2~>{kz&5`6X;qkb%6dWFCz=M36a-A0hpIDvf<*{EFR1+_XQwD z?aPGkYTGoy(!WA#o;!yk{_8KpH#I8Wrz6c%-L(`g81Mvdvcm3y-Z+2|sVOW4o5bep zLMAY3e=4uu_73{ki4Z@L?UlbBKq`ZXx%Vr)=CqCo8|je$SUKhd&pq9=2Y3K zk>M*-s(UMdQ`OK!mRM!9%gk|%H54$kw-A(~@iQa@qaeUadnF@PXi;_(Mwq*d7RGhb z!9uiDk$5`sI}2e#+;s2V(o3aC$X+R*pF9DT1EHz=0N~^H?oT0;19&m=_rC(2(M?a= z$@0_o8XL^j_8MT|&Y|bEMaN;ZVW9bYMLXSf0Zl}UOwitrnEOI>eA0S*hp*Xi+mSlj7f2>%i4aD8cG?@zY9AZw}>5}+tsDk}J=8X3lJI%_IQfFx+E zY6+3sFQX_S7HDrT%62=Mi47y){!LGMa zg1cg)|2`IX(x}o>p{dD9AbA0n%F)MRa9kH^=|6YtU{JW}EIVzdiQKSv2gm@vzPTmk zkX#CL+|k}k|HOo13IQ5&Wn`AUc(Sp~I#ndhhh+f32QYM_?%kYcp*->A=@TS#?6l6pJ{Ow zw Date: Mon, 15 Dec 2025 15:58:13 -0300 Subject: [PATCH 2/3] comments --- HexagonalLatticeBands.ipynb | 269 +++++++++++++++++++++++++++++------- 1 file changed, 221 insertions(+), 48 deletions(-) diff --git a/HexagonalLatticeBands.ipynb b/HexagonalLatticeBands.ipynb index a111f81c..c7d4ca8d 100644 --- a/HexagonalLatticeBands.ipynb +++ b/HexagonalLatticeBands.ipynb @@ -32,7 +32,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -51,7 +51,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## K-points definition \n", + "## K-points Definition \n", "\n", "For a hexagonal lattice, we can define the two real-space lattice vectors as \n", "$a_1 = (a,\\,0)$ and \n", @@ -59,7 +59,7 @@ "\n", "To transform these vectors into reciprocal space, we use the standard definition, where $a_3$ is simply (0,0,1).\n", "\n", - "$b_i = 2\\pi\\, \\frac{a_j \\times a_k}{a_1 \\cdot (a_2 \\times a_3)}$,\n", + "$b_i = 2\\pi\\, \\frac{a_j \\times a_k}{a_1 \\cdot (a_2 \\times a_3)}$\n", "\n", "\n", "Hence, the vectors in the reciprocal space are:\n", @@ -73,12 +73,12 @@ "- $M = \\left(0,\\,\\tfrac{1}{\\sqrt{3}}\\right)$ \n", "- $K = \\left(\\tfrac{1}{3},\\,\\tfrac{1}{\\sqrt{3}}\\right)$.\n", "\n", - "The code bellow illustrates the real and reciprocal space." + "The code below illustrates the real and reciprocal spaces." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -214,7 +214,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -224,17 +224,17 @@ "theta = np.pi / 6\n", "sizeZ = 6\n", "\n", - "# Option to add or not matching dipoles\n", + "# Option to add or not add matching dipoles\n", "matchingDipoles = True\n", "\n", - "# K-points of the Brillouin zone of hexagonal lattice\n", + "# K-points of the Brillouin zone of the hexagonal lattice\n", "kPoints = [(0, 0), (0, 1 / (np.sqrt(3))), (1 / 3, 1 / np.sqrt(3)), (0, 0)]\n", "\n", "# Source frequency and width\n", "freq0 = 200e12\n", "fwidth = 150e12\n", "\n", - "runTime = 3e-12\n", + "runTime = 2e-12\n", "\n", "rodMaterial = td.Medium(permittivity=2.5**2)\n", "\n", @@ -271,12 +271,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "To ensure periodicity, we will use a [MeshOverrideRegion] to create a custom grid with a fixed number of grid points in x and y." + "To ensure periodicity, we will use a [MeshOverrideStructure](https://docs.flexcompute.com/projects/tidy3d/en/latest/api/_autosummary/tidy3d.MeshOverrideStructure.html) to create a custom grid with a fixed number of grid points in x and y." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -296,14 +296,160 @@ "source": [ "Next, we will define the sources and monitors.\n", "\n", - "We will place 5 sources randomly distributed in the lower-left unit cell, and 5 [FieldMonitor](https://docs.flexcompute.com/projects/tidy3d/en/latest/api/_autosummary/tidy3d.FieldMonitor.html) objects randomly distributed in the supercell." + "We will place 5 sources randomly distributed in the lower-left unit cell region, and 5 [FieldTimeMonitor](https://docs.flexcompute.com/projects/tidy3d/en/latest/api/_autosummary/tidy3d.FieldTimeMonitor.html) objects randomly distributed in the supercell." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "

15:32:20 -03 WARNING: The monitor 'interval' field was left as its default      \n",
+       "             value, which will set it to 1 internally. A value of 1 means that  \n",
+       "             the data will be sampled at every time step, which may potentially \n",
+       "             produce more data than desired, depending on the use case. To      \n",
+       "             reduce data storage, one may downsample the data by setting        \n",
+       "             'interval > 1' or by choosing alternative 'start' and 'stop' values\n",
+       "             for the time sampling. If you intended to use the highest          \n",
+       "             resolution time sampling, you may suppress this warning by         \n",
+       "             explicitly setting 'interval=1' in the monitor.                    \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[2;36m15:32:20 -03\u001b[0m\u001b[2;36m \u001b[0m\u001b[31mWARNING: The monitor \u001b[0m\u001b[32m'interval'\u001b[0m\u001b[31m field was left as its default \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mvalue, which will set it to \u001b[0m\u001b[1;36m1\u001b[0m\u001b[31m internally. A value of \u001b[0m\u001b[1;36m1\u001b[0m\u001b[31m means that \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mthe data will be sampled at every time step, which may potentially \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mproduce more data than desired, depending on the use case. To \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mreduce data storage, one may downsample the data by setting \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[32m'interval > 1'\u001b[0m\u001b[31m or by choosing alternative \u001b[0m\u001b[32m'start'\u001b[0m\u001b[31m and \u001b[0m\u001b[32m'stop'\u001b[0m\u001b[31m values\u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mfor the time sampling. If you intended to use the highest \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mresolution time sampling, you may suppress this warning by \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mexplicitly setting \u001b[0m\u001b[32m'\u001b[0m\u001b[32minterval\u001b[0m\u001b[32m=\u001b[0m\u001b[32m1\u001b[0m\u001b[32m'\u001b[0m\u001b[31m in the monitor. \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
             WARNING: The monitor 'interval' field was left as its default      \n",
+       "             value, which will set it to 1 internally. A value of 1 means that  \n",
+       "             the data will be sampled at every time step, which may potentially \n",
+       "             produce more data than desired, depending on the use case. To      \n",
+       "             reduce data storage, one may downsample the data by setting        \n",
+       "             'interval > 1' or by choosing alternative 'start' and 'stop' values\n",
+       "             for the time sampling. If you intended to use the highest          \n",
+       "             resolution time sampling, you may suppress this warning by         \n",
+       "             explicitly setting 'interval=1' in the monitor.                    \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[31mWARNING: The monitor \u001b[0m\u001b[32m'interval'\u001b[0m\u001b[31m field was left as its default \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mvalue, which will set it to \u001b[0m\u001b[1;36m1\u001b[0m\u001b[31m internally. A value of \u001b[0m\u001b[1;36m1\u001b[0m\u001b[31m means that \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mthe data will be sampled at every time step, which may potentially \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mproduce more data than desired, depending on the use case. To \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mreduce data storage, one may downsample the data by setting \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[32m'interval > 1'\u001b[0m\u001b[31m or by choosing alternative \u001b[0m\u001b[32m'start'\u001b[0m\u001b[31m and \u001b[0m\u001b[32m'stop'\u001b[0m\u001b[31m values\u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mfor the time sampling. If you intended to use the highest \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mresolution time sampling, you may suppress this warning by \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mexplicitly setting \u001b[0m\u001b[32m'\u001b[0m\u001b[32minterval\u001b[0m\u001b[32m=\u001b[0m\u001b[32m1\u001b[0m\u001b[32m'\u001b[0m\u001b[31m in the monitor. \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
             WARNING: The monitor 'interval' field was left as its default      \n",
+       "             value, which will set it to 1 internally. A value of 1 means that  \n",
+       "             the data will be sampled at every time step, which may potentially \n",
+       "             produce more data than desired, depending on the use case. To      \n",
+       "             reduce data storage, one may downsample the data by setting        \n",
+       "             'interval > 1' or by choosing alternative 'start' and 'stop' values\n",
+       "             for the time sampling. If you intended to use the highest          \n",
+       "             resolution time sampling, you may suppress this warning by         \n",
+       "             explicitly setting 'interval=1' in the monitor.                    \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[31mWARNING: The monitor \u001b[0m\u001b[32m'interval'\u001b[0m\u001b[31m field was left as its default \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mvalue, which will set it to \u001b[0m\u001b[1;36m1\u001b[0m\u001b[31m internally. A value of \u001b[0m\u001b[1;36m1\u001b[0m\u001b[31m means that \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mthe data will be sampled at every time step, which may potentially \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mproduce more data than desired, depending on the use case. To \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mreduce data storage, one may downsample the data by setting \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[32m'interval > 1'\u001b[0m\u001b[31m or by choosing alternative \u001b[0m\u001b[32m'start'\u001b[0m\u001b[31m and \u001b[0m\u001b[32m'stop'\u001b[0m\u001b[31m values\u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mfor the time sampling. If you intended to use the highest \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mresolution time sampling, you may suppress this warning by \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mexplicitly setting \u001b[0m\u001b[32m'\u001b[0m\u001b[32minterval\u001b[0m\u001b[32m=\u001b[0m\u001b[32m1\u001b[0m\u001b[32m'\u001b[0m\u001b[31m in the monitor. \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
             WARNING: The monitor 'interval' field was left as its default      \n",
+       "             value, which will set it to 1 internally. A value of 1 means that  \n",
+       "             the data will be sampled at every time step, which may potentially \n",
+       "             produce more data than desired, depending on the use case. To      \n",
+       "             reduce data storage, one may downsample the data by setting        \n",
+       "             'interval > 1' or by choosing alternative 'start' and 'stop' values\n",
+       "             for the time sampling. If you intended to use the highest          \n",
+       "             resolution time sampling, you may suppress this warning by         \n",
+       "             explicitly setting 'interval=1' in the monitor.                    \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[31mWARNING: The monitor \u001b[0m\u001b[32m'interval'\u001b[0m\u001b[31m field was left as its default \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mvalue, which will set it to \u001b[0m\u001b[1;36m1\u001b[0m\u001b[31m internally. A value of \u001b[0m\u001b[1;36m1\u001b[0m\u001b[31m means that \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mthe data will be sampled at every time step, which may potentially \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mproduce more data than desired, depending on the use case. To \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mreduce data storage, one may downsample the data by setting \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[32m'interval > 1'\u001b[0m\u001b[31m or by choosing alternative \u001b[0m\u001b[32m'start'\u001b[0m\u001b[31m and \u001b[0m\u001b[32m'stop'\u001b[0m\u001b[31m values\u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mfor the time sampling. If you intended to use the highest \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mresolution time sampling, you may suppress this warning by \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mexplicitly setting \u001b[0m\u001b[32m'\u001b[0m\u001b[32minterval\u001b[0m\u001b[32m=\u001b[0m\u001b[32m1\u001b[0m\u001b[32m'\u001b[0m\u001b[31m in the monitor. \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
             WARNING: The monitor 'interval' field was left as its default      \n",
+       "             value, which will set it to 1 internally. A value of 1 means that  \n",
+       "             the data will be sampled at every time step, which may potentially \n",
+       "             produce more data than desired, depending on the use case. To      \n",
+       "             reduce data storage, one may downsample the data by setting        \n",
+       "             'interval > 1' or by choosing alternative 'start' and 'stop' values\n",
+       "             for the time sampling. If you intended to use the highest          \n",
+       "             resolution time sampling, you may suppress this warning by         \n",
+       "             explicitly setting 'interval=1' in the monitor.                    \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[31mWARNING: The monitor \u001b[0m\u001b[32m'interval'\u001b[0m\u001b[31m field was left as its default \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mvalue, which will set it to \u001b[0m\u001b[1;36m1\u001b[0m\u001b[31m internally. A value of \u001b[0m\u001b[1;36m1\u001b[0m\u001b[31m means that \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mthe data will be sampled at every time step, which may potentially \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mproduce more data than desired, depending on the use case. To \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mreduce data storage, one may downsample the data by setting \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[32m'interval > 1'\u001b[0m\u001b[31m or by choosing alternative \u001b[0m\u001b[32m'start'\u001b[0m\u001b[31m and \u001b[0m\u001b[32m'stop'\u001b[0m\u001b[31m values\u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mfor the time sampling. If you intended to use the highest \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mresolution time sampling, you may suppress this warning by \u001b[0m\n", + "\u001b[2;36m \u001b[0m\u001b[31mexplicitly setting \u001b[0m\u001b[32m'\u001b[0m\u001b[32minterval\u001b[0m\u001b[32m=\u001b[0m\u001b[32m1\u001b[0m\u001b[32m'\u001b[0m\u001b[31m in the monitor. \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Sources\n", "Nsources = 5\n", @@ -322,13 +468,11 @@ "# Monitors\n", "Nmonitors = 5\n", "\n", - "posyMon = np.random.uniform(-0.8, -0.2, 5)\n", - "posxMon = np.random.uniform(-0.2, 0.2, 5)\n", + "posyMon = np.random.uniform(-0.8, 0.8, Nmonitors)\n", + "posxMon = np.random.uniform(-0.2, 0.2, Nmonitors)\n", "\n", "monitors = [\n", - " td.FieldTimeMonitor(\n", - " center=(posxMon[i], posyMon[i], 0), name=f\"mon{i}\", size=(0, 0, 0), start=1e-12\n", - " )\n", + " td.FieldTimeMonitor(center=(posxMon[i], posyMon[i], 0), name=f\"mon{i}\", size=(0, 0, 0), start=0)\n", " for i in range(Nmonitors)\n", "]" ] @@ -344,11 +488,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ - "# Function to return a simulation for every Bloch vector\n", + "# Function to return a simulation for each Bloch vector\n", "def getSim(pol, bloch_x, bloch_y, matchingDipoles=True):\n", " symmetry = [0, 0, -1] if pol == \"Ez\" else [0, 0, 1]\n", "\n", @@ -410,12 +554,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwgAAAHqCAYAAACgFmm3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcnFJREFUeJzt3XlcVPX+P/DXMAzDMuzLAIKC+4ogGlKahtzQvKVpppWp6dUW6V71SkXXNK2+lHjTutfy1jVt0atZav2yNEWxNFeE1FRSRBFlVWBkh5nz+4M8NbLIMjNnltfz8ZiHzud8zpnXmQFm3nM+53NkgiAIICIiIiIiAmAndQAiIiIiIjIfLBCIiIiIiEjEAoGIiIiIiEQsEIiIiIiISMQCgYiIiIiIRCwQiIiIiIhIxAKBiIiIiIhELBCIiIiIiEjEAoGIiIiIiEQsEMjihISEYMaMGeL91NRUyGQypKamSpaJiIjI1j3wwAOYPXu21DH0nDlzBvb29jh9+rTUUSwKCwQiIiKiFmzcuBGrVq2y+QwtOXjwIL7//nu8+OKLJnvMq1ev4tFHH4WHhwfc3Nwwbtw4XLx4Ua9P3759MXbsWCxevNhkuayBTBAEQeoQRG1RU1MDOzs7KBQKAA1HEO677z7s27cPI0eOlDYcERFZnT//+c84ffo0Ll26ZNMZWjJ+/HhUVVVh165dJnm88vJyDBo0CGVlZfj73/8OhUKBlStXQhAEZGRkwNvbW+z73Xff4YEHHsCFCxfQrVs3k+SzdDyCQBZHqVSKxQEREZE5qa6uhk6nkzpGq1VWVnZ4G4WFhdixYwceffRRAyRqnffeew/nz5/HN998gxdeeAHz58/H999/j7y8PPzzn//U6xsbGwtPT098/PHHJstn6VggUIddvXoVM2fOhFqthlKpRL9+/fDRRx+Jy2+dI7B582a8/PLL8Pf3h4uLCx566CFcuXJFb1vnz5/HxIkT4e/vD0dHRwQFBWHKlCkoKysT+9x+DkJztmzZgsjISDg5OcHHxwdTp07F1atX9frMmDEDKpUKV69exfjx46FSqeDr64uFCxdCq9V27IkhIiKzd/PmTcybNw8hISFQKpXw8/PDn/70J5w4cQIAMHLkSOzYsQOXL1+GTCaDTCZDSEgIgN/f3zZt2oRFixahU6dOcHZ2hkajwauvvgqZTNbo8davXw+ZTNboSMB3332HESNGwNXVFW5ubhgyZAg2btx4xwzNba+p8/NGjhyJ/v37Iy0tDffeey+cnZ3x8ssvA2g4Or9kyRJ0794dSqUSwcHBeOGFF1BTU3PH53DHjh2or69HbGysXvutrE3dOnok5IsvvsCQIUMwZMgQsa13794YNWoUPv/8c72+CoUCI0eOxFdffdWhx7Ql9lIHIMtWUFCAoUOHQiaTIT4+Hr6+vvjuu+8wa9YsaDQazJs3T+z7xhtvQCaT4cUXX0RhYSFWrVqF2NhYZGRkwMnJCbW1tYiLi0NNTQ2ef/55+Pv74+rVq/jmm29QWloKd3f3Vudav349nnrqKQwZMgRJSUkoKCjAO++8g4MHDyI9PR0eHh5iX61Wi7i4OERFRWHFihXYs2cP/vnPf6Jbt2549tlnDfhsERGRuXnmmWfwxRdfID4+Hn379sX169dx4MABnD17FoMGDcI//vEPlJWVITc3FytXrgQAqFQqvW289tprcHBwwMKFC1FTUwMHB4c2ZVi/fj1mzpyJfv36ITExER4eHkhPT8fOnTvx+OOPtypDa12/fh1jxozBlClTMHXqVKjVauh0Ojz00EM4cOAA5syZgz59+uDUqVNYuXIlfv31V2zfvr3Fbf7000/w9vZGly5d9No//fTTRn0XLVqEwsJCMX9NTQ1u3rzZquw+Pj4AAJ1Oh5MnT2LmzJmN+tx11134/vvvcfPmTbi6uortkZGR+Oqrr6DRaODm5taqx7NpAlEHzJo1SwgICBCKi4v12qdMmSK4u7sLlZWVwr59+wQAQqdOnQSNRiP2+fzzzwUAwjvvvCMIgiCkp6cLAIQtW7a0+JhdunQRpk+fLt6/tf19+/YJgiAItbW1gp+fn9C/f3+hqqpK7PfNN98IAITFixeLbdOnTxcACMuWLdN7jIiICCEyMrJNzwUREVked3d3Ye7cuS32GTt2rNClS5dG7bfef7p27SpUVlbqLVuyZInQ1MesdevWCQCE7OxsQRAEobS0VHB1dRWioqL03rMEQRB0Ot0dM9y+vduz3XpvFARBGDFihABAWLNmjV7fTz/9VLCzsxN+/PFHvfY1a9YIAISDBw82etw/GjZsWKveM5cvXy4AED755JNG+Vtzu6WoqKjJ925BEITVq1cLAIRz587ptW/cuFEAIBw5cuSOOUkQeASB2k0QBHz55Zd49NFHIQgCiouLxWVxcXHYtGmTeIgWAKZNm6ZXzT/yyCMICAjAt99+i7/+9a/iEYJdu3bhgQcegLOzc7tyHT9+HIWFhXj11Vfh6Ogoto8dOxa9e/fGjh07sHTpUr11nnnmGb37w4cPb/KbDyIisi4eHh44cuQIrl27hsDAwHZtY/r06XBycmrXurt378bNmzfx0ksv6b1nAWhyiFJHKZVKPPXUU3ptW7ZsQZ8+fdC7d2+99/KYmBgAwL59+3D33Xc3u83r16+jU6dOLT7uvn37kJiYiOeffx5PPvmk2B4XF4fdu3e3aR+qqqrEfbndrefwVp9bPD09AUBv/6h5LBCo3YqKilBaWooPPvgAH3zwQZN9CgsLxV/KHj166C2TyWTo3r27OA4xNDQUCxYswNtvv40NGzZg+PDheOihhzB16tQ2DS+6fPkyAKBXr16NlvXu3RsHDhzQa3N0dISvr69em6enJ0pKSlr9mEREZJmWL1+O6dOnIzg4GJGRkXjggQcwbdo0dO3atdXbCA0NbffjZ2VlAQD69+/f7m20RadOnRoNgTp//jzOnj3b6L3wlsLCwjtuV2hhUszc3FxMnjwZ99xzD95++229ZQEBAQgICGhF8t/dKsaaOj+iurpar8/t+YxRdFkjFgjUbrdmaZg6dSqmT5/eZJ+wsDCcOXOm1dv85z//iRkzZuCrr77C999/j7/+9a9ISkrC4cOHERQUZJDct5PL5UbZLhERmb9HH30Uw4cPx7Zt2/D9998jOTkZb731FrZu3YoxY8a0ahtNHT1o7oOooSfAaOvjNJVVp9NhwIABjT683xIcHNxiBm9v72a/VKutrcUjjzwCpVKJzz//HPb2+h89q6qq9CYiaYm/vz8AwMvLC0qlEnl5eY363Gq7/WjQrXy3zmOglrFAoHbz9fWFq6srtFpto5kL/uhWgXD+/Hm9dkEQcOHCBYSFhem1DxgwAAMGDMCiRYvw008/4Z577sGaNWvw+uuvtyrXrZOkMjMzxcOjt2RmZjY6iYqIiGxbQEAAnnvuOTz33HMoLCzEoEGD8MYbb4gFQnu+db519Ly0tFRvYoxbR7lvuTUv/+nTp9G9e/dmt9dchj8+zh/d/jgt6datG37++WeMGjWqXfvau3dvfPnll00u++tf/4qMjAz88MMPUKvVjZZv3ry50ZCn5tw6CmBnZ4cBAwbg+PHjjfocOXIEXbt21RvSDADZ2dmws7NDz549W/VYto7TnFK7yeVyTJw4EV9++WWTlzAvKirSu//JJ5/ozVTwxRdfIC8vT/wDrNFoUF9fr7fOgAEDYGdn16pp1m4ZPHgw/Pz8sGbNGr31vvvuO5w9exZjx45t9baIiMh6abXaRt9e+/n5ITAwUO/9w8XFpdXfct9y64P/Dz/8ILZVVFQ0mov//vvvh6urK5KSksThMbf8cdhOcxmaehytVtvs0N+mPProo7h69So+/PDDRsuqqqpQUVHR4vrR0dEoKSlpdBXjdevW4T//+Q9Wr16Nu+66q8l1b52D0JrbHz3yyCM4duyYXpGQmZmJvXv3YtKkSY0eJy0tDf369WvTkGVbxiMI1CFvvvkm9u3bh6ioKMyePRt9+/bFjRs3cOLECezZswc3btwQ+3p5eWHYsGF46qmnUFBQgFWrVqF79+6YPXs2AGDv3r2Ij4/HpEmT0LNnT9TX1+PTTz8VC5HWUigUeOutt/DUU09hxIgReOyxx8RpTkNCQjB//nyDPw9ERGR5bt68iaCgIDzyyCMYOHAgVCoV9uzZg2PHjuldbCsyMhKbN2/GggULMGTIEKhUKjz44IMtbvv+++9H586dMWvWLCQkJEAul+Ojjz6Cr68vcnJyxH5ubm5YuXIl/vKXv2DIkCF4/PHH4enpiZ9//hmVlZViQdFchn79+mHo0KFITEzEjRs34OXlhU2bNjX6wq0lTz75JD7//HM888wz2LdvH+655x5otVqcO3cOn3/+OXbt2oXBgwc3u/7YsWNhb2+PPXv2YM6cOQAaTgZ+7rnn0LdvXyiVSnz22Wd66zz88MNwcXFp1zkIAPDcc8/hww8/xNixY7Fw4UIoFAq8/fbbUKvV+Pvf/67Xt66uDvv378dzzz3X5sexWRLOoERWoqCgQJg7d64QHBwsKBQKwd/fXxg1apTwwQcfCILw+1Rr//vf/4TExETBz89PcHJyEsaOHStcvnxZ3M7FixeFmTNnCt26dRMcHR0FLy8v4b777hP27Nmj93h3mub0ls2bNwsRERGCUqkUvLy8hCeeeELIzc3V6zN9+nTBxcWl0T41Nz0dERFZj5qaGiEhIUEYOHCg4OrqKri4uAgDBw4U3nvvPb1+5eXlwuOPPy54eHgIAMTpRm+9/zQ3PXdaWpoQFRUlODg4CJ07dxbefvvtZqcl/frrr4W7775bcHJyEtzc3IS77rpL+N///nfHDIIgCFlZWUJsbKygVCoFtVotvPzyy8Lu3bubnOa0X79+TWatra0V3nrrLaFfv36CUqkUPD09hcjISGHp0qVCWVnZHZ/Lhx56SBg1apR4Pzs7u8UpS2/f//a4cuWK8Mgjjwhubm6CSqUS/vznPwvnz59v1O+7774TADS5jJomE4QWTjsnMoDU1FTcd9992LJlCx555BGp4xAREZGB/fjjjxg5ciTOnTvXaNZCqY0fPx4ymQzbtm2TOorF4DkIRERERNQhw4cPx/3334/ly5dLHUXP2bNn8c033+C1116TOopF4TkIRERERNRh3333ndQRGunTp0+bzsegBjyCQEREREREIp6DQEREREREIh5BICIiIiIiEQsEIiIiIiISGe0k5dWrVyM5ORn5+fkYOHAg/vWvfzV7Fb0/0ul0uHbtGlxdXdt1uW8isj2CIODmzZsIDAyEnR2/9yAyNL43E5k3Q78PGuUchM2bN2PatGlYs2YNoqKisGrVKmzZsgWZmZnw8/Nrcd3c3FwEBwcbOhIR2YArV64gKChI6hhEVqel92Y7mR10gs7EiYhsV0u/c4Z6HzRKgRAVFYUhQ4bg3//+N4CGbx6Cg4Px/PPP46WXXmpx3bKyMnh4eODyiRC4qfhNYEse7jlA6ghkAtt+PSV1BLOnKdehy6BLKC0thbu7u9RxiKzOrffmK1euwM3NTWzPyMjAiBEjsGL0W+jm1U3ChES2IetGFhbufBH79+9HeHi42K7RaBAcHGyw90GDDzGqra1FWloaEhMTxTY7OzvExsbi0KFDd1z/1qFLN5Ud3FxZILTEXqaQOgKZAH8PWo9DH4iMQ3xvdnPTKxBUKhUAoJtXN/Tz6ytJNiJbpFKp9H4XbzHU+6DBC4Ti4mJotVqo1Wq9drVajXPnzjXqX1NTg5qaGvG+RqMxdCQiIiIiImolyb+aTEpKgru7u3jj+QdERERERNIxeIHg4+MDuVyOgoICvfaCggL4+/s36p+YmIiysjLxduXKFUNHIiIiIiKiVjJ4geDg4IDIyEikpKSIbTqdDikpKYiOjm7UX6lUimMabx/bSEREREREpmWU6yAsWLAA06dPx+DBg3HXXXdh1apVqKiowFNPPWWMhyMiIiIiIgMxSoEwefJkFBUVYfHixcjPz0d4eDh27tzZ6MRlIiIiIiIyL0a7knJ8fDzi4+ONtXkiIiIiIjICoxUIREREZF0yMjLEax8AwNmzZwE0XLyJiIzv1u/ard+9W8rLyw36OCwQiIiI6I7sZHYYMWJEk+0Ld74oQSIi22Qns8PUqVON+hgsEIiIiOiOdIIOK0a/hW5e3cS2rBtZWLjzRcTMToRnQGcJ05lewthIKOzlUsewaR//cAZXSwz7zbm5K8nLwd4Pk5r9XTQUFghERETUKt28uqGfX99G7Z4BneHbpYcEiaQzZMhg2MlkUsewaT8UALV5JVLHkERzv4uGIvmVlImIiIgsiUJux+LADDjwCI7RsEAgIiIiagNnBw7AMAdOfB2MhgUCERERURu4OCqkjkAAVHwdjIYFAhEREVEbuDkppY5AANycHKSOYLVYIBARERG1gacLCwRz4OniKHUEq8UCgYiIiKgNvFT8YGoOvPk6GA3P7jBzcYHhUkcgiTX3M7DrWoZJcxARUQM/N2epIxAAXzcnqSNYLR5BICIiImqDAA8XqSMQAFdHB84oZSQsEIiIiIhayU4mg787jyCYA5lMhk5eKqljWCUWCERERESt5O/hDAUv0GU2gr1dpY5glVggEBEREbVSiI+b1BHoD/h6GAcLBCIiIqJW6qb2kDoC/UFXtbvUEawSCwQiIiKiVuru7yF1BPoDb5UTp501AhYIRERERK3gpXKEryun1jQ3vQO9pI5gdVggEBEREbVCv07ekMlkUseg2/TrxALB0FggEBEREbXCgGAfqSNQE/p08obcjoWbIbFAICIiIroDpb0cvQM9pY5BTXBysEevAB5FMCQWCERERER3MLCLL69/YMYGd/WTOoJVYYFARERkRlavXo2QkBA4OjoiKioKR48ebbbvyJEjIZPJGt3Gjh0r9pkxY0aj5aNHjzbFrliVIV3VUkegFoR38YNCzo+1hsJnkoiIyExs3rwZCxYswJIlS3DixAkMHDgQcXFxKCwsbLL/1q1bkZeXJ95Onz4NuVyOSZMm6fUbPXq0Xr///e9/ptgdq+HurEQfnghr1pwc7BHexVfqGFbDXuoA1CAuMFzqCGRhWvqZ2XUtw2Q5iMhw3n77bcyePRtPPfUUAGDNmjXYsWMHPvroI7z00kuN+nt56X9o3bRpE5ydnRsVCEqlEv7+/sYLbuXu7hEAuR2/UzV3w3p1wrGLBVLHsAr8aSciIjIDtbW1SEtLQ2xsrNhmZ2eH2NhYHDp0qFXbWLt2LaZMmQIXFxe99tTUVPj5+aFXr1549tlncf36dYNmt2Z2MhmG9eokdQxqhR7+HgjwcLlzR7ojFghERERmoLi4GFqtFmq1/lh3tVqN/Pz8O65/9OhRnD59Gn/5y1/02kePHo1PPvkEKSkpeOutt7B//36MGTMGWq222W3V1NRAo9Ho3WxVRIgvr9RrIWQyGWL6BUsdwypwiBEREZEVWLt2LQYMGIC77rpLr33KlCni/wcMGICwsDB069YNqampGDVqVJPbSkpKwtKlS42a11L8aUAXqSNQG0R188f/O3ERmqpaqaNYNB5BICIiMgM+Pj6Qy+UoKNAfQ11QUHDH8wcqKiqwadMmzJo1646P07VrV/j4+ODChQvN9klMTERZWZl4u3LlSut2wsr06eSFLj5uUsegNlDYyzGqf2epY1g8FghERERmwMHBAZGRkUhJSRHbdDodUlJSEB0d3eK6W7ZsQU1NDaZOnXrHx8nNzcX169cREBDQbB+lUgk3Nze9my36c0RXqSNQO9zbuxNUjgqpY1g0DjEyIc5URKbCGY6ILNOCBQswffp0DB48GHfddRdWrVqFiooKcVajadOmoVOnTkhKStJbb+3atRg/fjy8vb312svLy7F06VJMnDgR/v7+yMrKwgsvvIDu3bsjLi7OZPtliQYE+6Crn7vUMagdHBX2GDMwBFuOnJc6isVigUBERGQmJk+ejKKiIixevBj5+fkIDw/Hzp07xROXc3JyYHfbdJuZmZk4cOAAvv/++0bbk8vlOHnyJD7++GOUlpYiMDAQ999/P1577TUolUqT7JMlspPJ8PDgblLHoA64t3cQUs/kouhmldRRLBILBCIiIjMSHx+P+Pj4JpelpqY2auvVqxcEQWiyv5OTE3bt2mXIeDZheO9OCPBUSR2DOsBebocJd/XAf1JOSh3FIvEcBCIiIqLfqBwVeHAQzz2wBgM7+6BfkPedO1IjLBCIiIiIfjMpqidclDzB1RrIZDJMHtoLCjk/7rYVnzEiIiIiAP2DvTGkq/rOHcli+Lo5YRzPJ2kzFghERERk81yU9njinj6QyWRSRyEDu69vMHr4e0gdw6LwJGUD41SmZO44BSoRUWNT7+kDD2fO7GSN7GQyzLi3H17ffgRVtfVSx7EIPIJARERENm1knyCEh/hJHYOMyEvliGnD+0odw2KwQCAiIiKbFeLrhgl39ZA6BplAeBdfxPbvLHUMi8ACgYiIiGySu5MDno4ZwFlubMj4wd3Qp5OX1DHMHn8jiIiIyOYo5HZ4JnYgPFwcpY5CJiS3s8NfRvaHv4ez1FHMGgsEIiIisikyGfCX+/ojxNdN6igkAWelAvF/Coebk4PUUcwWCwQiIiKyKVPv6YOwzr5SxyAJebs64fm4cDg7cELPpvBZaQGnLCVb056feU6NSkSWZPLQnri7Z6DUMcgMBHm54vm4cLyzMx3VdVqp45gVHkEgIiIimzB5aE+M7BssdQwyIyG+7vhrXASceCRBDwsEIiIismoyGfDksD4sDqhJoX7umD9mEFSOCqmjmA0WCERERGS1FHI7PB0TxmFF1KJgb1ckjB0MX1cnqaOYBRYIREREZJXcnByw4IFBGNiFJyTTnfm5OyPhz4PRzc+90TIBOmhUWbjukQ6NKgsCdBIkNB0OuCIiIiKr08XHDU+PGgBPXueA2sDVyQF/GzMImw5l4qdfrwEAbrifQk6nr1HrUCb2c6h1R+erD8GrbIBUUY2KRxCIiIjIqgzv3Ql/HxvJ4oDaRSG3w5PD+uCJe3pD4/kLLoR8ilpFmV6fWkUZLoR8ihvupyRKaVxWcwSBU5ISScPQv3ucNpWI2svJwR5P3NMbkaFqqaOQFYju6Y9l1d8C9QBkty2UARCAnE5fw7OsH2RW9p271RQIREREZLv6dvLC1GF9eNSADCa9PB3XtUWNi4NbZECtQxluqrLhVt7NpNmMjQUCERERWSwXpT0m3tUDQ7sHQCZr7pMcUdsV1xW3ql+dvcbISUyPBQIRERFZHBmAe3oFYlxkN6gcHaSOQ1bIR+HTqn6KejcjJzE9FghERERkUfp08sKEwd0R5O0qdRSyYhGqCPgp/FBYV9h0BwFwqPOAa3moaYOZgHWdUUFERERWq4e/B+aPGYS/xkWwOCCjk8vkSAhKaHa5TCbDC50X4u4enWBnZcPb2nwE4YcffkBycjLS0tKQl5eHbdu2Yfz48eJyQRCwZMkSfPjhhygtLcU999yD999/Hz169GjT4zzccwDsZbzkNZGtac+sSPVCHYCLBs9CRNKTARjQ2Qd/6t8F3f09pI5DNibGMwbJSEZybrLekQS1Qo2FQQsR4xkDBAJjw0Ox53QODp3PQ029VsLEhtHmAqGiogIDBw7EzJkzMWHChEbLly9fjnfffRcff/wxQkND8corryAuLg5nzpyBoyNnFiAiIqI7c1EqEN0jAMN7d4Kfm7PUcciGxXjGYITHCKSXp6O4rhg+Ch9EqCIgl8nFPt6uTpgc3QsPDuqKQxfycODcVeSXVUqYumPaXCCMGTMGY8aMaXKZIAhYtWoVFi1ahHHjxgEAPvnkE6jVamzfvh1TpkzpWFoiIiKyWvZyO/QP8sZd3fwxINgH9nKOhCbzIJfJMdh18B37OSsVGNWvM2L6BiO7SIMjF/Jw4lIhyqvrTJDScAx6knJ2djby8/MRGxsrtrm7uyMqKgqHDh1qskCoqalBTU2NeF+jsb6pooiIiKhpKkcF+nXyxoDOPugX5A1HBedPIcuhFbRNHlmQyWTo6ueOrn7ueHRoT2QVlOFkThFO515HgQUcWTDob2F+fj4AQK3Wv4KhWq0Wl90uKSkJS5cuNWQMIiIiMlPeKkeE+Lqhm9oDPfw9EOipsroTPMk27C3Z2+jcBD+FHxKCEhrOTfiN3M4OPQM80TPAE49EATfKq3E+vwQXCkpxqUiDayUV0AmCFLvQLMnL9MTERCxYsEC8r9FoEBwcLGEiIiIiai+lvRwujgq4OTnAy8URXipH+Lk5w9/DGYGeKrgoOQEJWb69JXuRkN14hqPCukIkZCcgGcl6RcIfeakcEdU9AFHdAwAAdfVa5JdV4lpJOQo1lSi+WY2SimqUVdbgZnUdqmvrYerywaAFgr+/PwCgoKAAAQEBYntBQQHCw8ObXEepVEKpVBoyBhEREZnQX+PCMWTwYDjY20Fux/MGyLppBS2Sc5Nb7LMidwVGeIzQO5G5OQp7OYK9XRHczNS9OkFAbb0WdfU6nDjhgi+XtSt2mxj0tzg0NBT+/v5ISUkR2zQaDY4cOYLo6GhDPhQRERGZCZWjA5wc7FkckE1IL09v/uJpvymoK0B6ebpBHs9OJoOjwh6uTg5wdTLNVcPbfAShvLwcFy5cEO9nZ2cjIyMDXl5e6Ny5M+bNm4fXX38dPXr0EKc5DQwM1LtWAhERERGRJSquKzZoP3PU5gLh+PHjuO+++8T7t84fmD59OtavX48XXngBFRUVmDNnDkpLSzFs2DDs3LmT10AgIiIiIovno/AxaD9z1OYCYeTIkRBaONNaJpNh2bJlWLbMBAOkiIiIiIhMKEIVAT+FX4vDjNQKNSJUESZMZVgcLEhERERE1EpymRwJQY1nMLpFBhkWBi1s1QnK5ooFAhERERFRG8R4xiA5NBl+Cj+9drVCjeWhy5ud4tRSSH4dBCIiIiIiSxPjGYMRHiOavJKypWOBQERERETUDnKZHINdB0sdw+A4xIiIiIiIiEQsEIiIiIiISMQCgYiIiIiIRCwQiIiIiIhIxAKBiIiIiIhELBCIiIiIiEjEAoGIiMiMrF69GiEhIXB0dERUVBSOHj3abN/169dDJpPp3RwdHfX6CIKAxYsXIyAgAE5OToiNjcX58+eNvRtEZMFYIBAREZmJzZs3Y8GCBViyZAlOnDiBgQMHIi4uDoWFhc2u4+bmhry8PPF2+fJlveXLly/Hu+++izVr1uDIkSNwcXFBXFwcqqurjb07RGShWCAQERGZibfffhuzZ8/GU089hb59+2LNmjVwdnbGRx991Ow6MpkM/v7+4k2tVovLBEHAqlWrsGjRIowbNw5hYWH45JNPcO3aNWzfvt0Ee0RElogFAhERkRmora1FWloaYmNjxTY7OzvExsbi0KFDza5XXl6OLl26IDg4GOPGjcMvv/wiLsvOzkZ+fr7eNt3d3REVFdXiNmtqaqDRaPRuRGQ7WCAQERGZgeLiYmi1Wr0jAACgVquRn5/f5Dq9evXCRx99hK+++gqfffYZdDod7r77buTm5gKAuF5btgkASUlJcHd3F2/BwcEd2TUisjAsEIiIiCxUdHQ0pk2bhvDwcIwYMQJbt26Fr68v/vOf/3Rou4mJiSgrKxNvV65cMVBiIrIELBCIiIjMgI+PD+RyOQoKCvTaCwoK4O/v36ptKBQKRERE4MKFCwAgrtfWbSqVSri5uendiMh2sEAgIiIyAw4ODoiMjERKSorYptPpkJKSgujo6FZtQ6vV4tSpUwgICAAAhIaGwt/fX2+bGo0GR44cafU2icj22EsdgIiIiBosWLAA06dPx+DBg3HXXXdh1apVqKiowFNPPQUAmDZtGjp16oSkpCQAwLJlyzB06FB0794dpaWlSE5OxuXLl/GXv/wFQMMMR/PmzcPrr7+OHj16IDQ0FK+88goCAwMxfvx4qXaTiMwcCwQiIiIzMXnyZBQVFWHx4sXIz89HeHg4du7cKZ5knJOTAzu73w/+l5SUYPbs2cjPz4enpyciIyPx008/oW/fvmKfF154ARUVFZgzZw5KS0sxbNgw7Ny5s9EF1YiIbmGBQEREZEbi4+MRHx/f5LLU1FS9+ytXrsTKlStb3J5MJsOyZcuwbNkyQ0UkIivHcxCIiIiIiEjEAoGIiIiIiEQsEIiIiIiISMQCgYiIiIiIRDxJmYiIiIjoDrSCFunl6SiuK4aPwgcRqgjIZXKpYxkFCwQiIiIiohbsLdmL5NxkFNYVim1+Cj8kBCUgxjNGwmTGwSFGRERERETN2FuyFwnZCXrFAQAU1hUiITsBe0v2SpTMeFggEBERERE1QStokZyb3GKfFbkroBW0JkpkGiwQiIiIiIiakF6e3ujIwe0K6gqQXp5uokSmwQKBiIiIiKgJxXXFBu1nKVggEBERERE1wUfhY9B+loIFAhERERFREyJUEfBT+LXYR61QI0IVYaJEpsECgYiIiIioCXKZHAlBCc0ul0GGhUELre56CCwQiIiIiIiaEeMZg+TQ5EZHEtQKNZaHLrfK6yDwQmlERERERC2I8YzBCI8RvJIyERERERE1kMvkGOw6WOoYJsEhRkREREREJGKBQEREREREIhYIREREREQkYoFAREREREQiFghERERERCRigUBERERERCIWCEREREREJGKBQEREREREIhYIREREREQkYoFAREREREQiFghERERERCRigUBERERERCIWCEREREREJGKBQEREREREIhYIREREREQkYoFAREREREQiFghERERERCRigUBERERERCIWCEREREREJGpTgZCUlIQhQ4bA1dUVfn5+GD9+PDIzM/X6VFdXY+7cufD29oZKpcLEiRNRUFBg0NBERERERGQc9m3pvH//fsydOxdDhgxBfX09Xn75Zdx///04c+YMXFxcAADz58/Hjh07sGXLFri7uyM+Ph4TJkzAwYMHjbIDZJl2Xcsw2WPFBYab7LGIiIiILF2bCoSdO3fq3V+/fj38/PyQlpaGe++9F2VlZVi7di02btyImJgYAMC6devQp08fHD58GEOHDjVcciIiIiIiMrgOnYNQVlYGAPDy8gIApKWloa6uDrGxsWKf3r17o3Pnzjh06FCT26ipqYFGo9G7ERERERGRNNpdIOh0OsybNw/33HMP+vfvDwDIz8+Hg4MDPDw89Pqq1Wrk5+c3uZ2kpCS4u7uLt+Dg4PZGIiIiIiKiDmp3gTB37lycPn0amzZt6lCAxMRElJWVibcrV650aHtERERERNR+bToH4Zb4+Hh88803+OGHHxAUFCS2+/v7o7a2FqWlpXpHEQoKCuDv79/ktpRKJZRKZXtiEBEREVELtDodblbXoaK6DlW19ajValGv1UEnADIAcjsZHOzlcHKwh7PSHq6ODnCwl0sdmyTWpgJBEAQ8//zz2LZtG1JTUxEaGqq3PDIyEgqFAikpKZg4cSIAIDMzEzk5OYiOjjZcaiIiIiIC0PD5rLSyBleu38TVkgrkl1agSFOJG+XV0FTVQmjj9pwd7OGlcoSPqxP83V0Q4OmCYC8V1O4usLOTGWUfyLy0qUCYO3cuNm7ciK+++gqurq7ieQXu7u5wcnKCu7s7Zs2ahQULFsDLywtubm54/vnnER0dzRmMLJwppyU1NGNk59SpREQkFUEQcK20ApnXbuB8fikuFpZBU1VrsO1X1taj8kY5cm+UAygS25X2coT4uqG72gO9Aj0R6usOezmvuWuN2vSqvv/++ygrK8PIkSMREBAg3jZv3iz2WblyJf785z9j4sSJuPfee+Hv74+tW7caPDgREZE1Wr16NUJCQuDo6IioqCgcPXq02b4ffvghhg8fDk9PT3h6eiI2NrZR/xkzZkAmk+ndRo8ebezdIAPT6nQ4k3sdGw+ew8ubD+L1bUew5ch5ZFwuMmhx0JKaei0y80qwIyMbb397Agkbf8B/Uk7iyIU8VNbUmSQDmUabhxjdiaOjI1avXo3Vq1e3OxQREZEt2rx5MxYsWIA1a9YgKioKq1atQlxcHDIzM+Hn59eof2pqKh577DHcfffdcHR0xFtvvYX7778fv/zyCzp16iT2Gz16NNatWyfe57l/lkEQBFwq0uDQhTycyC5ARU291JH0VNdpkXG5CBmXi2BvJ0O/IB8M7e6P/sE+PLJg4dp1kjIREREZ3ttvv43Zs2fjqaeeAgCsWbMGO3bswEcffYSXXnqpUf8NGzbo3f/vf/+LL7/8EikpKZg2bZrYrlQqm50shMxPdV09jlzIxw/ncnGtpELqOK1SrxPwc04Rfs4pgqujAnf3DMS9vYPgpXKUOppBaAUt0svTUVxXDB+FDyJUEZDLrPdkbhYIREREZqC2thZpaWlITEwU2+zs7BAbG9vsxUZvV1lZibq6OvECprekpqbCz88Pnp6eiImJweuvvw5vb+9mt1NTU4OamhrxPi9iahqaqlrs++UK9p/LRVWteR0taIub1XXYdfIydp/KQWSoH+LCQtDJSyV1rHbbW7IXybnJKKwrFNv8FH5ICEpAjGeMhMmMhwUCERGRGSguLoZWq4VardZrV6vVOHfuXKu28eKLLyIwMBCxsbFi2+jRozFhwgSEhoYiKysLL7/8MsaMGYNDhw5BLm/6G9CkpCQsXbq0/TtDbVJeXYtdJy9j/9lc1Gl1UscxGJ0g4NjFAhy7WIDwLr7486Cu6ORpWYXC3pK9SMhOaNReWFeIhOwEJCPZKosEFgg2yJJnJDIX7XkOOfMRERnTm2++iU2bNiE1NRWOjr8P65gyZYr4/wEDBiAsLAzdunVDamoqRo0a1eS2EhMTsWDBAvG+RqNBcHCw8cLbqNp6LVJ+uYLvT15CdZ1W6jhGlXG5CD9fLsLQHgF4KLIbPJzN/zwYraBFcm5yi31W5K7ACI8RVjfciAUCERGRGfDx8YFcLkdBQYFee0sXG71lxYoVePPNN7Fnzx6EhYW12Ldr167w8fHBhQsXmi0QeBFT4/v5chG2HPkV18urpY5iMgKAQ+fzcCK7EGMGhmBU/85mfTJzenm63rCiphTUFSC9PB2DXQebKJVpmO+rQkREZEMcHBwQGRmJlJQUsU2n0yElJaXFi40uX74cr732Gnbu3InBg+/8ISU3NxfXr19HQECAQXJT25RWVGPNnp+xJuWkTRUHf1RTr8X2tCz831dHcbGwTOo4zSquKzZoP0vCAoGIiMhMLFiwAB9++CE+/vhjnD17Fs8++ywqKirEWY2mTZumdxLzW2+9hVdeeQUfffQRQkJCkJ+fj/z8fJSXlwMAysvLkZCQgMOHD+PSpUtISUnBuHHj0L17d8TFxUmyj7ZKEAQcuZCHZduO4Occ6/tA2R55pRVY8c1xfHn0POrqzW+IlY/Cx6D9LAmHGBEREZmJyZMno6ioCIsXL0Z+fj7Cw8Oxc+dO8cTlnJwc2Nn9/t3e+++/j9raWjzyyCN621myZAleffVVyOVynDx5Eh9//DFKS0sRGBiI+++/H6+99hqHEJlQVW09Nhw8i7Tsloer2CIBwJ7TOTh79QZmjeyHADM6iTlCFQE/hV+Lw4zUCjUiVBEmTGUaLBCIiIjMSHx8POLj45tclpqaqnf/0qVLLW7LyckJu3btMlAyao8r12/ig72nUHyzSuooZu1qSTmSvj6GJ+7pjaju5jH8TS6TIyEooclZjABABhkWBi20uhOUAQ4xIiIiIjKKIxfykPzNcRYHrVSn1WH9D2ew+XAmtDrzmO41xjMGyaHJ8FPoX8lcrVBjeehyq5ziFOARBKvFqUzNT0uvCadAJSKyHjpBwP9Lu4idJy9JHcUipZ7JRUFpJWbHDICTg/QfVWM8YzDCYwSvpExEREREbVev1eGTH8/g2MWCO3emZp29dgMrdhzH8/eHw8PF8c4rGJlcJre6qUxbwiFGRERERAZQW6/F+3tOsjgwkGslFUj+Jg2FZZVSR7E5LBCIiIiIOqimTot/f5+BM1evSx3FqtyoqMY/v01DfmmF1FFsCgsEIiIiog6orddi9e4MnM8vlTqKVdJU1WLldydQwCMJJsMCgYiIiKidtDodPth7isWBkWmqavHOzhO4YaNXnzY1FghERERE7SAIAj798Sx+yeWwIlMoqajBv75PR0VNndRRrB5nMbJgnMrUenAKVCIiy/NNejaOZOVLHcOm5JdW4oOUk3g+LgL2cn7PbSx8ZomIiIja6PjFAnybkS11DJv0a34pNh/KlDqGVWOBQERERNQGV2+U49MDZ6SOYdMO/HoNP567KnUMq8UCgYiIiKiVquvq8cHeU6it10kdxeZ9fjgTV67flDqGVWKBQERERNRKmw5lolDD6TbNQb1OwH/3nUZ1Xb3UUawOCwQiIiKiVkjLLsCRCzwp2ZwUaiqx9egFqWNYHRYIRERERHegqarF/37iibHm6MfMqzjLK1gbFKc5NXOcypSa+xng9KdERKaz5civnH/fjG04eA6vPDwUSoVc6ihWgUcQiIiIiFpw9up1HL9YIHUMasH18mpOO2tALBCIiIiImqHV6fD54V+ljkGtkPJLDgrKeAK5IbBAICIiImrGD+euIp8fOi2CVidg67HzUsewCiwQiIiIiJpQVVvPYSsW5mROMc7nl0gdw+KxQCAiIiJqwr4zV1BezROTLc3/O3ERgiBIHcOisUAgIiIiuk1VbT32nM6ROga1w/n8UvzKowgdwgKBiIiI6DY/nMtFVS2v0Gupdv18WeoIFo0FAhEREdEf1Gt12HcmV+oY1AFnr91A7vWbUsewWCwQiIiIiP7gxKVClFXWSB2DOmjfmStSR7BYLBCIiIiI/uCHczx6YA2OXSxAJa9+3S4sEIiIiIh+k19WgayCMqljkAHUaXU4xitgt4u91AGIiIgsRXZ2Nn788UdcvnwZlZWV8PX1RUREBKKjo+Ho6Ch1PDKAw+fzpI5ABnT4fB5G9AmSOobFYYFgJnZdy5A6AlmYln5m4gLDTZaDyBZs2LAB77zzDo4fPw61Wo3AwEA4OTnhxo0byMrKgqOjI5544gm8+OKL6NKli9RxqZ0EQcBxfuNsVS4Va1CoqYSfm7PUUSwKCwQiIqIWREREwMHBATNmzMCXX36J4OBgveU1NTU4dOgQNm3ahMGDB+O9997DpEmTJEpLHXG5+Caul1dLHYMM7ER2IUYPDGmxj1bQIr08HcV1xfBR+CBCFQG5TG6agGaIBQIREVEL3nzzTcTFxTW7XKlUYuTIkRg5ciTeeOMNXLp0yXThyKAyLhdKHYGM4OfLRS0WCHtL9iI5NxmFdb+//n4KPyQEJSDGM8YECc0PT1ImIiJqQUvFwe28vb0RGRlpxDRkTKevXJc6AhnBpWINNFVNT1u7t2QvErIT9IoDACisK0RCdgL2luw1RUSzwyMIREREbVRYWIjCwkLodDq99rCwMIkSUUeVVdbgakm51DHISM5evYGo7gF6bVpBi+Tc5BbXW5G7AiM8RtjccCMWCERERK2UlpaG6dOn4+zZsxAEAQAgk8kgCAJkMhm0Wq3ECam9MvNKpI5ARpSZV9KoQEgvT2905OB2BXUFSC9Px2DXwcaMZ3ZYIBAREbXSzJkz0bNnT6xduxZqtRoymUzqSGQg5/NZIFizC/mljdqK64pbtW5r+1kTFghEREStdPHiRXz55Zfo3r271FHIwLILNVJHICMqulkFTVUt3JwcxDYfhU+r1m1tP2vCk5SJiIhaadSoUfj555+ljkEGVluvxbVSnn9g7S4X6xeBEaoI+Cn8WlxHrVAjQhVhzFhmiUcQiIiIWum///0vpk+fjtOnT6N///5QKBR6yx966CGJklFHXL1Rjt9OKSErlnv9JgYE/340QC6TIyEoAQnZCU32l0GGhUELbe4EZYAFAhERUasdOnQIBw8exHfffddoGU9Stlycvcg2XCupaNQW4xmDZCQ3ug6CWqHGwqCFNnsdBBYIRERErfT8889j6tSpeOWVV6BWq6WOQwZSUFYpdQQygfyyxgUC0FAkjPAYwSsp/wELBCIiola6fv065s+fz+LAyhRpqqSOQCZQpKkSpyS+nVwmt7mpTFvCk5SJiIhaacKECdi3b5/UMcjAblRUSx2BTKCmXovK2nqpY1gEHkEgIiJqpZ49eyIxMREHDhzAgAEDGp2k/Ne//lWiZNQRJSwQbEZJRTVclIo7d7RxLBCIiIha6b///S9UKhX279+P/fv36y2TyWQsECyQTiegorpO6hhkIjeraqWOYBE4xIiIiKiVsrOzm71dvHjRII+xevVqhISEwNHREVFRUTh69GiL/bds2YLevXvD0dERAwYMwLfffqu3XBAELF68GAEBAXByckJsbCzOnz9vkKzWoLK2Dpzh1HaU17AYbA0WCERERB2Ul5eH5cuXd3g7mzdvxoIFC7BkyRKcOHECAwcORFxcHAoLC5vs/9NPP+Gxxx7DrFmzkJ6ejvHjx2P8+PE4ffq02Gf58uV49913sWbNGhw5cgQuLi6Ii4tDdTWH1QBAVS2nprUl1Xy9W4VDjIiIiFpp5syZTbZfvnwZR48exQsvvNCh7b/99tuYPXs2nnrqKQDAmjVrsGPHDnz00Ud46aWXGvV/5513MHr0aCQkNFzo6bXXXsPu3bvx73//G2vWrIEgCFi1ahUWLVqEcePGAQA++eQTqNVqbN++HVOmTOlQXmtQW88PjLakltcqaZU2HUF4//33ERYWBjc3N7i5uSE6OlrvYjHV1dWYO3cuvL29oVKpMHHiRBQUFBg8NBERkRRKSkr0bsXFxTh69ChSU1OxYsWKDm27trYWaWlpiI2NFdvs7OwQGxuLQ4cONbnOoUOH9PoDQFxcnNg/Ozsb+fn5en3c3d0RFRXV7DZtTb1OJ3UEMqF6LV/v1mjTEYSgoCC8+eab6NGjBwRBwMcff4xx48YhPT0d/fr1w/z587Fjxw5s2bIF7u7uiI+Px4QJE3Dw4EFj5SciIjKZbdu2Ndn+xhtvYPv27Xj66afbve3i4mJotdpG11hQq9U4d+5ck+vk5+c32T8/P19cfqutuT5NqampQU1NjXhfo9G0fkcsjMATEGwKX+/WadMRhAcffBAPPPAAevTogZ49e+KNN96ASqXC4cOHUVZWhrVr1+Ltt99GTEwMIiMjsW7dOvz00084fPiwsfITERFJ7rHHHkNqaqrUMQwmKSkJ7u7u4i04OFjqSEbTxDWzyIrx9W6ddp+krNVqsWnTJlRUVCA6OhppaWmoq6vTO4zZu3dvdO7cmYcxiYjIqv3888+IiIjo0DZ8fHwgl8sbDc0tKCiAv79/k+v4+/u32P/Wv23ZJgAkJiairKxMvF25cqXN+2Mp7O04X4st4evdOm0+SfnUqVOIjo5GdXU1VCoVtm3bhr59+yIjIwMODg7w8PDQ68/DmEREZC0WLFjQqK2goABfffUVxo4dq7f87bffbtO2HRwcEBkZiZSUFIwfPx4AoNPpkJKSgvj4+CbXiY6ORkpKCubNmye27d69G9HR0QCA0NBQ+Pv7IyUlBeHh4QAa3mePHDmCZ599ttksSqUSSqWyTfktlYM9PzDaEr7erdPmAqFXr17IyMhAWVkZvvjiC0yfPr3RxWLaIikpCUuXLm33+kRERKaSnp7eZPuQIUNQWFgoTkcqa+c4hgULFmD69OkYPHgw7rrrLqxatQoVFRXirEbTpk1Dp06dkJSUBAD429/+hhEjRuCf//wnxo4di02bNuH48eP44IMPxBzz5s3D66+/jh49eiA0NBSvvPIKAgMDxSLE1jkqOKGjLXF04OvdGm1+lhwcHNC9e3cAQGRkJI4dO4Z33nkHkydPRm1tLUpLS/WOIrTmMOYfv3HRaDRWPdaRiIgs1759+4y6/cmTJ6OoqAiLFy9Gfn4+wsPDsXPnTvEk45ycHNj9YYjE3XffjY0bN2LRokV4+eWX0aNHD2zfvh39+/cX+7zwwguoqKjAnDlzUFpaimHDhmHnzp1wdHQ06r5YCmclPzDaEhelQuoIFqHDvxU6nQ41NTWIjIyEQqFASkoKJk6cCADIzMxETk6OeKizKbZ0GJOIiOhO4uPjmx1S1NSJ0JMmTcKkSZOa3Z5MJsOyZcuwbNkyQ0W0KnI7O6gcFSiv5hV2bYGbo4PUESxCmwqExMREjBkzBp07d8bNmzexceNGpKamYteuXXB3d8esWbOwYMECeHl5wc3NDc8//zyio6MxdOhQY+UnIiIyqtGjR+PVV1+943vZzZs38d5770GlUmHu3LkmSkeG4OGsZIFgIzxc+KV0a7SpQCgsLMS0adOQl5cHd3d3hIWFYdeuXfjTn/4EAFi5ciXs7OwwceJE1NTUIC4uDu+9955RghMREZnCpEmTMHHiRLi7u+PBBx/E4MGDERgYCEdHR5SUlODMmTM4cOAAvv32W4wdOxbJyclSR6Y28lI5IvdGudQxyMgc7O04xKiV2lQgrF27tsXljo6OWL16NVavXt2hUEREROZi1qxZmDp1KrZs2YLNmzfjgw8+QFlZGYCG4Tt9+/ZFXFwcjh07hj59+kicltrD19VJ6ghkAr6uzu2eQMDW8MwcIiKiO1AqlZg6dSqmTp0KACgrK0NVVRW8vb2hUPAbSUundneROgKZgNrdWeoIFoMFAhERURvdusIwWYdATxYItoCvc+vxahFERERk0zp5qcCBJ9Yv2NtV6ggWgwUCERER2TRHhT38PfjtsrXr4uMmdQSLwQKBiIiIbF6oH4eMWTMvlSPcnTnFaWuxQCAiIiKb10PtIXUEMiK+vm3DAoGIiKiVpk+fjh9++EHqGGQEvQI9pY5ARsTXt21YIBAREbVSWVkZYmNj0aNHD/zf//0frl69KnUkMhBPF0cE8DwEq9Wnk7fUESwKCwQiIqJW2r59O65evYpnn30WmzdvRkhICMaMGYMvvvgCdXV1UsejDuofzA+R1ijY2xUePP+gTVggEBERtYGvry8WLFiAn3/+GUeOHEH37t3x5JNPIjAwEPPnz8f58+eljkjtNLCzr9QRyAjCu/B1bSsWCERERO2Ql5eH3bt3Y/fu3ZDL5XjggQdw6tQp9O3bFytXrpQ6HrVDqJ87PF34TbO1GRTiJ3UEi8MrKZuJuMDwJtt3XcswaQ6yHM39zBCR8dTV1eHrr7/GunXr8P333yMsLAzz5s3D448/Dje3hjnWt23bhpkzZ2L+/PkSp6W2spPJEBmqxp7TOVJHIQMJ8lLxGhftwAKBiIiolQICAqDT6fDYY4/h6NGjCA8Pb9Tnvvvug4eHh8mzkWEM7RHAAsGKDO0RIHUEi8QCgYiIqJVWrlyJSZMmwdHRsdk+Hh4eyM7ONmEqMqROniqE+LrhUpFG6ijUQfZ2MkR185c6hkXiOQhERESt9OSTT7ZYHJB1uLd3kNQRyAAGhaqhcnSQOoZFYoFARERE9AeDQ/3g6qiQOgZ10H19g6WOYLFYIBARERH9gcJejpH8cGnRevh7IMTXTeoYFosFAhEREdFtRvQJgtJeLnUMaqe4sBCpI1g0FghEREREt3FRKjhExUKF+LqhbycvqWNYNBYIRERERE2IHdAZTg6c8NHSPDSoG2QymdQxLBoLBCIiIqImuCgVGD0wROoY1AZ9OnmhD48edBgLBCIiIqJm3NcnCD6uTlLHoFawk8kw8a4eUsewCiwQiIiIiJqhsJdjUhQ/dFqCEX06oZOnSuoYVoEFAhEREVELwjr7YmBnX6ljUAvcnZV4cFA3qWNYDZ55Y+biAsObXbbrWobJcpB0WvoZICIi05gS3RO/5pegqrZe6ijUhMfu7sUTyg2IRxCIiIiI7sDDxRGPRvWUOgY1IaqbP4/wGBgLBCIiIqJWiOruj0EhflLHoD/wUjlicnQvqWNYHRYIRERERK0gk8nw+D294aVylDoKoWHWolkj+3NokRGwQCAiIiJqJRelArPvGwB7O16IS2oThnRHVz93qWNYJRYIRERERG0Q4uuGx+7uLXUMmzakqxox/YKljmG1WCAQERERtdHdPQMxql9nqWPYpBBfN0wd1gcyGY/iGAsHbVkwToFqPTiVKRGR5ZkwpDuul1ch43KR1FFsho+rE56NDYODvVzqKFaNRxCIiIiI2sHOToaZI/qhh7+H1FFsgpuTA56PC4ebk1LqKFaPBQIRERFROyns5Xg2diBCfNykjmLVXJT2+GtcBPzcnKWOYhNYIBARERF1gJODPZ6PC0cXFglG4aK0x99GD0InL5XUUWwGCwQiIiKiDnJWKvC30RHorvaQOopVcXNywPwxkQj2dpU6ik1hgUBERERkALeOJIR19pE6ilXwdXPCwrGDeeRAAiwQiIiIiAzEwV6OOTEDMLJPUKNlAnTQqLJw3SMdGlUWBOgkSGgZuvq5I2HsYPi6OUkdxSZxmlMrxSlQzQ+nMiUisg1yOztMju4Ffw8XfH74V+gEATfcTyGn09eodSgT+znUuqPz1YfgVTZAwrTmZ2j3ADx+dy8oOJWpZHgEgYiIiMgIRvQJwoIHBqHa7xwuhHyKWkWZ3vJaRRkuhHyKG+6nJEpoXuR2Mkwe2hPThvdhcSAxHkEgIiIiMpIQP1fkdf4GqANw+4V/ZQAEIKfT1/As6weZDX9v6+vmhFkj+3MmKDNhuz+JREREZkQQBCxevBgBAQFwcnJCbGwszp8/3+I6SUlJGDJkCFxdXeHn54fx48cjMzNTr8/IkSMhk8n0bs8884wxd4X+IL08HUX1hY2Lg1tkQK1DGW6qsk2ay5wM6xWIl8fdxeLAjLBAICIiMgPLly/Hu+++izVr1uDIkSNwcXFBXFwcqqurm11n//79mDt3Lg4fPozdu3ejrq4O999/PyoqKvT6zZ49G3l5eeJt+fLlxt4d+k1xXXGr+tXZa4ycxPx4qxzx17hwPHFPHzgqOKjFnPDVICIikpggCFi1ahUWLVqEcePGAQA++eQTqNVqbN++HVOmTGlyvZ07d+rdX79+Pfz8/JCWloZ7771XbHd2doa/v7/xdoCa5aNo3ZSninrb+fbc3k6GUf0744HwUDjwXAOzxALBBrVnNh3OfKSPMxIRkSFlZ2cjPz8fsbGxYpu7uzuioqJw6NChZguE25WVNZwE6+Xlpde+YcMGfPbZZ/D398eDDz6IV155Bc7OzobbAWpWhCoCfgo/FNYVNt1BABzqPOBaHmraYBIJ7+KLCUO6w9eNP3/mjAUCERGRxPLz8wEAarVar12tVovL7kSn02HevHm455570L9/f7H98ccfR5cuXRAYGIiTJ0/ixRdfRGZmJrZu3drstmpqalBTUyPe12hsb/iLochlciQEJSAhO6HJ5TKZDIkhCbipDcJPv+ZBJwgmTmgavQO98OCgrujq5y51FGoFFghEREQmtmHDBjz99NPi/R07dnR4m3PnzsXp06dx4MABvfY5c+aI/x8wYAACAgIwatQoZGVloVu3bk1uKykpCUuXLu1wJmoQ4xmDZCQjOTdZ70iCWqHGwqCFiPGMAfyB0QNDsOdUDg7+eg11Wuu4iNqAYB/EhXVBN7WH1FGoDVggEBERmdhDDz2EqKgo8f6tb+sLCgoQEBAgthcUFCA8PPyO24uPj8c333yDH374AUFBja/g+0e3HvfChQvNFgiJiYlYsGCBeF+j0SA4OPiOOah5MZ4xGOExAunl6SiuK4aPwgcRqgjIZb+PwfdWOWFydC/8eVBXHMi8ih/PXcX18uZPUjdXjgo5oroHYGTfIPi7u0gdh9qBBQIREZGJubq6wtXVVbwvCAL8/f2RkpIiFgQajQZHjhzBs88+2+x2BEHA888/j23btiE1NRWhoXcex56RkQEAeoXI7ZRKJZRKZet2hlpNLpNjsOvgO/ZzUSoQFxaCPw3ognPXbuDw+Tz8nFOE2nrzPaogA9AzwBNR3QMwKMQPSgVPPrZkLBCIiIgkJpPJMG/ePLz++uvo0aMHQkND8corryAwMBDjx48X+40aNQoPP/ww4uPjATQMK9q4cSO++uoruLq6iucruLu7w8nJCVlZWdi4cSMeeOABeHt74+TJk5g/fz7uvfdehIWFSbGr1AStoG3yyIKdTIa+nbzRt5M3auq0OJ1bjIzLRfgl9zqqauuljg25nQw9/D0xsLMPIkL84O7MotJasEAgIiIyAy+88AIqKiowZ84clJaWYtiwYdi5cyccHR3FPllZWSgu/n1e/ffffx9Aw8XQ/mjdunWYMWMGHBwcsGfPHqxatQoVFRUIDg7GxIkTsWjRIpPsE93Z3pK9jc5N8FP4ISEooeHchN8oFXJEhqoRGaqGVqfDpSINMvNKcD6/FNmFZaip1xo9q51MhmBvFbqrPdArwAs9Ajx4/QIrxVeVWsXQ03qactpUTklKRJZAJpNh2bJlWLZsWbN9Ll26pHdfuMOMN8HBwdi/f78h4pER7C3Z2+TsRoV1hUjITkAykvWKhFvkdnbopvYQT/zV6QQUlFXgyo1yXL1RjoKyChRqqnCjvLpdhYPcTgZPF0f4uDrB390ZgZ4u6OTliiAvFa9bYCNYIBARERGZmFbQIjk3ucU+K3JXYITHCL0TmZtiZydDgKcKAZ4q4A/nnQuCgKraemiqalFRU4eq2nrU1Guh1QnQ6QTIZA3FhoO9HRwV9nBRKuDqpIDK0QF2MpkhdpMsFAsEIiIiIhNLL09v/uJpvymoK0B6eXqrTmxuikwmg7NSAWelol3rk+2ykzoAERERka0priu+c6c29CMyJBYIRERERCbmo/AxaD8iQ2KBQERERGRiEaoI+Cn8WuyjVqgRoYowUSKi33WoQHjzzTfFuZtvqa6uxty5c+Ht7Q2VSoWJEyeioKCgozmJiIiIrIZcJkdCUOMZjG6RQYaFQQvveIIykTG0+yTlY8eO4T//+U+jC63Mnz8fO3bswJYtW+Du7o74+HhMmDABBw8e7HBYsh6cepSIiGxdjGcMkpHc6DoIaoUaC4MWNjnFKZEptKtAKC8vxxNPPIEPP/wQr7/+utheVlaGtWvXYuPGjYiJafihXrduHfr06YPDhw9j6NChhklNREREZAViPGMwwmNEk1dSJpJKu4YYzZ07F2PHjkVsbKxee1paGurq6vTae/fujc6dO+PQoUNNbqumpgYajUbvRkRERGQr5DI5BrsOxmiv0RjsOpjFAUmuzUcQNm3ahBMnTuDYsWONluXn58PBwQEeHh567Wq1Gvn5+U1uLykpCUuXLm1rDCIiIiIyNZ0WKPoRqMoDnAIA3+GAHQsaa9OmAuHKlSv429/+ht27d8PR0dEgARITE7FgwQLxvkajQXBwsEG2TUREREQGcmUrkPY3oDL39zbnICDyHSB4gnS5yODaNMQoLS0NhYWFGDRoEOzt7WFvb4/9+/fj3Xffhb29PdRqNWpra1FaWqq3XkFBAfz9/ZvcplKphJubm96NiIiIiMzIla3Aj4/oFwcAUHm1of3KVmlykVG0qUAYNWoUTp06hYyMDPE2ePBgPPHEE+L/FQoFUlJSxHUyMzORk5OD6Ohog4cnIiIiIiPTaRuOHEBoYuFvbWnzGvqRVWjTECNXV1f0799fr83FxQXe3t5i+6xZs7BgwQJ4eXnBzc0Nzz//PKKjozmDEREREZElKvqx8ZEDPQJQeaWhn3qkqVKREbX7OgjNWblyJezs7DBx4kTU1NQgLi4O7733nqEfhoiIiIhMoSrPsP3I7HW4QEhNTdW77+joiNWrV2P16tUd3TQRERERSc0pwLD9yOy16zoIRERERGQjfIc3zFYEWTMdZIBzcEM/sgosEIiIiIioeXbyhqlMATQuEn67H7mK10OwIiwQiIiIiKhlwROA4V8Azp30252DGtp5HQSrYvCTlImIiIjICgVPADqN45WUbQALBCIiIiJqHTs5pzK1ARxiREREREREIhYIREREREQkYoFAREREREQiFghERERERCRigUBERERERCIWCEREREREJGKBQEREREREIhYIREREREQkYoFAREREREQiXkmZiIiIyIS0ghbp5ekoriuGj8IHEaoIyGVyqWMRiVggEBEREZnI3pK9SM5NRmFdodjmp/BDQlACYjxjJExG9DsOMSIiIiIygb0le5GQnaBXHABAYV0hErITsLdkr0TJiPSxQCAiIiIyMq2gRXJucot9VuSugFbQmigRUfNYIBAREREZWXp5eqMjB7crqCtAenm6iRIRNY8FAhEREZGRFdcVG7QfkTGxQCAiIiIyMh+Fj0H7ERkTCwQiIiIiI4tQRcBP4ddiH7VCjQhVhIkSETWPBQIRERGRkcllciQEJTS7XAYZFgYt5PUQyCywQCAiIiIygRjPGCSHJjc6kqBWqLE8dDmvg0BmgxdKIyIiIjKRGM8YjPAYwSspk1ljgUBERERkQnKZHINdB0sdg6hZHGJEREREREQiFghERERERCRigUBERGQGBEHA4sWLERAQACcnJ8TGxuL8+fMtrvPqq69CJpPp3Xr37q3Xp7q6GnPnzoW3tzdUKhUmTpyIgoICY+4KEVk4FghERERmYPny5Xj33XexZs0aHDlyBC4uLoiLi0N1dXWL6/Xr1w95eXni7cCBA3rL58+fj//3//4ftmzZgv379+PatWuYMGGCMXeFiCwcT1ImIiKSmCAIWLVqFRYtWoRx48YBAD755BOo1Wps374dU6ZMaXZde3t7+Pv7N7msrKwMa9euxcaNGxET0zCF5rp169CnTx8cPnwYQ4cONfzOEJHF4xEEIiIiiWVnZyM/Px+xsbFim7u7O6KionDo0KEW1z1//jwCAwPRtWtXPPHEE8jJyRGXpaWloa6uTm+7vXv3RufOne+4XSKyXTyCQEREJLH8/HwAgFqt1mtXq9XisqZERUVh/fr16NWrF/Ly8rB06VIMHz4cp0+fhqurK/Lz8+Hg4AAPD482bbempgY1NTXifY1G0469IiJLxSMIREREJrZhwwaoVCrxVldX167tjBkzBpMmTUJYWBji4uLw7bfforS0FJ9//nmH8iUlJcHd3V28BQcHd2h7RGRZWCAQERGZ2EMPPYSMjAzx5uPjAwCNZhcqKCho9vyCpnh4eKBnz564cOECAMDf3x+1tbUoLS1t03YTExNRVlYm3q5cudLqDERk+VggEBERmZirqyu6d+8u3vr27Qt/f3+kpKSIfTQaDY4cOYLo6OhWb7e8vBxZWVkICAgAAERGRkKhUOhtNzMzEzk5OS1uV6lUws3NTe9GRLaDBQIREZHEZDIZ5s2bh9dffx1ff/01Tp06hWnTpiEwMBDjx48X+40aNQr//ve/xfsLFy7E/v37cenSJfz00094+OGHIZfL8dhjjwFoONF51qxZWLBgAfbt24e0tDQ89dRTiI6O5gxGRNQsnqRMRERkBl544QVUVFRgzpw5KC0txbBhw7Bz5044OjqKfbKyslBcXCzez83NxWOPPYbr16/D19cXw4YNw+HDh+Hr6yv2WblyJezs7DBx4kTU1NQgLi4O7733nkn3jYgsCwsEIiIiMyCTybBs2TIsW7as2T6XLl3Su79p06Y7btfR0RGrV6/G6tWrOxqRiGwEhxgREREREZGIBQIREREREYlYIBARERERkYgFAhERERERiVggEBERERGRiAUCERERERGJWCAQEREREZGIBQIREREREYlYIBARERERkYgFAhERERERiVggEBERERGRiAUCERERERGJWCAQERFRh9TVa6ETBKljEFktQRBQp9Whtl5rksezN8mjEBERkdVK3pEG39MaKOR2cHawh8rRAW5ODvBwUcLH1Qm+bk4IcHeB2sMFCjm/myT6I50goPhmFfJKK1BYVonim1UoqahBWWUNyqvrUFlbh5o6LQQARZfPmyQTCwQiIiIyiDqtDmVVtSirqsXVksbL7WQyBHq6IMTHDV3VHujp7wFvVyfTByXD0mmBoh+BqjzAKQDwHQ7YyaVOZbYqaupwIb8UFwpKcalIgyvXb6LGREcGWosFAhEREZmEThCQe6McuTfKceDXawAAH1cn9AvyxoBgH/QK8IQ9jzBYlitbgbS/AZW5v7c5BwGR7wDBE6TLZUYEQcCV6zdxMqcYp3OvI6dYA3MfkMcCgYiIiCRTfLMK+8/mYv/ZXDg52CO8iy+GdPVHrwBP2NnJpI5HLbmyFfjxEeD2j7uVVxvah39h00XCtZJyHLmQj7TsAlwvr5Y6Tpu0qUx/9dVXIZPJ9G69e/cWl1dXV2Pu3Lnw9vaGSqXCxIkTUVBQYPDQREREZH2qautx6Hwe3t2Vjle2/IQd6RdRVlkjdSxqik7bcOSgye/Cf2tLm9fQz4bU1mvx06/X8NbXx/DatiP4/tRliysOgHYcQejXrx/27Nnz+wbsf9/E/PnzsWPHDmzZsgXu7u6Ij4/HhAkTcPDgwTYH2/brKbi5tr5+iQsMb/NjEJH52XUto83raG7q4NnT8FmISDo3KqrxTXo2vs24hMFd1fhT/84I8naVOlaHaQUt0svTUVxXDB+FDyJUEZDLLHC8ftGP+sOKGhGAyisN/dQjTZVKMpqqGuw7k4sfz+WioqZe6jgd1uYCwd7eHv7+/o3ay8rKsHbtWmzcuBExMTEAgHXr1qFPnz44fPgwhg4d2vG0REREZFN0goCjWfk4mpWPAcE+GBsRii4+blLHape9JXuRnJuMwrpCsc1P4YeEoATEeMZImKwdqvIM289ClVXWYNfJSziQeQ11Wp3UcQymzWcCnT9/HoGBgejatSueeOIJ5OTkAADS0tJQV1eH2NhYsW/v3r3RuXNnHDp0yHCJiYiIyCadulKMN78+hg/3nkKhplLqOG2yt2QvErIT9IoDACisK0RCdgL2luyVKFk7OQUYtp+Fqaqtx/bjF/DKlp+w70yuVRUHQBuPIERFRWH9+vXo1asX8vLysHTpUgwfPhynT59Gfn4+HBwc4OHhobeOWq1Gfn5+s9usqalBTc3v4ws1Gk3b9oCIiIhsyolLhfg5pwj39Q3G2IhQOCrMe84VraBFcm5yi31W5K7ACI8RljPcyHd4w2xFlVfR9HkIsoblvsNNncyodIKAQ+fzsP34BZRX10kdx2ja9Bs1ZswY8f9hYWGIiopCly5d8Pnnn8PJqX3zGCclJWHp0qXtWpeIiIhsk1YnYM/pHBy7WIApQ3siPMRP6kjNSi9Pb3Tk4HYFdQVIL0/HYNfBJkrVQXbyhqlMf3wEgAz6RcJvs09FrrKq6yFcLSnHxoPncLGwTOooRtehyYY9PDzQs2dPXLhwAf7+/qitrUVpaalen4KCgibPWbglMTERZWVl4u3KlSsdiUREREQ2pKyyBv/Zewof7j2F8upaqeM0qbiu2KD9zEbwhIapTJ076bc7B1nVFKdanQ7fZmQj6aujNlEcAB28DkJ5eTmysrLw5JNPIjIyEgqFAikpKZg4cSIAIDMzEzk5OYiOjm52G0qlEkqlsiMxiIiIyMaduFSICwWlmDa8L/oFeUsdR4+Pwseg/cxK8ASg0zirvZJykaYSH6X+gkvFtjUEvk0FwsKFC/Hggw+iS5cuuHbtGpYsWQK5XI7HHnsM7u7umDVrFhYsWAAvLy+4ubnh+eefR3R0tElmMGrP1Ih3wqlTie7MGL97RETtoamqxb+/z8D9A7rgociukNuZx1WZI1QR8FP4tTjMSK1QI0IVYcJUBmQnt8qpTNMuFuCzg2dRXWdb13IA2lgg5Obm4rHHHsP169fh6+uLYcOG4fDhw/D19QUArFy5EnZ2dpg4cSJqamoQFxeH9957zyjBiYiIiJry/anLuFRUhr/cNwCuTg5Sx4FcJkdCUAISshOaXC6DDAuDFlrOCcpWTqvTYduxC0j5xXaHvbepQNi0aVOLyx0dHbF69WqsXr26Q6GIiIiIOuLX/FK8+f+O4bnYgejkpZI6DmI8Y5CM5EbXQVAr1FgYtNDyroNgpSpr6vDf1NM4e/WG1FEkZd7zghERERG1043yaqzYcRxPjwpD70AvqeMgxjMGIzxGWMeVlK3QjfJq/Pv7DOSVVkgdRXIsEIiIiMhqVddp8e/vM/DUiH6IDFVLHQdymdxypjK1IXmlFfjXrnSUVNTcubMNYIFAREREVk2rE7A29TRq63WI7mGdV/al9su9fhPv7Eq36guftRULBCIiIrJ6ggB8+uMZAGCRQKKrN8qxamc6KmpYHPwRC4QWtGf6Rk6NSpaMU5YSkTUTAHx64Awc7O3MYrgRSaugrBLv7DzB4qAJ5jFBMBEREZEJCAKwbv8vNj9Lja0rrazBu7vScZPDiprEAoGIiIhsilYn4IO9J3H1RrnUUUgC1XX1eG/3z7hRXi11FLPFAoGIiIhsTnWdFu/t+Rk3q2qljkImpBMErN//C65cvyl1FLPGAoGIiIhs0o3yany47xS0Op3UUchEvk3Pxs85xVLHMHssEIiIiMhmnc8vxddpF6WOYd10WqAgFbj0v4Z/dVpJYpzJvY5vM7IleWxLw1mMiIiIyKZ9f+oyegZ4ol+Qt9RRrM+VrUDa34DK3N/bnIOAyHeA4Akmi1FWWYN1P/wCwWSPaNlYIBhYS9NEcgpUMgecypSIqLFPfjyDReOj4OrkIHUU63FlK/DjI8DtH8srrza0D//CJEWCIAj45MczvBBaG3CIEREREdk8TVUtNh3KlDpG88xkmE6r6bQNRw6a/M7+t7a0eSbZjwOZV3GG09q2CY8gEBEREQE4cakQGZcKER7iJ3UUfWYyTKdNin7Uz9uIAFReaeinHmm0GCUV1dh67ILRtm+teASBiIiI6DebDv+K6rp6qWP87tYwnds/bN8apnNlqzS57qQqz7D92unzw7+ius7Mj7aYIRYIRERERL8pq6zBjnQzmenGjIbptJlTgGH7tcOZ3OvIuFxktO1bMxYIRERERH+w78wVFGoqpY7RtmE65sZ3eMMwKMia6SADnIMb+hmBVqfDlqO/GmXbtoAFggntupbR7I3IkPizRmR5BEHA4sWLERAQACcnJ8TGxuL8+fMtrhMSEgKZTNboNnfuXLHPyJEjGy1/5plnjL07Fk2rE/DV8SypY5jNMJ12sZM3nCMBoHGR8Nv9yFUN/Yzgp1+vIb/UDIo8C8UCgYiIyAwsX74c7777LtasWYMjR47AxcUFcXFxqK6ubnadY8eOIS8vT7zt3r0bADBp0iS9frNnz9brt3z5cqPuizU4cakQl4s10oYwg2E6HRI8oWEqU+dO+u3OQUad4rS2XosdGZeMsm1bwVmMiIiIJCYIAlatWoVFixZh3LhxAIBPPvkEarUa27dvx5QpU5pcz9fXV+/+m2++iW7dumHEiBF67c7OzvD39zdOeCu2Iz0bz/1poHQBbg3TqbyKps9DkDUsN9IwHYMIngB0GtcwDKoqr6GY8R1utCMHQMO0pmWVNUbbvi3gEQQiIiKJZWdnIz8/H7GxsWKbu7s7oqKicOjQoVZto7a2Fp999hlmzpwJmUx/SMeGDRvg4+OD/v37IzExEZWVLQ+9qKmpgUaj0bvZolNXipF746Z0ASQepmMwdvKGqUxDHmv414h567U67D6VY7Tt2woWCERERBLLz88HAKjVar12tVotLruT7du3o7S0FDNmzNBrf/zxx/HZZ59h3759SExMxKeffoqpU6e2uK2kpCS4u7uLt+Dg4NbvjJWR/MOmRMN0LNWxiwUo5dGDDuMQIyIiIhPbsGEDnn76afH+jh07OrzNtWvXYsyYMQgMDNRrnzNnjvj/AQMGICAgAKNGjUJWVha6devW5LYSExOxYMEC8b5Go7HZIiEtuwAThnSHu7NSuhASDNOxRIIgYO8vPHpgCCwQiIiITOyhhx5CVFSUeL+mpuEbz4KCAgQE/H7CaUFBAcLDw++4vcuXL2PPnj3YuvXOF8269bgXLlxotkBQKpVQKiX8QGxGtDoBBzKvYmxEV2mD3BqmQ826WFiG3BvlUsewCiwQzERz00/GBYabNAdZDk5ZSmS5XF1d4erqKt4XBAH+/v5ISUkRCwKNRoMjR47g2WefveP21q1bBz8/P4wdO/aOfTMyMgBArxChlv30ax7GDAyFnV1zc/pbAJ3W6o9AHPz1mtQRrAYLBCIiIonJZDLMmzcPr7/+Onr06IHQ0FC88sorCAwMxPjx48V+o0aNwsMPP4z4+HixTafTYd26dZg+fTrs7fXf1rOysrBx40Y88MAD8Pb2xsmTJzF//nzce++9CAsLM9XuWbwbFdXIzCtBn05eUkdpnytbG67I/MeLrjkHNZwAbSXnMFTX1SMtu0DqGFaDBQIREZEZeOGFF1BRUYE5c+agtLQUw4YNw86dO+Ho6Cj2ycrKQnFxsd56e/bsQU5ODmbOnNlomw4ODtizZw9WrVqFiooKBAcHY+LEiVi0aJHR98faHLuYb5kFwpWtwI+PoNE0qZVXG9qt5ETnkznFqK3XSR3DarBAICIiMgMymQzLli3DsmXLmu1z6dKlRm33338/BKGpOfKB4OBg7N+/31ARbVrG5SI8frcO9vKWJ4DUClqkl6ejuK4YPgofRKgiIJdJNJRHp204ctDkNRQEADIgbV7DCdAWPtzo+EUePTAkFghEREREd1BVW4/MvBL0C/Juts/ekr1Izk1GYV2h2Oan8ENCUAJiPGNMEVNf0Y/6w4oaEYDKKw39LPgE6Oq6epy9dkPqGFaF10EgIiIiaoVTV4qbXba3ZC8SshP0igMAKKwrREJ2AvaW7DV2vMaq8gzbz0ydu1aCei2HFxkSCwQiIiKiVjiTe73Jdq2gRXJucovrrshdAa2gNUas5jm1cqaq1vYzU829LtR+LBCIiIiIWqHoZhWu36xq1J5ent7oyMHtCuoKkF6ebqxoTfMd3jBbEZqbnlUGOAc39LNg5zi8yOBYIBARERG10q/5pY3aiuuaH3rUnn4GYydvmMoUQOMi4bf7kass+gTlkopqFDVRtFHHsEAgIiIiaqWLhaWN2nwUPq1at7X9DCp4QsNUps6d9Nudg6xiitOLBWVSR7BKnMWIiIiIqJUuFWkatUWoIuCn8GtxmJFaoUaEKsKY0ZoXPKFhKlMrvJLypeLGrwd1HI8gEBEREbXStZIK1N02Y45cJkdCUEKz68ggw8KghdJdDwFoKAbUI4GQxxr+tYLiAAByrt+UOoJVYoFARERE1Eo6QUBBaUWj9hjPGCSHJsNP4afXrlaosTx0uTTXQbBygiDgWkm51DGsEocYEREREbVBXlkFgrxdG7XHeMZghMcI87mSspUrr65DeXWd1DGsEgsEM7frWkazy+ICw02Wg6TT0s8AERGZXpGm+Vlz5DI5BrsONmEa28XZi4yHQ4yIiIiI2qCpayGQ6RXzdTAaFghEREREbVBSUSN1BAJQytfBaFggEBEREbWBpqpW6ggEQFPFAsFYWCAQERERtUF5DU+MNQc8Qdl4WCAQERERtUFVLT+YmoPK2nqpI1gtFghEREREbVBbr4NOEKSOYfNq67VSR7BaLBCIiIiI2kh729WUyfRuv6I1GQ6vg0BEREStknUjq8n78vJC2Jc5SxFJMidOnIDCnhdAk1JV/iXY36yUOoZJycsLATT/u2goMkEwr2NkGo0G7u7uKPm1K9xceYCjJbxQmm3ghdLuTHNTB8+eF1FWVgY3Nzep4xBZHY1GA08PT+iExt/Y2snsmmwnIuNo6XfOUO+DPIJAREREd6QTdNi/fz9UKpXYdvbsWUydOhUrRr+Fbl7dJExHZBuybmRh4c4X8dlnn6FPnz5ie3l5OUaMGGGwx2GBQERERK0SHh7e5LeT3by6oZ9fXwkSEdmmPn36YNCgQeJ9jUZj0O1zDA8REREREYlYIBARERERkYgFAhERERERiVggEBERERGRiAUCERERERGJWCAQEREREZGIBQIREREREYnM7joIty7srCnnVRnvpF6okzoCmYDmJn8X7uTW3wszuzA8kdUQ35tvm2u9vLwcQMPFm4jI+G79rpWXl+v9Pt76v6HeB2WCmb2j5ubmIjg4WOoYRGSBrly5gqCgIKljEFkdvjcTWQZDvQ+aXYGg0+lw7do1uLq6QiaTQaPRIDg4GFeuXGny6o22hM+FPj4fv7P150IQBNy8eROBgYGws+PISSJDu/29+RZr/ttjzfsGWPf+2eK+Gfp90OyGGNnZ2TVZ+bi5uVndi9xefC708fn4nS0/F+7u7lJHILJazb0332LNf3used8A694/W9s3Q74P8qs2IiIiIiISsUAgIiIiIiKR2RcISqUSS5YsgVKplDqK5Phc6OPz8Ts+F0QkBWv+22PN+wZY9/5x3zrO7E5SJiIiIiIi6Zj9EQQiIiIiIjIdFghERERERCRigUBERERERCKzLhBWr16NkJAQODo6IioqCkePHpU6kkn88MMPePDBBxEYGAiZTIbt27frLRcEAYsXL0ZAQACcnJwQGxuL8+fPSxPWyJKSkjBkyBC4urrCz88P48ePR2Zmpl6f6upqzJ07F97e3lCpVJg4cSIKCgokSmw877//PsLCwsS5j6Ojo/Hdd9+Jy23leSAi42rPe8yrr74KmUymd+vdu7deH3P4G9WefWvN+9DIkSMb7f8zzzxjzF1ppK2fmbZs2YLevXvD0dERAwYMwLfffqu33Jw+a7Rl3z788EMMHz4cnp6e8PT0RGxsbKP+M2bMaPR6jR492ti70ay27N/69esbZXd0dNTrY5DXTjBTmzZtEhwcHISPPvpI+OWXX4TZs2cLHh4eQkFBgdTRjO7bb78V/vGPfwhbt24VAAjbtm3TW/7mm28K7u7uwvbt24Wff/5ZeOihh4TQ0FChqqpKmsBGFBcXJ6xbt044ffq0kJGRITzwwANC586dhfLycrHPM888IwQHBwspKSnC8ePHhaFDhwp33323hKmN4+uvvxZ27Ngh/Prrr0JmZqbw8ssvCwqFQjh9+rQgCLbzPBCRcbXnPWbJkiVCv379hLy8PPFWVFSk18cc/ka1Z99a8z40YsQIYfbs2Xr7X1ZWZopdEgSh7Z+ZDh48KMjlcmH58uXCmTNnhEWLFgkKhUI4deqU2MdcPmu0dd8ef/xxYfXq1UJ6erpw9uxZYcaMGYK7u7uQm5sr9pk+fbowevRovdfrxo0bptolPW3dv3Xr1glubm562fPz8/X6GOK1M9sC4a677hLmzp0r3tdqtUJgYKCQlJQkYSrTu71A0Ol0gr+/v5CcnCy2lZaWCkqlUvjf//4nQULTKiwsFAAI+/fvFwShYd8VCoWwZcsWsc/Zs2cFAMKhQ4ekimkynp6ewn//+1+bfx6IyDDa+x6zZMkSYeDAgc0uN4e/UYZ6/7z9fUgQGgqEv/3tb4aM2yZt/cz06KOPCmPHjtVri4qKEp5++mlBEMzrs0ZHPw/W19cLrq6uwscffyy2TZ8+XRg3bpyho7ZLW/dv3bp1gru7e7PbM9RrZ5ZDjGpra5GWlobY2Fixzc7ODrGxsTh06JCEyaSXnZ2N/Px8vefG3d0dUVFRNvHclJWVAQC8vLwAAGlpaairq9N7Pnr37o3OnTtb9fOh1WqxadMmVFRUIDo62mafByIyrI68x5w/fx6BgYHo2rUrnnjiCeTk5IjLzOFvlKHeP29/H7plw4YN8PHxQf/+/ZGYmIjKykrDBL+D9nxmOnTokF5/AIiLixP7m8tnDUN8HqysrERdXV2j1ys1NRV+fn7o1asXnn32WVy/ft2g2VujvftXXl6OLl26IDg4GOPGjcMvv/wiLjPUa2ffxn0xieLiYmi1WqjVar12tVqNc+fOSZTKPOTn5wNAk8/NrWXWSqfTYd68ebjnnnvQv39/AA3Ph4ODAzw8PPT6WuvzcerUKURHR6O6uhoqlQrbtm1D3759kZGRYVPPAxEZR3vfY6KiorB+/Xr06tULeXl5WLp0KYYPH47Tp0/D1dXVLP5WG+L9s6n3IQB4/PHH0aVLFwQGBuLkyZN48cUXkZmZia1btxpuB5rRns9M+fn5LT4P5vJZwxCfB1988UUEBgbqfWAePXo0JkyYgNDQUGRlZeHll1/GmDFjcOjQIcjlcoPuQ0vas3+9evXCRx99hLCwMJSVlWHFihW4++678csvvyAoKMhgr51ZFghETZk7dy5Onz6NAwcOSB1FMr169UJGRgbKysrwxRdfYPr06di/f7/UsYjIQm3YsAFPP/20eH/Hjh3t2s6YMWPE/4eFhSEqKgpdunTB559/jlmzZnU4Z3sYat/+qLn3oTlz5oj/HzBgAAICAjBq1ChkZWWhW7duHX5cap8333wTmzZtQmpqqt6JvFOmTBH/P2DAAISFhaFbt25ITU3FqFGjpIjaatHR0YiOjhbv33333ejTpw/+85//4LXXXjPY45jlECMfHx/I5fJGsxsUFBTA399folTm4db+29pzEx8fj2+++Qb79u1DUFCQ2O7v74/a2lqUlpbq9bfW58PBwQHdu3dHZGQkkpKSMHDgQLzzzjs29zwQkWE89NBDyMjIEG8+Pj4AOv4e4+HhgZ49e+LChQsApPlbbeh9a+59qClRUVEAIO6/MbXnM5O/v3+L/c3ls0ZHPg+uWLECb775Jr7//nuEhYW12Ldr167w8fExyev1R4b4vKtQKBAREaH3u3ZrG+3dJmCmBYKDgwMiIyORkpIitul0OqSkpOhVTbYoNDQU/v7+es+NRqPBkSNHrPK5EQQB8fHx2LZtG/bu3YvQ0FC95ZGRkVAoFHrPR2ZmJnJycqzy+bidTqdDTU2NzT8PRNQ+rq6u6N69u3jr27evQd5jysvLkZWVhYCAAADS/K021L7d6X2oKRkZGQAg7r8xteczU3R0tF5/ANi9e7fY31w+a7T38+Dy5cvx2muvYefOnRg8ePAdHyc3NxfXr183yev1R4b4vKvVanHq1Ckxu8Feu1afzmximzZtEpRKpbB+/XrhzJkzwpw5cwQPD49GUzlZo5s3bwrp6elCenq6AEB4++23hfT0dOHy5cuCIDRMX+Xh4SF89dVXwsmTJ4Vx48ZZ7TSnzz77rODu7i6kpqbqTelVWVkp9nnmmWeEzp07C3v37hWOHz8uREdHC9HR0RKmNo6XXnpJ2L9/v5CdnS2cPHlSeOmllwSZTCZ8//33giDYzvNARMbVmveYmJgY4V//+pd4/+9//7uQmpoqZGdnCwcPHhRiY2MFHx8fobCwUOxjDn+j2rNvd3ofunDhgrBs2TLh+PHjQnZ2tvDVV18JXbt2Fe69916T7dedPjM9+eSTwksvvST2P3jwoGBvby+sWLFCOHv2rLBkyZImpzk1h88abd23N998U3BwcBC++OILvdfr5s2bgiA0fMZauHChcOjQISE7O1vYs2ePMGjQIKFHjx5CdXW1SfetPfu3dOlSYdeuXUJWVpaQlpYmTJkyRXB0dBR++eUXsY8hXjuzLRAEQRD+9a9/CZ07dxYcHByEu+66Szh8+LDUkUxi3759AoBGt+nTpwuC0DCF1SuvvCKo1WpBqVQKo0aNEjIzM6UNbSRNPQ8AhHXr1ol9qqqqhOeee07w9PQUnJ2dhYcffljIy8uTLrSRzJw5U+jSpYvg4OAg+Pr6CqNGjRKLA0GwneeBiIyrNe8xXbp0EZYsWSLenzx5shAQECA4ODgInTp1EiZPnixcuHBBbx1z+BvVnn270/tQTk6OcO+99wpeXl6CUqkUunfvLiQkJJj0OgiC0PJnphEjRoifIW75/PPPhZ49ewoODg5Cv379hB07dugtN6fPGm3Zty5dujT5et16TSsrK4X7779f8PX1FRQKhdClSxdh9uzZkn4B3Zb9mzdvnthXrVYLDzzwgHDixAm97RnitZMJgiC0/ngDERERERFZM7M8B4GIiIiIiKTBAoGIiIiIiEQsEIiIiIiISMQCgYiIiIiIRCwQiIiIiIhIxAKBiIiIiIhELBCIiIiIiEjEAoGIiIiIiEQsEIiIiIis0Nq1a3H//fcb/XF27tyJ8PBw6HQ6oz8WmQYLBCIiIiIrU11djVdeeQVLliwx+mONHj0aCoUCGzZsMPpjkWmwQCAiIiKyMl988QXc3Nxwzz33mOTxZsyYgXfffdckj0XGxwKBiIiIyEwVFRXB398f//d//ye2/fTTT3BwcEBKSkqz623atAkPPvigXtvIkSMxb948vbbx48djxowZ4v2QkBC8/vrrmDZtGlQqFbp06YKvv/4aRUVFGDduHFQqFcLCwnD8+HG97Tz44IM4fvw4srKy2r+zZDZYIBARERGZKV9fX3z00Ud49dVXcfz4cdy8eRNPPvkk4uPjMWrUqGbXO3DgAAYPHtyux1y5ciXuuecepKenY+zYsXjyyScxbdo0TJ06FSdOnEC3bt0wbdo0CIIgrtO5c2eo1Wr8+OOP7XpMMi8sEIiIiIjM2AMPPIDZs2fjiSeewDPPPAMXFxckJSU127+0tBRlZWUIDAxs9+M9/fTT6NGjBxYvXgyNRoMhQ4Zg0qRJ6NmzJ1588UWcPXsWBQUFeusFBgbi8uXL7XpMMi8sEIiIiIjM3IoVK1BfX48tW7Zgw4YNUCqVzfatqqoCADg6OrbrscLCwsT/q9VqAMCAAQMatRUWFuqt5+TkhMrKynY9JpkXFghEREREZi4rKwvXrl2DTqfDpUuXWuzr7e0NmUyGkpKSO25Xq9U2alMoFOL/ZTJZs223T2t648YN+Pr63vExyfyxQCAiIiIyY7W1tZg6dSomT56M1157DX/5y18afXv/Rw4ODujbty/OnDnTaNntw4IuXrxokIzV1dXIyspCRESEQbZH0mKBQERERGTG/vGPf6CsrAzvvvsuXnzxRfTs2RMzZ85scZ24uDgcOHCgUftXX32FrVu3IisrC2+88QbOnDmDy5cv4+rVqx3KePjwYSiVSkRHR3doO2QeWCAQERERmanU1FSsWrUKn376Kdzc3GBnZ4dPP/0UP/74I95///1m15s1axa+/fZblJWV6bWPHTsWy5cvR9++ffHDDz/gvffew9GjR/Hpp592KOf//vc/PPHEE3B2du7Qdsg8yIQ/zlFFRERERFZh0qRJGDRoEBITEwE0XAchPDwcq1atMujjFBcXo1evXjh+/DhCQ0MNum2SBo8gEBEREVmh5ORkqFQqoz/OpUuX8N5777E4sCI8gkBERERkA4x1BIGsDwsEIiIiIiIScYgRERERERGJWCAQEREREZGIBQIREREREYlYIBARERERkYgFAhERERERiVggEBERERGRiAUCERERERGJWCAQEREREZGIBQIREREREYn+P3dBXCpr0kbbAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwgAAAHqCAYAAACgFmm3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcm5JREFUeJzt3XtcVHX+P/DXMAzDZbhfBhAUvF8RRENK05ANzS1dzbQyr2kXbddcyWxN0+pLiZvWZrm1ptXqapZavywtUUzNSyKkppIiCihXBUbuMHN+f5CnRu4wM2cur+fjMQ+dz/mcM68zA8y855zP58gEQRBAREREREQEwE7qAEREREREZD5YIBARERERkYgFAhERERERiVggEBERERGRiAUCERERERGJWCAQEREREZGIBQIREREREYlYIBARERERkYgFAhERERERiVggkMUJCQnBjBkzxPvJycmQyWRITk6WLBMREZGte+CBBzBnzhypY+g5d+4c7O3tcfbsWamjWBQWCERERETN2LJlC9auXWvzGZpz5MgRfPfdd1i8eLHJHvPatWt45JFH4OHhATc3N4wbNw6XL1/W69O3b1+MHTsWy5YtM1kuayATBEGQOgRRW1RXV8POzg4KhQJA/RGE++67DwcOHMDIkSOlDUdERFbnz3/+M86ePYsrV67YdIbmjB8/HpWVldi7d69JHq+srAyDBg1CaWkp/v73v0OhUGDNmjUQBAFpaWnw9vYW+3777bd44IEHcOnSJXTr1s0k+SwdjyCQxVEqlWJxQEREZE6qqqqg0+mkjtFqFRUVHd5GQUEBdu/ejUceecQAiVrnvffew8WLF/H111/jhRdewPPPP4/vvvsOubm5+Oc//6nXNzY2Fp6envj4449Nls/SsUCgDrt27RpmzZoFtVoNpVKJfv364aOPPhKX3x4jsG3bNrz00kvw9/eHi4sLHnroIWRnZ+tt6+LFi5g4cSL8/f3h6OiIoKAgTJkyBaWlpWKfO8cgNGX79u2IjIyEk5MTfHx8MHXqVFy7dk2vz4wZM6BSqXDt2jWMHz8eKpUKvr6+WLRoEbRabceeGCIiMnu3bt3CggULEBISAqVSCT8/P/zpT3/CqVOnAAAjR47E7t27cfXqVchkMshkMoSEhAD4/f1t69atWLp0KTp16gRnZ2doNBq88sorkMlkDR5v06ZNkMlkDY4EfPvttxgxYgRcXV3h5uaGIUOGYMuWLS1maGp7jY3PGzlyJPr374+UlBTce++9cHZ2xksvvQSg/uj88uXL0b17dyiVSgQHB+OFF15AdXV1i8/h7t27UVdXh9jYWL3221kbu3X0SMjnn3+OIUOGYMiQIWJb7969MWrUKHz22Wd6fRUKBUaOHIkvv/yyQ49pS+ylDkCWLT8/H0OHDoVMJsP8+fPh6+uLb7/9FrNnz4ZGo8GCBQvEvq+//jpkMhkWL16MgoICrF27FrGxsUhLS4OTkxNqamoQFxeH6upqPPfcc/D398e1a9fw9ddfo6SkBO7u7q3OtWnTJsycORNDhgxBQkIC8vPz8fbbb+PIkSNITU2Fh4eH2Fer1SIuLg5RUVFYvXo19u3bh3/+85/o1q0bnnnmGQM+W0REZG6efvppfP7555g/fz769u2LGzdu4PDhwzh//jwGDRqEf/zjHygtLUVOTg7WrFkDAFCpVHrbePXVV+Hg4IBFixahuroaDg4ObcqwadMmzJo1C/369cOSJUvg4eGB1NRU7NmzB4899lirMrTWjRs3MGbMGEyZMgVTp06FWq2GTqfDQw89hMOHD2Pu3Lno06cPzpw5gzVr1uDXX3/Frl27mt3mjz/+CG9vb3Tp0kWv/dNPP23Qd+nSpSgoKBDzV1dX49atW63K7uPjAwDQ6XQ4ffo0Zs2a1aDPXXfdhe+++w63bt2Cq6ur2B4ZGYkvv/wSGo0Gbm5urXo8myYQdcDs2bOFgIAAoaioSK99ypQpgru7u1BRUSEcOHBAACB06tRJ0Gg0Yp/PPvtMACC8/fbbgiAIQmpqqgBA2L59e7OP2aVLF2H69Oni/dvbP3DggCAIglBTUyP4+fkJ/fv3FyorK8V+X3/9tQBAWLZsmdg2ffp0AYCwcuVKvceIiIgQIiMj2/RcEBGR5XF3dxfmzZvXbJ+xY8cKXbp0adB++/2na9euQkVFhd6y5cuXC419zNq4caMAQMjMzBQEQRBKSkoEV1dXISoqSu89SxAEQafTtZjhzu3dme32e6MgCMKIESMEAML69ev1+n766aeCnZ2dcOjQIb329evXCwCEI0eONHjcPxo2bFir3jNXrVolABA++eSTBvlbc7utsLCw0fduQRCEdevWCQCECxcu6LVv2bJFACAcP368xZwkCDyCQO0mCAK++OILPPLIIxAEAUVFReKyuLg4bN26VTxECwDTpk3Tq+YffvhhBAQE4JtvvsFf//pX8QjB3r178cADD8DZ2blduU6ePImCggK88sorcHR0FNvHjh2L3r17Y/fu3VixYoXeOk8//bTe/eHDhzf6zQcREVkXDw8PHD9+HNevX0dgYGC7tjF9+nQ4OTm1a93vv/8et27dwosvvqj3ngWg0VOUOkqpVGLmzJl6bdu3b0efPn3Qu3dvvffymJgYAMCBAwdw9913N7nNGzduoFOnTs0+7oEDB7BkyRI899xzeOKJJ8T2uLg4fP/9923ah8rKSnFf7nT7Obzd5zZPT08A0Ns/ahoLBGq3wsJClJSU4IMPPsAHH3zQaJ+CggLxl7JHjx56y2QyGbp37y6ehxgaGoqFCxfirbfewubNmzF8+HA89NBDmDp1aptOL7p69SoAoFevXg2W9e7dG4cPH9Zrc3R0hK+vr16bp6cniouLW/2YRERkmVatWoXp06cjODgYkZGReOCBBzBt2jR07dq11dsIDQ1t9+NnZGQAAPr379/ubbRFp06dGpwCdfHiRZw/f77Be+FtBQUFLW5XaGZSzJycHEyePBn33HMP3nrrLb1lAQEBCAgIaEXy390uxhobH1FVVaXX5858xii6rBELBGq327M0TJ06FdOnT2+0T1hYGM6dO9fqbf7zn//EjBkz8OWXX+K7777DX//6VyQkJODYsWMICgoySO47yeVyo2yXiIjM3yOPPILhw4dj586d+O6775CYmIg333wTO3bswJgxY1q1jcaOHjT1QdTQE2C09XEay6rT6TBgwIAGH95vCw4ObjaDt7d3k1+q1dTU4OGHH4ZSqcRnn30Ge3v9j56VlZV6E5E0x9/fHwDg5eUFpVKJ3NzcBn1ut915NOh2vtvjGKh5LBCo3Xx9feHq6gqtVttg5oI/ul0gXLx4Ua9dEARcunQJYWFheu0DBgzAgAEDsHTpUvz444+45557sH79erz22mutynV7kFR6erp4ePS29PT0BoOoiIjItgUEBODZZ5/Fs88+i4KCAgwaNAivv/66WCC051vn20fPS0pK9CbGuH2U+7bb8/KfPXsW3bt3b3J7TWX44+P80Z2P05xu3brh559/xqhRo9q1r71798YXX3zR6LK//vWvSEtLww8//AC1Wt1g+bZt2xqc8tSU20cB7OzsMGDAAJw8ebJBn+PHj6Nr1656pzQDQGZmJuzs7NCzZ89WPZat4zSn1G5yuRwTJ07EF1980eglzAsLC/Xuf/LJJ3ozFXz++efIzc0V/wBrNBrU1dXprTNgwADY2dm1apq12wYPHgw/Pz+sX79eb71vv/0W58+fx9ixY1u9LSIisl5arbbBt9d+fn4IDAzUe/9wcXFp9bfct93+4P/DDz+IbeXl5Q3m4r///vvh6uqKhIQE8fSY2/542k5TGRp7HK1W2+Spv4155JFHcO3aNXz44YcNllVWVqK8vLzZ9aOjo1FcXNzgKsYbN27Ev//9b6xbtw533XVXo+veHoPQmtsfPfzww/jpp5/0ioT09HTs378fkyZNavA4KSkp6NevX5tOWbZlPIJAHfLGG2/gwIEDiIqKwpw5c9C3b1/cvHkTp06dwr59+3Dz5k2xr5eXF4YNG4aZM2ciPz8fa9euRffu3TFnzhwAwP79+zF//nxMmjQJPXv2RF1dHT799FOxEGkthUKBN998EzNnzsSIESPw6KOPitOchoSE4Pnnnzf480BERJbn1q1bCAoKwsMPP4yBAwdCpVJh3759+Omnn/QuthUZGYlt27Zh4cKFGDJkCFQqFR588MFmt33//fejc+fOmD17NuLj4yGXy/HRRx/B19cXWVlZYj83NzesWbMGTz75JIYMGYLHHnsMnp6e+Pnnn1FRUSEWFE1l6NevH4YOHYolS5bg5s2b8PLywtatWxt84dacJ554Ap999hmefvppHDhwAPfccw+0Wi0uXLiAzz77DHv37sXgwYObXH/s2LGwt7fHvn37MHfuXAD1g4GfffZZ9O3bF0qlEv/973/11vnLX/4CFxeXdo1BAIBnn30WH374IcaOHYtFixZBoVDgrbfeglqtxt///ne9vrW1tTh48CCeffbZNj+OzZJwBiWyEvn5+cK8efOE4OBgQaFQCP7+/sKoUaOEDz74QBCE36da+9///icsWbJE8PPzE5ycnISxY8cKV69eFbdz+fJlYdasWUK3bt0ER0dHwcvLS7jvvvuEffv26T1eS9Oc3rZt2zYhIiJCUCqVgpeXl/D4448LOTk5en2mT58uuLi4NNinpqanIyIi61FdXS3Ex8cLAwcOFFxdXQUXFxdh4MCBwnvvvafXr6ysTHjssccEDw8PAYA43ejt95+mpudOSUkRoqKiBAcHB6Fz587CW2+91eS0pF999ZVw9913C05OToKbm5tw1113Cf/73/9azCAIgpCRkSHExsYKSqVSUKvVwksvvSR8//33jU5z2q9fv0az1tTUCG+++abQr18/QalUCp6enkJkZKSwYsUKobS0tMXn8qGHHhJGjRol3s/MzGx2ytI79789srOzhYcfflhwc3MTVCqV8Oc//1m4ePFig37ffvutAKDRZdQ4mSA0M+ycyACSk5Nx3333Yfv27Xj44YeljkNEREQGdujQIYwcORIXLlxoMGuh1MaPHw+ZTIadO3dKHcVicAwCEREREXXI8OHDcf/992PVqlVSR9Fz/vx5fP3113j11VeljmJROAaBiIiIiDrs22+/lTpCA3369GnTeAyqxyMIREREREQk4hgEIiIiIiIS8QgCERERERGJWCAQEREREZHIaIOU161bh8TEROTl5WHgwIH417/+1eRV9P5Ip9Ph+vXrcHV1bdflvonI9giCgFu3biEwMBB2dvzeg8jQ+N5MZN4M/T5olDEI27Ztw7Rp07B+/XpERUVh7dq12L59O9LT0+Hn59fsujk5OQgODjZ0JCKyAdnZ2QgKCpI6BpHVae692U5mB52gM3EiItvV3O+cod4HjVIgREVFYciQIXj33XcB1H/zEBwcjOeeew4vvvhis+uWlpbCw8MDV0+FwE3FbwKb85eeA6SOQCaw89czUkcwe5oyHboMuoKSkhK4u7tLHYfI6tx+b87Ozoabm5vYnpaWhhEjRmD16DfRzaubhAmJbEPGzQws2rMYBw8eRHh4uNiu0WgQHBxssPdBg59iVFNTg5SUFCxZskRss7OzQ2xsLI4ePdri+rcPXbqp7ODmygKhOfYyhdQRyAT4e9B6PPWByDjE92Y3N70CQaVSAQC6eXVDP7++kmQjskUqlUrvd/E2Q70PGrxAKCoqglarhVqt1mtXq9W4cOFCg/7V1dWorq4W72s0GkNHIiIiIiKiVpL8q8mEhAS4u7uLN44/ICIiIiKSjsELBB8fH8jlcuTn5+u15+fnw9/fv0H/JUuWoLS0VLxlZ2cbOhIREREREbWSwQsEBwcHREZGIikpSWzT6XRISkpCdHR0g/5KpVI8p/HOcxuJiIiIiMi0jHIdhIULF2L69OkYPHgw7rrrLqxduxbl5eWYOXOmMR6OiIiIiIgMxCgFwuTJk1FYWIhly5YhLy8P4eHh2LNnT4OBy0REREREZF6MdiXl+fPnY/78+cbaPBERERERGYHRCgQiIiKyLmlpaeK1DwDg/PnzAOov3kRExnf7d+32795tZWVlBn0cFghERETUIjuZHUaMGNFo+6I9iyVIRGSb7GR2mDp1qlEfgwUCERERtUgn6LB69Jvo5tVNbMu4mYFFexYjZs4SeAZ0ljCd6cWPjYTCXi51DJv28Q/ncK3YsN+cm7vi3Czs/zChyd9FQ2GBQERERK3Szasb+vn1bdDuGdAZvl16SJBIOkOGDIadTCZ1DJv2Qz5Qk1ssdQxJNPW7aCiSX0mZiIiIyJIo5HYsDsyAA4/gGA0LBCIiIqI2cHbgCRjmwImvg9GwQCAiIiJqAxdHhdQRCICKr4PRsEAgIiIiagM3J6XUEQiAm5OD1BGsFgsEIiIiojbwdGGBYA48XRyljmC1WCAQERERtYGXih9MzYE3Xwej4egOMxcXGC51BJJYUz8De6+nmTQHERHV83NzljoCAfB1c5I6gtXiEQQiIiKiNgjwcJE6AgFwdXTgjFJGwgKBiIiIqJXsZDL4u/MIgjmQyWTo5KWSOoZVYoFARERE1Er+Hs5Q8AJdZiPY21XqCFaJBQIRERFRK4X4uEkdgf6Ar4dxsEAgIiIiaqVuag+pI9AfdFW7Sx3BKrFAICIiImql7v4eUkegP/BWOXHaWSNggUBERETUCl4qR/i6cmpNc9M70EvqCFaHBQIRERFRK/Tr5A2ZTCZ1DLpDv04sEAyNBQIRERFRKwwI9pE6AjWiTydvyO1YuBkSCwQiIiKiFijt5egd6Cl1DGqEk4M9egXwKIIhsUAgIiIiasHALr68/oEZG9zVT+oIVoUFAhERkRlZt24dQkJC4OjoiKioKJw4caLJviNHjoRMJmtwGzt2rNhnxowZDZaPHj3aFLtiVYZ0VUsdgZoR3sUPCjk/1hoKn0kiIiIzsW3bNixcuBDLly/HqVOnMHDgQMTFxaGgoKDR/jt27EBubq54O3v2LORyOSZNmqTXb/To0Xr9/ve//5lid6yGu7MSfTgQ1qw5OdgjvIuv1DGshr3UAaheXGC41BHIwjT3M7P3eprJchCR4bz11luYM2cOZs6cCQBYv349du/ejY8++ggvvvhig/5eXvofWrdu3QpnZ+cGBYJSqYS/v7/xglu5u3sEQG7H71TN3bBenfDT5XypY1gF/rQTERGZgZqaGqSkpCA2NlZss7OzQ2xsLI4ePdqqbWzYsAFTpkyBi4uLXntycjL8/PzQq1cvPPPMM7hx44ZBs1szO5kMw3p1kjoGtUIPfw8EeLi03JFaxAKBiIjIDBQVFUGr1UKt1j/XXa1WIy8vr8X1T5w4gbNnz+LJJ5/Uax89ejQ++eQTJCUl4c0338TBgwcxZswYaLXaJrdVXV0NjUajd7NVESG+vFKvhZDJZIjpFyx1DKvAU4yIiIiswIYNGzBgwADcddddeu1TpkwR/z9gwACEhYWhW7duSE5OxqhRoxrdVkJCAlasWGHUvJbiTwO6SB2B2iCqmz/+36nL0FTWSB3FovEIAhERkRnw8fGBXC5Hfr7+OdT5+fktjh8oLy/H1q1bMXv27BYfp2vXrvDx8cGlS5ea7LNkyRKUlpaKt+zs7NbthJXp08kLXXzcpI5BbaCwl2NU/85Sx7B4LBCIiIjMgIODAyIjI5GUlCS26XQ6JCUlITo6utl1t2/fjurqakydOrXFx8nJycGNGzcQEBDQZB+lUgk3Nze9my36c0RXqSNQO9zbuxNUjgqpY1g0nmJkQpypiEyFMxwRWaaFCxdi+vTpGDx4MO666y6sXbsW5eXl4qxG06ZNQ6dOnZCQkKC33oYNGzB+/Hh4e3vrtZeVlWHFihWYOHEi/P39kZGRgRdeeAHdu3dHXFycyfbLEg0I9kFXP3epY1A7OCrsMWZgCLYfvyh1FIvFAoGIiMhMTJ48GYWFhVi2bBny8vIQHh6OPXv2iAOXs7KyYHfHdJvp6ek4fPgwvvvuuwbbk8vlOH36ND7++GOUlJQgMDAQ999/P1599VUolUqT7JMlspPJ8JfB3aSOQR1wb+8gJJ/LQeGtSqmjWCQWCERERGZk/vz5mD9/fqPLkpOTG7T16tULgiA02t/JyQl79+41ZDybMLx3JwR4qqSOQR1gL7fDhLt64N9Jp6WOYpE4BoGIiIjoNypHBR4cxLEH1mBgZx/0C/JuuSM1wAKBiIiI6DeTonrCRckBrtZAJpNh8tBeUMj5cbet+IwRERERAegf7I0hXdUtdySL4evmhHEcT9JmLBCIiIjI5rko7fH4PX0gk8mkjkIGdl/fYPTw95A6hkXhIGUD41SmZO44BSoRUUNT7+kDD2fO7GSN7GQyzLi3H17bdRyVNXVSx7EIPIJARERENm1knyCEh/hJHYOMyEvliGnD+0odw2KwQCAiIiKbFeLrhgl39ZA6BplAeBdfxPbvLHUMi8ACgYiIiGySu5MDnooZwFlubMj4wd3Qp5OX1DHMHn8jiIiIyOYo5HZ4OnYgPFwcpY5CJiS3s8OTI/vD38NZ6ihmjQUCERER2RSZDHjyvv4I8XWTOgpJwFmpwPw/hcPNyUHqKGaLBQIRERHZlKn39EFYZ1+pY5CEvF2d8FxcOJwdOKFnY/isNINTlpKtac/PPKdGJSJLMnloT9zdM1DqGGQGgrxc8VxcON7ek4qqWq3UccwKjyAQERGRTZg8tCdG9g2WOgaZkRBfd/w1LgJOPJKghwUCERERWTWZDHhiWB8WB9SoUD93PD9mEFSOCqmjmA0WCERERGS1FHI7PBUTxtOKqFnB3q6IHzsYvq5OUkcxCywQiIiIyCq5OTlg4QODMLALByRTy/zcnRH/58Ho5ufeYJkAHTSqDNzwSIVGlQEBOgkSmg5PuCIiIiKr08XHDU+NGgBPXueA2sDVyQF/GzMIW4+m48dfrwMAbrqfQVanr1DjUCr2c6hxR+drD8GrdIBUUY2KRxCIiIjIqgzv3Ql/HxvJ4oDaRSG3wxPD+uDxe3pD4/kLLoV8ihpFqV6fGkUpLoV8ipvuZyRKaVxWcwSBU5ISScPQv3ucNpWI2svJwR6P39MbkaFqqaOQFYju6Y+VVd8AdQBkdyyUARCArE5fwbO0H2RW9p271RQIREREZLv6dvLC1GF9eNSADCa1LBU3tIUNi4PbZECNQyluqTLhVtbNpNmMjQUCERERWSwXpT0m3tUDQ7sHQCZr6pMcUdsV1Ra1ql+tvcbISUyPBQIRERFZHBmAe3oFYlxkN6gcHaSOQ1bIR+HTqn6KOjcjJzE9FghERERkUfp08sKEwd0R5O0qdRSyYhGqCPgp/FBQW9B4BwFwqPWAa1moaYOZgHWNqCAiIiKr1cPfA8+PGYS/xkWwOCCjk8vkiA+Kb3K5TCbDC50X4e4enWBnZae3tfkIwg8//IDExESkpKQgNzcXO3fuxPjx48XlgiBg+fLl+PDDD1FSUoJ77rkH77//Pnr06NGmx/lLzwGwl/GS10S2pj2zItUJtQAuGzwLEUlPBmBAZx/8qX8XdPf3kDoO2ZgYzxgkIhGJOYl6RxLUCjUWBS1CjGcMEAiMDQ/FvrNZOHoxF9V1WgkTG0abC4Ty8nIMHDgQs2bNwoQJExosX7VqFd555x18/PHHCA0Nxcsvv4y4uDicO3cOjo6cWYCIiIha5qJUILpHAIb37gQ/N2ep45ANi/GMwQiPEUgtS0VRbRF8FD6IUEVALpOLfbxdnTA5uhceHNQVRy/l4vCFa8grrZAwdce0uUAYM2YMxowZ0+gyQRCwdu1aLF26FOPGjQMAfPLJJ1Cr1di1axemTJnSsbRERERktezldugf5I27uvljQLAP7OU8E5rMg1wmx2DXwS32c1YqMKpfZ8T0DUZmoQbHL+Xi1JUClFXVmiCl4Rh0kHJmZiby8vIQGxsrtrm7uyMqKgpHjx5ttECorq5GdXW1eF+jsb6pooiIiKhxKkcF+nXyxoDOPugX5A1HBedPIcuhFbSNHlmQyWTo6ueOrn7ueGRoT2Tkl+J0ViHO5txAvgUcWTDob2FeXh4AQK3Wv4KhWq0Wl90pISEBK1asMGQMIiIiMlPeKkeE+Lqhm9oDPfw9EOipsroBnmQb9hfvbzA2wU/hh/ig+PqxCb+R29mhZ4AnegZ44uEo4GZZFS7mFeNSfgmuFGpwvbgcOkGQYheaJHmZvmTJEixcuFC8r9FoEBwcLGEiIiIiai+lvRwujgq4OTnAy8URXipH+Lk5w9/DGYGeKrgoOQEJWb79xfsRn9lwhqOC2gLEZ8YjEYl6RcIfeakcEdU9AFHdAwAAtXVa5JVW4HpxGQo0FSi6VYXi8iqUVlTjVlUtqmrqYOrywaAFgr+/PwAgPz8fAQEBYnt+fj7Cw8MbXUepVEKpVBoyBhEREZnQX+PCMWTwYDjY20Fux3EDZN20ghaJOYnN9lmdsxojPEboDWRuisJejmBvVwQ3MXWvThBQU6dFbZ0Op0654IuV7YrdJgb9LQ4NDYW/vz+SkpLENo1Gg+PHjyM6OtqQD0VERERmQuXoACcHexYHZBNSy1Kbvnjab/Jr85FalmqQx7OTyeCosIerkwNcnUxz1fA2H0EoKyvDpUuXxPuZmZlIS0uDl5cXOnfujAULFuC1115Djx49xGlOAwMD9a6VQERERERkiYpqiwzazxy1uUA4efIk7rvvPvH+7fED06dPx6ZNm/DCCy+gvLwcc+fORUlJCYYNG4Y9e/bwGghEREREZPF8FD4G7WeO2lwgjBw5EkIzI61lMhlWrlyJlStNcIIUEREREZEJRagi4Kfwa/Y0I7VCjQhVhAlTGRZPFiQiIiIiaiW5TI74oIYzGN0mgwyLgha1aoCyuWKBQERERETUBjGeMUgMTYSfwk+vXa1QY1XoqianOLUUkl8HgYiIiIjI0sR4xmCEx4hGr6Rs6VggEBERERG1g1wmx2DXwVLHMDieYkRERERERCIWCEREREREJGKBQEREREREIhYIREREREQkYoFAREREREQiFghERERERCRigUBERGRG1q1bh5CQEDg6OiIqKgonTpxosu+mTZsgk8n0bo6Ojnp9BEHAsmXLEBAQACcnJ8TGxuLixYvG3g0ismAsEIiIiMzEtm3bsHDhQixfvhynTp3CwIEDERcXh4KCgibXcXNzQ25urni7evWq3vJVq1bhnXfewfr163H8+HG4uLggLi4OVVVVxt4dIrJQLBCIiIjMxFtvvYU5c+Zg5syZ6Nu3L9avXw9nZ2d89NFHTa4jk8ng7+8v3tRqtbhMEASsXbsWS5cuxbhx4xAWFoZPPvkE169fx65du0ywR0RkiVggEBERmYGamhqkpKQgNjZWbLOzs0NsbCyOHj3a5HplZWXo0qULgoODMW7cOPzyyy/isszMTOTl5elt093dHVFRUc1us7q6GhqNRu9GRLaDBQIREZEZKCoqglar1TsCAABqtRp5eXmNrtOrVy989NFH+PLLL/Hf//4XOp0Od999N3JycgBAXK8t2wSAhIQEuLu7i7fg4OCO7BoRWRgWCERERBYqOjoa06ZNQ3h4OEaMGIEdO3bA19cX//73vzu03SVLlqC0tFS8ZWdnGygxEVkCFghERERmwMfHB3K5HPn5+Xrt+fn58Pf3b9U2FAoFIiIicOnSJQAQ12vrNpVKJdzc3PRuRGQ7WCAQERGZAQcHB0RGRiIpKUls0+l0SEpKQnR0dKu2odVqcebMGQQEBAAAQkND4e/vr7dNjUaD48ePt3qbRGR77KUOQERERPUWLlyI6dOnY/Dgwbjrrruwdu1alJeXY+bMmQCAadOmoVOnTkhISAAArFy5EkOHDkX37t1RUlKCxMREXL16FU8++SSA+hmOFixYgNdeew09evRAaGgoXn75ZQQGBmL8+PFS7SYRmTkWCERERGZi8uTJKCwsxLJly5CXl4fw8HDs2bNHHGSclZUFO7vfD/4XFxdjzpw5yMvLg6enJyIjI/Hjjz+ib9++Yp8XXngB5eXlmDt3LkpKSjBs2DDs2bOnwQXViIhuY4FARERkRubPn4/58+c3uiw5OVnv/po1a7BmzZpmtyeTybBy5UqsXLnSUBGJyMpxDAIREREREYlYIBARERERkYgFAhERERERiVggEBERERGRiIOUiYiIiIhaoBW0SC1LRVFtEXwUPohQRUAuk0sdyyhYIBARERFR6+i0QOEhoDIXcAoAfIcDdtb5IfmP9hfvR2JOIgpqC8Q2P4Uf4oPiEeMZI2Ey42CBQEREREQty94BpPwNqMj5vc05CIh8GwieIF0uI9tfvB/xmfEN2gtqCxCfGY9EJFpdkcAxCERERETUvOwdwKGH9YsDAKi4Vt+evUOaXEamFbRIzElsts/qnNXQCloTJTINFghERERE1DSdtv7IAYRGFv7WlrKgvp+VSS1L1TutqDH5tflILUs1USLTYIFARERERE0rPNTwyIEeAajIru9nZYpqiwzaz1KwQCAiIiKiplXmGrafBfFR+Bi0n6VggUBERERETXMKMGw/CxKhioCfwq/ZPmqFGhGqCBMlMg0WCERERETUNN/h9bMVQdZEBxngHFzfz8rIZXLEBzWcweg2GWRYFLTI6q6HwAKBiIiIiJpmJ6+fyhRAwyLht/uRa632eggxnjFIDE1scCRBrVBjVegqq5viFOB1EIiIiIioJcETgOGfN3EdhLVWfR0EoL5IGOExgldSJiIiIiISBU8AOo2zySspA/WnGw12HSx1DJNggUBERERErWMnB9QjpU5BRsYxCEREREREJGKBQEREREREIhYIREREREQkYoFAREREREQiFghERERERCRigUBERERERCIWCEREREREJGKBQEREREREIhYIREREREQkYoFAREREREQiFghERERERCRigUBERERERCIWCEREREREJGKBQEREREREIhYIREREREQkYoFAREREREQiFghERERERCRigUBERERERKI2FQgJCQkYMmQIXF1d4efnh/HjxyM9PV2vT1VVFebNmwdvb2+oVCpMnDgR+fn5Bg1NRERERETGYd+WzgcPHsS8efMwZMgQ1NXV4aWXXsL999+Pc+fOwcXFBQDw/PPPY/fu3di+fTvc3d0xf/58TJgwAUeOHDHKDpBl2ns9zWSPFRcYbrLHIiIiIrJ0bSoQ9uzZo3d/06ZN8PPzQ0pKCu69916UlpZiw4YN2LJlC2JiYgAAGzduRJ8+fXDs2DEMHTrUcMmJiIiIiMjgOjQGobS0FADg5eUFAEhJSUFtbS1iY2PFPr1790bnzp1x9OjRRrdRXV0NjUajdyMiIiIiImm0u0DQ6XRYsGAB7rnnHvTv3x8AkJeXBwcHB3h4eOj1VavVyMvLa3Q7CQkJcHd3F2/BwcHtjURERERERB3U7gJh3rx5OHv2LLZu3dqhAEuWLEFpaal4y87O7tD2iIiIiIio/do0BuG2+fPn4+uvv8YPP/yAoKAgsd3f3x81NTUoKSnRO4qQn58Pf3//RrelVCqhVCrbE4OIiIiImqHV6XCrqhblVbWorKlDjVaLOq0OOgGQAZDbyeBgL4eTgz2clfZwdXSAg71c6tgksTYVCIIg4LnnnsPOnTuRnJyM0NBQveWRkZFQKBRISkrCxIkTAQDp6enIyspCdHS04VITEREREYD6z2clFdXIvnEL14rLkVdSjkJNBW6WVUFTWQOhjdtzdrCHl8oRPq5O8Hd3QYCnC4K9VFC7u8DOTmaUfSDz0qYCYd68ediyZQu+/PJLuLq6iuMK3N3d4eTkBHd3d8yePRsLFy6El5cX3Nzc8NxzzyE6OpozGFk4U05LamjGyM6pU4mISCqCIOB6STnSr9/ExbwSXC4ohaayxmDbr6ipQ8XNMuTcLANQKLYr7eUI8XVDd7UHegV6ItTXHfZyXnPXGrXpVX3//fdRWlqKkSNHIiAgQLxt27ZN7LNmzRr8+c9/xsSJE3HvvffC398fO3bsMHhwIiIia7Ru3TqEhITA0dERUVFROHHiRJN9P/zwQwwfPhyenp7w9PREbGxsg/4zZsyATCbTu40ePdrYu0EGptXpcC7nBrYcuYCXth3BazuPY/vxi0i7WmjQ4qA51XVapOcWY3daJt765hTit/yAfyedxvFLuaiorjVJBjKNNp9i1BJHR0esW7cO69ata3coIiIiW7Rt2zYsXLgQ69evR1RUFNauXYu4uDikp6fDz8+vQf/k5GQ8+uijuPvuu+Ho6Ig333wT999/P3755Rd06tRJ7Dd69Ghs3LhRvM+xf5ZBEARcKdTg6KVcnMrMR3l1ndSR9FTVapF2tRBpVwthbydDvyAfDO3uj/7BPjyyYOHaNUiZiIiIDO+tt97CnDlzMHPmTADA+vXrsXv3bnz00Ud48cUXG/TfvHmz3v3//Oc/+OKLL5CUlIRp06aJ7UqlssnJQsj8VNXW4filPPxwIQfXi8uljtMqdToBP2cV4uesQrg6KnB3z0Dc2zsIXipHqaMZhFbQIrUsFUW1RfBR+CBCFQG5zHoHc7NAICIiMgM1NTVISUnBkiVLxDY7OzvExsY2ebHRO1VUVKC2tla8gOltycnJ8PPzg6enJ2JiYvDaa6/B29u7ye1UV1ejurpavM+LmJqGprIGB37JxsELOaisMa+jBW1xq6oWe09fxfdnshAZ6oe4sBB08lJJHavd9hfvR2JOIgpqC8Q2P4Uf4oPiEeMZI2Ey42GBQEREZAaKioqg1WqhVqv12tVqNS5cuNCqbSxevBiBgYGIjY0V20aPHo0JEyYgNDQUGRkZeOmllzBmzBgcPXoUcnnj34AmJCRgxYoV7d8ZapOyqhrsPX0VB8/noFarkzqOwegEAT9dzsdPl/MR3sUXfx7UFZ08LatQ2F+8H/GZ8Q3aC2oLEJ8Zj0QkWmWRwALBBlnyjETmoj3PIWc+IiJjeuONN7B161YkJyfD0fH30zqmTJki/n/AgAEICwtDt27dkJycjFGjRjW6rSVLlmDhwoXifY1Gg+DgYOOFt1E1dVok/ZKN705fQVWtVuo4RpV2tRA/Xy3E0B4BeCiyGzyczX8cjFbQIjEnsdk+q3NWY4THCKs73YgFAhERkRnw8fGBXC5Hfn6+XntzFxu9bfXq1XjjjTewb98+hIWFNdu3a9eu8PHxwaVLl5osEHgRU+P7+Wohth//FTfKqqSOYjICgKMXc3EqswBjBoZgVP/OZj2YObUsVe+0osbk1+YjtSwVg10HmyiVaZjvq0JERGRDHBwcEBkZiaSkJLFNp9MhKSmp2YuNrlq1Cq+++ir27NmDwYNb/pCSk5ODGzduICAgwCC5qW1Kyquwft/PWJ902qaKgz+qrtNiV0oG/u/LE7hcUCp1nCYV1RYZtJ8lYYFARERkJhYuXIgPP/wQH3/8Mc6fP49nnnkG5eXl4qxG06ZN0xvE/Oabb+Lll1/GRx99hJCQEOTl5SEvLw9lZWUAgLKyMsTHx+PYsWO4cuUKkpKSMG7cOHTv3h1xcXGS7KOtEgQBxy/lYuXO4/g5y/o+ULZHbkk5Vn99El+cuIjaOvM7xcpH4WPQfpaEpxgRERGZicmTJ6OwsBDLli1DXl4ewsPDsWfPHnHgclZWFuzsfv9u7/3330dNTQ0efvhhve0sX74cr7zyCuRyOU6fPo2PP/4YJSUlCAwMxP33349XX32VpxCZUGVNHTYfOY+UzOZPV7FFAoB9Z7Nw/tpNzB7ZDwFmNIg5QhUBP4Vfs6cZqRVqRKgiTJjKNFggEBERmZH58+dj/vz5jS5LTk7Wu3/lypVmt+Xk5IS9e/caKBm1R/aNW/hg/xkU3aqUOopZu1ZchoSvfsLj9/RGVHfzOP1NLpMjPii+0VmMAEAGGRYFLbK6AcoATzEiIiIiMorjl3KR+PVJFgetVKvVYdMP57DtWDq0OvOY7jXGMwaJoYnwU+hfyVytUGNV6CqrnOIU4BEEq8WpTM1Pc68Jp0AlIrIeOkHA/0u5jD2nr0gdxSIln8tBfkkF5sQMgJOD9B9VYzxjMMJjBK+kTERERERtV6fV4ZND5/DT5fyWO1OTzl+/idW7T+K5+8Ph4eLY8gpGJpfJrW4q0+bwFCMiIiIiA6ip0+L9fadZHBjI9eJyJH6dgoLSCqmj2BwWCEREREQdVF2rxbvfpeHctRtSR7EqN8ur8M9vUpBXUi51FJvCAoGIiIioA2rqtFj3fRou5pVIHcUqaSprsObbU8jnkQSTYYFARERE1E5anQ4f7D/D4sDINJU1eHvPKdy00atPmxoLBCIiIqJ2EAQBnx46j19yeFqRKRSXV+Nf36WivLpW6ihWj7MYWTBOZWo9OAUqEZHl+To1E8cz8qSOYVPySirwQdJpPBcXAXs5v+c2Fj6zRERERG108nI+vknLlDqGTfo1rwTbjqZLHcOqsUAgIiIiaoNrN8vw6eFzUsewaYd/vY5DF65JHcNqsUAgIiIiaqWq2jp8sP8Maup0UkexeZ8dS0f2jVtSx7BKLBCIiIiIWmnr0XQUaDjdpjmo0wn4z4GzqKqtkzqK1WGBQERERNQKKZn5OH6Jg5LNSYGmAjtOXJI6htVhgUBERETUAk1lDf73IwfGmqND6ddwnlewNihOc2rmOJUpNfUzwOlPiYhMZ/vxXzn/vhnbfOQCXv7LUCgVcqmjWAUeQSAiIiJqxvlrN3Dycr7UMagZN8qqOO2sAbFAICIiImqCVqfDZ8d+lToGtULSL1nIL+UAckNggUBERETUhB8uXEMeP3RaBK1OwI6fLkodwyqwQCAiIiJqRGVNHU9bsTCns4pwMa9Y6hgWjwUCERERUSMOnMtGWRUHJlua/3fqMgRBkDqGRWOBQERERHSHypo67DubJXUMaoeLeSX4lUcROoQFAhEREdEdfriQg8oaXqHXUu39+arUESwaCwQiIiKiP6jT6nDgXI7UMagDzl+/iZwbt6SOYbFYIBARERH9wakrBSitqJY6BnXQgXPZUkewWCwQiIiIiP7ghws8emANfrqcjwpe/bpdWCAQERER/SavtBwZ+aVSxyADqNXq8BOvgN0u9lIHICIishSZmZk4dOgQrl69ioqKCvj6+iIiIgLR0dFwdHSUOh4ZwLGLuVJHIAM6djEXI/oESR3D4rBAMBN7r6dJHYEsTHM/M3GB4SbLQWQLNm/ejLfffhsnT56EWq1GYGAgnJyccPPmTWRkZMDR0RGPP/44Fi9ejC5dukgdl9pJEASc5DfOVuVKkQYFmgr4uTlLHcWisEAgIiJqRkREBBwcHDBjxgx88cUXCA4O1lteXV2No0ePYuvWrRg8eDDee+89TJo0SaK01BFXi27hRlmV1DHIwE5lFmD0wJBm+2gFLVLLUlFUWwQfhQ8iVBGQy+SmCWiGWCAQERE144033kBcXFyTy5VKJUaOHImRI0fi9ddfx5UrV0wXjgwq7WqB1BHICH6+WthsgbC/eD8ScxJRUPv76++n8EN8UDxiPGNMkND8cJAyERFRM5orDu7k7e2NyMhII6YhYzqbfUPqCGQEV4o00FQ2Pm3t/uL9iM+M1ysOAKCgtgDxmfHYX7zfFBHNDo8gEBERtVFBQQEKCgqg0+n02sPCwiRKRB1VWlGNa8VlUscgIzl/7SaiugfotWkFLRJzEptdb3XOaozwGGFzpxuxQCAiImqllJQUTJ8+HefPn4cgCAAAmUwGQRAgk8mg1WolTkjtlZ5bLHUEMqL03OIGBUJqWWqDIwd3yq/NR2pZKga7DjZmPLPDAoGIiKiVZs2ahZ49e2LDhg1Qq9WQyWRSRyIDuZjHAsGaXcoradBWVFvUqnVb28+asEAgIiJqpcuXL+OLL75A9+7dpY5CBpZZoJE6AhlR4a1KaCpr4ObkILb5KHxatW5r+1kTDlImIiJqpVGjRuHnn3+WOgYZWE2dFtdLOP7A2l0t0i8CI1QR8FP4NbuOWqFGhCrCmLHMEo8gEBERtdJ//vMfTJ8+HWfPnkX//v2hUCj0lj/00EMSJaOOuHazDL8NKSErlnPjFgYE/340QC6TIz4oHvGZ8Y32l0GGRUGLbG6AMsACgYiIqNWOHj2KI0eO4Ntvv22wjIOULRdnL7IN14vLG7TFeMYgEYkNroOgVqixKGiRzV4HgQUCERFRKz333HOYOnUqXn75ZajVaqnjkIHkl1ZIHYFMIK+0YYEA1BcJIzxG8ErKf8ACgYiIqJVu3LiB559/nsWBlSnUVEodgUygUFMpTkl8J7lMbnNTmTaHg5SJiIhaacKECThw4IDUMcjAbpZXSR2BTKC6TouKmjqpY1gEHkEgIiJqpZ49e2LJkiU4fPgwBgwY0GCQ8l//+leJklFHFLNAsBnF5VVwUSpa7mjjWCAQERG10n/+8x+oVCocPHgQBw8e1Fsmk8lYIFggnU5AeVWt1DHIRG5V1kgdwSLwFCMiIqJWyszMbPJ2+fJlgzzGunXrEBISAkdHR0RFReHEiRPN9t++fTt69+4NR0dHDBgwAN98843eckEQsGzZMgQEBMDJyQmxsbG4ePGiQbJag4qaWnCGU9tRVs1isDVYIBAREXVQbm4uVq1a1eHtbNu2DQsXLsTy5ctx6tQpDBw4EHFxcSgoKGi0/48//ohHH30Us2fPRmpqKsaPH4/x48fj7NmzYp9Vq1bhnXfewfr163H8+HG4uLggLi4OVVU8rQYAKms4Na0tqeLr3So8xYiIiKiVZs2a1Wj71atXceLECbzwwgsd2v5bb72FOXPmYObMmQCA9evXY/fu3fjoo4/w4osvNuj/9ttvY/To0YiPr7/Q06uvvorvv/8e7777LtavXw9BELB27VosXboU48aNAwB88sknUKvV2LVrF6ZMmdKhvNagpo4fGG1JDa9V0iptOoLw/vvvIywsDG5ubnBzc0N0dLTexWKqqqowb948eHt7Q6VSYeLEicjPzzd4aCIiIikUFxfr3YqKinDixAkkJydj9erVHdp2TU0NUlJSEBsbK7bZ2dkhNjYWR48ebXSdo0eP6vUHgLi4OLF/ZmYm8vLy9Pq4u7sjKiqqyW3amjqdTuoIZEJ1Wr7erdGmIwhBQUF444030KNHDwiCgI8//hjjxo1Damoq+vXrh+effx67d+/G9u3b4e7ujvnz52PChAk4cuSIsfITERGZzM6dOxttf/3117Fr1y489dRT7d52UVERtFptg2ssqNVqXLhwodF18vLyGu2fl5cnLr/d1lSfxlRXV6O6ulq8r9FoWr8jFkbgAASbwte7ddp0BOHBBx/EAw88gB49eqBnz554/fXXoVKpcOzYMZSWlmLDhg146623EBMTg8jISGzcuBE//vgjjh07Zqz8REREknv00UeRnJwsdQyDSUhIgLu7u3gLDg6WOpLRNHLNLLJifL1bp92DlLVaLbZu3Yry8nJER0cjJSUFtbW1eocxe/fujc6dO/MwJhERWbWff/4ZERERHdqGj48P5HJ5g1Nz8/Pz4e/v3+g6/v7+zfa//W9btgkAS5YsQWlpqXjLzs5u8/5YCns7ztdiS/h6t06bBymfOXMG0dHRqKqqgkqlws6dO9G3b1+kpaXBwcEBHh4eev15GJOIiKzFwoULG7Tl5+fjyy+/xNixY/WWv/XWW23atoODAyIjI5GUlITx48cDAHQ6HZKSkjB//vxG14mOjkZSUhIWLFggtn3//feIjo4GAISGhsLf3x9JSUkIDw8HUP8+e/z4cTzzzDNNZlEqlVAqlW3Kb6kc7PmB0Zbw9W6dNhcIvXr1QlpaGkpLS/H5559j+vTpDS4W0xYJCQlYsWJFu9cnIiIyldTU1EbbhwwZgoKCAnE6Ulk7z2NYuHAhpk+fjsGDB+Ouu+7C2rVrUV5eLs5qNG3aNHTq1AkJCQkAgL/97W8YMWIE/vnPf2Ls2LHYunUrTp48iQ8++EDMsWDBArz22mvo0aMHQkND8fLLLyMwMFAsQmydo4ITOtoSRwe+3q3R5mfJwcEB3bt3BwBERkbip59+wttvv43JkyejpqYGJSUlekcRWnMY84/fuGg0Gqs+15GIiCzXgQMHjLr9yZMno7CwEMuWLUNeXh7Cw8OxZ88ecZBxVlYW7P5wisTdd9+NLVu2YOnSpXjppZfQo0cP7Nq1C/379xf7vPDCCygvL8fcuXNRUlKCYcOGYc+ePXB0dDTqvlgKZyU/MNoSF6VC6ggWocO/FTqdDtXV1YiMjIRCoUBSUhImTpwIAEhPT0dWVpZ4qLMxtnQYk4iIqCXz589v8pSixgZCT5o0CZMmTWpyezKZDCtXrsTKlSsNFdGqyO3soHJUoKyKV9i1BW6ODlJHsAhtKhCWLFmCMWPGoHPnzrh16xa2bNmC5ORk7N27F+7u7pg9ezYWLlwILy8vuLm54bnnnkN0dDSGDh1qrPxERERGNXr0aLzyyistvpfdunUL7733HlQqFebNm2eidGQIHs5KFgg2wsOFX0q3RpsKhIKCAkybNg25ublwd3dHWFgY9u7diz/96U8AgDVr1sDOzg4TJ05EdXU14uLi8N577xklOBERkSlMmjQJEydOhLu7Ox588EEMHjwYgYGBcHR0RHFxMc6dO4fDhw/jm2++wdixY5GYmCh1ZGojL5Ujcm6WSR2DjMzB3o6nGLVSmwqEDRs2NLvc0dER69atw7p16zoUioiIyFzMnj0bU6dOxfbt27Ft2zZ88MEHKC0tBVB/+k7fvn0RFxeHn376CX369JE4LbWHr6uT1BHIBHxdnds9gYCt4cgcIiKiFiiVSkydOhVTp04FAJSWlqKyshLe3t5QKPiNpKVTu7tIHYFMQO3uLHUEi8ECgYiIqI1uX2GYrEOgJwsEW8DXufV4tQgiIiKyaZ28VOCJJ9Yv2NtV6ggWgwUCERER2TRHhT38PfjtsrXr4uMmdQSLwQKBiIiIbF6oH08Zs2ZeKke4O3OK09ZigUBEREQ2r4faQ+oIZER8fduGBQIREVErTZ8+HT/88IPUMcgIegV6Sh2BjIivb9uwQCAiImql0tJSxMbGokePHvi///s/XLt2TepIZCCeLo4I4DgEq9Wnk7fUESwKCwQiIqJW2rVrF65du4ZnnnkG27ZtQ0hICMaMGYPPP/8ctbW1UsejDuofzA+R1ijY2xUeHH/QJiwQiIiI2sDX1xcLFy7Ezz//jOPHj6N79+544oknEBgYiOeffx4XL16UOiK108DOvlJHICMI78LXta1YIBAREbVDbm4uvv/+e3z//feQy+V44IEHcObMGfTt2xdr1qyROh61Q6ifOzxd+E2ztRkU4id1BIvDKymbibjA8Ebb915PM2kOshxN/cwQkfHU1tbiq6++wsaNG/Hdd98hLCwMCxYswGOPPQY3t/o51nfu3IlZs2bh+eeflzgttZWdTIbIUDX2nc2SOgoZSJCXite4aAcWCERERK0UEBAAnU6HRx99FCdOnEB4eHiDPvfddx88PDxMno0MY2iPABYIVmRojwCpI1gkFghERESttGbNGkyaNAmOjo5N9vHw8EBmZqYJU5EhdfJUIcTXDVcKNVJHoQ6yt5Mhqpu/1DEsEscgEBERtdITTzzRbHFA1uHe3kFSRyADGBSqhsrRQeoYFokFAhEREdEfDA71g6ujQuoY1EH39Q2WOoLFYoFARERE9AcKezlG8sOlRevh74EQXzepY1gsFghEREREdxjRJwhKe7nUMaid4sJCpI5g0VggEBEREd3BRangKSoWKsTXDX07eUkdw6KxQCAiIiJqROyAznBy4ISPluahQd0gk8mkjmHRWCAQERERNcJFqcDogSFSx6A26NPJC3149KDDWCAQERERNeG+PkHwcXWSOga1gp1Mhol39ZA6hlVggUBERETUBIW9HJOi+KHTEozo0wmdPFVSx7AKLBCIiIiImhHW2RcDO/tKHYOa4e6sxIODukkdw2pw5I2ZiwsMb3LZ3utpJstB0mnuZ4CIiExjSnRP/JpXjMqaOqmjUCMevbsXB5QbEI8gEBEREbXAw8URj0T1lDoGNSKqmz+P8BgYCwQiIiKiVojq7o9BIX5Sx6A/8FI5YnJ0L6ljWB0WCEREREStIJPJ8Ng9veGlcpQ6CqF+1qLZI/vz1CIjYIFARERE1EouSgXm3DcA9na8EJfUJgzpjq5+7lLHsEosEIiIiIjaIMTXDY/e3VvqGDZtSFc1YvoFSx3DarFAICIiImqju3sGYlS/zlLHsEkhvm6YOqwPZDIexTEWnrRlwTgFqvXgVKZERJZnwpDuuFFWibSrhVJHsRk+rk54JjYMDvZyqaNYNR5BICIiImoHOzsZZo3ohx7+HlJHsQluTg54Li4cbk5KqaNYPRYIRERERO2ksJfjmdiBCPFxkzqKVXNR2uOvcRHwc3OWOopNYIFARERE1AFODvZ4Li4cXVgkGIWL0h5/Gz0InbxUUkexGSwQiIiIiDrIWanA30ZHoLvaQ+ooVsXNyQHPj4lEsLer1FFsCgsEIiIiIgO4fSQhrLOP1FGsgq+bExaNHcwjBxJggUBERERkIA72csyNGYCRfYIaLBOgg0aVgRseqdCoMiBAJ0FCy9DVzx3xYwfD181J6ig2idOcWilOgWp+OJUpEZFtkNvZYXJ0L/h7uOCzY79CJwi46X4GWZ2+Qo1DqdjPocYdna89BK/SARKmNT9Duwfgsbt7QcGpTCXDIwhERERERjCiTxAWPjAIVX4XcCnkU9QoSvWW1yhKcSnkU9x0PyNRQvMit5Nh8tCemDa8D4sDifEIAhEREZGRhPi5Irfz10AtgDsv/CsDIABZnb6CZ2k/yGz4e1tfNyfMHtmfM0GZCdv9SSQiIjIjgiBg2bJlCAgIgJOTE2JjY3Hx4sVm10lISMCQIUPg6uoKPz8/jB8/Hunp6Xp9Ro4cCZlMpnd7+umnjbkr9AepZakorCtoWBzcJgNqHEpxS5Vp0lzmZFivQLw07i4WB2aEBQIREZEZWLVqFd555x2sX78ex48fh4uLC+Li4lBVVdXkOgcPHsS8efNw7NgxfP/996itrcX999+P8vJyvX5z5sxBbm6ueFu1apWxd4d+U1Rb1Kp+tfYaIycxP94qR/w1LhyP39MHjgqe1GJO+GoQERFJTBAErF27FkuXLsW4ceMAAJ988gnUajV27dqFKVOmNLrenj179O5v2rQJfn5+SElJwb333iu2Ozs7w9/f33g7QE3yUbRuylNFne18e25vJ8Oo/p3xQHgoHDjWwCyxQLBB7ZlNhzMf6eOMRERkSJmZmcjLy0NsbKzY5u7ujqioKBw9erTJAuFOpaX1g2C9vLz02jdv3oz//ve/8Pf3x4MPPoiXX34Zzs7OhtsBalKEKgJ+Cj8U1BY03kEAHGo94FoWatpgEgnv4osJQ7rD140/f+aMBQIREZHE8vLyAABqtVqvXa1Wi8taotPpsGDBAtxzzz3o37+/2P7YY4+hS5cuCAwMxOnTp7F48WKkp6djx44dTW6ruroa1dXV4n2NxvZOfzEUuUyO+KB4xGfGN7pcJpNhSUg8bmmD8OOvudAJgokTmkbvQC88OKgruvq5Sx2FWoEFAhERkYlt3rwZTz31lHh/9+7dHd7mvHnzcPbsWRw+fFivfe7cueL/BwwYgICAAIwaNQoZGRno1q1bo9tKSEjAihUrOpyJ6sV4xiARiUjMSdQ7kqBWqLEoaBFiPGMAf2D0wBDsO5OFI79eR63WOi6iNiDYB3FhXdBN7SF1FGoDFghEREQm9tBDDyEqKkq8f/vb+vz8fAQEBIjt+fn5CA8Pb3F78+fPx9dff40ffvgBQUENr+D7R7cf99KlS00WCEuWLMHChQvF+xqNBsHBwS3moKbFeMZghMcIpJaloqi2CD4KH0SoIiCX/X4OvrfKCZOje+HPg7ricPo1HLpwDTfKmh6kbq4cFXJEdQ/AyL5B8Hd3kToOtQMLBCIiIhNzdXWFq6ureF8QBPj7+yMpKUksCDQaDY4fP45nnnmmye0IgoDnnnsOO3fuRHJyMkJDWz6PPS0tDQD0CpE7KZVKKJXK1u0MtZpcJsdg18Et9nNRKhAXFoI/DeiCC9dv4tjFXPycVYiaOvM9qiAD0DPAE1HdAzAoxA9KBQcfWzIWCERERBKTyWRYsGABXnvtNfTo0QOhoaF4+eWXERgYiPHjx4v9Ro0ahb/85S+YP38+gPrTirZs2YIvv/wSrq6u4ngFd3d3ODk5ISMjA1u2bMEDDzwAb29vnD59Gs8//zzuvfdehIWFSbGr1AitoG30yIKdTIa+nbzRt5M3qmu1OJtThLSrhfgl5wYqa+qkjg25nQw9/D0xsLMPIkL84O7MotJasEAgIiIyAy+88ALKy8sxd+5clJSUYNiwYdizZw8cHR3FPhkZGSgq+n1e/ffffx9A/cXQ/mjjxo2YMWMGHBwcsG/fPqxduxbl5eUIDg7GxIkTsXTpUpPsE7Vsf/H+BmMT/BR+iA+Krx+b8BulQo7IUDUiQ9XQ6nS4UqhBem4xLuaVILOgFNV1WqNntZPJEOytQne1B3oFeKFHgAevX2Cl+KpSqxh6Wk9TTpvKKUmJyBLIZDKsXLkSK1eubLLPlStX9O4LLcx4ExwcjIMHDxoiHhnB/uL9jc5uVFBbgPjMeCQiUa9IuE1uZ4duag9x4K9OJyC/tBzZN8tw7WYZ8kvLUaCpxM2yqnYVDnI7GTxdHOHj6gR/d2cEerqgk5crgrxUvG6BjWCBQERERGRiWkGLxJzEZvuszlmNER4j9AYyN8bOToYATxUCPFXAH8adC4KAypo6aCprUF5di8qaOlTXaaHVCdDpBMhk9cWGg70dHBX2cFEq4OqkgMrRAXYymSF2kywUCwQiIiIiE0stS2364mm/ya/NR2pZaqsGNjdGJpPBWamAs1LRrvVbTacFCg8BlbmAUwDgOxyw45EGS8YCgYiIiMjEimqLWu7Uhn6Syd4BpPwNqMj5vc05CIh8GwieIF0u6hA7qQMQERER2RofhY9B+0kiewdw6GH94gAAKq7Vt2c3fbVuMm8sEIiIiIhMLEIVAT+FX7N91Ao1IlQRJkrURjpt/ZEDNDZQ/re2lAX1/cjidKhAeOONN8S5m2+rqqrCvHnz4O3tDZVKhYkTJyI/P7+jOYmIiIishlwmR3xQwxmMbpNBhkVBi1ocoCyZwkMNjxzoEYCK7Pp+ZHHaPQbhp59+wr///e8GF1p5/vnnsXv3bmzfvh3u7u6YP38+JkyYgCNHjnQ4LFkPTj1KRES2LsYzBolIbHAdBLVCjUVBixqd4tRsVOYath+ZlXYVCGVlZXj88cfx4Ycf4rXXXhPbS0tLsWHDBmzZsgUxMfU/1Bs3bkSfPn1w7NgxDB061DCpiYiIiKxAjGcMRniMaPRKymbNKcCw/cistOsUo3nz5mHs2LGIjY3Va09JSUFtba1ee+/evdG5c2ccPXq00W1VV1dDo9Ho3YiIiIhshVwmx2DXwRjtNRqDXQebf3EA1E9l6hwEoKnrJcgA5+D6fmRx2lwgbN26FadOnUJCQkKDZXl5eXBwcICHh4deu1qtRl5eXqPbS0hIgLu7u3gLDg5uayQiIiIiMiU7ef1UpgAaFgm/3Y9cy+shWKg2FQjZ2dn429/+hs2bN8PR0dEgAZYsWYLS0lLxlp2dbZDtEhEREZERBU8Ahn8OOHfSb3cOqm/ndRAsVpvGIKSkpKCgoACDBg0S27RaLX744Qe8++672Lt3L2pqalBSUqJ3FCE/Px/+/v6NblOpVEKpVLYvPRERERFJJ3gC0Gkcr6RsZdpUIIwaNQpnzpzRa5s5cyZ69+6NxYsXIzg4GAqFAklJSZg4cSIAID09HVlZWYiOjjZcaiIiIiIyD3ZyQD1S6hRkQG0qEFxdXdG/f3+9NhcXF3h7e4vts2fPxsKFC+Hl5QU3Nzc899xziI6O5gxGREREREQWoN3XQWjKmjVrYGdnh4kTJ6K6uhpxcXF47733DP0wRERERERkBB0uEJKTk/XuOzo6Yt26dVi3bl1HN01ERERERCbWrusgEBERERGRdWKBQEREREREIhYIREREREQkYoFAREREREQiFghERERERCRigUBERERERCIWCEREREREJGKBQEREREREIhYIREREREQkYoFAREREREQiFghERERERCRigUBERERERCIWCEREREREJGKBQEREREREInupAxARERHZEq2gRWpZKopqi+Cj8EGEKgJymVzqWEQiFghEREREJrK/eD8ScxJRUFsgtvkp/BAfFI8YzxgJkxH9jqcYEREREZnA/uL9iM+M1ysOAKCgtgDxmfHYX7xfomRE+lggEBERERmZVtAiMSex2T6rc1ZDK2hNlIioaSwQiIiIiIwstSy1wZGDO+XX5iO1LNVEiYiaxgKBiIiIyMiKaosM2o/ImFggEBERERmZj8LHoP2IjIkFAhEREZGRRagi4Kfwa7aPWqFGhCrCRImImsYCgYiIiMjI5DI54oPim1wugwyLghbxeghkFlggEBEREZlAjGcMEkMTGxxJUCvUWBW6itdBILPBC6URERERmUiMZwxGeIzglZTJrLFAICIiIjIhuUyOwa6DpY5B1CSeYkRERERERCIWCEREREREJGKBQEREZAYEQcCyZcsQEBAAJycnxMbG4uLFi82u88orr0Amk+ndevfurdenqqoK8+bNg7e3N1QqFSZOnIj8/Hxj7goRWTgWCERERGZg1apVeOedd7B+/XocP34cLi4uiIuLQ1VVVbPr9evXD7m5ueLt8OHDesuff/55/L//9/+wfft2HDx4ENevX8eECROMuStEZOE4SJmIiEhigiBg7dq1WLp0KcaNGwcA+OSTT6BWq7Fr1y5MmTKlyXXt7e3h7+/f6LLS0lJs2LABW7ZsQUxM/RSaGzduRJ8+fXDs2DEMHTrU8DtDRBaPRxCIiIgklpmZiby8PMTGxopt7u7uiIqKwtGjR5td9+LFiwgMDETXrl3x+OOPIysrS1yWkpKC2tpave327t0bnTt3bnG7RGS7eASBiIhIYnl5eQAAtVqt165Wq8VljYmKisKmTZvQq1cv5ObmYsWKFRg+fDjOnj0LV1dX5OXlwcHBAR4eHm3abnV1Naqrq8X7Go2mHXtFRJaKRxCIiIhMbPPmzVCpVOKttra2XdsZM2YMJk2ahLCwMMTFxeGbb75BSUkJPvvssw7lS0hIgLu7u3gLDg7u0PaIyLKwQCAiIjKxhx56CGlpaeLNx8cHABrMLpSfn9/k+ILGeHh4oGfPnrh06RIAwN/fHzU1NSgpKWnTdpcsWYLS0lLxlp2d3eoMRGT5WCAQERGZmKurK7p37y7e+vbtC39/fyQlJYl9NBoNjh8/jujo6FZvt6ysDBkZGQgICAAAREZGQqFQ6G03PT0dWVlZzW5XqVTCzc1N70ZEtoMFAhERkcRkMhkWLFiA1157DV999RXOnDmDadOmITAwEOPHjxf7jRo1Cu+++654f9GiRTh48CCuXLmCH3/8EX/5y18gl8vx6KOPAqgf6Dx79mwsXLgQBw4cQEpKCmbOnIno6GjOYERETeIgZSIiIjPwwgsvoLy8HHPnzkVJSQmGDRuGPXv2wNHRUeyTkZGBoqIi8X5OTg4effRR3LhxA76+vhg2bBiOHTsGX19fsc+aNWtgZ2eHiRMnorq6GnFxcXjvvfdMum9EZFlYIBAREZkBmUyGlStXYuXKlU32uXLlit79rVu3trhdR0dHrFu3DuvWretoRCKyETzFiIiIiIiIRCwQiIiIiIhIxAKBiIiIiIhELBCIiIiIiEjEAoGIiIiIiEQsEIiIiIiISMQCgYiIiIiIRLwOAhEREREZj04LFB4CKnMBpwDAdzhgJ5c6FTWDBQIRERERGUf2DiDlb0BFzu9tzkFA5NtA8ATpclGzeIoRERERERle9g7g0MP6xQEAVFyrb8/eIU0uahELBCIiIiIyLJ22/sgBhEYW/taWsqC+H5kdFghEREREZFiFhxoeOdAjABXZ9f3I7LBAICIiog6prdNCJzT2TTHZrMpcw/azcYIgoFarQ02daY64cJAyERERdUji7hT4ntVAIbeDs4M9VI4OcHNygIeLEj6uTvB1c0KAuwvUHi5QyPndpE1wCjBsPyumEwQU3apEbkk5CkorUHSrEsXl1SitqEZZVS0qampRXauFAKDw6kWTZGKBQERERAZRq9WhtLIGpZU1uFbccLmdTIZATxeE+Lihq9oDPf094O3qZPqglsjSpgr1HV4/W1HFNTQ+DkFWv9x3uKmTSa68uhaX8kpwKb8EVwo1yL5xC9UmOjLQWiwQiIiIyCR0goCcm2XIuVmGw79eBwD4uDqhX5A3BgT7oFeAJ+x5hKEhS5wq1E5en+/QwwBk0C8SZPX/RK417yLHQARBQPaNWzidVYSzOTeQVaRptGQyJywQiIiISDJFtypx8HwODp7PgZODPcK7+GJIV3/0CvCEnZ1M6njSuz1V6J0fKW9PFTr8c/MtEoIn1OdrtLhZa765DeR6cRmOX8pDSmY+bpRVSR2nTdpUILzyyitYsWKFXluvXr1w4cIFAEBVVRX+/ve/Y+vWraiurkZcXBzee+89qNVqwyUmIiIiq1RZU4ejF3Nx9GIuvFwccXfPAAzr1Qnuzkqpo0mjxalCZfVThXYaZ77fxAdPqM9nSadHdUBNnRYnL+fj0IVruFKkkTpOu7X5CEK/fv2wb9++3zdg//smnn/+eezevRvbt2+Hu7s75s+fjwkTJuDIkSNtDrbz1zNwc239Yca4wPA2PwYRmZ+919PavI7mlg6ePQ2fhYikc7O8Cl+nZuKbtCsY3FWNP/XvjCBvV6ljdZhW0CK1LBVFtUXwUfggQhUBuayJD8ttmSpUPdIYcQ3DTm7e+QxAU1mNA+dycOhCDsqr66SO02FtLhDs7e3h7+/foL20tBQbNmzAli1bEBMTAwDYuHEj+vTpg2PHjmHo0KEdT0tEREQ2RScIOJGRhxMZeRgQ7IOxEaHo4uMmdax22V+8H4k5iSioLRDb/BR+iA+KR4xnTMMVOFWo2SutqMbe01dwOP06arU6qeMYTJtHAl28eBGBgYHo2rUrHn/8cWRlZQEAUlJSUFtbi9jYWLFv79690blzZxw9etRwiYmIiMgmnckuwhtf/YQP959BgaZC6jhtsr94P+Iz4/WKAwAoqC1AfGY89hfvb7gSpwo1W5U1ddh18hJe3v4jDpzLsariAGjjEYSoqChs2rQJvXr1Qm5uLlasWIHhw4fj7NmzyMvLg4ODAzw8PPTWUavVyMvLa3Kb1dXVqK6uFu9rNJZ7vhYREREZ36krBfg5qxD39Q3G2IhQOCrMe84VraBFYk5is31W56zGCI8R+qcbcapQs6MTBBy9mItdJy+hrKpW6jhG06bfqDFjxoj/DwsLQ1RUFLp06YLPPvsMTk7tm8c4ISGhwcBnIiIiouZodQL2nc3CT5fzMWVoT4SH+EkdqUmpZakNjhzcKb82H6llqRjsOvj3Rk4ValauFZdhy5ELuFxQKnUUo+vQZMMeHh7o2bMnLl26BH9/f9TU1KCkpESvT35+fqNjFm5bsmQJSktLxVt2dnZHIhEREZENKa2oxr/3n8GH+8+grKpG6jiNKqotan+/21OFOnfSb3cOMu8pTq2IVqfDN2mZSPjyhE0UB0AHr4NQVlaGjIwMPPHEE4iMjIRCoUBSUhImTpwIAEhPT0dWVhaio6Ob3IZSqYRSaaPTlxEREZFBnLpSgEv5JZg2vC/6BXlLHUePj8KnY/1sbKpQc1KoqcBHyb9Y9JSl7dGmAmHRokV48MEH0aVLF1y/fh3Lly+HXC7Ho48+Cnd3d8yePRsLFy6El5cX3Nzc8NxzzyE6OtokMxi1Z2rElnDqVKKWGeN3j4ioPTSVNXj3uzTcP6ALHorsCrmdeVyVOUIVAT+FX7OnGakVakSoIpreiA1MFWpuUi7n479HzqOqVit1FJNrU4GQk5ODRx99FDdu3ICvry+GDRuGY8eOwdfXFwCwZs0a2NnZYeLEiXoXSiMiIiIyle/OXMWVwlI8ed8AuDo5SB0Hcpkc8UHxiM+Mb3S5DDIsClrU9PUQyKS0Oh12/nQJSb/Y7mnvbSoQtm7d2uxyR0dHrFu3DuvWretQKCIiIqKO+DWvBG/8v5/wbOxAdPJSSR0HMZ4xSERig+sgqBVqLApa1Ph1EMjkKqpr8Z/kszh/7abUUSRl3vOCEREREbXTzbIqrN59Ek+NCkPvQC+p4yDGMwYjPEa0/krKZFI3y6rw7ndpyC0plzqK5FggEBERkdWqqtXi3e/SMHNEP0SGqqWOA7lMrj+VKZmF3JJy/GtvKorLq1vubANYIBAREZFV0+oEbEg+i5o6HaJ78KrDpC/nxi28vTfVqi981lYsEIiIiMjqCQLw6aFzAMAigUTXbpZh7Z5UlFezOPgjFgjNaM/0jZwalSwZpywlImsmAPj08Dk42NuZxelGJK380gq8vecUi4NGmMcEwUREREQmIAjAxoO/2PwsNbaupKIa7+xNxS2eVtQoFghERERkU7Q6AR/sP41rN8ukjkISqKqtw3vf/4ybZVVSRzFbLBCIiIjI5lTVavHevp9xq7JG6ihkQjpBwKaDvyD7xi2po5g1FghERERkk26WVeHDA2eg1emkjkIm8k1qJn7OKpI6htljgUBEREQ262JeCb5KuSx1DDKBczk38E1aptQxLAILBCIiIrJp3525il9ybkgdg4yotKIaG3/4BYLUQSwEpzk1sOamieQUqGQOOJUpEVFDnxw6h6Xjo+Dq5CB1FDIwQRDwyaFzvBBaG/AIAhEREdk8TWUNth5NlzoGGcHh9Gs4x2lt24QFAhERERGAU1cKkHalQOoYZEDF5VXY8dMlqWNYHBYIRERERL/ZeuxXVNXWSR2DDOSzY7+iqlYrdQyLwwKBiIiI6DelFdXYncqZbqzBuZwbSLtaKHUMi8QCgYiIiOgPDpzLRoGmQuoY1AFanQ7bT/wqdQyLxQLBhPZeT2vyRmRI/FkjsjyCIGDZsmUICAiAk5MTYmNjcfHixWbXCQkJgUwma3CbN2+e2GfkyJENlj/99NPG3h2LptUJ+PJkhtQxqAN+/PU68kpY5LUXCwQiIiIzsGrVKrzzzjtYv349jh8/DhcXF8TFxaGqqqrJdX766Sfk5uaKt++//x4AMGnSJL1+c+bM0eu3atUqo+6LNTh1pQBXizRSx6B2qKnTYnfaFaljWDQWCERERBITBAFr167F0qVLMW7cOISFheGTTz7B9evXsWvXribX8/X1hb+/v3j7+uuv0a1bN4wYMUKvn7Ozs14/Nzc3I++RdeBYBMt0OP0aSiuqpY5h0VggEBERSSwzMxN5eXmIjY0V29zd3REVFYWjR4+2ahs1NTX473//i1mzZkEmk+kt27x5M3x8fNC/f38sWbIEFRXNn3pRXV0NjUajd7NFZ7KLkHPzltQxDEOnBfKTgSv/q/9XZ50z+9Rpdfj+TJbUMSwer6RMREQksby8PACAWq3Wa1er1eKyluzatQslJSWYMWOGXvtjjz2GLl26IDAwEKdPn8bixYuRnp6OHTt2NLmthIQErFixom07YaW+P5OFmSP6SR2jY7J3ACl/Aypyfm9zDgIi3waCJ0iXywh+upyPEh496DAeQSAiIjKxzZs3Q6VSibfa2toOb3PDhg0YM2YMAgMD9drnzp2LuLg4DBgwAI8//jg++eQT7Ny5ExkZTQ/CXbJkCUpLS8VbdnZ2h/NZqpTMfMs+XSV7B3DoYf3iAAAqrtW3ZzddKFoaQRCw/xcePTAEFghEREQm9tBDDyEtLU28+fj4AADy8/P1+uXn58Pf37/F7V29ehX79u3Dk08+2WLfqKgoAMClS01fXVapVMLNzU3vZqu0OgGH069JHaN9dNr6IwcQGln4W1vKAqs53ehyQSlybpZJHcMq8BQjM9HU9JNxgeEmzUGWg1OWElkuV1dXuLq6ivcFQYC/vz+SkpIQHh4OANBoNDh+/DieeeaZFre3ceNG+Pn5YezYsS32TUtLAwAEBAS0K7st+vHXXIwZGAo7O1nLnc1J4aGGRw70CEBFdn0/9UhTpTKaI79elzqC1eARBCIiIonJZDIsWLAAr732Gr766iucOXMG06ZNQ2BgIMaPHy/2GzVqFN599129dXU6HTZu3Ijp06fD3l7/e7+MjAy8+uqrSElJwZUrV/DVV19h2rRpuPfeexEWFmaKXbMKN8urkJ5bLHWMtqvMNWw/M1ZVW4eUzPyWO1Kr8AgCERGRGXjhhRdQXl6OuXPnoqSkBMOGDcOePXvg6Ogo9snIyEBRUZHeevv27UNWVhZmzZrVYJsODg7Yt28f1q5di/LycgQHB2PixIlYunSp0ffH2vx0OQ99OnlJHaNtnFp5lKi1/czY6awi1NTppI5hNVggEBERmQGZTIaVK1di5cqVTfa5cuVKg7b7778fgtDYOeZAcHAwDh48aKiINi3taiEeu1sHe3nzJ19oBS1Sy1JRVFsEH4UPIlQRkMvkJkp5B9/h9bMVVVxD4+MQZPXLfYebOpnBnbzMoweGxAKBiIiIqAWVNXVIzy1GvyDvJvvsL96PxJxEFNQWiG1+Cj/EB8UjxjPGFDH12cnrpzI99DAAGfSLhN/GU0Sure9nwapq63D++k2pY1gVjkEgIiIiaoUz2UVNLttfvB/xmfF6xQEAFNQWID4zHvuL9xs7XuOCJwDDPwecO+m3OwfVt1vBdRAuXC9GnZanFxkSjyAQERERtcK5nBuNtmsFLRJzEptdd3XOaozwGCHN6UbBE4BO4+pnK6rMrR9z4Dvc4o8c3NbU60LtxwKBiIiIqBUKb1Xixq1KeLs66bWnlqU2OHJwp/zafKSWpWKw62BjRmyandwqpjJtzAWeXmRwPMWIiIiIqJV+zStp0FZU2/SpR+3pR61XXF6FwluVUsewOiwQiIiIiFrpckFJgzYfhU+r1m1tP2q9y/mlUkewSiwQiIiIiFrpSqGmQVuEKgJ+Cr9m11Mr1IhQRRgrls26UtTw9aCOY4FARERE1ErXi8tRe8eMOXKZHPFB8U2uI4MMi4IWSXc9BCuWdeOW1BGsEgsEIiIiolbSCQLyS8obtMd4xiAxNLHBkQS1Qo1VoaukuQ6ClRMEAdeLy6SOYZU4ixERERFRG+SWliPI27VBe4xnDEZ4jDCfKylbubKqWpRV1UodwyqxQDBze6+nNbksLjDcZDlIOs39DBARkekVapqeNUcuk0s3lamN4exFxsNTjIiIiIja4AY/mJqFIr4ORsMCgYiIiKgNisurpY5AAEr4OhgNCwQiIiKiNtBU1kgdgQBoKlkgGAsLBCIiIqI2KKvmwFhzwAHKxsMCgYiIiKgNKmv4wdQcVNTUSR3BarFAICIiImqDmjoddIIgdQybV1OnlTqC1WKBQERERNRG2juupkymd+cVrclweB0EIiIiapWMmxmN3peXFcC+1FmKSJI5deoUFPa8AJqUKvOuwP5WhdQxTEpeVgCg6d9FQ5EJgnkdI9NoNHB3d0fxr13h5soDHM3hhdJsAy+U1jLNLR08e15GaWkp3NzcpI5DZHU0Gg08PTyhExp+Y2sns2u0nYiMo7nfOUO9D/IIAhEREbVIJ+hw8OBBqFQqse38+fOYOnUqVo9+E928ukmYjsg2ZNzMwKI9i/Hf//4Xffr0EdvLysowYsQIgz0OCwQiIiJqlfDw8Ea/nezm1Q39/PpKkIjINvXp0weDBg0S72s0GoNun+fwEBERERGRiAUCERERERGJWCAQEREREZGIBQIREREREYlYIBARERERkYgFAhERERERiVggEBERERGRyOyug3D7ws6aMl6VsSV1Qq3UEcgENLf4u9CS238vzOzC8ERWQ3xvvmOu9bKyMgD1F28iIuO7/btWVlam9/t4+/+Geh+UCWb2jpqTk4Pg4GCpYxCRBcrOzkZQUJDUMYisDt+biSyDod4Hza5A0Ol0uH79OlxdXSGTyaDRaBAcHIzs7OxGr95oS/hc6OPz8Ttbfy4EQcCtW7cQGBgIOzueOUlkaHe+N99mzX97rHnfAOveP1vcN0O/D5rdKUZ2dnaNVj5ubm5W9yK3F58LfXw+fmfLz4W7u7vUEYisVlPvzbdZ898ea943wLr3z9b2zZDvg/yqjYiIiIiIRCwQiIiIiIhIZPYFglKpxPLly6FUKqWOIjk+F/r4fPyOzwURScGa//ZY874B1r1/3LeOM7tBykREREREJB2zP4JARERERESmwwKBiIiIiIhELBCIiIiIiEhk1gXCunXrEBISAkdHR0RFReHEiRNSRzKJH374AQ8++CACAwMhk8mwa9cuveWCIGDZsmUICAiAk5MTYmNjcfHiRWnCGllCQgKGDBkCV1dX+Pn5Yfz48UhPT9frU1VVhXnz5sHb2xsqlQoTJ05Efn6+RImN5/3330dYWJg493F0dDS+/fZbcbmtPA9EZFzteY955ZVXIJPJ9G69e/fW62MOf6Pas2+teR8aOXJkg/1/+umnjbkrDbT1M9P27dvRu3dvODo6YsCAAfjmm2/0lpvTZ4227NuHH36I4cOHw9PTE56enoiNjW3Qf8aMGQ1er9GjRxt7N5rUlv3btGlTg+yOjo56fQzy2glmauvWrYKDg4Pw0UcfCb/88oswZ84cwcPDQ8jPz5c6mtF98803wj/+8Q9hx44dAgBh586desvfeOMNwd3dXdi1a5fw888/Cw899JAQGhoqVFZWShPYiOLi4oSNGzcKZ8+eFdLS0oQHHnhA6Ny5s1BWVib2efrpp4Xg4GAhKSlJOHnypDB06FDh7rvvljC1cXz11VfC7t27hV9//VVIT08XXnrpJUGhUAhnz54VBMF2ngciMq72vMcsX75c6Nevn5CbmyveCgsL9fqYw9+o9uxba96HRowYIcyZM0dv/0tLS02xS4IgtP0z05EjRwS5XC6sWrVKOHfunLB06VJBoVAIZ86cEfuYy2eNtu7bY489Jqxbt05ITU0Vzp8/L8yYMUNwd3cXcnJyxD7Tp08XRo8erfd63bx501S7pKet+7dx40bBzc1NL3teXp5eH0O8dmZbINx1113CvHnzxPtarVYIDAwUEhISJExlencWCDqdTvD39xcSExPFtpKSEkGpVAr/+9//JEhoWgUFBQIA4eDBg4Ig1O+7QqEQtm/fLvY5f/68AEA4evSoVDFNxtPTU/jPf/5j888DERlGe99jli9fLgwcOLDJ5ebwN8pQ7593vg8JQn2B8Le//c2QcdukrZ+ZHnnkEWHs2LF6bVFRUcJTTz0lCIJ5fdbo6OfBuro6wdXVVfj444/FtunTpwvjxo0zdNR2aev+bdy4UXB3d29ye4Z67czyFKOamhqkpKQgNjZWbLOzs0NsbCyOHj0qYTLpZWZmIi8vT++5cXd3R1RUlE08N6WlpQAALy8vAEBKSgpqa2v1no/evXujc+fOVv18aLVabN26FeXl5YiOjrbZ54GIDKsj7zEXL15EYGAgunbtiscffxxZWVniMnP4G2Wo988734du27x5M3x8fNC/f38sWbIEFRUVhgnegvZ8Zjp69KhefwCIi4sT+5vLZw1DfB6sqKhAbW1tg9crOTkZfn5+6NWrF5555hncuHHDoNlbo737V1ZWhi5duiA4OBjjxo3DL7/8Ii4z1Gtn38Z9MYmioiJotVqo1Wq9drVajQsXLkiUyjzk5eUBQKPPze1l1kqn02HBggW455570L9/fwD1z4eDgwM8PDz0+lrr83HmzBlER0ejqqoKKpUKO3fuRN++fZGWlmZTzwMRGUd732OioqKwadMm9OrVC7m5uVixYgWGDx+Os2fPwtXV1Sz+Vhvi/bOx9yEAeOyxx9ClSxcEBgbi9OnTWLx4MdLT07Fjxw7D7UAT2vOZKS8vr9nnwVw+axji8+DixYsRGBio94F59OjRmDBhAkJDQ5GRkYGXXnoJY8aMwdGjRyGXyw26D81pz/716tULH330EcLCwlBaWorVq1fj7rvvxi+//IKgoCCDvXZmWSAQNWbevHk4e/YsDh8+LHUUyfTq1QtpaWkoLS3F559/junTp+PgwYNSxyIiC7V582Y89dRT4v3du3e3aztjxowR/x8WFoaoqCh06dIFn332GWbPnt3hnO1hqH37o6beh+bOnSv+f8CAAQgICMCoUaOQkZGBbt26dfhxqX3eeOMNbN26FcnJyXoDeadMmSL+f8CAAQgLC0O3bt2QnJyMUaNGSRG11aKjoxEdHS3ev/vuu9GnTx/8+9//xquvvmqwxzHLU4x8fHwgl8sbzG6Qn58Pf39/iVKZh9v7b2vPzfz58/H111/jwIEDCAoKEtv9/f1RU1ODkpISvf7W+nw4ODige/fuiIyMREJCAgYOHIi3337b5p4HIjKMhx56CGlpaeLNx8cHQMffYzw8PNCzZ09cunQJgDR/qw29b029DzUmKioKAMT9N6b2fGby9/dvtr+5fNboyOfB1atX44033sB3332HsLCwZvt27doVPj4+Jnm9/sgQn3cVCgUiIiL0ftdub6O92wTMtEBwcHBAZGQkkpKSxDadToekpCS9qskWhYaGwt/fX++50Wg0OH78uFU+N4IgYP78+di5cyf279+P0NBQveWRkZFQKBR6z0d6ejqysrKs8vm4k06nQ3V1tc0/D0TUPq6urujevbt469u3r0HeY8rKypCRkYGAgAAA0vytNtS+tfQ+1Ji0tDQAEPffmNrzmSk6OlqvPwB8//33Yn9z+azR3s+Dq1atwquvvoo9e/Zg8ODBLT5OTk4Obty4YZLX648M8XlXq9XizJkzYnaDvXatHs5sYlu3bhWUSqWwadMm4dy5c8LcuXMFDw+PBlM5WaNbt24JqampQmpqqgBAeOutt4TU1FTh6tWrgiDUT1/l4eEhfPnll8Lp06eFcePGWe00p88884zg7u4uJCcn603pVVFRIfZ5+umnhc6dOwv79+8XTp48KURHRwvR0dESpjaOF198UTh48KCQmZkpnD59WnjxxRcFmUwmfPfdd4Ig2M7zQETG1Zr3mJiYGOFf//qXeP/vf/+7kJycLGRmZgpHjhwRYmNjBR8fH6GgoEDsYw5/o9qzby29D126dElYuXKlcPLkSSEzM1P48ssvha5duwr33nuvyfarpc9MTzzxhPDiiy+K/Y8cOSLY29sLq1evFs6fPy8sX7680WlOzeGzRlv37Y033hAcHByEzz//XO/1unXrliAI9Z+xFi1aJBw9elTIzMwU9u3bJwwaNEjo0aOHUFVVZdJ9a8/+rVixQti7d6+QkZEhpKSkCFOmTBEcHR2FX375RexjiNfObAsEQRCEf/3rX0Lnzp0FBwcH4a677hKOHTsmdSSTOHDggACgwW369OmCINRPYfXyyy8LarVaUCqVwqhRo4T09HRpQxtJY88DAGHjxo1in8rKSuHZZ58VPD09BWdnZ+Evf/mLkJubK11oI5k1a5bQpUsXwcHBQfD19RVGjRolFgeCYDvPAxEZV2veY7p06SIsX75cvD958mQhICBAcHBwEDp16iRMnjxZuHTpkt465vA3qj371tL7UFZWlnDvvfcKXl5eglKpFLp37y7Ex8eb9DoIgtD8Z6YRI0aInyFu++yzz4SePXsKDg4OQr9+/YTdu3frLTenzxpt2bcuXbo0+nrdfk0rKiqE+++/X/D19RUUCoXQpUsXYc6cOZJ+Ad2W/VuwYIHYV61WCw888IBw6tQpve0Z4rWTCYIgtP54AxERERERWTOzHINARERERETSYIFAREREREQiFghERERERCRigUBERERERCIWCEREREREJGKBQEREREREIhYIREREREQkYoFAREREREQiFghEREREVmjDhg24//77jf44e/bsQXh4OHQ6ndEfi0yDBQIRERGRlamqqsLLL7+M5cuXG/2xRo8eDYVCgc2bNxv9scg0WCAQERERWZnPP/8cbm5uuOeee0zyeDNmzMA777xjksci42OBQERERGSmCgsL4e/vj//7v/8T23788Uc4ODggKSmpyfW2bt2KBx98UK9t5MiRWLBggV7b+PHjMWPGDPF+SEgIXnvtNUybNg0qlQpdunTBV199hcLCQowbNw4qlQphYWE4efKk3nYefPBBnDx5EhkZGe3fWTIbLBCIiIiIzJSvry8++ugjvPLKKzh58iRu3bqFJ554AvPnz8eoUaOaXO/w4cMYPHhwux5zzZo1uOeee5CamoqxY8fiiSeewLRp0zB16lScOnUK3bp1w7Rp0yAIgrhO586doVarcejQoXY9JpkXFghEREREZuyBBx7AnDlz8Pjjj+Ppp5+Gi4sLEhISmuxfUlKC0tJSBAYGtvvxnnrqKfTo0QPLli2DRqPBkCFDMGnSJPTs2ROLFy/G+fPnkZ+fr7deYGAgrl692q7HJPPCAoGIiIjIzK1evRp1dXXYvn07Nm/eDKVS2WTfyspKAICjo2O7HissLEz8v1qtBgAMGDCgQVtBQYHeek5OTqioqGjXY5J5YYFAREREZOYyMjJw/fp16HQ6XLlypdm+3t7ekMlkKC4ubnG7Wq22QZtCoRD/L5PJmmy7c1rTmzdvwtfXt8XHJPPHAoGIiIjIjNXU1GDq1KmYPHkyXn31VTz55JMNvr3/IwcHB/Tt2xfnzp1rsOzO04IuX75skIxVVVXIyMhARESEQbZH0mKBQERERGTG/vGPf6C0tBTvvPMOFi9ejJ49e2LWrFnNrhMXF4fDhw83aP/yyy+xY8cOZGRk4PXXX8e5c+dw9epVXLt2rUMZjx07BqVSiejo6A5th8wDCwQiIiIiM5WcnIy1a9fi008/hZubG+zs7PDpp5/i0KFDeP/995tcb/bs2fjmm29QWlqq1z527FisWrUKffv2xQ8//ID33nsPJ06cwKefftqhnP/73//w+OOPw9nZuUPbIfMgE/44RxURERERWYVJkyZh0KBBWLJkCYD66yCEh4dj7dq1Bn2coqIi9OrVCydPnkRoaKhBt03S4BEEIiIiIiuUmJgIlUpl9Me5cuUK3nvvPRYHVoRHEIiIiIhsgLGOIJD1YYFAREREREQinmJEREREREQiFghERERERCRigUBERERERCIWCEREREREJGKBQEREREREIhYIREREREQkYoFAREREREQiFghERERERCRigUBERERERKL/D467eNfHDN37AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -451,7 +595,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -499,13 +643,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d704ec8f12824e339f1c6a110a1c5b44", + "model_id": "f0e4da7112f2424eb4a397b7325de0c8", "version_major": 2, "version_minor": 0 }, @@ -529,11 +673,11 @@ { "data": { "text/html": [ - "
15:21:18 -03 Started working on Batch containing 30 tasks.                      \n",
+       "
15:32:33 -03 Started working on Batch containing 30 tasks.                      \n",
        "
\n" ], "text/plain": [ - "\u001b[2;36m15:21:18 -03\u001b[0m\u001b[2;36m \u001b[0mStarted working on Batch containing \u001b[1;36m30\u001b[0m tasks. \n" + "\u001b[2;36m15:32:33 -03\u001b[0m\u001b[2;36m \u001b[0mStarted working on Batch containing \u001b[1;36m30\u001b[0m tasks. \n" ] }, "metadata": {}, @@ -542,11 +686,11 @@ { "data": { "text/html": [ - "
15:21:56 -03 Maximum FlexCredit cost: 0.750 for the whole batch.                \n",
+       "
15:33:12 -03 Maximum FlexCredit cost: 0.750 for the whole batch.                \n",
        "
\n" ], "text/plain": [ - "\u001b[2;36m15:21:56 -03\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.750\u001b[0m for the whole batch. \n" + "\u001b[2;36m15:33:12 -03\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.750\u001b[0m for the whole batch. \n" ] }, "metadata": {}, @@ -570,7 +714,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e70c28c6165b44e78f551d53d0a25ae2", + "model_id": "4bb0390a5c204013a6acf99692418293", "version_major": 2, "version_minor": 0 }, @@ -584,11 +728,11 @@ { "data": { "text/html": [ - "
15:22:19 -03 Batch complete.                                                    \n",
+       "
15:33:36 -03 Batch complete.                                                    \n",
        "
\n" ], "text/plain": [ - "\u001b[2;36m15:22:19 -03\u001b[0m\u001b[2;36m \u001b[0mBatch complete. \n" + "\u001b[2;36m15:33:36 -03\u001b[0m\u001b[2;36m \u001b[0mBatch complete. \n" ] }, "metadata": {}, @@ -607,7 +751,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6614bdf124aa4dbba371bdbb225c2409", + "model_id": "146c036b27e74f478bfa14f52801df16", "version_major": 2, "version_minor": 0 }, @@ -642,23 +786,48 @@ "source": [ "## Band Diagram Calculation \n", "\n", - "Now we can sum the signals from all monitors and use the [ResonanceFinder](https://docs.flexcompute.com/projects/tidy3d/en/latest/api/_autosummary/tidy3d.plugins.resonance.ResonanceFinder.html) plugin to track the resonances for each simulation.\n", + "Now we can sum the signals from all monitors and use the\n", + "[ResonanceFinder](https://docs.flexcompute.com/projects/tidy3d/en/latest/api/_autosummary/tidy3d.plugins.resonance.ResonanceFinder.html)\n", + "plugin to track the resonances for each simulation.\n", "\n", - "We will apply a mask to filter out spurious resonances." + "To make sure we compute **weakly confined modes above the light cone**, we\n", + "first analyze the source decay time and mask the data immediately after the\n", + "decay." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVz5JREFUeJzt3Xl8zHf+B/DXZJKZHHIgN7kEIY64Ko2jqLjZttsuVUVVj23pUlta3ZJqbdG62h9la4tud4tqS7sodaWKlErcIuQSVy5ynzLz+f1hv1Mjh0wyk+8cr+fjkQf55vP9ft/z9TVePsd3FEIIASIiIiKyeHZyF0BERERExsFgR0RERGQlGOyIiIiIrASDHREREZGVYLAjIiIishIMdkRERERWgsGOiIiIyEow2BERERFZCQY7IiIiIivBYEdEZGYUCgXeffdd3fcbN26EQqFAenp6k5w/ODgYzz33XJOci4iMi8GOiMgCffrpp9i4caPcZRCRmWGwIyIycxMnTkRZWRmCgoJ02xjsiKgm9nIXQER0v6qqKmi1WqhUKrlLMQtKpRJKpVLuMojIArDHjoh0ioqKMHPmTAQHB0OtVsPb2xtDhgxBQkKCXrutW7eiZ8+ecHJygqenJ5599llcv35dr83AgQMxcODAaud47rnnEBwcrPs+PT0dCoUCS5cuxcqVKxEaGgq1Wo0LFy4AAC5evIixY8fCy8sLTk5OCAsLw9/+9je9Y16/fh3PP/88fHx8oFar0alTJ6xfv75er3nDhg149NFH4e3tDbVajfDwcKxZs6Zau+DgYIwePRqxsbHo1asXnJyc0KVLF8TGxgIAvvvuO3Tp0gWOjo7o2bMnTp48We11N2vWDKmpqRg2bBhcXFzg7++P9957D0KIOmu8f45dcHAwzp8/j59//hkKhQIKhUJ3rd99910oFIoHHgMAhBBYuHAhWrduDWdnZwwaNAjnz5+vsYb8/HzMnDkTAQEBUKvVaNu2LZYsWQKtVltn7UTUtNhjR0Q6f/7zn/HNN99g+vTpCA8Px61bt3D48GEkJiaiR48eAO4GhClTpuChhx7CokWLkJWVhY8//hhHjhzByZMn4eHh0aBzb9iwAeXl5XjppZegVqvRokULnDlzBv3794eDgwNeeuklBAcHIyUlBf/973/x97//HQCQlZWFhx9+GAqFAtOnT4eXlxd+/PFHTJ06FYWFhZg5c2ad512zZg06deqEP/zhD7C3t8d///tfvPrqq9BqtZg2bZpe2+TkZDzzzDN4+eWX8eyzz2Lp0qUYM2YM1q5di7fffhuvvvoqAGDRokUYO3YskpKSYGf3+/+fNRoNhg8fjocffhgffvghdu/ejZiYGFRVVeG9996r97VauXIlXnvtNTRr1kwXcn18fOq9v2T+/PlYuHAhRo4ciZEjRyIhIQFDhw5FZWWlXrvS0lIMGDAA169fx8svv4zAwEAcPXoUc+fOxc2bN7Fy5UqDz01EJiKIiP7H3d1dTJs2rdafV1ZWCm9vb9G5c2dRVlam275jxw4BQMyfP1+3bcCAAWLAgAHVjjF58mQRFBSk+z4tLU0AEG5ubiI7O1uv7SOPPCJcXV3FlStX9LZrtVrd76dOnSr8/PxEbm6uXpunn35auLu7i9LS0jpfc00/HzZsmGjTpo3etqCgIAFAHD16VLdtz549AoBwcnLSq/Ef//iHACAOHjyo97oBiNdee03vdYwaNUqoVCqRk5Oj2w5AxMTE6L7fsGGDACDS0tJ02zp16lTj9Y2JiRE1vbXff4zs7GyhUqnEqFGj9K7n22+/LQCIyZMn67a9//77wsXFRVy6dEnvmG+99ZZQKpUiIyOj2vmISB4ciiUiHQ8PDxw7dgw3btyo8ecnTpxAdnY2Xn31VTg6Ouq2jxo1Ch06dMDOnTsbfO4nn3wSXl5euu9zcnJw6NAhPP/88wgMDNRrKw01CiHw7bffYsyYMRBCIDc3V/c1bNgwFBQUVBtGvp+Tk5Pu9wUFBcjNzcWAAQOQmpqKgoICvbbh4eGIiorSfR8ZGQkAePTRR/VqlLanpqZWO9/06dP1Xsf06dNRWVmJffv21Vmnse3btw+VlZV47bXX9IZua+rh3Lp1K/r374/mzZvrXePo6GhoNBocOnSoCSsnorpwKJaIdD788ENMnjwZAQEB6NmzJ0aOHIlJkyahTZs2AIArV64AAMLCwqrt26FDBxw+fLjB5w4JCdH7XgpFnTt3rnWfnJwc5Ofn47PPPsNnn31WY5vs7Ow6z3vkyBHExMQgLi4OpaWlej8rKCiAu7u77vv7A6b0s4CAgBq35+Xl6W23s7PTXUtJ+/btAaDJnlEnkf4s27Vrp7fdy8sLzZs319t2+fJlnDlzRi943+tB15iImg6DHRHpjB07Fv3798e2bdvw008/4aOPPsKSJUvw3XffYcSIEQYdS6FQ1LgoQKPR1Nj+3p6z+pIm7j/77LOYPHlyjW26du1a6/4pKSkYPHgwOnTogOXLlyMgIAAqlQq7du3CihUrqi0MqG1lam3ba3r9plbTwgmg9uteH1qtFkOGDMGcOXNq/LkUTolIfgx2RKTHz88Pr776Kl599VVkZ2ejR48e+Pvf/44RI0bonqOWlJSERx99VG+/pKQkveesNW/evMahSKmn6EGknq1z587V2sbLywuurq7QaDSIjo6u13Hv9d///hcVFRX44Ycf9HrjDh48aPCx6kOr1SI1NVUvCF26dAkA9FYK10dtAU7qbcvPz9dbyHL/dZf+rC5fvqzXi5iTk1OtpzE0NBTFxcUNusZE1LQ4x46IANzt0bl/Tpm3tzf8/f1RUVEBAOjVqxe8vb2xdu1a3TYA+PHHH5GYmIhRo0bptoWGhuLixYvIycnRbTt9+jSOHDlSr3q8vLzwyCOPYP369cjIyND7mdQTplQq8eSTT+Lbb7+tMQDee+6aSD1t9/asFRQUYMOGDfWqsSFWrVql+70QAqtWrYKDgwMGDx5s0HFcXFyQn59fbXtoaCgA6M17KykpwRdffKHXLjo6Gg4ODvi///s/vddf0wrXsWPHIi4uDnv27Kn2s/z8fFRVVRlUOxGZDnvsiAjA3WfYtW7dGk899RQiIiLQrFkz7Nu3D7/99huWLVsGAHBwcMCSJUswZcoUDBgwAOPHj9c97iQ4OBivv/667njPP/88li9fjmHDhmHq1KnIzs7G2rVr0alTJxQWFtarpk8++QT9+vVDjx498NJLLyEkJATp6enYuXMnTp06BQBYvHgxDh48iMjISLz44osIDw/H7du3kZCQgH379uH27du1Hn/o0KFQqVQYM2YMXn75ZRQXF2PdunXw9vbGzZs3G34xa+Ho6Ijdu3dj8uTJiIyMxI8//oidO3fi7bffrnX+Wm169uyJNWvWYOHChWjbti28vb3x6KOPYujQoQgMDMTUqVMxe/ZsKJVKrF+/Hl5eXnoB2cvLC2+88QYWLVqE0aNHY+TIkTh58iR+/PFHeHp66p1r9uzZ+OGHHzB69Gg899xz6NmzJ0pKSnD27Fl88803SE9Pr7YPEclEvgW5RGROKioqxOzZs0VERIRwdXUVLi4uIiIiQnz66afV2m7ZskV0795dqNVq0aJFCzFhwgRx7dq1au3+/e9/izZt2giVSiW6desm9uzZU+vjTj766KMa6zp37px44oknhIeHh3B0dBRhYWFi3rx5em2ysrLEtGnTREBAgHBwcBC+vr5i8ODB4rPPPnvg6/7hhx9E165dhaOjowgODhZLliwR69evr/Z4kaCgIDFq1Khq+wOo9oiYml7T5MmThYuLi0hJSRFDhw4Vzs7OwsfHR8TExAiNRlPtmA963ElmZqYYNWqUcHV1FQD0Hn0SHx8vIiMjhUqlEoGBgWL58uU1HkOj0YgFCxYIPz8/4eTkJAYOHCjOnTsngoKC9B53IoQQRUVFYu7cuaJt27ZCpVIJT09P0adPH7F06VJRWVn5wOtMRE1DIYQMs3uJiGzMc889h2+++QbFxcVyl0JEVoxz7IiIiIisBIMdERERkZVgsCMiIiKyEpxjR0RERGQl2GNHREREZCUY7IiIiIishEU8oFir1eLGjRtwdXWt9WN0iIiIiKyREAJFRUXw9/eHnV3dfXIWEexu3LiBgIAAucsgIiIiks3Vq1fRunXrOttYRLBzdXUFcPcFubm5yVwNERERUdMpLCxEQECALg/VxSKCnTT86ubmxmBHRERENqk+09G4eIKIiIjISjDYEREREVkJBjsiIiIiK2ERc+yIiIjIsmk0Gty5c0fuMsySg4MDlEqlUY7FYEdEREQmI4RAZmYm8vPz5S7FrHl4eMDX17fRz+tlsCMiIiKTkUKdt7c3nJ2d+UED9xFCoLS0FNnZ2QAAPz+/Rh2PwY6IiIhMQqPR6EJdy5Yt5S7HbDk5OQEAsrOz4e3t3ahhWS6eICIiIpOQ5tQ5OzvLXIn5k65RY+chMtgRERGRSXH49cGMdY0Y7IiIiIishMHB7tChQxgzZgz8/f2hUCiwffv2B+4TGxuLHj16QK1Wo23btti4cWMDSiUiIiIyD+np6VAoFDh16pTcpegxONiVlJQgIiICq1evrlf7tLQ0jBo1CoMGDcKpU6cwc+ZMvPDCC9izZ4/BxRIRERFR7QxeFTtixAiMGDGi3u3Xrl2LkJAQLFu2DADQsWNHHD58GCtWrMCwYcMMPT0RERER1cLkc+zi4uIQHR2tt23YsGGIi4sz9amJTEIIgcuXL+PYsWNIT0+HEELukoiIyAR2796Nfv36wcPDAy1btsTo0aORkpKi1+bixYvo06cPHB0d0blzZ/z888+6n+Xl5WHChAnw8vKCk5MT2rVrhw0bNpi0ZpM/xy4zMxM+Pj5623x8fFBYWIiysjLds1vuVVFRgYqKCt33hYWFpi6T6IGKi4uxbNkyrF27FpmZmbrtwcHBmDZtGl577TWo1WoZKyQiMn/SA3nlYOgDkktKSjBr1ix07doVxcXFmD9/Pp544gm9eXWzZ8/GypUrER4ejuXLl2PMmDFIS0tDy5YtMW/ePFy4cAE//vgjPD09kZycjLKyMhO8st+Z5QOKFy1ahAULFshdBpFOfHw8nnrqKaSnpwMAHB0d4e3tjZs3byI9PR2zZ8/Ghg0bsG3bNrRv317eYomIzFhpaSmaNWsmy7mLi4vh4uJS7/ZPPvmk3vfr16+Hl5cXLly4oHsN06dP17Vbs2YNdu/ejc8//xxz5sxBRkYGunfvjl69egG42xFgaiYfivX19UVWVpbetqysLLi5udXYWwcAc+fORUFBge7r6tWrpi6TqFaxsbF45JFHkJ6ejsDAQGzatAkFBQW4cuUK8vPz8c9//hM+Pj64cOECIiMjkZCQIHfJRERkBJcvX8b48ePRpk0buLm56YJZRkaGrk1UVJTu9/b29ujVqxcSExMBAK+88go2b96Mbt26Yc6cOTh69KjJazZ5j11UVBR27dqlt23v3r16F+J+arWaQ1pkFs6ePYvHHnsMpaWlGDp0KLZu3Qo3Nzfdz52dnTF16lSMHj0ajz32GI4dO4ahQ4fi2LFjCA0NlbFyIiLz5OzsjOLiYtnObYgxY8YgKCgI69atg7+/P7RaLTp37ozKysp67T9ixAhcuXIFu3btwt69ezF48GBMmzYNS5cubUj59SMMVFRUJE6ePClOnjwpAIjly5eLkydPiitXrgghhHjrrbfExIkTde1TU1OFs7OzmD17tkhMTBSrV68WSqVS7N69u97nLCgoEABEQUGBoeUSNdjt27dFQECAACD69+8vysrK6mxfUFAgevXqJQCIzp07i5KSkiaqlIjIPJWVlYkLFy488P3THOXm5goA4tChQ7ptv/zyiwAgtm3bJtLS0gQAsWTJEt3P79y5IwICAvS23Wvt2rXC1dW1xp/Vda0MyUEGD8WeOHEC3bt3R/fu3QEAs2bNQvfu3TF//nwAwM2bN/W6KENCQrBz507s3bsXERERWLZsGf75z3/yUSdk9mbMmIGrV6+ibdu22L59OxwdHets7+bmhu+//x6+vr44d+6c7u8EERFZnubNm6Nly5b47LPPkJycjAMHDmDWrFnV2q1evRrbtm3DxYsXMW3aNOTl5eH5558HAMyfPx/ff/89kpOTcf78eezYsQMdO3Y0beEPjH5mgD121NS2bdsmAAg7OzsRFxdn0L47duxo8L5ERNbEknvshBBi7969omPHjkKtVouuXbuK2NjYaj12X331lejdu7dQqVQiPDxcHDhwQLf/+++/Lzp27CicnJxEixYtxGOPPSZSU1NrPJexeuwUQpj/Q7gKCwvh7u6OgoICvflNRKZQUVGBDh06ID09HW+++SYWL15s8DEmTZqEL7/8EhEREUhISICdHT+WmYhsT3l5OdLS0hASEvLAUQ9bV9e1MiQH8V8bovusWrUK6enp8Pf3x7x58xp0jBUrVsDd3R2nT5/Gpk2bjFwhERFRzRjsiO6Rl5eHhQsXAgAWLlxo0POO7tWyZUu8+eabAIB33nlH74HbREREpsJgR3SPNWvWID8/H507d8akSZMadawZM2bAz88P6enp+OKLL4xUIRERUe0Y7Ij+p7y8HB9//DEA4K233oJSqWzU8ZydnTFnzhwAwPLly6HVahtdIxERUV0Y7Ij+51//+heys7MRGBiIsWPHGuWYU6dOhbu7O5KSkrBz506jHJOIiKg2DHZEuPuh1CtXrgQAvP7663BwcDDKcV1dXfHyyy8DAJYtW2aUYxIRWRqOWDyYsa4RH3dCBODw4cPo378/nJ2dcfPmTaPeZ9euXUNwcDA0Gg0SExPRoUMHox2biMicabVaXL58GUqlEl5eXlCpVFAoFHKXZVaEEKisrEROTg40Gg3atWtX7RFZhuQgk39WLJElWLduHQDg6aefNvp/Hlq3bo0RI0Zgx44dWL9+PT788EOjHp+IyFzZ2dkhJCQEN2/exI0bN+Qux6w5OzsjMDCw0c89ZY8d2by8vDz4+/ujvLwccXFxePjhh41+ju3bt+OJJ56At7c3rl27ZrShXiIiSyCEQFVVFTQajdylmCWlUgl7e/taezPZY0dkgK+//hrl5eXo3LkzIiMjTXKOUaNGwcfHB1lZWdi5cycef/xxk5yHiMgcKRQKODg48D+1TYCLJ8jmSZ8MMWnSJJPN/XBwcMDEiRMBAF999ZVJzkFERMRgRzbt+vXrOHToEABg3LhxJj3X+PHjAQA7duxAcXGxSc9FRES2icGObNrXX38NIQT69u2LwMBAk56re/fuCA0NRVlZGZ9pR0REJsFgRzZt8+bNAO6uhjU1hUKh6xXcsmWLyc9HRES2h8GObNaNGzdw/PhxKBQKPPXUU01yTukTLXbt2oWioqImOScREdkOBjuyWdJwaO/eveHr69sk5+zatStCQ0NRUVGBvXv3Nsk5iYjIdjDYkc3673//CwAYPXp0k51ToVBgzJgxeucnIiIyFgY7skllZWXYt28fAOiCVlORzrdz505+fiIRERkVgx3ZpAMHDqCsrAwBAQHo2rVrk567X79+cHNzQ05ODo4fP96k5yYiIuvGYEc26d5h2Kb+QGqVSoXhw4fr1UFERGQMDHZkc4QQ2LFjB4CmH4aVjBo1CgCwZ88eWc5PRETWicGObE5iYiKuX78OR0dHDBo0SJYaoqOjAQAJCQm4ffu2LDUQEZH1YbAjm7N//34Ad+e6OTo6ylKDv78/wsPDIYTAwYMHZamBiIisD4Md2ZwDBw4AAB599FFZ6xg8eDAA6FbnEhERNRaDHdkUjUaD2NhYAL8HK7lIw7FSDyIREVFjMdiRTTl58iTy8/Ph7u6OHj16yFrLgAEDoFQqcfnyZVy5ckXWWoiIyDow2JFNkXrHBgwYAHt7e1lrcXd3x0MPPQSAvXZERGQcDHZkU6T5dXIPw0qk4VjOsyMiImNgsCObUVlZiV9++QWA/AsnJFIdhw4dghBC5mqIiMjSMdiRzThx4gTKysrg5eWFTp06yV0OAKB3796wt7fH9evXkZGRIXc5RERk4RjsyGYcOXIEANC3b98m/xix2ri4uOgWcRw+fFjmaoiIyNIx2JHNuDfYmZN+/foBYLAjIqLGY7AjmyCEwNGjRwGYX7CT6mGwIyKixmKwI5uQnJyMnJwcqNVq2Z9fdz8p2J0/fx55eXkyV0NERJaMwY5sgjQM26tXL6jVapmr0efj44N27dpBCIG4uDi5yyEiIgvGYEc2wVzn10k4z46IiIyBwY5sAoMdERHZAgY7snq3b99GYmIiAKBPnz4yV1Mzqa4TJ06gqqpK5mqIiMhSMdiR1Tt27BgAoH379vD09JS5mpq1b98ebm5uKCsrw/nz5+Uuh4iILBSDHVm948ePA7j7KQ/mys7ODr169QLwe71ERESGYrAjq3fixAkAwEMPPSRzJXWTgudvv/0mcyVERGSpGOzIqgkhdEHJ3IOdVB977IiIqKEY7MiqXbt2DVlZWbC3t0e3bt3kLqdOUo/duXPnUFpaKnM1RERkiRjsyKpJvXWdO3eGk5OTzNXUrVWrVvD19YVGo8HJkyflLoeIiCwQgx1ZNSnYSQsTzJlCoeA8OyIiahQGO7JqljK/TiIFO86zIyKihmCwI6ul1WotZkWshAsoiIioMRjsyGolJyejoKAAjo6O6Ny5s9zl1Is0ZJySkoL8/Hx5iyEiIovDYEdWS+qti4iIgIODg8zV1E+LFi0QFBQEADh16pS8xRARkcVhsCOrJQWjHj16yFuIgaTHsnBlLBERGYrBjqyWFOzM/fl19+vevTsA9tgREZHhGOzIKgkhLD7YsceOiIgMxWBHVikzMxM5OTmws7OzmIUTEinYXbhwAeXl5TJXQ0REloTBjqyS1FsXFhYGZ2dneYsxUOvWrdGyZUtoNBqcO3dO7nKIiMiCMNiRVZKCXUREhLyFNIBCoeBwLBERNQiDHVklS51fJ2GwIyKihmCwI6vEYEdERLaIwY6sTklJCS5fvgzA8oPd6dOnodFoZK6GiIgsRYOC3erVqxEcHAxHR0dERkY+8HMtV65cibCwMDg5OSEgIACvv/46V/uRyZw9exZCCPj6+sLHx0fuchqkXbt2cHJyQllZGZKTk+Uuh4iILITBwW7Lli2YNWsWYmJikJCQgIiICAwbNgzZ2dk1tv/qq6/w1ltvISYmBomJifj888+xZcsWvP32240unqgmlj4MCwBKpRKdOnUCAK6MJSKiejM42C1fvhwvvvgipkyZgvDwcKxduxbOzs5Yv359je2PHj2Kvn374plnnkFwcDCGDh2K8ePHP7CXj6ihLHlF7L2k5++dPXtW5kqIiMhSGBTsKisrER8fj+jo6N8PYGeH6OhoxMXF1bhPnz59EB8frwtyqamp2LVrF0aOHNmIsolqZw09dgDQpUsXAAx2RERUf/aGNM7NzYVGo6k2b8nHxwcXL16scZ9nnnkGubm56NevH4QQqKqqwp///Oc6h2IrKipQUVGh+76wsNCQMsmGabVaXRCy9B47KdhxKJaIiOrL5KtiY2Nj8cEHH+DTTz9FQkICvvvuO+zcuRPvv/9+rfssWrQI7u7uuq+AgABTl0lWIi0tDaWlpVCr1WjXrp3c5TSKFOySk5NRVlYmczVERGQJDAp2np6eUCqVyMrK0tuelZUFX1/fGveZN28eJk6ciBdeeAFdunTBE088gQ8++ACLFi2CVqutcZ+5c+eioKBA93X16lVDyiQbJvVudejQAfb2BnVImx0fHx94enpCq9XiwoULcpdDREQWwKBgp1Kp0LNnT+zfv1+3TavVYv/+/YiKiqpxn9LSUtjZ6Z9GqVQCAIQQNe6jVqvh5uam90VUH+fPnwfw+8IDS6ZQKLiAgoiIDGLwUOysWbOwbt06fPHFF0hMTMQrr7yCkpISTJkyBQAwadIkzJ07V9d+zJgxWLNmDTZv3oy0tDTs3bsX8+bNw5gxY3QBj8hYpB47awh2AOfZERGRYQweqxo3bhxycnIwf/58ZGZmolu3bti9e7duQUVGRoZeD90777wDhUKBd955B9evX4eXlxfGjBmDv//978Z7FUT/I/XYSc+As3RcGUtERIZQiNrGQ81IYWEh3N3dUVBQwGFZqtWdO3fQrFkzVFZWIjU1FSEhIXKX1Gi//voroqKi4Ofnhxs3bshdDhERycCQHMTPiiWrkZycjMrKSri4uCAoKEjucoxC6nm8efMmbt26JXM1RERk7hjsyGpIw7Dh4eHVFuxYKldXVwQHBwPgPDsiInow6/jXjwjWt3BCwnl2RERUXwx2ZDWs6VEn92KwIyKi+mKwI6sh9dhZy4pYiRRUpeBKRERUGwY7sgoVFRW4fPkyAOvrsevYsSMAIDExsdaHehMREQEMdmQlkpKSoNFo4OHhAX9/f7nLMaqwsDAoFArcvn0bOTk5cpdDRERmjMGOrMK9CycUCoXM1RiXk5OTbmVsYmKivMUQEZFZY7Ajq2BtnzhxP2k49sKFCzJXQkRE5ozBjqyCFHjCw8NlrsQ0pNfFHjsiIqoLgx1ZhYsXLwL4vWfL2ty7gIKIiKg2DHZk8e7cuYPk5GQAQIcOHWSuxjQY7IiIqD4Y7MjipaSkoKqqCi4uLmjdurXc5ZiEFOyuX7+OwsJCmashIiJzxWBHFk8ahu3QoYPVrYiVeHh4wNfXF8Dvr5eIiOh+DHZk8aThSWudXyfhylgiInoQBjuyePf22FkzrowlIqIHYbAji2drPXYMdkREVBsGO7JoQgib6bFjsCMiogdhsCOLdvPmTRQVFUGpVKJt27Zyl2NSUrBLTU1FeXm5zNUQEZE5YrAjiyb1XoWGhkKlUslcjWn5+vrC3d0dWq0Wly9flrscIiIyQwx2ZNFsZRgWABQKhW4BBVfGEhFRTRjsyKLZysIJCefZERFRXRjsyKLZUo8dwGBHRER1Y7AjiyYFHAY7IiIiBjuyYIWFhbhx4wYA2wl20uu8fPkytFqtzNUQEZG5YbAji5WUlATg7mpRDw8PeYtpIkFBQXBwcEB5eTmuXr0qdzlERGRmGOzIYtnawgkAsLe31z2vTwq2REREEgY7sli2tnBC0r59ewDApUuXZK6EiIjMDYMdWSwp2NlSjx0AhIWFAWCPHRERVcdgRxZLCjZSD5atYI8dERHVhsGOLJJWq0VKSgoA2wt27LEjIqLaMNiRRbp69SoqKiqgUqkQGBgodzlNSgqyGRkZKCsrk7kaIiIyJwx2ZJGkYcg2bdpAqVTKXE3T8vLygoeHB4QQSE5OlrscIiIyIwx2ZJEuX74MAGjXrp3MlTQ9hULBeXZERFQjBjuySFKws7X5dRJpnh2DHRER3YvBjiySLffYAb8HWi6gICKiezHYkUVisONQLBERVcdgRxanqqoKqampAGw32PGRJ0REVBMGO7I46enpqKqqgqOjI1q1aiV3ObKQPi/29u3buHXrlszVEBGRuWCwI4tz7zCsnZ1t3sIuLi4ICAgAwF47IiL6nW3+q0gWzdbn10k4z46IiO7HYEcWh8HuLs6zIyKi+zHYkcWReqhsPdixx46IiO7HYEcWhz12d7HHjoiI7sdgRxalsrISV65cAWC7nzohkV5/cnIyNBqNzNUQEZE5YLAji5KamgqtVotmzZrBx8dH7nJkFRQUBJVKhYqKCmRkZMhdDhERmQEGO7Io9w7DKhQKmauRl1Kp1D3PjvPsiIgIYLAjC8OFE/o4z46IiO7FYEcWhQsn9HFlLBER3YvBjiyKFOxsfeGERBqKla4LERHZNgY7sijssdMnXYfk5GSZKyEiInPAYEcWo6ysDFevXgXAYCeRrkN6ejoqKytlroaIiOTGYEcWQ+qV8vDwQMuWLWWuxjz4+fnBxcUFWq0WaWlpcpdDREQyY7Aji8FHnVSnUCg4z46IiHQY7MhicOFEzaThWAY7IiJisCOLwYUTNZN67LiAgoiIGOzIYjDY1Yw9dkREJGGwI4vBT52oGYMdERFJGOzIIhQVFSEzMxMAg939pOuRkZGBiooKmashIiI5NSjYrV69GsHBwXB0dERkZCSOHz9eZ/v8/HxMmzYNfn5+UKvVaN++PXbt2tWggsk2SfPHvLy84OHhIW8xZsbHxwfNmjWDVqtFamqq3OUQEZGMDA52W7ZswaxZsxATE4OEhARERERg2LBhyM7OrrF9ZWUlhgwZgvT0dHzzzTdISkrCunXr0KpVq0YXT7aD8+tqp1AoOBxLREQAGhDsli9fjhdffBFTpkxBeHg41q5dC2dnZ6xfv77G9uvXr8ft27exfft29O3bF8HBwRgwYAAiIiIaXTzZDga7unFlLBERAQYGu8rKSsTHxyM6Ovr3A9jZITo6GnFxcTXu88MPPyAqKgrTpk2Dj48POnfujA8++AAajaZxlZNN4cKJurHHjoiIAMDekMa5ubnQaDTw8fHR2+7j44OLFy/WuE9qaioOHDiACRMmYNeuXUhOTsarr76KO3fuICYmpsZ9Kioq9CaBFxYWGlImWSE+nLhuDHZERAQ0wapYrVYLb29vfPbZZ+jZsyfGjRuHv/3tb1i7dm2t+yxatAju7u66r4CAAFOXSWaOQ7F1Y7AjIiLAwGDn6ekJpVKJrKwsve1ZWVnw9fWtcR8/Pz+0b98eSqVSt61jx47IzMxEZWVljfvMnTsXBQUFuq+rV68aUiZZmfz8fOTm5gL4fS4Z6ZOC3dWrV1FeXi5zNUREJBeDgp1KpULPnj2xf/9+3TatVov9+/cjKiqqxn369u2L5ORkaLVa3bZLly7Bz88PKpWqxn3UajXc3Nz0vsh2Sb1Qfn5+aNasmczVmCcvLy+4urpCCMFHnhAR2TCDh2JnzZqFdevW4YsvvkBiYiJeeeUVlJSUYMqUKQCASZMmYe7cubr2r7zyCm7fvo0ZM2bg0qVL2LlzJz744ANMmzbNeK+CrBoXTjwYH3lCRESAgYsnAGDcuHHIycnB/PnzkZmZiW7dumH37t26BRUZGRmws/s9LwYEBGDPnj14/fXX0bVrV7Rq1QozZszAm2++abxXQVaNCyfqp127dkhISGCwIyKyYQYHOwCYPn06pk+fXuPPYmNjq22LiorCr7/+2pBTEXHhRD2xx46IiPhZsWT2GOzqh8GOiIgY7MisCSEY7OqJwY6IiBjsyKzl5uYiPz8fABAaGipvMWZOehTMtWvXUFZWJnM1REQkBwY7MmtS71NgYCCcnJxkrsa8eXp6wt3dHQCQkpIiczVERCQHBjsyaxyGrT8+8oSIiBjsyKwx2BmGwY6IyLYx2JFZY7AzDIMdEZFtY7Ajs8ZPnTCMtIAiOTlZ5kqIiEgODHZktu591Ak/daJ+2GNHRGTbGOzIbGVmZqKkpAR2dnYICQmRuxyLIAW769evo7S0VOZqiIioqTHYkdmSep2Cg4OhUqlkrsYytGzZEs2bNwfA4VgiIlvEYEdmiwsnGobDsUREtovBjswWF040jHS92GNHRGR7GOzIbHHhRMNIK2PZY0dEZHsY7MhscSi2YTgUS0RkuxjsyCxptVrdUCKDnWEY7IiIbBeDHZml69evo7y8HPb29ggKCpK7HIsiBbubN2+iuLhY5mqIiKgpMdiRWZIWToSGhsLe3l7maixL8+bN0bJlSwBcQEFEZGsY7MgscX5d4/CjxYiIbBODHZklBrvG4Tw7IiLbxGBHZonBrnEY7IiIbBODHZklBrvGYbAjIrJNDHZkdqqqqpCSkgKADyduKAY7IiLbxGBHZicjIwN37tyBo6MjWrduLXc5FklaPJGVlYWioiKZqyEioqbCYEdmR+plCg0NhZ0db9GG8PDwgKenJwCujCUisiX8V5PMDufXGQeHY4mIbA+DHZkdBjvjYLAjIrI9DHZkdqRPnWCwaxwGOyIi28NgR2ZHCiJcEds4DHZERLaHwY7MSmVlJdLS0gAw2DUWgx0Rke1hsCOzkpaWBq1Wi2bNmsHX11fuciyaFOxycnKQn58vbzFERNQkGOzIrNw7v06hUMhcjWVzdXXVhWP22hER2QYGOzIrUrDjMKxxSNdRuq5ERGTdGOzIrPBRJ8bFYEdEZFsY7MissMfOuBjsiIhsC4MdmRX22BmXFOw4x46IyDYw2JHZKCkpwbVr1wCwx85Y7u2xE0LIXA0REZkagx2ZDenD6lu2bIkWLVrIXI11aNOmDezs7FBUVISsrCy5yyEiIhNjsCOzwWFY41Or1QgKCgLAeXZERLaAwY7MBhdOmAYXUBAR2Q4GOzIb9z6cmIyHwY6IyHYw2JHZkIZi2WNnXAx2RES2g8GOzAaHYk2DjzwhIrIdDHZkFvLy8pCbmwsAaNu2rczVWBcp2CUnJ0Oj0chcDRERmRKDHZkFqTfJ398fzZo1k7ka6xIQEACVSoXKykpkZGTIXQ4REZkQgx2ZBS6cMB2lUqnrBeU8OyIi68ZgR2aB8+tMiwsoiIhsA4MdmQWuiDUtBjsiItvAYEdmgUOxpsVgR0RkGxjsSHZCCPbYmRgfeUJEZBsY7Eh2WVlZKCoqgp2dHdq0aSN3OVZJ6glNT09HRUWFzNUQEZGpMNiR7KThwaCgIKjVapmrsU4+Pj5wdXWFEAIpKSlyl0NERCbCYEey4zCs6SkUCs6zIyKyAQx2JDsunGgaDHZERNaPwY5kx2fYNQ0GOyIi68dgR7KThmLZY2daDHZERNaPwY5kpdFokJycDIA9dqbGR54QEVk/BjuS1ZUrV1BRUQG1Wo2goCC5y7FqUo9oZmYmCgsLZa6GiIhMgcGOZHXx4kUAd0OHUqmUuRrr5u7uDm9vbwDstSMislYNCnarV69GcHAwHB0dERkZiePHj9drv82bN0OhUODxxx9vyGnJCknBrkOHDjJXYhs4z46IyLoZHOy2bNmCWbNmISYmBgkJCYiIiMCwYcOQnZ1d537p6el444030L9//wYXS9YnKSkJAINdU2GwIyKybgYHu+XLl+PFF1/ElClTEB4ejrVr18LZ2Rnr16+vdR+NRoMJEyZgwYIF/Mgo0sMeu6YlBTspUBMRkXUxKNhVVlYiPj4e0dHRvx/Azg7R0dGIi4urdb/33nsP3t7emDp1ar3OU1FRgcLCQr0vsk5SsAsLC5O5EtsgBWjpuhMRkXUxKNjl5uZCo9HAx8dHb7uPjw8yMzNr3Ofw4cP4/PPPsW7dunqfZ9GiRXB3d9d9BQQEGFImWYi8vDzdED6DXdOQgl1SUhK0Wq3M1RARkbGZdFVsUVERJk6ciHXr1sHT07Pe+82dOxcFBQW6r6tXr5qwSpKLNBzYqlUruLq6ylyNbWjTpg3s7e1RWlqKa9euyV0OEREZmb0hjT09PaFUKpGVlaW3PSsrC76+vtXap6SkID09HWPGjNFtk3oJ7O3tkZSUhNDQ0Gr7qdVqqNVqQ0ojC8Rh2Kbn4OCAdu3aITExEYmJiQgMDJS7JCIiMiKDeuxUKhV69uyJ/fv367ZptVrs378fUVFR1dp36NABZ8+exalTp3Rff/jDHzBo0CCcOnWKQ6w2jgsn5MF5dkRE1sugHjsAmDVrFiZPnoxevXqhd+/eWLlyJUpKSjBlyhQAwKRJk9CqVSssWrQIjo6O6Ny5s97+Hh4eAFBtO9kePupEHgx2RETWy+BgN27cOOTk5GD+/PnIzMxEt27dsHv3bt2CioyMDNjZ8QMt6ME4FCuPjh07AmCwIyKyRgohhJC7iAcpLCyEu7s7CgoK4ObmJnc5ZAR37tyBs7MzqqqqcOXKFc71akK//fYbevfuXedqdiIiMh+G5CB2rZEs0tLSUFVVBWdnZ7Ru3VrucmyK1EOalZWFvLw8mashIiJjYrAjWdw7DMuh+6bl5uYGf39/APwECiIia8N/UUkWnF8nL2meXWJiosyVEBGRMTHYkSy4IlZeXBlLRGSdGOxIFnyGnbwY7IiIrBODHcmCQ7Hy4lAsEZF1YrCjJpeTk4Pbt28DANq3by9zNbZJ6rFLTU1FRUWFzNUQEZGxMNhRk7tw4QIAICQkBM7OzjJXY5v8/f3h6uoKjUaDlJQUucshIiIjYbCjJnf+/HkAQHh4uMyV2C6FQsF5dkREVojBjpqc1GPXqVMnmSuxbVKw4zw7IiLrwWBHTY49duaBPXZERNaHwY6aHHvszIO0Mlb68yAiIsvHYEdNKjc3F9nZ2QD4DDu5ST2miYmJ0Gq1MldDRETGwGBHTUrqHQoODkazZs1krsa2hYaGQq1Wo6ysDGlpaXKXQ0RERsBgR02K8+vMh729va7XVPpzISIiy8ZgR02K8+vMi/TncO7cOZkrISIiY2CwoybFHjvz0rlzZwDssSMishYMdtSk2GNnXthjR0RkXRjsqMncunULWVlZAH5/1AbJS+qxu3jxIqqqqmSuhoiIGovBjpqMNNwXFBTEFbFmIjg4GM7OzqisrORnxhIRWQEGO2oy0jAs59eZDzs7O13vKYdjiYgsH4MdNRmpx47z68wLF1AQEVkPBjtqMlw4YZ64gIKIyHow2FGT4aNOzBN77IiIrAeDHTUJrog1X1KP3aVLl1BZWSlzNURE1BgMdtQkpGHYwMBAuLq6ylwN3SsgIACurq6oqqrCpUuX5C6HiIgagcGOmsSZM2cAAF26dJG5ErqfQqHQ9dpxOJaIyLIx2FGTkIJd165dZa6EasIFFERE1oHBjpqEFOwiIiJkroRqwgUURETWgcGOTE6r1eLs2bMA2GNnrthjR0RkHRjsyOTS0tJQUlICtVqNdu3ayV0O1UDqsUtJSUFpaanM1RARUUMx2JHJScOwnTp1gr29vczVUE18fX3h5eUFrVbLXjsiIgvGYEcmx4UT5k+hUKBbt24AgFOnTslaCxERNRyDHZkcg51lkBa2nD59WuZKiIiooRjsyOQY7CwDgx0RkeVjsCOTKi4uRkpKCgAGO3MnDcWeOXMGWq1W3mKIiKhBGOzIpM6dOwchBPz8/ODl5SV3OVSHsLAwqFQqFBUVIS0tTe5yiIioARjsyKQ4DGs5HBwcdM+z43AsEZFlYrAjk2KwsyycZ0dEZNkY7MikGOwsizTPjsGOiMgyMdiRyWi1Wl1AYLCzDOyxIyKybAx2ZDKpqakoLCyEo6MjwsPD5S6H6kEKdunp6cjPz5e3GCIiMhiDHZlMfHw8gLu9dfwoMcvQvHlzBAQEAPh9GJ2IiCwHgx2ZTEJCAgCgR48eMldChuA8OyIiy8VgRyYjBbuePXvKXAkZQgp20p8fERFZDgY7MgkhhG4olj12lkUK4tKfHxERWQ4GOzKJK1euIC8vT++ht2QZevXqBQC4cOECSktLZa6GiIgMwWBHJiEN43Xp0gVqtVrmasgQ/v7+8PHxgUaj4Tw7IiILw2BHJsFhWMulUCh0vXYnTpyQuRoiIjIEgx2ZBFfEWjYGOyIiy8RgR0Z378IJroi1TFKw4wIKIiLLwmBHRnf9+nXk5ORAqVSiS5cucpdDDSAF8sTERBQXF8tcDRER1ReDHRmdNAwbHh4OJycnmauhhvDz84O/vz+0Wi1OnToldzlERFRPDHZkdFw4YR04z46IyPIw2JHRHTt2DADQu3dvmSuhxmCwIyKyPAx2ZFRCCBw/fhwAEBkZKXM11BhcQEFEZHkY7MioLl++jLy8PDg6OqJr165yl0ONIC2gSEpKQmFhoczVEBFRfTDYkVFJw7A9evSAg4ODzNVQY3h7eyMwMBBCCA7HEhFZCAY7Miop2HEY1jo8/PDDAIC4uDiZKyEiovpoULBbvXo1goOD4ejoiMjISN2cqpqsW7cO/fv3R/PmzdG8eXNER0fX2Z4sG4OddenTpw8ABjsiIkthcLDbsmULZs2ahZiYGCQkJCAiIgLDhg1DdnZ2je1jY2Mxfvx4HDx4EHFxcQgICMDQoUNx/fr1RhdP5qW8vFz3ofEMdtYhKioKwN1gJ4SQuRoiInoQhTDw3ToyMhIPPfQQVq1aBQDQarUICAjAa6+9hrfeeuuB+2s0GjRv3hyrVq3CpEmT6nXOwsJCuLu7o6CgAG5uboaUS00oLi4Offr0gbe3NzIzM6FQKOQuiRqpsrIS7u7uKC8vx8WLFxEWFiZ3SURENseQHGRQj11lZSXi4+MRHR39+wHs7BAdHV3voZrS0lLcuXMHLVq0qLVNRUUFCgsL9b7I/N07DMtQZx1UKpXusSccjiUiMn8GBbvc3FxoNBr4+Pjobffx8UFmZma9jvHmm2/C399fLxzeb9GiRXB3d9d9BQQEGFImyUT6h5/DsNZFGo49evSozJUQEdGDNOmq2MWLF2Pz5s3Ytm0bHB0da203d+5cFBQU6L6uXr3ahFVSQwghcPjwYQBAv379ZK6GjIkLKIiILIe9IY09PT2hVCqRlZWltz0rKwu+vr517rt06VIsXrwY+/bte+CDa9VqNdRqtSGlkczS09Nx48YNODg44KGHHpK7HDIiqcfu/PnzKCgogLu7u8wVERFRbQzqsVOpVOjZsyf279+v26bVarF//37dm39NPvzwQ7z//vvYvXu3br4OWRept65nz55wdnaWuRoyJh8fH7Rp0wZCCN08SiIiMk8GD8XOmjUL69atwxdffIHExES88sorKCkpwZQpUwAAkyZNwty5c3XtlyxZgnnz5mH9+vUIDg5GZmYmMjMzUVxcbLxXQbKTgl3//v1lroRM4d7HnhARkfkyONiNGzcOS5cuxfz589GtWzecOnUKu3fv1i2oyMjIwM2bN3Xt16xZg8rKSjz11FPw8/PTfS1dutR4r4Jkx/l11k2aZ8cFFERE5s3g59jJgc+xM2+3bt2Cp6cnACAnJ0f3e7Iep0+fRrdu3dCsWTPk5eXB3t6g6blERNQIJnuOHVFNpF6cjh07MtRZqS5duqB58+YoLi5GQkKC3OUQEVEtGOyo0X755RcAHIa1ZnZ2dnjkkUcA3P2YQCIiMk8MdtRohw4dAsBgZ+0GDhwIgMGOiMicMdhRoxQUFOC3334DAAwaNEjmasiUpGD3yy+/oKqqSt5iiIioRgx21CiHDh2CVqtFu3bt+NFvVq5r166cZ0dEZOYY7KhRDhw4AAAYPHiwzJWQqXGeHRGR+WOwo0aRgt2jjz4qcyXUFAYMGAAA+Pnnn2WuhIiIasJgRw2WnZ2NM2fOAPh9/hVZN+nP+dChQ7hz5468xRARUTUMdtRg0nBcREQEvLy85C2GmoT0Z11cXMyPFyMiMkMMdtRgHIa1PXZ2dhgyZAgAYM+ePTJXQ0RE92OwowYRQmDv3r0AGOxszdChQwEAP/30k8yVEBHR/RjsqEEuXbqE1NRUqFQqzq+zMVKwi4+PR25urszVEBHRvRjsqEF+/PFHAMAjjzyCZs2ayVwNNSU/Pz906dIFQgjs27dP7nKIiOgeDHbUILt27QIAjBw5UuZKSA7Dhg0DwHl2RETmhsGODFZSUqJ7jtmIESNkrobkIAW7n376CUIImashIiIJgx0Z7MCBA6isrERISAjCwsLkLodk0K9fPzg7O+PGjRs4efKk3OUQEdH/MNiRwaT5dSNGjIBCoZC5GpKDo6Ojrtfu+++/l7kaIiKSMNiRQYQQ2LlzJwDOr7N1jz32GADghx9+kLkSIiKSMNiRQU6ePImMjAw4Oztj0KBBcpdDMho1ahTs7Oxw6tQpXLlyRe5yiIgIDHZkoG+//RbA3WFYZ2dnmashOXl6eqJv374A2GtHRGQuGOzIIN999x0A4Mknn5S5EjIH0nAs59kREZkHBjuqt8TERFy8eBEqlQqjRo2SuxwyA1Kw+/nnn5GXlydzNURExGBH9SYNw0ZHR8PNzU3masgctG3bFl26dEFVVRW2bdsmdzlERDaPwY7qTRqG/eMf/yhzJWROnn76aQDApk2bZK6EiIgY7KhekpKScPLkSSiVSvzhD3+QuxwyI1KwO3DgALKysmSuhojItjHYUb38+9//BgAMHToUXl5eMldD5qRNmzbo3bs3tFottm7dKnc5REQ2jcGOHkir1eqC3cSJE2WuhszR+PHjAQCbN2+WuRIiItvGYEcPdPToUaSnp8PV1VW3CpLoXmPHjoVCocCRI0f4sGIiIhkx2NEDffnllwDuPruODyWmmvj7++s+iWTjxo3yFkNEZMMY7KhO5eXl+PrrrwFwGJbq9sILLwAAPv/8c2g0GpmrISKyTQx2VKdvvvkG+fn5CAgIwIABA+Quh8zYE088gebNm+Pq1avYu3ev3OUQEdkkBjuq06effgoAeOmll6BUKmWuhsyZo6Ojrlf3n//8p8zVEBHZJgY7qtXp06cRFxcHe3t73TAbUV2k++T777/nM+2IiGTAYEe1WrNmDYC7Q2y+vr4yV0OWoEuXLoiMjERVVRU+++wzucshIrI5DHZUo8LCQt2z61599VWZqyFL8pe//AUAsGrVKpSXl8tcDRGRbWGwoxr94x//QElJCTp27MhFE2SQP/3pT2jdujWys7P5+bFERE2MwY6qKS8vx/LlywEAs2fPhkKhkLkisiQODg66Xrvly5dDCCFzRUREtoPBjqr517/+hczMTLRu3RoTJkyQuxyyQC+++CKaNWuGc+fOYc+ePXKXQ0RkMxjsSE9VVRU+/PBDAMAbb7wBlUolc0VkiTw8PPDiiy8CAN5991322hERNREGO9KzadMmpKSkoGXLlnzECTXKnDlz4OzsjGPHjmHXrl1yl0NEZBMY7EinvLwc77zzDoC7vXUuLi4yV0SWzNfXF9OnTwcAzJs3D1qtVuaKiIisH4Md6axevRoZGRlo1aoVZsyYIXc5ZAXmzJkDV1dXnDx5Et99953c5RARWT0GOwIA5OXl4e9//zsA4L333oOTk5PMFZE1aNmyJWbNmgXg7grrsrIymSsiIrJuDHYEAJg/fz7y8vLQqVMnTJ48We5yyIrMnj0bAQEBSE9Px5IlS+Quh4jIqjHYEY4dO4bVq1cDAD7++GMolUqZKyJr4uLionsu4uLFi5GamipzRURE1ovBzsbduXMHL730EoQQmDRpEgYPHix3SWSFnnzySQwePBgVFRX485//zIUUREQmwmBn4xYvXowzZ86gZcuWWLZsmdzlkJVSKBT49NNP4eTkhL179+LTTz+VuyQiIqvEYGfDfvnlF7z77rsAgJUrV8LT01PegsiqtW/fXvfw69mzZ+PixYsyV0REZH0Y7GzUrVu38Mwzz0Cr1WLixIl49tln5S6JbMCrr76KIUOGoLy8HGPHjkVxcbHcJRERWRUGOxt0584dPP3007h27Rrat2/PYTFqMnZ2dtiwYQN8fHxw9uxZPPfcc5xvR0RkRAx2NkYIgZdffhn79u2Di4sLvv76azRr1kzussiGtGrVCt9++y0cHBzw7bffYsGCBXKXRERkNRjsbIgQAjExMdiwYQPs7Ozw9ddfIyIiQu6yyAb17dsXa9asAXD3gdgrVqyQuSIiIuvAYGcjhBB455138P777wMAVq1ahZEjR8pcFdmyqVOn6hbvzJo1i1MCiIiMgMHOBlRVVWHmzJn44IMPAADLli3DK6+8InNVRHc/8eTNN98EAEybNg3z5s2DEELmqoiILBeDnZXLy8vDqFGj8MknnwC421MnfXYnkdwUCgUWLVqEd955BwCwcOFCPPvss1wtS0TUQAx2VuzgwYPo0aMHfvrpJzg7O2Pr1q2YNm2a3GUR6VEoFHj//ffxz3/+E0qlEl999RV69uyJkydPyl0aEZHFYbCzQrdu3cK0adPw6KOPIj09HSEhITh69CieeuopuUsjqtXUqVNx4MABtGrVCpcuXULv3r0xZ84cFBUVyV0aEZHFYLCzIkVFRfjwww8RGhqqm4j+8ssv4/Tp01z9ShbhkUcewenTp/HHP/4RVVVV+OijjxAWFoZVq1ahvLxc7vKIiMyeQljATOXCwkK4u7ujoKAAbm5ucpdjdpKSkrBhwwasXbsWBQUFAICuXbtixYoVePTRR2WujqhhduzYgRkzZiA1NRUA4OvrixdeeAHPP/88QkJCZK6OiKjpGJKDGtRjt3r1agQHB8PR0RGRkZE4fvx4ne23bt2KDh06wNHREV26dMGuXbsaclr6H61Wi1OnTuGjjz5C79690aFDByxZsgQFBQVo3749NmzYgISEBIY6smijR4/GhQsX8OmnnyIgIACZmZlYuHAhQkNDMWjQIKxYsQIpKSlyl0lEZFYM7rHbsmULJk2ahLVr1yIyMhIrV67E1q1bkZSUBG9v72rtjx49ikceeQSLFi3C6NGj8dVXX2HJkiVISEhA586d63VOW+6xE0IgKysLZ86cQUJCAuLj43Ho0CFkZ2fr2iiVSgwfPhwvvvgixowZAzs7jrCTdamsrMT27duxbt067Nu3T+9nrVu3Rp8+fRAVFYWIiAh06NABvr6+UCgUMlVLRGRchuQgg4NdZGQkHnroIaxatQrA3d6jgIAAvPbaa3jrrbeqtR83bhxKSkqwY8cO3baHH34Y3bp1w9q1a+t1TmsIdkIIVFZWoqysDOXl5SgrK0NZWRlKS0tx69Yt3Lp1C7m5ubpfr1y5gtTUVKSnp6OsrKza8VxcXDBw4EAMHz4cY8eOrTFUE1mj9PR0fP/99/jhhx9w6NAhVFVVVWvj6uqK9u3bo1WrVvD394efnx/8/PzQvHlzuLm5wd3dHW5ubnBzc4OzszNUKhXUajWUSiUDIRGZHUNykL0hB66srER8fDzmzp2r22ZnZ4fo6GjExcXVuE9cXFy156YNGzYM27dvr/U8FRUVqKio0H1fWFhoSJkNUl5ejn79+kEIAa1WW+3X+m67/2cajQbl5eUoLy9v8INXFQoFQkND0bNnT/To0QORkZGIioqCSqUy8lUgMn/BwcGYMWMGZsyYgZKSEvz222+Ii4vDr7/+igsXLiA1NRVFRUWIj49HfHy8QcdWKBRQq9VQqVS6sGdnZwc7OzsoFAqDfzVHrIvIuLp3747PPvtM7jJ0DAp2ubm50Gg08PHx0dvu4+ODixcv1rhPZmZmje0zMzNrPc+iRYua/IPBhRAG/yPQUAqFAo6OjnBycoKzszNatGiBli1bwtPTEy1btkTLli0RGBiIkJAQhISEIDAwkCGOqAZSz/XAgQN12yoqKpCSkoLk5GTcuHEDN2/exI0bN5CZmYn8/HwUFhaisLAQBQUFKCwshEaj0e0rhND9R4yIqD6cnJzkLkGPQcGuqcydO1evl6+wsBABAQEmPadKpcLOnTtr/J93Xf8rf9A2Ozs7ODo66oKco6MjVCoV/3dKZCJqtRrh4eEIDw9/YFshBKqqqlBZWYmKigpUVlbqvqSRg7p65uvqsW8KTfFQA2s5B5GptGjRQu4S9BgU7Dw9PaFUKpGVlaW3PSsrC76+vjXu4+vra1B74O4bs1qtNqS0RlMqlRg5cmSTnpOI5KVQKODg4AAHBwe4uLjIXQ4RUaMZtHxSpVKhZ8+e2L9/v26bVqvF/v37ERUVVeM+UVFReu0BYO/evbW2JyIiIqKGMXgodtasWZg8eTJ69eqF3r17Y+XKlSgpKcGUKVMAAJMmTUKrVq2waNEiAMCMGTMwYMAALFu2DKNGjcLmzZtx4sQJs5poSERERGQNDA5248aNQ05ODubPn4/MzEx069YNu3fv1i2QyMjI0HuOWp8+ffDVV1/hnXfewdtvv4127dph+/bt9X6GHRERERHVDz9SjIiIiMiMmfwjxYiIiIjI/DDYEREREVkJBjsiIiIiK8FgR0RERGQlGOyIiIiIrASDHREREZGVYLAjIiIishIMdkRERERWgsGOiIiIyEow2BERERFZCYM/K1YO0qeeFRYWylwJERERUdOS8k99PgXWIoJdUVERACAgIEDmSoiIiIjkUVRUBHd39zrbKER94p/MtFotbty4AVdXVygUCpOdp7CwEAEBAbh69eoDP2TXmvE68BpIeB3u4nW4i9eB10DC63BXU10HIQSKiorg7+8PO7u6Z9FZRI+dnZ0dWrdu3WTnc3Nzs+kbVcLrwGsg4XW4i9fhLl4HXgMJr8NdTXEdHtRTJ+HiCSIiIiIrwWBHREREZCUY7O6hVqsRExMDtVotdymy4nXgNZDwOtzF63AXrwOvgYTX4S5zvA4WsXiCiIiIiB6MPXZEREREVoLBjoiIiMhKMNgRERERWQmrD3arV69GcHAwHB0dERkZiePHj9fZfuvWrejQoQMcHR3RpUsX7Nq1S+/nQgjMnz8ffn5+cHJyQnR0NC5fvmzKl9BohlyDdevWoX///mjevDmaN2+O6Ojoau2fe+45KBQKva/hw4eb+mU0miHXYePGjdVeo6Ojo14bS7wXAMOuw8CBA6tdB4VCgVGjRunaWNr9cOjQIYwZMwb+/v5QKBTYvn37A/eJjY1Fjx49oFar0bZtW2zcuLFaG0Pfa+Rm6HX47rvvMGTIEHh5ecHNzQ1RUVHYs2ePXpt333232r3QoUMHE76KxjH0GsTGxtb49yEzM1OvnbXfCzX9nVcoFOjUqZOujaXdC4sWLcJDDz0EV1dXeHt74/HHH0dSUtID9zPHzGDVwW7Lli2YNWsWYmJikJCQgIiICAwbNgzZ2dk1tj969CjGjx+PqVOn4uTJk3j88cfx+OOP49y5c7o2H374IT755BOsXbsWx44dg4uLC4YNG4by8vKmelkGMfQaxMbGYvz48Th48CDi4uIQEBCAoUOH4vr163rthg8fjps3b+q+Nm3a1BQvp8EMvQ7A3QdO3vsar1y5ovdzS7sXAMOvw3fffad3Dc6dOwelUok//elPeu0s6X4oKSlBREQEVq9eXa/2aWlpGDVqFAYNGoRTp05h5syZeOGFF/RCTUPuL7kZeh0OHTqEIUOGYNeuXYiPj8egQYMwZswYnDx5Uq9dp06d9O6Fw4cPm6J8ozD0GkiSkpL0XqO3t7fuZ7ZwL3z88cd6r//q1ato0aJFtfcFS7oXfv75Z0ybNg2//vor9u7dizt37mDo0KEoKSmpdR+zzQzCivXu3VtMmzZN971GoxH+/v5i0aJFNbYfO3asGDVqlN62yMhI8fLLLwshhNBqtcLX11d89NFHup/n5+cLtVotNm3aZIJX0HiGXoP7VVVVCVdXV/HFF1/otk2ePFk89thjxi7VpAy9Dhs2bBDu7u61Hs8S7wUhGn8/rFixQri6uori4mLdNku8HyQAxLZt2+psM2fOHNGpUye9bePGjRPDhg3Tfd/Y6yq3+lyHmoSHh4sFCxbovo+JiRERERHGK6wJ1ecaHDx4UAAQeXl5tbaxxXth27ZtQqFQiPT0dN02S74XhBAiOztbABA///xzrW3MNTNYbY9dZWUl4uPjER0drdtmZ2eH6OhoxMXF1bhPXFycXnsAGDZsmK59WloaMjMz9dq4u7sjMjKy1mPKqSHX4H6lpaW4c+cOWrRoobc9NjYW3t7eCAsLwyuvvIJbt24ZtXZjauh1KC4uRlBQEAICAvDYY4/h/Pnzup9Z2r0AGOd++Pzzz/H000/DxcVFb7sl3Q+GetD7gjGuqyXSarUoKiqq9t5w+fJl+Pv7o02bNpgwYQIyMjJkqtB0unXrBj8/PwwZMgRHjhzRbbfVe+Hzzz9HdHQ0goKC9LZb8r1QUFAAANXu73uZa2aw2mCXm5sLjUYDHx8fve0+Pj7V5kNIMjMz62wv/WrIMeXUkGtwvzfffBP+/v56N+bw4cPxr3/9C/v378eSJUvw888/Y8SIEdBoNEat31gach3CwsKwfv16fP/99/j3v/8NrVaLPn364Nq1awAs714AGn8/HD9+HOfOncMLL7ygt93S7gdD1fa+UFhYiLKyMqP8PbNES5cuRXFxMcaOHavbFhkZiY0bN2L37t1Ys2YN0tLS0L9/fxQVFclYqfH4+flh7dq1+Pbbb/Htt98iICAAAwcOREJCAgDjvOdamhs3buDHH3+s9r5gyfeCVqvFzJkz0bdvX3Tu3LnWduaaGexNdmSyeIsXL8bmzZsRGxurt3Dg6aef1v2+S5cu6Nq1K0JDQxEbG4vBgwfLUarRRUVFISoqSvd9nz590LFjR/zjH//A+++/L2Nl8vn888/RpUsX9O7dW2+7LdwPpO+rr77CggUL8P333+vNLxsxYoTu9127dkVkZCSCgoLw9ddfY+rUqXKUalRhYWEICwvTfd+nTx+kpKRgxYoV+PLLL2WsTD5ffPEFPDw88Pjjj+ttt+R7Ydq0aTh37pxZzwmsi9X22Hl6ekKpVCIrK0tve1ZWFnx9fWvcx9fXt8720q+GHFNODbkGkqVLl2Lx4sX46aef0LVr1zrbtmnTBp6enkhOTm50zabQmOsgcXBwQPfu3XWv0dLuBaBx16GkpASbN2+u1xuyud8PhqrtfcHNzQ1OTk5Gub8syebNm/HCCy/g66+/rjYMdT8PDw+0b9/eau6FmvTu3Vv3+mztXhBCYP369Zg4cSJUKlWdbS3lXpg+fTp27NiBgwcPonXr1nW2NdfMYLXBTqVSoWfPnti/f79um1arxf79+/V6Yu4VFRWl1x4A9u7dq2sfEhICX19fvTaFhYU4duxYrceUU0OuAXB3Fc/777+P3bt3o1evXg88z7Vr13Dr1i34+fkZpW5ja+h1uJdGo8HZs2d1r9HS7gWgcddh69atqKiowLPPPvvA85j7/WCoB70vGOP+shSbNm3ClClTsGnTJr1H3tSmuLgYKSkpVnMv1OTUqVO612dL9wJwdyVpcnJyvf7DZ+73ghAC06dPx7Zt23DgwAGEhIQ8cB+zzQwmW5ZhBjZv3izUarXYuHGjuHDhgnjppZeEh4eHyMzMFEIIMXHiRPHWW2/p2h85ckTY29uLpUuXisTERBETEyMcHBzE2bNndW0WL14sPDw8xPfffy/OnDkjHnvsMRESEiLKysqa/PXVh6HXYPHixUKlUolvvvlG3Lx5U/dVVFQkhBCiqKhIvPHGGyIuLk6kpaWJffv2iR49eoh27dqJ8vJyWV5jfRh6HRYsWCD27NkjUlJSRHx8vHj66aeFo6OjOH/+vK6Npd0LQhh+HST9+vUT48aNq7bdEu+HoqIicfLkSXHy5EkBQCxfvlycPHlSXLlyRQghxFtvvSUmTpyoa5+amiqcnZ3F7NmzRWJioli9erVQKpVi9+7dujYPuq7myNDr8J///EfY29uL1atX67035Ofn69r89a9/FbGxsSItLU0cOXJEREdHC09PT5Gdnd3kr68+DL0GK1asENu3bxeXL18WZ8+eFTNmzBB2dnZi3759uja2cC9Inn32WREZGVnjMS3tXnjllVeEu7u7iI2N1bu/S0tLdW0sJTNYdbATQoj/+7//E4GBgUKlUonevXuLX3/9VfezAQMGiMmTJ+u1//rrr0X79u2FSqUSnTp1Ejt37tT7uVarFfPmzRM+Pj5CrVaLwYMHi6SkpKZ4KQ1myDUICgoSAKp9xcTECCGEKC0tFUOHDhVeXl7CwcFBBAUFiRdffNGs37QkhlyHmTNn6tr6+PiIkSNHioSEBL3jWeK9IIThfycuXrwoAIiffvqp2rEs8X6QHllx/5f0uidPniwGDBhQbZ9u3boJlUol2rRpIzZs2FDtuHVdV3Nk6HUYMGBAne2FuPsYGD8/P6FSqUSrVq3EuHHjRHJyctO+MAMYeg2WLFkiQkNDhaOjo2jRooUYOHCgOHDgQLXjWvu9IMTdx3Y4OTmJzz77rMZjWtq9UNPrB6D3d91SMoPify+IiIiIiCyc1c6xIyIiIrI1DHZEREREVoLBjoiIiMhKMNgRERERWQkGOyIiIiIrwWBHREREZCUY7IiIiIisBIMdERERkZVgsCMiqxMbGwuFQoH8/HxZzr9//3507NgRGo3mgW13796Nbt26QavVNkFlRAQAhw4dwpgxY+Dv7w+FQoHt27eb1fn+/Oc/Q6FQYOXKlQafi8GOiCzawIEDMXPmTL1tffr0wc2bN+Hu7i5LTXPmzME777wDpVL5wLbDhw+Hg4MD/vOf/zRBZUQEACUlJYiIiMDq1avN7nzbtm3Dr7/+Cn9//wadi8GOiKyOSqWCr68vFApFk5/78OHDSElJwZNPPlnvfZ577jl88sknJqyKiO41YsQILFy4EE888USNP6+oqMAbb7yBVq1awcXFBZGRkYiNjTXZ+STXr1/Ha6+9hv/85z9wcHBo0LkY7IjIYj333HP4+eef8fHHH0OhUEChUCA9Pb3aUOzGjRvh4eGBHTt2ICwsDM7OznjqqadQWlqKL774AsHBwWjevDn+8pe/6A2fNuTNffPmzRgyZAgcHR11206fPo1BgwbB1dUVbm5u6NmzJ06cOKH7+ZgxY3DixAmkpKQY9foQUcNMnz4dcXFx2Lx5M86cOYM//elPGD58OC5fvmyyc2q1WkycOBGzZ89Gp06dGnwceyPWRETUpD7++GNcunQJnTt3xnvvvQcA8PLyQnp6erW2paWl+OSTT7B582YUFRXhj3/8I5544gl4eHhg165dSE1NxZNPPom+ffti3LhxAO6+uV+4cAGbN2+Gv78/tm3bhuHDh+Ps2bNo165djTX98ssveOaZZ/S2TZgwAd27d8eaNWugVCpx6tQpvf+NBwYGwsfHB7/88gtCQ0ONdHWIqCEyMjKwYcMGZGRk6IZD33jjDezevRsbNmzABx98YJLzLlmyBPb29vjLX/7SqOMw2BGRxXJ3d4dKpYKzszN8fX3rbHvnzh2sWbNGF5yeeuopfPnll8jKykKzZs0QHh6OQYMG4eDBgxg3blyD39yvXLlSbW5MRkYGZs+ejQ4dOgBAjaHQ398fV65cMfgaEJFxnT17FhqNBu3bt9fbXlFRgZYtWwIALl68iI4dO9Z5nDfffBOLFy+u1znj4+Px8ccfIyEhodFTSBjsiMgmODs76/WG+fj4IDg4GM2aNdPblp2dDaB+b+41KSsr0xuGBYBZs2bhhRdewJdffono6Gj86U9/qtYz5+TkhNLS0ga/PiIyjuLiYiiVSsTHx1dbACW9X7Rp0waJiYl1Hqeu94n7/fLLL8jOzkZgYKBum0ajwV//+lesXLmyxlGI2jDYEZFNuH8iskKhqHGb9NiR+ry518TT0xN5eXl62959910888wz2LlzJ3788UfExMRg8+bNehOpb9++DS8vrwa9NiIynu7du0Oj0SA7Oxv9+/evsY1KpdL1wBvDxIkTER0drbdt2LBhmDhxIqZMmWLQsRjsiMiiqVSqej0vzlD1eXOvbb8LFy5U296+fXu0b98er7/+OsaPH48NGzbogl15eTlSUlLQvXt3o9VPRLUrLi5GcnKy7vu0tDScOnUKLVq0QPv27TFhwgRMmjQJy5YtQ/fu3ZGTk4P9+/eja9euGDVqlFHPFxgYiJYtW1br4XNwcICvry/CwsIMOhdXxRKRRQsODsaxY8eQnp6O3Nxcoz3o99439++++w5paWk4fvw4Fi1ahJ07d9a637Bhw3D48GHd92VlZZg+fTpiY2Nx5coVHDlyBL/99pve/Jxff/0VarUaUVFRRqmdiOp24sQJdO/eXfefqVmzZqF79+6YP38+AGDDhg2YNGkS/vrXvyIsLAyPP/44fvvtN72hUmOez5jYY0dEFu2NN97A5MmTER4ejrKyMqSlpRnt2Bs2bMDChQvx17/+FdevX4enpycefvhhjB49utZ9JkyYgDlz5iApKQlhYWFQKpW4desWJk2ahKysLHh6euKPf/wjFixYoNtn06ZNmDBhApydnY1WOxHVbuDAgRBC1PpzBwcHLFiwQO/vqSnPVxND5tXdSyEMPRMREdVp9uzZKCwsxD/+8Y8Hts3NzUVYWBhOnDiBkJCQJqiOiKwZh2KJiIzsb3/7G4KCguo1LJyeno5PP/2UoY6IjII9dkRERERWgj12RERERFaCwY6IiIjISjDYEREREVkJBjsiIiIiK8FgR0RERGQlGOyIiIiIrASDHREREZGVYLAjIiIishIMdkRERERWgsGOiIiIyEr8Pz2+T4UfXcu6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sim.sources[0].source_time.plot(times=np.linspace(0, 0.2e-13, 1001), val=\"abs\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ - "# Sum the signal for all monitors\n", - "def getSignal(sim_data, polarization):\n", + "# Sum the signals for all monitors\n", + "def getSignal(sim_data, polarization, t_start=1e-14, t_end=2e-12):\n", " signal = 0\n", " for i in range(Nmonitors):\n", " signal += sim_data[f\"mon{i}\"].field_components[polarization].squeeze()\n", - " return signal\n", + " return signal.where(signal.t > t_start, drop=True).where(signal.t < t_end, drop=True)\n", "\n", "\n", "def ftField(field, **args):\n", @@ -676,7 +845,7 @@ "FTs = []\n", "for i in range(len(KX)):\n", " for pol in [polarization]:\n", - " resonance_finder = ResonanceFinder(freq_window=(50, 200e12))\n", + " resonance_finder = ResonanceFinder(freq_window=(0e12, 200e12))\n", " sim_data = batch_data[f\"s{i}{pol}\"]\n", " signal = getSignal(sim_data, pol)\n", " fmesh, ft = ftField(signal.real)\n", @@ -693,17 +862,17 @@ "metadata": {}, "source": [ "Finally, we can plot the band diagram. \n", - "To match the results with the [reference papaer](https://www.flexcompute.com/tidy3d/examples/notebooks/Bandstructure/), we will multiply the frequencies by four, since the original lattice constant is 0.25 µm." + "To match the results with the [reference paper](https://www.flexcompute.com/tidy3d/examples/notebooks/Bandstructure/), we will multiply the frequencies by four, since the original lattice constant is 0.25 µm." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAidNJREFUeJzt3Xd4U+XbwPFvGtoy2zI6KVA2gixBa9FiGa9lqGApMhVRUVm2Iqg4yhBFURGQjUhxgAoWfoplQ6EKVEVBRUBEZgcFoS2rKz3vH4fE7pW0J2nuz3XlanLOycmdEJI7z7gfnaIoCkIIIYQQdsxB6wCEEEIIIbQmCZEQQggh7J4kREIIIYSwe5IQCSGEEMLuSUIkhBBCCLsnCZEQQggh7J4kREIIIYSwe5IQCSGEEMLuSUIkhBBCCLsnCZEQotwef/xxateurXUYeUyfPh2dTlfu+wcFBREUFGS6ffr0aXQ6HZGRkeYHJ4SwWpIQCWHjdDpdqS4xMTGmL3edTsesWbMKPd+IESPQ6XRWl+gIIURFqqZ1AEII83z66ad5bn/yySds3769wPbbbruNmzdvAlC9enXWrl3La6+9lueY69ev87///Y/q1atXbNA2pEmTJty8eRNHR0etQxFCVCBJiISwcSNHjsxz+8CBA2zfvr3AdlC7fwD69etHVFQUhw8fpmPHjqb9//vf/8jMzKRPnz7s2rWrQuO2FTqdTpMEMScnh8zMTElOhagk0mUmhB0KCAigadOmrFmzJs/2zz//nD59+lCvXr0yne+ff/4hODiYWrVq4ePjw8yZM1EUJc8x7733Ht26daN+/frUqFGDLl26sH79+gLn0ul0TJgwgY0bN3L77bfj7OxMu3bt2LJlS4Fjv//+e+68806qV69O8+bNWbZsWZniXr58Oc2bN6dGjRrcddddxMbGFjimsDFEv/32G48//jjNmjWjevXqeHl58cQTT/Dvv/8WuH9MTAxdu3bNE2Nh45yMz/vzzz+nXbt2ODs7m55zWV+7devW0bZtW2rUqEFAQAC///47AMuWLaNFixZUr16doKAgU4IshJAWIiHs1rBhw/jss894++230el0XLp0iW3btvHpp58WmnwUxWAw0KdPH+6++27mzJnDli1bmDZtGtnZ2cycOdN03Pz583nooYcYMWIEmZmZfPHFFwwePJhNmzbRv3//POf8/vvviYqKYty4cdSpU4cFCxYwaNAgzp49S/369QH4/fffuf/++3F3d2f69OlkZ2czbdo0PD09SxX3ypUreeaZZ+jWrRvh4eH8888/PPTQQ9SrV49GjRoVe9/t27fzzz//MHr0aLy8vDhy5AjLly/nyJEjHDhwwJTs/Prrr/Tp0wdvb29mzJiBwWBg5syZuLu7F3reXbt28dVXXzFhwgQaNGiAn59fmV+72NhYvvnmG8aPHw/A7NmzeeCBB3jxxRdZvHgx48aN48qVK8yZM4cnnnhCWgKFMFKEEFXK+PHjlaL+a586dUoBlHfffVf5448/FECJjY1VFEVRFi1apNSuXVu5fv26MmrUKKVWrVolPtaoUaMUQJk4caJpW05OjtK/f3/FyclJuXjxomn7jRs38tw3MzNTuf3225WePXvm2Q4oTk5Oyt9//23advjwYQVQPvzwQ9O2gQMHKtWrV1fOnDlj2vbnn38qer2+yOef+7E9PDyUTp06KRkZGabty5cvVwDlvvvuM20zvmarVq0q8rkoiqKsXbtWAZS9e/eatj344INKzZo1lfj4eNO2EydOKNWqVSsQI6A4ODgoR44cKXDusrx2zs7OyqlTp0zbli1bpgCKl5eXkpaWZto+depUBchzrBD2TLrMhLBT7dq1o0OHDqxduxaANWvWMGDAAGrWrFnmc02YMMF03dhtk5mZyY4dO0zba9SoYbp+5coVUlNTCQwM5Jdffilwvt69e9O8eXPT7Q4dOuDi4sI///wDqK1SW7duZeDAgTRu3Nh03G233UZwcHCJ8f78888kJyfz7LPP4uTkZNr++OOP4+rqWuL9cz+X9PR0Ll26xN133w1gej4Gg4EdO3YwcOBAfHx8TMe3aNGCvn37Fnre++67j7Zt2xb7eCW9dr169TK1LAH4+/sDMGjQIOrUqVNgu/E1FcLeSUIkhB0bPnw469at4++//2bfvn0MHz68zOdwcHCgWbNmeba1atUKIM8YlU2bNnH33XdTvXp16tWrh7u7O0uWLCE1NbXAOXMnOUZ169blypUrAFy8eJGbN2/SsmXLAse1bt26xJjPnDkDUOD+jo6OBZ5LYS5fvkxYWBienp7UqFEDd3d3mjZtCmB6PsnJydy8eZMWLVoUuH9h2wDTOfIz57UzJnj5uwGN242vqRD2ThIiIezYsGHDuHTpEmPGjKF+/frcf//9FfI4sbGxPPTQQ1SvXp3FixcTHR3N9u3bGT58eIHB1wB6vb7Q8xR2rBYeeeQRVqxYwbPPPktUVBTbtm0zjbvKyckp93lztwQZWeq1s/bXVAityaBqIexY48aNueeee4iJiWHs2LFUq1b2j4ScnBz++ecfU6sQwF9//QVg6rr5+uuvqV69Olu3bsXZ2dl03KpVq8oVt7u7OzVq1ODEiRMF9h0/frzE+zdp0gSAEydO0LNnT9P2rKwsTp06lacUQX5Xrlxh586dzJgxg4iICNP2/LF4eHhQvXp1/v777wLnKGxbUSz92gkhCictRELYuVmzZjFt2jQmTpxY7nMsXLjQdF1RFBYuXIijoyO9evUC1NYJnU6HwWAwHXf69Gk2btxYrsfT6/UEBwezceNGzp49a9p+9OhRtm7dWuL9u3btiru7O0uXLiUzM9O0PTIykpSUlBIfGwq2rMybN6/Acb1792bjxo0kJCSYtv/9999s3ry5xBhzn8eSr50QonDSQiSEnbvvvvu47777yn3/6tWrs2XLFkaNGoW/vz+bN2/mu+++45VXXjFNL+/fvz9z586lT58+DB8+nOTkZBYtWkSLFi347bffyvW4M2bMYMuWLQQGBjJu3Diys7P58MMPadeuXYnndHR0ZNasWTzzzDP07NmTIUOGcOrUKVatWlXiGCIXFxe6d+/OnDlzyMrKomHDhmzbto1Tp04VOHb69Ols27aNe+65h7Fjx2IwGFi4cCG33347hw4dKtXzrIjXTghRkLQQCSHMotfr2bJlC0lJSUyZMoWffvqJadOm8cYbb5iO6dmzJytXriQpKYnw8HDWrl3LO++8w8MPP1zux+3QoQNbt27F3d2diIgIPv74Y2bMmFHqcz799NMsXryYhIQEpkyZYqrfU1INIlBn5AUHB7No0SKmTp2Ko6Njoa0+Xbp0YfPmzdStW5fXX3+dlStXMnPmTHr16lXqCtQV8doJIQrSKTKiTgghKtXAgQM5cuRIoWOghBDakBYiIYSoQMYFdY1OnDhBdHQ0QUFB2gQkhCiUtBAJIUQF8vb2Nq17dubMGZYsWUJGRga//vproXWUhBDakEHVQghRgfr06cPatWtJSkrC2dmZgIAA3nrrLUmGhLAymnaZGQwGXn/9dZo2bUqNGjVo3rw5b7zxRp7prIqiEBERgbe3NzVq1KB3794F+t0vX77MiBEjcHFxwc3NjSeffJJr165V9tMRQogCVq1axenTp0lPTyc1NZUtW7Zwxx13aB2WECIfTROid955hyVLlrBw4UKOHj3KO++8w5w5c/jwww9Nx8yZM4cFCxawdOlS4uLiqFWrFsHBwaSnp5uOGTFiBEeOHGH79u1s2rSJvXv38vTTT2vxlIQQQghhgzQdQ/TAAw/g6enJypUrTdsGDRpEjRo1+Oyzz1AUBR8fH1544QUmT54MqOsEeXp6EhkZydChQzl69Cht27blp59+omvXrgBs2bKFfv36cf78+TyLKgohhBBCFEbTMUTdunVj+fLl/PXXX7Rq1YrDhw/z/fffM3fuXABOnTpFUlISvXv3Nt3H1dUVf39/9u/fz9ChQ9m/fz9ubm6mZAjUlbIdHByIi4srtFZHRkYGGRkZpts5OTlcvnyZ+vXro9PpKvAZCyGEEMJSFEXh6tWr+Pj44OBgXqeXpgnRyy+/TFpaGm3atEGv12MwGHjzzTcZMWIEAElJSQB4enrmuZ+np6dpX1JSEh4eHnn2V6tWjXr16pmOyW/27NnMmDHD0k9HCCGEEBo4d+4cvr6+Zp1D04Toq6++4vPPP2fNmjW0a9eOQ4cOER4ejo+PD6NGjaqwx506dSqTJk0y3U5NTaVx48ac+/57XGrXrrDHFUIIm3HzJkyYAAcPqrednCAzE1xcYOtWqFFD2/jKYPvOnbzwwgvkHx9i7A94//33+b9b6+4Vd38gzzlKe39RBEWBrCxo0gRKWbk9v7S0NBo1akSdOnXMDkfThGjKlCm8/PLLDB06FID27dtz5swZZs+ezahRo/Dy8gLgwoULeHt7m+534cIFOnXqBICXlxfJycl5zpudnc3ly5dN98/P2dk5z6rRRi4NGuBigRdVCCFsnsGgJj3OzvDEE/Dyy3DffXD6NOzdCyNHah1hqRgMBma/9x6ZRezXAW+//z4DBw82Ldyb36ChQ6nh4kJERAQJiYmm7Q19fJgxYwb9+vWzfOD2ICcHrl5Vk+xyJkRGlhjuomlCdOPGjQJ9fnq9npycHACaNm2Kl5cXO3fuNCVAaWlpxMXFMXbsWAACAgJISUnh4MGDdOnSBYBdu3aRk5ODv79/5T0ZIYSwZQkJsGABPP881KwJ2dnw1lvg4QGtWoFOBx98oH6BdeyodbSlFhcXlyeJyU8B4hMSiIuLo1u3bkUe169fP4KDg4mLiyM5ORkPDw/8/f2LTKKE7dE0IXrwwQd58803ady4Me3atePXX39l7ty5PPHEE4Ca8YWHhzNr1ixatmxJ06ZNef311/Hx8WHgwIEA3HbbbfTp04cxY8awdOlSsrKymDBhAkOHDpUZZkIIUZKUFFi0CFauhIwMtQtj9mzw9obbboPcP1oHDoT0dLWVKCsLHB01Crr08vcgmHOcXq8vNmkStk3ThOjDDz/k9ddfZ9y4cSQnJ+Pj48MzzzxDRESE6ZgXX3yR69ev8/TTT5OSksK9997Lli1b8qwU/fnnnzNhwgR69eqFg4MDgwYNYsGCBRaJUVEUsnNyMMgKJ5pydHBAb+YMAiFELjdvwqpVsHAhpKaq2+68E0aPhkaNoKiWj+rV1S6O5GS19aiSGAyGcrXO5J90Y+5xouqStcxQu+FcXV1JPXYszxiiTIOBxGvXuJGdrTYXC20oCjrAt04dajs5aR2NELZv3Tp4+20wzsRt1QqmT4fQ0NK1+syYoXavrV4NlVB1Ozo6usD4HR9vb2bOnFni+B2DwYC/vz+JiYkFBlWDOobIx8eHAwcOSPdXZTOOIWra1KxB1a6urqSmpuLi4mJWOLKWWRFyFIVTKSnonZ3x8fDAydERSYm0oQAXL1/m/NWrtKxbV1qKhDDX4cNqMuTjA6+8og6aLsussb//hsuXYelSWL684uJETYbGjBlTIJlJTExkzJgxrFixotikSK/XM3PmTMaMGYOOwmeJzZgxQ5IhIS1EUHgLUXp2NqdSU2nSuDE1bWh6aVV1Mz2d02fO0NTVlerVJI8XotQURZ0VVr8+tGkD166p44Z27ICwMHB1Lfs5f/1VbRnS62HfPjCz/ktRjK07RQ2KLkvrTmGtTDJLTGPSQmRDdDocpKvMKuhAui2FKAtFgV271Jlhv/4K3brBihXg5qZ+AZkzOLhzZwgKgpgYWLYM3njDQkHnZakZYiCzxETJJCESQoiqRFFg2zaYNw9++03dVr06tG0LDRuqA6It8eNi8mQ1IfrqK3jxRaiAGm6WnCEGMktMFE8GY9ggv1at+P6HHwB46513mBAWVub7CSGqoJgYuP9+dUzQb7+p44KefRaOHFHH+ri6Wq6ltW9faN1a7YL75BPLnDMfmSEmKpMkRDbulZdeYuH8+WafJ/KTT+jdp48FIhJCaObsWfjzT7Ww4oQJcPQoLF4MzZpZvsvZwQGMSyCtXq2OBymGwWBg3759bNy4kX379mEwGEp8CH9/f3y8vYuc0KJDHQckRXiFJUiXmRBC2KLsbPjmGzX56dULrl+Hfv0gLQ3GjVO7xyp63N2jj8KhQ+rjZmer650VorzT5mWGmKhM0kJUVtevF31JTy/9sTdvFjy2HKa/8QZPPfus6faKlSvxbdYMr8aNWbFyJTpnZ86fP2/aH/fjj9zWoQNuHh6mrrZ//vmHZydMIGbvXmrXq0e7W8uk5Hfo8GHu690bNw8PGrdowbqvvwbgypUrDHv0URr4+NC8TRuWrVhhus/jTz3Fc88/T6/gYOrUr8/9/fpx+fJl0/49e/fS5e67cfPwIOj//o+TJ0+W63UQwm5kZ6vjdoKCYOJEmDZNnalTty60bKkut+HrWzmTEGrUUFugunSBGzcKPcQ4bT7/4GjjtPno6OhiH6Jfv36sWLEiz3qWoM4uK2nKvRBlIS1EZVWvXtH7+vSB//3vv9u+vkV+SNC9O2zf/t/tVq0gPt6s0H7/4w+mTJ3Kjs2bade2LeOee67AMRu//ZbYXbtIT0/njrvvZtDDD9MjKIilCxfy2Zo17NiypdBzp6amcn///rw1cyY7Nm8mJSWFC7cGMk4IDwfg7N9/8/fJk/Tq04c2rVtzX/fuAHz19dds++47WrVsSf8BA5i/cCEzIiI4d+4cocOGEfXll3QLCGDx0qUMffRRftq3z6zXQYiqxFih+WJCAu2OHqV5dDS6s2fVna6u6iKrDRuqCVEx54iNjSUxMRFvb28CAwMt26ri6gpXrhRYzsNgMBAREVFoQUQFtZVn2rRpBAcHFxuPzBATlUESoirk6w0bCBk4kK63Frl97eWXicw32DF84kQaNGgAQFD37hz+7Td6BAWVeO5N0dG0bNGCp26tM+fu7o67uzsGg4F1X3/N8d9/p2bNmnRo356nRo9mzRdfmBKiwSEhdGjfHoBBDz/Mth07APj8iy94+KGHCLz3XgAmjh/PzLfe4vTp0/j5+Zn9eghh64xdTa0SE3kHaHRre0bt2jiHh6stRCUMKI6KiiIsLCxPS7Gvry/z588nJCTEMoEmJMBrr6lroeVqIbbktHmZISYqmiREZZWru6eA/L9Wcn0AFZC/2vJff5U/pluSkpLwbdjQdNu3kGJpnrk+PGvWrMm1UnbVnY+Pp2khScqlS5fIysqicePGpm1NGjfmjyNH/ntMT8+8j3ntGgBnz57l0zVr+OpW1xtAZmYm8QkJkhAJuxf93XeMefppFKAZajJ0EfgQWHTtGis6dyakFMlQaGgo+evvxsfHExoayvr160uVFJXYwpSZCRs2qN10//yjDuLG8tPmhahIMoaorGrVKvqSv9Jmccfmr35dq5bZoXl5eRGfkGC6fb64hCwfXQnjDRr5+nL6zJkC2xs0aICjoyNnjU34wNlz5/DJ199fmIYNGzLmiSdISU42XW6kpHCP/AoU9uzwYXLGj+dSeDjVgXrAL8AzQEvgDeCKTkd4eHixM7UMBgNhYWEFkiHAtK2kc4CaVPn5+dGjRw+GDx9Ojx498PPzIyoq6r+D2rZVhwwoSp6lPGTavLAlkhBVIQ8PGMDXGzbwy6+/kp6ezltz5pT6vh7u7pyPjyc7O7vQ/f379uWvEydYtXo1WVlZXLx4kT+OHEGv1xMaEsJr06dz48YN/jhyhJWRkQx95JESH3P4kCGsi4oi9vvvycnJ4erVq6zP/SErhL0wGGDzZggJgX79cNi4kUE3blADiAfOAMuBW2vSoygK586dIzY2tshTxsbGFvujqDTnMLYw5T+PsYUpT1L0wgvq3/Xr1fFEyLR5YVskIapCOnbowNuzZvFgSAh+rVrRpXNnAJydnUu8b88ePfBr0gT3hg3pcGsMUm6urq5s+fZbVkZG0sDHh67dunH8VjffwnnzyM7OplHz5jwUEsL0114r1bikpk2b8sWnnzJl6lTqeXnRpkMH/vftt2V70kJYuWLr71y/Dh9/DIGB8NRTEBcH1apxrmtX+gBHgRSg8J8p6kytohS3rzTHlbmFqVcvaN9enUEbGQn8N20eKJAUybR5YW1kcVeKWdw1LY2mjRtTvZyLzmnt+PHjdOjalfS0tBK7xKxdeno6p86epamLiyzuKmxGifV3Zs+GhQvVHa6ual2f554j5vx5evTsWeL5d+/eTVARPz527txJ7969SzzHjh076NWrV4HtMTEx9OjRo2wxfPIJjBqlDvSOizPVJZKFVUWhZHFXUZE2ffcdvXv1IiMjg6mvv85DDzxg88mQELbIWH8n9y/OTkDmrfo7Hy9cSPBDD8GWLWrr0FNPqSvSA4HNmlG/fn3+/fffIs9fv359AgMDKyz+crUwDR0KL78MiYnw9dcwbBgg0+aFbZCEqIr5cv16Rjz+OA4ODtwXGMjiBQu0DkkIu5O7/k414P+ApwF/YBcwEZj55pv0/u039EeOFFnh2RzmzvDKXwixKHmOc3JSC0WeOwf5JkfItHlh7SQhqmI+XbVK6xCEsHtxcXE4JibyMjAEMBaeyAT+RR0ofSwxkdg//ii0yys2NrbY1iGAf//9l9jY2CK7zMqV0OQSGBiIr68v8fHxhY4j0ul0+Pr6FmyleuYZtSDtmTNqVW3p4hY2QgZVCyGEhXl++CH7gedQk6FLwDzgNuAR1NliOaiztQpj7oBoUBOa+re64IpSXLebXq9n/q2Fo/N3uxtvz5s3r/Burxo1wMWl3EsSCaEFSYiKoyjkyJhzq6CAWuNEiEpU6hXajx1TB4cCZGRw0dmZHGA38CjgBzwP/JPvbhcvXiz0dOa27lhKSEgI69evp2Gugq+gFn0ttqijTgcxMeoYouPHKzRGISxF2jKL4KTX4wAkXLiAe/36ODk6FllLQ1QsBbh4+TI6wDF/hW8hKkiJM8SuX1dXm1+zBn75BaZPh0GDwNmZxD59uG37dk5Aoet4Gbm7uxe63dhdVVwdoUaNGhU7qNoS3W6gJkUDBgwo+1po69bB4cOwdCl88EHxxwphBSQhKoKDTkdTNzcSr10jISGhclaOFoVTFHSAb5066CUhEpWgsBlioHZRLRozhtsDA2n8yy//dQlVqwbJyeqCzjVrUveOOyjNYjz5W16M9Ho9w4YN49133y3yvkOHDi02KbFEt1vueIpLmgo1ebK62PXGjfDqq3BrDUUhrJXUIaLwOkRGiqKQnZODQV4mTTk6OEgyJCqFwWDA39+/wKKk1YBNQIfcG/381NpBo0er12/9cDIYDPj5+ZXYwnPq1KlCkxpz7w/lrCNkSYoC/v7w00/w3HPw0kuWfwxh26QOkW3R6XQ46vU4ah2IEKJSGFdorw50Bb6/tb0a6gyxdOA7oOVbb9HhhRcKnTJvHJA8aNCgIh+nyAHJlLzsBmBadqOoZKbcs8QsRadTl/MYOhQ++0xNivKv4SiEFZGf3EIIYZSRgcOOHSwEfgO+Qp0Z5oa61MQLQFMgFDji51ch9YPAMt1dZs0Ss5RBg6BxY7h8Gb78suIeRwgLkIRICFFllWqWWGYm7NgBYWHQsSN3L1tGCFAbtV6QK3AOdYHVX4GkW3crboaXcR2wouhKWK3eUrPMyj1LzFKqVVNfV4CVK9UuEiGslIwhovgxREII21TiLDGj//0Pxo0z3VQ8Pfn86lVW3bjBXgourGrsaqrI8TvGMUQldXcVF0P+85V5lpilpKVBSAhZffuyOiWFU+fP4+fnx6hRo3CqoBY2YSNkDJEQQlSswmaJ6YEWiYlcHjOGI0OH0m72bEhPhy5d1G6dXr1g6FB0991Hze++Y1cR438URSmxq8ncLi9jd1doaCg6nS5PUlSe7q5yzRKzFBcXXrzjDtZOmUJtRSH11uaZM2fyzDPP8Nprr2kTlxD5SJeZEKJKyb+OWDdgNmp31xfASKD6+vUYbt6EOnWgTRv46y/4+GO4/35wdjY7Bkt0eWne3WUhL774Iu+++y5XbpXPMH7pGHJyWLxkCbNmzdIyPCFMpMsM6TIToirZt28foYMH8y7wEJD7f/Rl1BliXwGTt27lvvvvL3D/kqa8l6a7ypJdXpp2d5kpMzOTmjVrYjAYqAu8BNQHInIdo3dw4OTJk9J9Zo+srMtMWoiEELbt5k3YswfeeQcUheSkJGqgDoaug5oEfQE8DPgCj6HWE0oooopzSVPeFUUxTXkviiVneBm7u4YNG0ZQUJDNJEMAixcvNg0cb46aEI3iv8VuQW0pWr16tQbRCZGXjCESQlglg8FAXFwcycnJeHh44O/vryYDigInT6prZcXEwL59kJGh3um++/CsVYsc4F1gDnAAyCrk/B4eHoU+rqUqPBu7vMLCwvIkWL6+vsybN89murzMcfLkSdP1n4G9QHdgDJC7o+z06dOVGpcQhZGESAhhdYqaIbZ8wADu+O47OHcu7x28vCAoCHx9Sa9enTPA6XI+tiUXVi33OmBVRPPmzfPcnouaEI0A3gdu3tru5+dXqXEJURgZQ4SMIRLCmkRHRzNpzBg6AV2AXcBhoDoQBHwM4OgId92lDoLu2xc6dVK3AWvXrmX48OElPs6aNWsYNmxYge2WnvJuz3KPIQJ1jMYxoCXqOKKPkDFEds3KxhBJC5EQokIU2eWVX04O/P03HDxIzs8/03r9ev7kvwGO7qhFETNQk6Nn69dn0Z9/ond3L3TRZXNbeCw95d2eOTk5MWnSJNMitTnAPGAR8BRqcvvMM89IMiSsgqaDqv38/NDpdAUu48ePByA9PZ3x48dTv359ateuzaBBg7hw4UKec5w9e5b+/ftTs2ZNPDw8mDJlCtnZ+UupCWFfSlWhuQJFR0fj7+9P6ODBjBs/ntDBg/H39yc6OhpSUiD3oOUzZ6BHD5g8GYcvvqB5djYOwFlgA7AHNSEyXpb9+y+xf/5ZaDIE/63hlX8ws5FOp6NRo0bFruFVVaa8W4M5c+YwZcoUUwIZiTrQvTEw7/77pQ6RsBqadpldvHgxzwf1H3/8wf/93/+ZqreOHTuW7777jsjISFxdXZkwYQIODg788MMPgPqh36lTJ7y8vHj33XdJTEzkscceY8yYMbz11luljkO6zERVUuoKzcUodetOEY9vLIroALQC7kBdKLULancJwcEwfz5k3Rru3LcvNGzIMTc3Zmzdyj7gPGqLQmGK6u4yioqKIjQ0FKDQFp7SJjW2POXd2mRmZrJ48WJOnjzJ8BMnuKtWLfSjRkHXrlqHJrRiZV1mVjWGKDw8nE2bNnHixAnS0tJwd3dnzZo1pg+2Y8eOcdttt7F//37uvvtuNm/ezAMPPEBCQgKenupEzqVLl/LSSy9x8eLFUjfDSkIkqorCKjSDujApwIoVK0pMisqVUGVnw7//YmjQAH9/fxISE/kCNRGqXcjhSteu6DZsgFq11LE/jo7g5ETMnj1mLXmRW1RUVIEZXo0aNbKbGV5W7/p1tXWwTh2QJNM+SUJUuMzMTHx8fJg0aRKvvPIKu3btolevXly5cgU3NzfTcU2aNCE8PJznn3+eiIgIvvnmGw4dOmTaf+rUKZo1a8Yvv/xC586dC32sjIwMMozTdFFf0EaNGklCJGyawWAwJSOF0QE+Pj4cOHCgyFaOkhKqlQsX0qdlSzhx4r/L33/DqVPQuDEHZszgsZEjqYZa+6cDcB11UHQcsP/W5dMdOwjq1avQ51Bl1vASxVMUtev0xg01KRL2x8oSIqsZVL1x40ZSUlJ4/PHHAUhKSsLJySlPMgTg6elJUlKS6Rhjy1Du/cZ9RZk9ezYzZsywXPBCWIG4uLgikyEABYhPSCAuLo5u3boV2G8wGIh4/XVcAA/U4nmuqJWdFdSkqGl4uNoaVJjkZC5cuMA11AHQzwFXgSO3bueWmJxc6Cmq1Bpeong6HSQkwJw5MHkyNGmidUTCzllNpeqVK1fSt29ffHx8Kvyxpk6dSmpqqulyLn9NEyFsUHIRSQaoC5t6Ae0BZc+evDvfeQcefJCsLl34PimJo6gDmb8CFgJuuS5/Z2eTVbu2Ou5jxAiYNQu+/hqOHoWLF3Ht3JlE1EGze4BfKJgMgX2s4SVK4dVXISoKli/XOhIhrKOF6MyZM+zYsYOoqCjTNi8vLzIzM0lJScnTSnThwgW8vLxMx/z44495zmWchWY8pjDOzs44W2ABRyEqTGqqWnzw9tv/27Z/P8THq1WZjZf0dPViMODRs6fp0OeAAKABamtPff779ZOzZAncmsmJwQDHj8Mvv5C7wToFuAjEA9lA8q2/w4DlS5YwdOTIQsMO7N4dX1/fEru8ipvhBVLQ0G688ALs3Anr1sGLL4Krq9YRCTtmFQnRqlWr8PDwoH///qZtXbp0wdHRkZ07dzJo0CAAjh8/ztmzZwkICAAgICCAN9980zQTBmD79u24uLjQtm3byn8iQlhCSopadfnGDTh8WB1rAeqsrGLWz/J/9lnaeHqSfOECnYH78u3PBq44ONDgttvUc9atC05O8Nxz8Nhj/JqUxNAXXiABuEHRM7y8fH2LjMGSXV7S3WUH+vSB225TWxg/+QQmTtQ6ImHHNB9UnZOTQ9OmTRk2bBhvv/12nn1jx44lOjqayMhIXFxcmHjrP8u+ffuA/6bd+/j4MGfOHJKSknj00Ud56qmnZNq9sF1vvw0ffqheN64F5eAA778Pv/2mDj50doYaNdTrxsvrr/NtdDSPjRpFIGoX2QUgCUhAbeVZu24dIbdmbeZnyQHNMsNLlNrKlfDUU+ryK3FxUM0qfqeLymBlg6o1T4i2bdtGcHAwx48fp1WrVnn2paen88ILL7B27VoyMjIIDg5m8eLFebrDzpw5w9ixY4mJiaFWrVqMGjWKt99+m2pl+E8lCZGwGpcuQUCA2jr0yScwcmSRBQiLYk4yYqn6PSAzvEQppaerA6qTk2HBArjVIyDsgCRE1kcSImE1pk+HFSugfXs4eNC0PldZmZOMSOuOqHQzZ8K0adCuHWzdWuYfAcJGSUJkfSQhElYhMRHuuUcdLL1uHRTRtVUZpHVHVKqLF9WZiw89BOHhanewqPqsLCGSzlohrMWCBWoydOedMGCApqHIgGZRqdzd4Z9/1LpE169LQiQ0YTV1iISwa4qiJkM6ndp1UM6uMiFsll4Pbm5qKYicouY4ClFxJCESwhrodPDGGxATo05FFsIe1agB+/bBsmVaRyLskHSZCWENcnLUFqKOHWWhS2G/9u+Hp59Wx5MMGQL16mkdkbAj0kIkhNYiI+HPP6F2bfUihL269171R0F6OqxapXU0ws5IQiSElv78U13PqX9/9UtAWoeEPdPp1IVeQa3DlVHYSnhCVAxJiITQ0rvvqn/79IF8hUmFsEuPPAI+PmqR0q+/1joaYUckIRJCK7/+Ctu2qctyTJ+u/hXC3hnX1wNYvvy/tfyEqGDyCSyEVoytQyEh0LmztrEIYU2efhpq1YITJ2DPHq2jEXZCEiIhtHDggPpBX62aWndIWoeE+E/dujB6tLqETWam1tEIOyHT7oWobIoCc+ao14cOVddvEkLk9e67kJUF586pZSnkR4OoYPIOE6KyGQwQGAgNGsBrr8lClkIUpnp1tdusZk24cUPraIQdkIRIiMpWrZraHfDjjzKzTIjiODiopShWrIDkZK2jEVWcdJkJUdmys9VWIQ8PaR0SoiSjR8POnXDzJrzyitbRiCpMWoiEqCw5Oep04s2bwcVF7QoQQhTvmWfUv59/riZFQlQQSYiEqCzffqsWmps8We0KkNYhIUr28MPQpAmkpMDatVpHI6owSYiEqAzZ2fD+++r1sWPB21vbeISwFdWqQXg4ADcXLWJjVBT79u3DYDBoG5eociQhEqIyfP01nDwJbm7wwgtaRyOETfnG3Z2rOh01kpL438SJhA4ejL+/P9HR0VqHJqoQSYiEqGiZmfDBB+r1554DT09t4xHChkRFRTHw0UdZemsJj2dvbU9MTGTMmDGSFAmLkYRIiIq2dq1aXM7dHcLCtI5GCJthMBgICwtDURQWAOnAZaA6YFzhbNq0adJ9JixCpt0LUZFu3oQFC9Tr4eFQr56m4dgbg8FAbGwsiYmJeHt7ExgYiF6v1zosUUqxsbGcP38egPOAD1ALqHFrvwLEJyQQFxdHt27dtAlSVBmSEAlRkZyd1WrUX3wBEyZoHY1NMTeZiYqKIiwszPSFCuDr68v8+fMJCQmplBiEeRITE/PcvgJkA3XyHZcsRRuFBUhCJERFcnCA++6DRx5Raw/ZCEskAuacw9xkJioqitDQUBRFybM9Pj6e0NBQ1q9fX+J5LJFQgSRV5vAuZDbmdcAL6A58c2ubh4dHJUYlqiqdkv8Tww6lpaXh6upK6rFjuNTJ/9tDiNIzGAzExcWRnJyMR4MG+HfujB7UOipOTqU+hy0nI+aeo6hkRnerblNJyYzBYMDPzy/PY+c/j6+vL6dOnSryNTE3htznsURSZa+M/5bx8fGmf4u7gP3ANaAr4Orjw4EDByTJtEU5OXD1KjRtqq5dVw6m7+/UVFzM/NEpCRGSEAnLiI6OJiIigoTERFyATcDW2rXx++AD+j/1VKnOYevJiLnnsEQyExMTQ48ePYqNEWD37t0EBQVVSAxguaTK3luYjK8jgKIo6ICjQGtgBnDnihX069dPwwhFuVlZQiSzzISwgOjoaMaMGUPCrTEPzwAtgP+7do1BY8YQFRVV4jmMH/z5v4iN3TwVfY7cM3ryM24LDw8vdkaPuefIPYi2MIqicO7cOWJjY4s8Jv+4k7IeZ4kYLPFagvrv6efnR48ePRg+fDg9evTAz8+vVO+FqiIkJIT169fTsGFDQB1IfauIBVPq1aNfcHCpz2UwGNi3bx8bN26U4o6iAEmIhDCTwWAgIiLCNA24HjDm1vVZQKZOV+GJhCXOYYlEwNxzmJvMQOHjTspynCVisMRraYkE2ZoYDAZiYmJYu3YtMTExZUpGQkJCOH36NLt372bNmjUM37wZpV49al6+DJs2leoc0dHR+Pv7Ezp4MOPGj5fijqIASYiEMFNcXJypZQhgPFAb+ANYS+UkEpY4hyUSAXPPYW4yAxAYGIivr6+payo/nU5Ho0aNCAwMrLAYzH0dLNXClPt85U1GLMESLV16vZ6goCCGDRtG9z590I0bp+5YvrzE++ZvwTWS4o4iN0mIhDBT7im/nsDjt67PRJ0ibFSRiYQlzmGJRMDcc5ibzID6xTl//nzT8fnvDzBv3rwix+FYIgZzXwdLJMhGWne7VVhL1/jx6kSFQ4fgxx+LPCx/C25uUtxR5CYJkRBmyj3l9znUonE/A/k/5isykbDEOSyRCJh7DnOTGaP8406MfH19SxzMbIkYzH0dLJEgg/bdbpZs6SrQyuXuDsOHg6uruk5gEfK34BaIg/+KOwr7JgmREGby9/fHx9ubesCwW9tmAMaP+MpIJCxxDkskApY4hznJTP7z5B53snv3bk6dOlWq+5sbg7mvgyUSZEt3u5WHpVq6imrl+q57dzh2DIKD1RlLhSht0UYp7igkIRLCTHq9npkzZ3IZGATMB3KPSFAUpVISCWtJRix1jvImM7nlHncSFBRUpunq5sZgzutgiQTZkt1u5R2DZImWruJauR588kmivv8eatVSl8kpRGmLNkpxRyGVqoWwEB1wGogACv+tWjzjF2hhNYTmzZtXpmTE3HMMGDDArNo3ljiHMZnRkrkxlPd1MCa3oaGh6HS6PK08pU1uLdntVt66Vua2dJWqlWvSJAb88gv6r7+GwEBwc8tznLEFNzExsdBxRDrAx8cHf3//UsUqqi4pzIgUZhTmMRgM3H/nnZy9cIFM1EUocydEpS3kl/t8WlaqFtajsGSkUaNGpUpuzS1QaXx8S1QNz11pOv95ivu/UdrncKF7dzz27oUXX4SwsAL7jbPMgDxJkbH9bYUUd9SGFGbMKz4+npEjR1K/fn1q1KhB+/bt+fnnn037FUUhIiICb29vatSoQe/evTlx4kSec1y+fJkRI0bg4uKCm5sbTz75JNeuXavspyLs1O/r1hF94QJvACkUbB0qS9cEmNfNY8lzCO2Z021n7HYrTnHdbpYYg2RuN258fHyx8RudbN1avRIZCVlZBfb369ePFStWFGiJ8vHxkWRImGiaEF25coV77rkHR0dHNm/ezJ9//sn7779P3bp1TcfMmTOHBQsWsHTpUuLi4qhVqxbBwcGkp6ebjhkxYgRHjhxh+/btbNq0ib179/L0009r8ZSEjStPJVuPTz/FGXUF7qvFHFfaLgwhcitvcqvX6xk2bFixxwwdOrTI81lqDFJISAiTJ0/GwSHv142DgwOTJ08uNrm7ePFisec2+rlVK/D0hORkKGLmXL9+/YiLi2P9unUsXrSI9evWceDAAUmGhImmY4jeeecdGjVqxKpVq0zbmjZtarpuHIz62muvMWDAAAA++eQTPD092bhxI0OHDuXo0aNs2bKFn376ia5duwLw4Ycf0q9fP9577z18fHwq90kJm5V7LTIjH29vZs6cWfSH5m+/4XPoEAZgGhQ6RsGotOMphLAEg8HA2rVriz3miy++YPbs2YUmRZYcg/Tee+8VaGkyGAy899573H333UUmRe7u7qWKoZ63N0yYAK+/DitWwCOPQCED0vV6Pd26dSvVOYX90bSF6JtvvqFr164MHjwYDw8POnfuzIoVK0z7T506RVJSEr179zZtc3V1xd/fn/379wOwf/9+3NzcTMkQQO/evXFwcJC6EqLUyl3J9t13AdhavTq/FnHu0swIEqIo5Z3hVVILD1BsC09FT/03Kq7bLf8MvaI0bNgQxo6FGjXg6FH4/vtS3U+I3DRNiP755x+WLFlCy5Yt2bp1K2PHjuW5555j9erVACQlJQHg6emZ536enp6mfUlJSQWmS1arVo169eqZjskvIyODtLS0PBdhv8pdyfann2DXLtDrcXrzTRSdzqxigkLkZ06VaXNbeKxh6n+ZxkHVrw+jRqkbly4t9j5CFEbThCgnJ4c77riDt956i86dO/P0008zZswYllbwm3n27Nm4urqaLo0aNarQxxPWrdyVbOfMUf8+8gi9n3/eIsUEhTAyt8q0uS08lqhrZW5SZoyhuKQsTwzPP692lSUkwPXrpXpsIYw0TYi8vb1p27Ztnm233XYbZ8+eBcDLywuACxcu5DnmwoULpn1eXl4FKoxmZ2dz+fJl0zH5TZ06ldTUVNPl3LlzFnk+wjaVq5JtfDz89hs4OkJEBOh0FismKKqW8nR5WWKGlyVaeMwtsmmJbjdjDPlbiho1alQwhlat1HXNtmwBqSgjykjTQdX33HMPx48fz7Ptr7/+okmTJoA6wNrLy4udO3fSqVMnQK05EBcXx9ixYwEICAggJSWFgwcP0qVLFwB27dpFTk5OkYW2nJ2dcXZ2rqBnJWxNuSrZNmwI27apywYYp/xiHcUEhfUob1HDsnQ1FfV+s0RxRzCvyKYxKSupDlFJ4+vKFEPXrpCaCufOqUlREQmhEPlp2kL0/PPPc+DAAd566y3+/vtv1qxZw/Llyxk/fjyg/mcJDw9n1qxZfPPNN/z+++889thj+Pj4MHDgQEBtUerTpw9jxozhxx9/5IcffmDChAkMHTpUZpiJUjFWsi3qY1MHNMxfyTY7W11UsojZLEKY0+VlqRlelloXzpyp/5ZYrLfMMdSqpSZDP/1UqjiFACuoVL1p0yamTp3KiRMnaNq0KZMmTTJVFAX1l9C0adNYvnw5KSkp3HvvvSxevJhWrVqZjrl8+TITJkzg22+/xcHBgUGDBrFgwQJq165dqhikUrUodSXbnBz1Q7ZVK6hbF7y9JSGqwspb8dtYobmoVh5LVWgursq0JZ6HpZhTcbtcfvsN7rsPHBzU/6/lrIIsKpiVVarWPCGyBpIQCSi8DlFDHx9mzJjxXx2iTZvgmWegRw/49lv1l6ioksxZw8vchMbcJS+sUaUmZVlZ0KwZnD8Pb78Njz5aMY8jzGNlCZEs7irELf369SM4OJi4uDiSk5Px8PDA39//vw9tgwHee0+9fscdkgxVYUWt4WXs7iqpu8lSs6vMHf9jTSp1fJ2jo7qm2ZQp8NFHMHKktOSKEmm+lpkQ1sRYyXbgwIF069Yt7xfOhg1w4oQ6dmjy5ELvX94ieqJiaDXDy5Kzq6SUQzk99RTUrg1//w07dmgdjbABkhAJURpZWTB3rnp9wgQopKSDOUX0hOWV99/DEmt4WWLKO5i3uKvdc3ODJ59Ury9frmkowjZIQiREaXz1FZw5Aw0aqMXf8jG3iJ4oyJzWNq1neGk2u0rkFR6uDqzetw/++EPraISVk4RIiJKkp8MHH6jXw8PVJQJysUQXi8jLnNY2c/89LNHdBdLlZRX8/CAkRB0/tGeP1tEIKyezzJBZZqIEf/8Njz8ON2+qhRhdXfPstvQU6aqivLOKihrQbGxZKSmZsLYZXlpPebd7J06oM5mcnNRSGTK42nrILDMhbEyLFhAVpbYU5UuGwHJF9KyJuV/i5Z2yXlLrjrFY64ABA4qMx9pmeEn1co21bKnOED19Wv1RU7Om1hEJKyVdZkKUJD1dnWJ/xx2F7rZUF4uRJWaqmTv+xpzB4eaM37HEgGaZ4SUK0OuhXj0Mf/3Fgd272bhxI/v27ZNubJGHdJkhXWaiCGlpastQnz7QuLE6oLoQluxiMacYoCXOYW53lbkVmteuXcvw4cOLjRFgzZo1DBs2rNgYLPHvId1dVceJBx6g2XffMQ34+NY2H29vZs6c+V/hVVG5rKzLTFqIhCjKihXw6qtqgbdi/qNZakaRJWaqmXMOSwwON7eFxxKtOzLDS+QXFRXFh999hx54iv+W5ElMTGTMmDFER0drGJ2wFpIQCZGLwWBg3759fPfZZ2QvWaJuHD1aHZBZDHO7WCyRjJh7Dkt0V5k7fseS9Xuky0vAf/8vPgauAH5An1v7jP9Tpk2bJt1nQhIiIYyio6Px9/cndPBgTr/0EtVu3uREtWpsKOUgTHOK6FkiGTH3HJYYHG5uC48lW3ekqKGA//5fXAeW3to2Ntd+BYhPSCAuLq7ygxNWRWaZCcF/q90rgDvwxK3tr2dn89Xw4ax3cirVF2l5ZxRZIhkx9xyW6K4ytvCUNH6nuBYeY+tOYeOgyro6uszwErnf7wuBF4CuQGfg11zHJScnV25gwupIC5GwewaDgYiICFPz+USgBuqH5fpb2yq6sKIlkhFzz2GJ7ipLtfBI646wlNzv9wTgi1vXx+Y7zsPDo7JCElZKEiJh9+Li4ki49SvSB3j01vbpgIHSdVeZyxLJiLnnsGQyY4nxOzKgWVhC/kWab61IyL2AsTNc7+BA165dKzs0YWUkIRJ2L3dTuSOwD9gPfJfvuIosrGiJZMQS57BUMiMtPMJa5K83dBgYBuT+WWDIyeHnn3+u7NCElZExRMLu5W4qPwNMAC6jtg7lVtouqfKyxNgZS51jwIABZtffkfE7whoU9kPmC8ANtUX4xq1tMoZISGFGpDCjvTMYDPj7+5OYmEhNIAs4B+Tc2l/WtassEY+5yYgUFBRCVdTadtWAxkAD1P/v69eto1u3bpUcnZ2zssKM0kIk7J5er2fus8/yz7RpRKIOps6dDEHZ1q6yRDzmtqxI64wQqqJmPjYBvkZNiAZ5e+Pv769ViMJKyBgiIYDuP/7I48Br1atzNdd2KeQnhG0ramxdPOANNASW9O8vLahCWoiE4I8/4LvvQKejx44d7MrKkq4mIaqQwsbWpQOfu7jwfFoanePiQFGgiBmawj5IQiTEu++qfx96CH1AAEEO0nAqRFVT6GSB1q3V8Su//w4HDkBAgNZhCg1JQiTs28GDsGMH6PUQEQGSDAlRZRU6tm7kSFi5EpYulYTIzsmnv7Bvc+aof0NDoXNnbWMRQlS+SZPUvzt3wsmT2sYiNCUJkbBfP/wA338P1arB66/L+AEh7FHbttCnjzqG6MsvtY5GaEi6zIT9atMGRo0CZ2f1Q1EIYZ9mzoTHHoN27WRwtR2ThEjYL1dXePFFaNJEPgCFKEaVL/R5551ql/mZM5CeDjVqaB2R0IAkRML+GH8BXrumJkU1a5Z8HyFsmDkJTVRUVKFLwcyfP79q1eeqVk39PDh9Wr3u6Kh1RKKSyRgiYX82b4YhQ+C336BuXWkdElbNYDAQExPD2rVriYmJybNQaWlERUXh5+dHjx49GD58OD169MDPz4+oqKhS3Tc0NDRPMgQQHx9PaGhoqc5hUz79FIKD4euvtY5EaEASImFfDAZ47z11MHVcnDSNC6tmTjJjvH95ExqDwUBYWBiFLXdp3BYeHl7mBM2qpafD5cuwfLnakizsiiREwr588w0cPw4uLur4IWkdEhWsvC085rbOmJvQxMbGFnjs/Oc4d+4csbGxJT0VUzzmtHRVimeeUbvQjx+HPXu0jkZUMrMSooyMDEvFIUTFy8pSW4cAxo0Db29t4xFVXnlbeCzROmNuQpOYmFhsjGU5ztyWrkpTrx6MHq1eX7ZM21hEpStTQrR582ZGjRpFs2bNcHR0pGbNmri4uHDffffx5ptvkpCQUFFxCmG+9evVAZN168ILL2gdjbAB5rRqmNPCY4nWGXMTGu9S/mAo6TibG4cUHq62HO/dq7YUCbtRqoRow4YNtGrViieeeIJq1arx0ksvERUVxdatW/noo4+477772LFjB82aNePZZ5/l4sWLFR23EGWTkQEffKBeDwuDBg20jUdYPXNaNcxt4bFE64y5CU1gYCC+vr55VojPTafT0ahRIwIDA4s8t02OQ2rRAgYMUK8vWaJtLKJSlSohmjNnDh988AHx8fGsXLmSZ555hgcffJDevXvzyCOPMHPmTHbv3s3Jkydxc3Pjs88+q+i4hSibqCiIjwcPD3juOa2jEZVEq/E75rbwWKJ1xtyERq/XM3/+fNOx+e8LMG/evGKn71t6HFKlMbYgf/MNpKZqG4uoNKVKiPbv30///v1xKGHhy4YNG/L222/z/PPPl+rBp0+fjk6ny3Np06aNaX96ejrjx4+nfv361K5dm0GDBnHhwoU85zh79iz9+/enZs2aeHh4MGXKFLKzs0v1+MKOhIbCtGkwfbraZSasnlbTzS3RqmFuC48lWmcskdCEhISwfv16GjZsmGe7r68v69evL7EOkSXHIVWqe+6BGTNg40ZwctI6GlFJyjyoeu/evSQnJxfYnpWVxd69e8scQLt27UhMTDRdvv/+e9O+559/nm+//ZZ169axZ88eEhIS8vwHNBgM9O/fn8zMTPbt28fq1auJjIwkIiKizHGIKs5ggBEj4IkntI7Ebpg7/kar6eaWaNUwt4XHEskMmJ/QGM9x+vRpdu/ezZo1a9i9ezenTp0q1X0tNQ6p0ul0EBGhVrC+eVPraEQl0SmF/QwqhoODA56enmzYsIG7777btP3ChQv4+PiU6UNv+vTpbNy4kUOHDhXYl5qairu7O2vWrCE0NBSAY8eOcdttt7F//37uvvtuNm/ezAMPPEBCQgKenp4ALF26lJdeeomLFy/iVMrMPi0tDVdXV1KPHcOlTp1Sxy9swM2boNerVam9vGTsUCmZu1SDOdWNjclM/o8mYyJQ0he5wWDAz8+vyKRGp9Ph6+vLqVOnCn1Oa9euZfjw4cXGCLBmzRqGDRtWbAzx8fGFtjSVFINRYa9jo0aNmDdvXpmqRGu19IalXgfNZGaqy3nk5IB8N1heTg5cvQpNm0L16uU6hen7OzUVFxcXs8Ip17T7oUOH0qtXLyIjI/NsL2NuBcCJEyfw8fGhWbNmjBgxgrNnzwJw8OBBsrKy6N27t+nYNm3a0LhxY/bv3w+oXXnt27c3JUMAwcHBpKWlceTIkXI8M1HlLF0K3burhRjN/M9SWSxRr8VWW2esYbq5JVo1LNnCU97WmfzxBAUFMWzYMIKCgiot+bDU66CZS5dg6lR1kHVOjtbRiApW5oRIp9MxdepUPv30UyZMmMCkSZNMH1RF9XcXxd/fn8jISLZs2cKSJUs4deoUgYGBXL16laSkJJycnHBzc8tzH09PT5KSkgBISkrKkwwZ9xv3FSUjI4O0tLQ8F1EFXbmi1hI5d05dm8gGxgJYol6Llks1WEMxQGsYvwOW6a4C7ZIZS7HU66CJ2rVh2zZ1+v2OHVpHIypYmRMi44daSEgIsbGxrF+/nr59+5KSklLmB+/bty+DBw+mQ4cOBAcHEx0dTUpKCl999VWZz1UWs2fPxtXV1XRp1KhRhT6e0MjSpWpzbOvW8OijWkdTIkvUa7H11hlrmG5uyVYNS7Xw2DqbfR1cXGDMGPW6FGqs8syqVN25c2d+/PFHUlJS6NWrl9nBuLm50apVK/7++2+8vLzIzMwskGhduHABLy8vALy8vArMOjPeNh5TmKlTp5Kammq6nDt3zuzYhZW5dAlWrlSvv/oqODtrG08JLJGMVIXWGWuYbg6WbdWw9RYeS7HZ1yEsTB2HeOCAuiC0qLLKnBCNGjWKGrkWxPTy8mLPnj306tWLxo0bmxXMtWvXOHnyJN7e3nTp0gVHR0d27txp2n/8+HHOnj1LQEAAAAEBAfz+++95Zr1t374dFxcX2rZtW+TjODs74+LikuciqpiFC9UB1R06wNChWkdTIkskI1WhdcZappuDDbdqVFGarYXWuDEMHqxeX7q0ch5TaKLMCdGqVauok2+0vbOzM6tXr+bUqVNlOtfkyZPZs2cPp0+fZt++fTz88MPo9XqGDRuGq6srTz75JJMmTWL37t0cPHiQ0aNHExAQYJrddv/999O2bVseffRRDh8+zNatW3nttdcYP348zlbeIiAqUEICfPKJej0iAhwdtY2nFCyRjFSF1hlrmm5ujMcmWzWqGM3XQps0Sf373XdgbTWThMVUK+2Bv5WyqbBDhw6lfvDz588zbNgw/v33X9zd3bn33ns5cOAA7u7uAHzwwQc4ODgwaNAgMjIyCA4OZvHixab76/V6Nm3axNixYwkICKBWrVqMGjWKmTNnljoGUQVFR6tLddx5Jzz0kNbRlIolkhFLtc6UNEW6NK0zoaGh6HS6POcpazHAwqbtl2W6eUhICAMGDNBkurmwnKLKMBjHxVXKwOw774R771Vnq65cCa+9VrGPJzRR6jpEDg4OeT7gjB9uiqKYtut0Outak6aUpA5RFaMosH07+PlBUJDW0ZSKJeq1WOIcxi8foNBkprRfPpaon6NV7RxhPcytKWVR27fDDz/A//2fWjdHmM/K6hCVOiE6c+aM6bqiKNx+++1ER0fTpEmTPMflv20LJCGqYq5fV6fZN26sDoasROZ8iVsiGbHUOWy5GKCoOmJiYujRo0eJx+3evZugyvjxk5UFp0+rnyvl/AIXuVhZQlTqLrP8iY4xM7fFBEhUUQkJ6geVo6O6iGslf/maU50ZLNNVZKlzWKKryTj+Rojysrq10Bwdwc0NkpLUmatlrL0nrFuZl+4wqlOnDocPH6ZZs2aWjqnSSQtRFfHss2rxtLfegokTKzUhMne5idws0bIirTOiKrC6FiKAqCiYOVP9vLGRMYpWy8paiCQhQhKiKuHIEbj/fvX6Dz9At26V9tBWNc5BiCrEKtdCe/VV9UfXHXfAt99WzmNWVVaWEJlVmLGsS3UIUWHee0/9+8ADkGvR4cpgiRpCQoiCrHIttAkT1K6zX36Bgwcr73FFhSv1GKLOnTvneUPevHmTBx98sMCK8r/88ovlohOiNH79VV1vyMEBZsxQ/1YiqxvnIEQVYqkyDBbj7Q3Dh8Pq1bBkCXz0UeU+vqgwpU6IBg4cmOf2gAEDLB2LEOUzZ476d9Ag6NSp0h/eEjWEhBBFs7qaUpMmqQnR1q1w5gzI5KIqodRjiM6ePYuvry8OlfzruzLIGCIbtn8/hIaq0+x//RVuv73SQ7DKcQ5CiIr1f/+nTuJ4/HF4802to7FNtjqGqGnTply6dMmsBxPC4o4fV/vzhw6Fdu00CcEqxzkIISrWCy+of9etg9RUbWMRFlHqhKick9GEqFgjR6pLdcyYoWlNEEuuji6EsAHBwTBiBLz9dqXXPBMVo0xLd1y4cMG0zlhVIl1mNiwlBVxdwcfHKoqkSf0fIezMpUtqocZ69bSOxPZYWZdZqQdVA7z++uvUrFmz2GPmzp1rVkBClMpPP6m/ypo3VyvHWkEyBFKdWQi7U6cO/PsvZGZCvlnXwraUKSH6/fffC0yzz03qEolKkZMDL78Mx47BggVqXRAhhNBCRoY64+zAAfj0U6v5cSbKrkwJ0YYNG/Dw8KioWIQonW+/VZOhOnUgJEQ+gIQQpVIhXdoZGfDBB5CeDvv2wT33WCZYUelKPahaWn+EVcjO/q8q9dixkG8QsxBCFCYqKgo/Pz969OjB8OHD6dGjB35+fkRFRZl3Ynd3ePRR9fqyZeYHKjQjs8yEbfn6a/jnH3XckHHaqwUZDAZiYmJYu3YtMTExGAwGiz+GEKJyGRdfzr/ETnx8PKGhoeYnRZMmqX937YKTJ807l9BMqROiVatW4erqWpGxCFG8zEwwDtp/7jmwcPdthf2CFEJoxmAwEBYWVuiPeuO28PBw8378tGkD/fqBosDSpeU/j9BUqRKiAwcOMGrUKJydnUs89saNGxw5csTswIQoYO1aOH9ebaIOC7PoqSv8F6QQQhOVtvjy5Mnq36gouHzZvHMJTZQqIXr00UcJDg5m3bp1XL9+vdBj/vzzT1555RWaN2/OQVkBWFSEOnXUZGjSJIvW/KiUX5BCCE1U2uLLQUHQsaM6uHrVKvPOJTRRqllmf/75J0uWLOG1115j+PDhtGrVCh8fH6pXr86VK1c4duwY165d4+GHH2bbtm20b9++ouMW9qhfP+jeXS3iZUFl+QUpNYaEsC2VtviyTqeWA9mwAbp1M+9cQhOlrlRt9PPPP/P9999z5swZbt68SYMGDejcuTM9evSgno1W6pRK1Tbi8mXw9FRbiSxo7dq1DB8+vMTj1qxZw7Bhwyz62EKIilXpiy9nZMCZM+oai6UYZmLXbLlSNUDXrl3p2rWrWQ8qRJmsWaNWpe7bV12mw8Iq7RekEKLSGRdfDg0NRafT5UmKKmTxZWdn9XPq0iVJiGxMqWeZCaGJlBR44w113NCPP1ZIafzAwEB8fX2LrLWl0+lo1KgRgYGBFn9sIUTFq/TFl8+fh4gIiImx7HlFhSpzC5EQlWr5ckhLg1atYMiQCnmISv8FKYSodCEhIQwYMKByFl9evVqdbZacrA62FjZBWoiE9fr3X/joI/X6q69WaPNzpf+CFEJUOuPiy8OGDSMoKKjifuSEh4ODA3z/Pfz5Z8U8hrA4SYiE9Vq0CK5fh3btYOjQCn+4kJAQTp8+ze7du1mzZg27d+/m1KlTkgwJIcqmWTMYOFC9LoUabUaZZ5n9888/NGvWrKLi0YTMMrNCSUnq1NWMDPjyS3jkEa0jEkKI0jMu9OroqI5/lIXRC7KyWWZlbiFq0aIFPXr04LPPPiM9Pd2sBxciN4PBwL59+9i4cSOJr7yiJkNdusDDD2sdmhBClE23buDvD1lZ/3X9C6tW5oTol19+oUOHDkyaNAkvLy+eeeYZfvzxx4qITdiR6Oho/P39CR08mHHjxzNx61b+rFaNffffr/7CEkIIW2NcgPrzz+HmTW1jESUqc0LUqVMn5s+fT0JCAh9//DGJiYnce++93H777cydO5eLFy9WRJyiCouOjmbMmDEk5Cqdfwjon51N99mzZR0xIYRtevhhuOsueOwxdTyksGplHkOUX0ZGBosXL2bq1KlkZmbi5OTEI488wjvvvGMzhexkDJF2DAYD/v7+eZIhHeAGnAeuWrqKrBBCVCZFgYsX1Sn4NrqaQ4Wx9TFERj///DPjxo3D29ubuXPnMnnyZE6ePMn27dtJSEhgwIABZgUm7ENcXFyeZOgdYCrqG/MaFlyJWgghtKDTqQtTV6umjicSVqvMhRnnzp3LqlWrOH78OP369eOTTz6hX79+ODiouVXTpk2JjIzEz8/P0rGKKig5Odl0vQ0wAjUZWgvk5DrO7JWohRBCK87OcOCAWrn6rbe0jkYUocwJ0ZIlS3jiiSd4/PHHi+wS8/DwYOXKlWYHJ6o+j1xTUaegJkPfAfvzHVea7leDwVA5VWiFEKIsEhJgzBjIzlZLiHTqpHVEohBmjyGqCmQMkXaMY4jcExPZDBgAf+Dgrf2lXYk6KiqKsLAwzp8/b9rm6+vL/PnzpbCiEMIizPrRNWKEulD1gw9KsUYjWx9DtGrVKtatW1dg+7p161i9erVZwQj7o9frmTlzJlNu3d4A/HLremnXEYuKiiI0NDRPMgQQHx9PaGiozFITQpgtKioKPz8/evTowfDhw+nRowd+fn6l/3yZNEn9u3kzxMdXXKCi3MqcEM2ePZsGDRoU2O7h4cFbZvSNvv322+h0OsLDw03b0tPTGT9+PPXr16d27doMGjSICxcu5Lnf2bNn6d+/PzVr1sTDw4MpU6aQnZ1d7jhE5evXoAE9gWxgJmBssizNOmIGg4GwsDAKa+g0bgsPD8dgMFg8biGEfbDIj64uXaB7d7XbbPnyCopUmKPMCdHZs2dp2rRpge1NmjTh7Nmz5Qrip59+YtmyZXTo0CHP9ueff55vv/2WdevWsWfPHhISEvJ8ORoMBvr3709mZib79u1j9erVREZGEhERUa44hEbmzgXAYdgwFuzaVaZ1xGJjYwt8SOUms9SEEOaw6I+uyZPVv19+CdeuWTJMYQFlTog8PDz47bffCmw/fPgw9evXL3MA165dY8SIEaxYsYK6deuatqemprJy5Urmzp1Lz5496dKlC6tWrWLfvn0cOHAAgG3btvHnn3/y2Wef0alTJ/r27csbb7zBokWLyMzMLHMsQiNvvQWDBuEQEUFQjx5lWom6tLPPZJaaEKI8LPqjq39/aNlSHTfz6acWjFJYQpkTomHDhvHcc8+xe/duDAYDBoOBXbt2ERYWxtByrEg+fvx4+vfvT+/evfNsP3jwIFlZWXm2t2nThsaNG7N/vzoHaf/+/bRv3x5PT0/TMcHBwaSlpXHkyJEiHzMjI4O0tLQ8F6GhevVg/nxo3brMdy1t8U9bKRIqhLAuFv3R5eCgjiXq0AG8vMyMTFhamafdv/HGG5w+fZpevXpRrZp695ycHB577LEyjyH64osv+OWXX/jpp58K7EtKSsLJyQk3N7c82z09PUlKSjIdkzsZMu437ivK7NmzmTFjRpliFRXg5k11nTKdDtzc1L9lFBgYiK+vL/Hx8YU2aRtnqQUGBlogYCGEvbH4j64xY2DUKDh7FjIzwcnJjOiEJZW5hcjJyYkvv/ySY8eO8fnnnxMVFcXJkyf5+OOPcSrDP+y5c+cICwvj888/p3o5p9uV19SpU0lNTTVdzp07V6mPL1CnWw4YAE8/DTduQM2a5TqNXq9n/vz5wH+z0oxKO0tNCCGKYvzRlf/zxUin09GoUaPS/+jS66FGDXBxUT/7hNUo99IdrVq1YvDgwTzwwAM0adKkzPc/ePAgycnJ3HHHHVSrVo1q1aqxZ88eFixYQLVq1fD09CQzM5OUlJQ897tw4QJet5oavby8Csw6M972KqY50tnZGRcXlzwXUck2bYIjR+CHH8DTs1ytQ0YhISGsX7+ehg0b5tlemllqQghRnAr70aUoEBkJv/xS4qGicpS5y8xgMBAZGcnOnTtJTk4mJycnz/5du3aV6jy9evXi999/z7Nt9OjRtGnThpdeeolGjRrh6OjIzp07GTRoEADHjx/n7NmzBAQEABAQEMCbb75JcnKyqeLx9u3bcXFxoW3btmV9aqKyZGfDe++p1595Bnx9zT5lSEgIAwYMkErVQgiLM/7oKqz467x588r3o2vGDHX6/eHDsGqVBaMV5VXmStUTJkwgMjKS/v374+3tXSBj/uCDD8odTFBQEJ06dWLevHkAjB07lujoaCIjI3FxcWHixIkA7Nu3D1CTs06dOuHj48OcOXNISkri0Ucf5amnnirTeCapVF3J1q2D8HBwdYXjx9UWIiGEsHIWXR7ojz+gfXt1oPXevWq1ZntjZZWqy9xC9MUXX/DVV1/Rr18/sx64ND744AMcHBwYNGgQGRkZBAcHs3jxYtN+vV7Ppk2bGDt2LAEBAdSqVYtRo0Yxc+bMCo9NlFNmpqnuEBMnSjIkhLAZer2eoKAgy5zs9tvh/vth2za1pWj2bMucV5RbmVuIfHx8iImJoVWrVhUVU6WTFqJK9Omn8PLL0KABHDsG5ahdJYQQVcK2bRAcrA6y/uknyFWLzy5YWQtRmQdVv/DCC8yfP7/QKc5CFEtR1MUNQe0yk2RICGHP/u//1Jaimzfhk0+0jsbulbnL7Pvvv2f37t1s3ryZdu3a4ejomGe/LKQpiqTTqQnRmjVqd5kQQtgznQ5eeAFGj1ZnnI0dK3WJNFTmhMjNzY2HH364ImIR9kBR1NYhKXUghBAwbBi89hp07AiXLoGPj9YR2a0yJ0SrZHqgKI+TJ8HbG5yd1dllQggh1M/Ev/5Sx9L8+6/W0di1chVmzM7OZseOHSxbtoyrV68CkJCQwDVZvVcUJi0NHnoIHnhA7SuXJmEhhPhPzZpQp47ahZadrXU0dqvMCdGZM2do3749AwYMYPz48Vy8eBGAd955h8mTJ1s8QFEFLF8OKSlgMKgrPQshhMirRg24eBE++kjrSOxWmbvMwsLC6Nq1K4cPH6Z+rllCDz/8MGPGjLFocKIKuHwZVqxQr7/6qvqfvggWLXomhBC2JCkJevZUfzj27AlVqLSNrShzC1FsbCyvvfZagYVc/fz8iI+Pt1hgoopYsgSuXYO2bdXBg0WIiorCz8+PHj16MHz4cHr06IGfn5/MWhRC2AdvbzAWPF66VNtY7FSZE6KcnBwMBkOB7efPn6eOFDUUuV24AB9/rF6PiFAHDxYiKiqK0NDQPGsEAcTHxxMaGipJkRDCPhiHnWzcqM44E5WqzAnR/fffb1prDNTVfq9du8a0adMqZTkPYUMWLoT0dOjUCYpY/NBgMBAWFlZooU/jtvDw8EKTcCGEqFICA+GOOyAj478fk6LSlDkhev/99/nhhx9o27Yt6enpDB8+3NRd9s4771REjMIWGQzw++/q9RkzIF8BT6PY2NgCLUO5KYrCuXPniI2NrYgohRDCeuh0/7USffqp+oNSVJoyD6r29fXl8OHDfPHFF/z2229cu3aNJ598khEjRlCjmAGzws7o9fDZZ/Dzz9C/f5GHJSYmlup0pT1OCCGsWYmTR0JD4aWX4Nw5+OoreOwx7YK1M2VOiACqVavGyJEjLR2LqEoURV3Zvn9/NTkqgre3d6lOV9rjhBDCWkVFRREWFpanVdzX15f58+cTYhxW4OgIzz0Hb70F169rFKl9KvNq95+UsADdYzaYzcpq9xa2eTN07qyu3Ny4cbEJkcFgMHW5FvZW1Ol0+Pr6curUKZmCL4SwWcbJI/k/53Q6HQDr16//Lym6cUO9XLqkliopYsiBzbOy1e7LnBDVrVs3z+2srCxu3LiBk5MTNWvW5PLly2YFpAVJiCzo+HHo1Qvc3OCXX8DPr8S7GD8ogDwfFoV+UAghhI0x/vArarxkoT/8FAUSEtRK/1V1uSMrS4jKPKj6ypUreS7Xrl3j+PHj3Hvvvaxdu9asYEQV8N576n9kf3+1dagUQkJCWL9+PQ0bNsyz3dfXV5IhIYTNK9fkEZ1OXQR77144caISohTlGkOUX8uWLXn77bcZOXIkx44ds8QphS36/XeIjlb/I0+fDg6lz7dDQkIYMGCAVKoWQlQ55Z48Mm0afPABPPywWsZEVKhyLe5amGrVqpGQkGCp0wlbNGeO+nfAALjzzjLfXa/XExQUxLBhwwgKCpJkSAhRJZR78sjQoerfb79Vl/YQFarMLUTffPNNntuKopCYmMjChQu55557LBaYsDE//QS7dqkDqCMiytQ6JIQQVVlgYCC+vr4lTh4JDAzMu+Ouu6BbN9i3T1309bXXKili+1TmhGjgwIF5but0Otzd3enZsyfvv/++peIStubdd9W/gwerlamFEEIAauv3/PnzCQ0NRafTFTp5ZN68eYW3ik+erFb6X7MGJk2CmjUrK2y7U661zHJfDAYDSUlJrFmzRmrF2Kv0dPDwUNcqe/11dQyREEIIk3JPHnnoIWjWDFJT1aRIVJgyT7uvimTavQWkpqrr73TsKAmREEIUocRK1YVZuBAmTlRn7n7/fbG13WyKlU27L3OX2aRJk0p97Ny5c8t6emGLsrPVqfYtW0oyJIQQxTBOHimTxx9XW9+dneH8eWjSpCJCs3tlToh+/fVXfv31V7KysmjdujUAf/31F3q9njvuuMN0nE6+GKu+nBx1ZlnfvtChg/RtCyFERahdW10XskYNSEnROpoqq8wJ0YMPPkidOnVYvXq1qWr1lStXGD16NIGBgbzwwgsWD1JYqc2b4cMPYfVq+OcfaR0SQoiK0ry5urZZSgoYDFWn28yKlHlQ9fvvv8/s2bPzLOFRt25dZs2aJbPM7InBoFalBnjiCahXT9t4hBCiqqtZUy1psnWr1pFUSWVuIUpLS+PixYsFtl+8eJGrV69aJChhAzZuhL/+UtfYefFFaR0SQoiKdukSBASoA5H37QNfX60jqlLK3EL08MMPM3r0aKKiojh//jznz5/n66+/5sknn5Q1p+xFVhYYB8yPGwdSbkEIISqeuzvccYfaQr9smdbRVDllToiWLl1K3759GT58OE2aNKFJkyYMHz6cPn36sHjx4oqIUVibdevg9GmoX18tFCaEEKJyGMfpfvWV2lIkLKbcdYiuX7/OyZMnAWjevDm1atWyaGCVSeoQlUFGBtx7LyQkwMyZ6lRQyllbQwghRNnk5EC7dnDsGLzyCowfr3VE5WdldYjKveBUYmIiiYmJtGzZklq1ahW6PouognJy1AUHW7ZUC4UBUVFR+Pn50aNHD4YPH06PHj3w8/MjKipK42CFEKKKcXD4r5UoMlKtAycsoswJ0b///kuvXr1o1aoV/fr1IzExEYAnn3xSptzbgxo1YPRo2LsX3NyIiooiNDSU8+fP5zksPj6e0NBQSYqEEMLSRoxQxxMlJEC+BddF+ZU5IXr++edxdHTk7Nmz1MxViG/IkCFs2bLFosEJK5SerlZLrVsXg8FAWFhYoa2Dxm3h4eEYDIbKjlIIIaquGjXUCS06Hfz2m9bRVBllToi2bdvGO++8g2++6X4tW7bkzJkzFgtMWJmrV2H4cNi2DdzcwNmZ2NjYAi1DuSmKwrlz54iNja28OIUQwh5MnAiHDkF4uHSbWUiZ6xBdv349T8uQ0eXLl3F2drZIUMIKffQR7NkD587BqFEApu7SkpT2OCGEEKVUv75aEPf8ebWCtZkDikU5WogCAwP55JNPTLd1Oh05OTnMmTOHHj16lOlcS5YsoUOHDri4uODi4kJAQACbN2827U9PT2f8+PHUr1+f2rVrM2jQIC5cuJDnHGfPnqV///7UrFkTDw8PpkyZQrZky5Z15cp/NS9eeUVtrgW8S1l/qLTHCSGEKAOdTm2xP3NGHU8kzFLmhGjOnDksX76cvn37kpmZyYsvvsjtt9/O3r17eeedd8p0Ll9fX95++20OHjzIzz//TM+ePRkwYABHjhwB1PFK3377LevWrWPPnj0kJCTkKf5oMBjo378/mZmZ7Nu3j9WrVxMZGUlERERZn5YoztKlapdZmzYwcqRpc2BgIL6+vkUu5KvT6WjUqBGBgYGVFakQQtiXRYugXz+YP1/rSGxeueoQpaamsnDhQg4fPsy1a9e44447GD9+vEVaAurVq8e7775LaGgo7u7urFmzhtDQUACOHTvGbbfdxv79+7n77rvZvHkzDzzwAAkJCXh6egJq4ciXXnqJixcv4uTkVKrHlDpExbh4US0Vf/MmfPppnoQIMM0yA/IMrjYmSevXr5cK5kIIUVF27oTevdWW+x9/tK11JW25DlFWVha9evUiOTmZV199la+++oro6GhmzZpldjJkMBj44osvuH79OgEBARw8eJCsrCx69+5tOqZNmzY0btyY/fv3A7B//37at29vSoYAgoODSUtLM7UyFSYjI4O0tLQ8F1GEDz9Uk6GOHWHIkAK7Q0JCWL9+PQ0bNsyz3dfXV5IhIYSoAAaDgZiYGNauXUuMgwNKhw7q53RkpNah2bQyDap2dHTkNwtP8fv9998JCAggPT2d2rVrs2HDBtq2bcuhQ4dwcnLCzc0tz/Genp4kJSUBkJSUlCcZMu437ivK7NmzmTFjhkWfR5WUlKS2CgFERICjY6GHhYSEMGDAAKlULYQQFSwqKoqwsLA8M3zD6tZlHsAnn8CECVDK3hGRV5nHEI0cOZKVK1daLIDWrVtz6NAh4uLiGDt2LKNGjeLPP/+02PkLM3XqVFJTU02Xc+fOVejj2SwPD3j3XRg8GB58sNhD9Xo9QUFBDBs2jKCgIEmGhBDCwooqhLvkyhXiQR3i8PXXmsRWFZR52n12djYff/wxO3bsoEuXLgXWMJtrXAW9lJycnGjRogUAXbp04aeffmL+/PkMGTKEzMxMUlJS8rQSXbhwAS8vLwC8vLz48ccf85zPOAvNeExhnJ2dpURAaeh00LMnPPZYka1DQgghKl5xhXAzgYXAbEBZvhzd0KHq57cokzK3EP3xxx/ccccd1KlTh7/++otff/3VdDl06JDZAeXk5JCRkUGXLl1wdHRk586dpn3Hjx/n7NmzBAQEABAQEMDvv/9OcnKy6Zjt27fj4uJC27ZtzY7FrmVlqbUtatUCGWguhBCaKqkQ7jLgOmA4dw7++afS4qpKSt1C9M8//9C0aVN2795tsQefOnUqffv2pXHjxly9epU1a9YQExPD1q1bcXV15cknn2TSpEnUq1cPFxcXJk6cSEBAAHfffTcA999/P23btuXRRx9lzpw5JCUl8dprrzF+/HhpATLHiRPwyCPqmmUvvwzS/SWEEJoqqcDtFeABYNLMmTzYoEGlxFTVlLqFqGXLlly8eNF0e8iQIQWKJJZVcnIyjz32GK1bt6ZXr1789NNPbN26lf/7v/8D4IMPPuCBBx5g0KBBdO/eHS8vrzyLher1ejZt2oRerycgIICRI0fy2GOPMXPmTLPisnvvvw/JyfDrr1L9VAghrEBpZnLHAG7t2oGiqFPaRZmUug6Rg4MDSUlJeHh4AFCnTh0OHz5Ms2bNKjTAyiB1iHL54w8IDlb7n3/4Qa1BJIQQQlMGgwE/Pz/i4+MLHUek0+nw9fXl1MmT6M+fh7/+gvbtNYi0DGy5DpGougwGA/v27SNx8mQAcvr3B39/jaMSQggBao/I/FvVqPOvDmC8PW/ePPRXr8KAAfDQQ+qsM1FqpU6IdDpdkf8IwrZFR0fj7+/PW4MH4/377xiAfj/+SNTGjVqHJoQQ4pZSFcKtW1dtbcnMBAuWyLEHZeoy69u3r2mw8rfffkvPnj0LTLvPPcbHVthzl1l0dDRjxoxBAb4Aut/6OwJQdDqpNi2EEFbGYDAUXwj3q6/UlQXq1VOX87i1ILfVsbIus1InRKNHjy7VCVetWmVWQFqw14TIYDDg7+9PQmIiLYE9qPUsOgFHydUnfeqUFFoUQghbkZ0NLVrAmTPw5pvw+ONaR1Q4K0uISj3t3hYTHVG8uLg4Em5N5TwBDADaoCZDoC7Weu7cOWJjYwkKCtImSCGEEGVTrRqEhcGkSWq32WOPgYMMGS6JvEJ2LHdBSz3wF2q10/xKqn8hhBDCyjz5pFo25Z9/YMcOraOxCZIQ2TFjCYWGQG0gFbhRyHGlqX8hhBDCiri4wJgx6vX//U/bWGxEmdcyE1WHv78/w+rW5e0rV/gEeC7ffuMYosDAQC3CE0IIYY7wcLV8Sps2YDDIqgMlkBYiO6bX6ZhesyaOwFUKtg4piqLWtZD/REIIYXt8fSE0VG0tulFY+7/ITRIie/bNN9SJjycNmKN1LEIIISxPp1NrE127BqmpWkdj1SQhslfZ2SjvvQfAIqCwYdM6nY7w8HAMBkOlhiaEEMKCoqLg//4P5s3TOhKrJgmRvVq/Ht2pU1wG5hZxSO5p90IIIWxU3bpw5QqsXQvXr2sdjdWShMgeZWTAXDUNmg9cKuFwmXYvhBA27MEH1UKNV6/CZ59pHY3VkoTIHv35J6SkkOnmxvxSHC7T7oUQwoY5OKhFGgE+/lidcSYKkITIHnXuDFu2oF+9mjq+vkUu0qvT6WjUqJFMuxdCCFs3apS6ttn58/Ddd1pHY5UkIbJH6eng4YE+OJj589U2ovxJkfG2TLsXQogqoGZNGDtWvb58ubaxWClJiOzJtWsQG6sOqqtbF5ydCQkJYf369TRs2DDPob6+vrLSvRBCVCUTJoCTE/z6Kxw/rnU0VkcqVduTlSthzhy1UNfnn5s2h4SEMGDAAGJjY0lMTMTb25vAwEBpGRJCiKrEywuWLoXGjUHGhhYgCZG9SElR/yOAWo/CySnPbr1eLyvaCyFEVTd6NKSlwdmzkJOjDrgWgHSZ2Y9ly9T/BK1aqYPrhBBC2KdatdTLpZKKrtgXSYjswb//wkcfqddfew2cnbWNRwghhGYMV6+SPHo0md26Ebdtm6xGcIskRPZg0SJ1Yb/27WHIEK2jEUIIoZGoqCj8br+d5D17cLp5k52jR+Pv7090dLTWoWlOEqKqLikJIiPV6xERBcYOCSGEsA9RUVGEhoZyPj7etGTTaOBiYiJjxoyx+6RIEqKqLjFRnU3QtSsMGKB1NEIIITRgMBgICwtDURQA1gAXAG/gIUABpk2bZtfdZ5IQVXWdOsGGDfDJJ+DoqHU0QgghNBAbG8v58+dNtzOAhbeuP3Prb3xCAnFxcZUdmtWQhKiqu3EDXF3V2WVCCCHsUnx8fIFtS4GbwO1At1vbkpKSKjEq6yIJUVV18qS6iN/Vq+r6NVJkUQgh7NbFixcLbLsErL51/clbf//999/KCsnqSGHGqmruXNi4EX7/Hdas0ToaIYQQGnJ3dy90+1wgHtgO6ID69etXYlTWRVqIqqKjR+F//1OvT5worUNCCGHn8q9XaXQCeBNIBGoCXl5elRiVdZGEqCp67z1QFOjfH7p1K/l4IYQQVVpgYCC+vr6F7lOAFKCJhwf+d9xRmWFZFUmIqprDh2HLFnV9munTZZ0aIYQQ6PV65s+fj06nK3T/3cD6GjXQL1xY6H57IN+WVc2cOerfhx8GO870hRBC5BUSEsL69esLtBQ1atSIWWFhuJ05o5ZoycjQKEJtyaDqKsBgMBAXF4dh3z4CY2JQqlVDFxEhrUNCCCHyCAkJYcCAAcTGxpKYmIi3tzeBgYHoc3Jg/XqIj4d162DkSK1DrXSSENm46OhoIiIiSEhMpBUwA7jk6IjuxAlCOnTQOjwhhBBWRq/XExQUlH8jPPccvPSSuhj4iBFQRPdaVSVNCDYsOjqaMWPGkJCYCMBJ4FngqZs3CR08mKioKE3jE0IIYUOefhpq1YITJ2D3bq2jqXSaJkSzZ8/mzjvvpE6dOnh4eDBw4ECOHz+e55j09HTGjx9P/fr1qV27NoMGDeLChQt5jjl79iz9+/enZs2aeHh4MGXKFLKzsyvzqVQ6g8FAREQESq5ttYFU1NkCiqIQHh5u1+vSCCGEKAM3N3jiCfX6smWahqIFTROiPXv2MH78eA4cOMD27dvJysri/vvv5/r166Zjnn/+eb799lvWrVvHnj17SEhIICQkxLTfYDDQv39/MjMz2bdvH6tXryYyMpKIiAgtnlKliYuLM7UM9UStI9EANSEyOnfuHLGxsRpEJ4QQwiY9/7w6/vT779WadnZE0zFEW7ZsyXM7MjISDw8PDh48SPfu3UlNTWXlypWsWbOGnj17ArBq1Spuu+02Dhw4wN133822bdv4888/2bFjB56ennTq1Ik33niDl156ienTp+Pk5KTFU6twxvVmdMBUoB1wFfg+33GFrV8jhBBCFKppU3j9dfD2Bh8fraOpVFY1hig1VW3fqFevHgAHDx4kKyuL3r17m45p06YNjRs3Zv/+/QDs37+f9u3b4+npaTomODiYtLQ0jhw5UujjZGRkkJaWludia4zrzTzAf8nQO4UcV9j6NUIIIUSRpk+HoUPBYFCL/NoJq0mIcnJyCA8P55577uH2228H1FYQJycn3Nzc8hzr6elpaiFJSkrKkwwZ9xv3FWb27Nm4urqaLo0aNbLws6l4devWRQ9MuXV7CZBQyHH2vC6NEEKIcqpdG2rUgBs3tI6k0lhNQjR+/Hj++OMPvvjiiwp/rKlTp5Kammq6nDt3rsIf09KuXLlCCNACuAK8V8Rx9rxysRBCiHLKyoLISOjXD27e1DqaSmEVCdGECRPYtGkTu3fvzlNB08vLi8zMTFJSUvIcf+HCBdMCdF5eXgVmnRlvF7VInbOzMy4uLnkutqaBqyuTbl3/ECiqY6yoFY6FEEKIIjk6wmefwd9/w9q1WkdTKTRNiBRFYcKECWzYsIFdu3bRtGnTPPu7dOmCo6MjO3fuNG07fvw4Z8+eJSAgAICAgAB+//13kpOTTcds374dFxcX2rZtWzlPRAMdjh6lCWoi9EExxxW1wrEQQghRJL1enXEGsHIl5ORoG08l0CmKdiOmxo0bx5o1a/jf//5H69atTdtdXV2pUaMGAGPHjiU6OprIyEhcXFyYOHEiAPv27QPUafedOnXCx8eHOXPmkJSUxKOPPspTTz3FW2+9Vao40tLScHV1JfXYMVzq1LHws6wYhgsXiLr3XuJu3OD9Io5p1KgRp06dQq/XV2psQgghqoCrV6FRI0hNVatX9+1r2fPn5KiP0bQpVK9erlOYvr9TU83u7dG0hWjJkiWkpqYSFBSEt7e36fLll1+ajvnggw944IEHGDRoEN27d8fLyytPBWa9Xs+mTZvQ6/UEBAQwcuRIHnvsMWbOnKnFU6o0eldXXN55h6LWJdbpdMybN0+SISGEEOVTpw4884x63Q4KNWraQmQtbKqFKCdHLZp1+TJ4ehIVG0tYWBjnz583HdKoUSPmzZuXp4ClEEIIUWbnz6stONnZsGkTdO5suXNLC5Ewy6JFMGSIutaMqyshISGcPn2a3bt3s2bNGnbv3s2pU6ckGRJCCGE+X1/1Owdg6VJtY6lgstq9LUlNhSVL1L/Dh8OtKtyFrlwshBBCWMILL6gFGkNC1L86ndYRVQhJiGzJihVqMtSiBTz+uNbRCCGEsAedO8Mnn8CZM2pNopo1tY6oQkiXma24fBmWL1evv/qqWkFUCCGEqAx6PdStC+npWkdSYSQhshWLF8P169C2LQwbpnU0Qggh7M3Zs+o6ZytWaB1JhZCEyBZcuACrVqnXIyLA2VnbeIQQQtifAwfg66/VhCg7W+toLE4SIlvwySdqM2XnzuqgNiGEEKKyPfYY1K8P8fHw7bdaR2NxkhDZgrAwtWVo1ix1fRkhhBCistWoAePGqdeXL1dnnFUhkhDZgqwsGDUKgoO1jkQIIYQ9Gz9eHbbx22/w449aR2NRkhBZsytXIDMTMjLUZkpZhkMIIYSWPD1hxAgALr/5Jhs3bmTfvn0YDAaNAzOfJETWLCICuneHQ4egdm2toxFCCCHY3r49AG4HDzJn/HhCBw/G39+f6OhojSMzjyRE1ur4cdiwAc6dU1cbltYhIYQQGouKiiJ40iQigbmAsSpRYmIiY8aMsemkSBIia/Xee+qAtT59IDBQ62iEEELYOYPBQFhYGIqiMBqYBWTc2mccXj1t2jSb7T6ThMga/fYbREer68VMn66ubi+EEEJoKDY2lvPnz5tuX0NtITKuU68A8QkJxMXFaRCd+eSb1hq9+676d8AAuPNObWMRQgghULvFcssBugHLgNwFYZKTkysxKsuRhMja/PQT7NqljhmaNk1ah4QQQlgFb2/vPLcdgTnA/wEP59ru4eFRiVFZjnzbWpsdO9S/gwdDx47axiKEEELcEhgYiK+vLzqdDoBM4MNb+54GdEBDHx/8/f01itA8khBZmxdfVNctmzZNHUMkhBBCWAG9Xs/8+fMBTEnRMuAG0BYIBGbMmIHeRmdFS0JkBTIzM1mxYgWvvvoqqxctIrN7d2jdWuuwhBBCiDxCQkJYv349DRs2BOAycGvpcT5s25Z+/fppFpu5dIpSxRYjKYe0tDRcXV1JPXYMlzp1KvWxZ82axbJly2iZk8Nl1CmM8Q4OPPvCC8yZM6dSYxFCCCFKw2AwEBsbS2JiIs0MBu567DF0iqKOgS3tD/qcHLh6FZo2herVSz6+EKbv79RUXFxcynUOo2pm3VuYZdasWSxesgQdMB9oBowBjuXk8O6tmWaSFAkhhLA2er2eoKCg/zasWwfffAPLlsHcuZrFZQ7pMtNIZmYmy5YtA6Av0B61hsPeXMfMnTuXzMxMDaITQgghymDyZOjcGfz91aLCNkgSIo2sXr0aQ04ODsCUW9uWAfG5jjEYDCxevLjygxNCCCHK4t57IS4OHnoI0tNLPt4KSUKkkdOnTwMwEGgNpKDWc8jv5MmTlRWSEEIIUT46HTg6gpsb3LypdTTlIgmRRvz8/KgGvHDr9kKgsNqezZs3r7yghBBCCHPk5MBnn6mLk9sYSYg0MmrUKIbqdDQFLqGuGpyfXq9n3LhxlRyZEEIIUU6ffQbvvAMffGBzY4kkIdKIk5MTfe+8k0xgHnClkGMmTZqEk5NT5QYmhBBClNcTT0CdOnDy5H8rL9gISYg01OOLL/j4kUdYlK8itV6vZ8qUKTLlXgghhG1xdYUnn1Sv35pJbSukMCMaFma8fBk8Pcl0dWXx4sWcPHmS5s2bM27cOGkZEkIIYZvOnIHmzcFggC1boH37wo+TwoyC6Ghwd4e2bcHFBScnJ8LDw7WOSgghhDBfkyYwaBB89RUsWQI2Uj5GuswqW1oaTJkCAwfCH3+As7PWEQkhhBCW9cKtOdTffQeJidrGUkrSQlTZPvoIUlKgWTPo00fraIQQQgjLu+suuO8+dYD11avg7a11RCWShKgyXb4My5er1195BWrU0DYeIYQQoqLs2KEmQ/HxJR9rBaTLrDItXaq+Odq0gZEjtY5GCCGEqDjVqkGtWurQEBtYzkMSosqSnAwrV6rXX39dxg4JIYSo+pyc4NIlePttddaZFdM0Idq7dy8PPvggPj4+6HQ6Nm7cmGe/oihERETg7e1NjRo16N27NydOnMhzzOXLlxkxYgQuLi64ubnx5JNPcu3atUp8FqW0cKGaIXfsCIMHax2NEEIIUfEyM+HBB2HFCti8WetoiqVpQnT9+nU6duzIokWLCt0/Z84cFixYwNKlS4mLi6NWrVoEBweTnqvpbcSIERw5coTt27ezadMm9u7dy9NPP11ZT6H0WrWCBg1g2jR1ATwhhBCiqnNyAuN3snEMrZWymsKMOp2ODRs2MHDgQEBtHfLx8eGFF15g8uTJAKSmpuLp6UlkZCRDhw7l6NGjtG3blp9++omuXbsCsGXLFvr168f58+fx8fEp1WNXSmHG69chKwtatpSESAghhP1ISAA/P/U78Ntv4Y471O1WVpjRascQnTp1iqSkJHr37m3a5urqir+/P/v37wdg//79uLm5mZIhgN69e+Pg4EBcXFylx1wkRYGMDPDxkWRICCGEffHxgWHD1OtLlmgbSzGsNiFKSkoCwNPTM892T09P076kpCQ8PDzy7K9WrRr16tUzHVOYjIwM0tLS8lwqzJw58OWX6hT7ylwWRAghhLAWkyapf7duhbNntY2lCFabEFWk2bNn4+rqaro0atSoYh7or79gwQK1YmdCAuj1FfM4QgghhDXr2BF69lRnmlnpWCKrTYi8vLwAuHDhQp7tFy5cMO3z8vIiOTk5z/7s7GwuX75sOqYwU6dOJTU11XQ5d+6chaO/5f331e6y+++He+6pmMcQQgghbMHkyVCvHri6ah1Joaw2IWratCleXl7s3LnTtC0tLY24uDgCAgIACAgIICUlhYMHD5qO2bVrFzk5Ofj7+xd5bmdnZ1xcXPJcLO6PP2DTJtDpYPp0cLDal1oIIYSoeMHB8M8/MH483LypdTQFaLp0x7Vr1/j7779Nt0+dOsWhQ4eoV68ejRs3Jjw8nFmzZtGyZUuaNm3K66+/jo+Pj2km2m233UafPn0YM2YMS5cuJSsriwkTJjB06NBSzzCrMO++q/598EEoJjkTQggh7IKDg9o6lJUFSUlWV6BY04To559/pkePHqbbk24Nuho1ahSRkZG8+OKLXL9+naeffpqUlBTuvfdetmzZQvVc0/M+//xzJkyYQK9evXBwcGDQoEEsWLCg0p9LHgcPqmu46PVq3SFpHRJCCCFUNWvC/v3qsh6dO2sdjYnV1CHSksXrEA0dCrGxMGQIrFkjCZEQQghhNH8+hIfD7bers7CbNZM6RFXW2LHQpYu6ZpkkQ0IIIcR/hg1Tu8v++AN++UXraEzk27oidOoEGzdC27ZaRyKEEEJYFw8PePRR9XpkpKah5CYJkSUpCmRnq3/r1lVnmAkhhBAir0mT1FaievXUJTysgKaDqqsURVFXse/UCZ57Th00JoQQQoiCbrtNLVicnW01S1pJC5GlbNmijppfvVpdpkNah4QQQoii1aundp9JQlSFGAz/1R0aMwYaN9Y2HiGEEEKUiSRElvDtt3D8OLi4wIsvSuuQEEIIYWMkITJXdja89556fexY0LpCthBCCCHKTBIic61fD6dOqbPKblXaFkIIIYRtkYTIHDk58OGH6vWwMHVwmBBCCCFsjiRE5nBwUItKPfqoOtVeCCGEEDZJEiJzNWigjiGqW1frSIQQQghRTlKYsbxSU9Uqm46O4OqqdTRCCCGEMIO0EJXHtWsQGAjjxqlT7J2dtY5ICCGEEGaQhKg8VqyAf/+Fv/6Chg21jkYIIYQQZpKEqKyuXIFly9TrU6fKmmVCCCFEFSAJUVktWwZXr0Lr1vDYY1pHI4QQQggLkISoLC5dgpUr1euvvipjh4QQQogqQhKisli4EG7cgPbtYehQraMRQgghhIVIQlRamZmwebN6PSJCnW4vhBBCiCpB6hCVlpMTbNoEW7fCgAFaRyOEEEIIC5IWotJSFNDr4emnpXVICCGEqGIkISqNQ4fUYoy1akGdOlpHI4QQQggLk4SoJH//DQ8+CAMHqrPK9HqtIxJCCCGEhUlCVJL334ecHPD1BU9PraMRQgghRAWQhKg4f/4J33yjXp8+XVqHhBBCiCpKEqLivPuu+veBByAgQNtYhBBCCFFhJCEqyq+/wrZt4OCgtg45yEslhBBCVFXyLV8UY+tQSAh07qxtLEIIIYSoUJIQFebaNXVV+2rVYNo0aR0SQgghqjipVF2Y2rVh7Vo4dw7atdM6GiGEEEJUMGn6KEx2tvr3nntAp9M2FiGEEEJUOEmIclMU+PRTuHABXF3VytRCCCGEqPKkyyy3Xbvg5ZfBxweOHJHWISGEEMJOSAtRbvPnq39DQtQWIiGEEELYhSqTEC1atAg/Pz+qV6+Ov78/P/74Y9lP8tdf6oDql16S1iENGAwGYmJiWLt2LTExMRgMBruMQQghROWrEgnRl19+yaRJk5g2bRq//PILHTt2JDg4mOTk5LKfbOxYdd0yUamioqLw8/OjR48eDB8+nB49euDn50dUVJRdxSCEEEIbOkVRFK2DMJe/vz933nknCxcuBCAnJ4dGjRoxceJEXn755RLvn5aWhqurK6murrgcPy6LuFayqKgoQkNDyf9W1N1qpVu/fj0hISFVPgYhhBBlY/r+Tk3FxcXFrHPZfAtRZmYmBw8epHfv3qZtDg4O9O7dm/3795ftZM88I8lQJTMYDISFhRVIRADTtvDw8ArturKGGIQQQmjL5meZXbp0CYPBgGe+RMbT05Njx44Vep+MjAwyMjJMt1NTUwFIGzkS0tIqLlhRQGxsLOfPny9yv6IonDt3ji1bthAYGFhlYxBCCFF2abe+sy3R2WXzCVF5zJ49mxkzZhTY3qhDBw2iEaXxwAMPaB2CVcQghBCioH///RdXM2eH23xC1KBBA/R6PRcuXMiz/cKFC3h5eRV6n6lTpzJp0iTT7ZSUFJo0acLZs2fNfkHtWVpaGo0aNeLcuXNm9+XaO3ktLUdeS8uQ19Fy5LW0nNTUVBo3bky9evXMPpfNJ0ROTk506dKFnTt3MnDgQEAdVL1z504mTJhQ6H2cnZ1xdnYusN3V1VXenBbg4uIir6OFyGtpOfJaWoa8jpYjr6XlOFhgEXabT4gAJk2axKhRo+jatSt33XUX8+bN4/r164wePVrr0IQQQghhA6pEQjRkyBAuXrxIREQESUlJdOrUiS1bthQYaC2EEEIIUZgqkRABTJgwocguspI4Ozszbdq0QrvRROnJ62g58lpajryWliGvo+XIa2k5lnwtq0RhRiGEEEIIc9h8YUYhhBBCCHNJQiSEEEIIuycJkRBCCCHsniREQgghhLB7dp8QLVq0CD8/P6pXr46/vz8//vij1iHZnOnTp6PT6fJc2rRpo3VYNmHv3r08+OCD+Pj4oNPp2LhxY579iqIQERGBt7c3NWrUoHfv3pw4cUKbYK1YSa/j448/XuA92qdPH22CtXKzZ8/mzjvvpE6dOnh4eDBw4ECOHz+e55j09HTGjx9P/fr1qV27NoMGDSqwWoC9K83rGBQUVOB9+eyzz2oUsfVasmQJHTp0MBWyDAgIYPPmzab9lno/2nVC9OWXXzJp0iSmTZvGL7/8QseOHQkODiY5OVnr0GxOu3btSExMNF2+//57rUOyCdevX6djx44sWrSo0P1z5sxhwYIFLF26lLi4OGrVqkVwcDDp6emVHKl1K+l1BOjTp0+e9+jatWsrMULbsWfPHsaPH8+BAwfYvn07WVlZ3H///Vy/ft10zPPPP8+3337LunXr2LNnDwkJCYSEhGgYtfUpzesIMGbMmDzvyzlz5mgUsfXy9fXl7bff5uDBg/z888/07NmTAQMGcOTIEcCC70fFjt11113K+PHjTbcNBoPi4+OjzJ49W8OobM+0adOUjh07ah2GzQOUDRs2mG7n5OQoXl5eyrvvvmvalpKSojg7Oytr167VIELbkP91VBRFGTVqlDJgwABN4rF1ycnJCqDs2bNHURT1Pejo6KisW7fOdMzRo0cVQNm/f79WYVq9/K+joijKfffdp4SFhWkXlA2rW7eu8tFHH1n0/Wi3LUSZmZkcPHiQ3r17m7Y5ODjQu3dv9u/fr2FktunEiRP4+PjQrFkzRowYwdmzZ7UOyeadOnWKpKSkPO9RV1dX/P395T1aDjExMXh4eNC6dWvGjh3Lv//+q3VINiE1NRXAtHjmwYMHycrKyvO+bNOmDY0bN5b3ZTHyv45Gn3/+OQ0aNOD2229n6tSp3LhxQ4vwbIbBYOCLL77g+vXrBAQEWPT9WGUqVZfVpUuXMBgMBZb38PT05NixYxpFZZv8/f2JjIykdevWJCYmMmPGDAIDA/njjz+oU6eO1uHZrKSkJIBC36PGfaJ0+vTpQ0hICE2bNuXkyZO88sor9O3bl/3796PX67UOz2rl5OQQHh7OPffcw+233w6o70snJyfc3NzyHCvvy6IV9joCDB8+nCZNmuDj48Nvv/3GSy+9xPHjx4mKitIwWuv0+++/ExAQQHp6OrVr12bDhg20bduWQ4cOWez9aLcJkbCcvn37mq536NABf39/mjRpwldffcWTTz6pYWRCqIYOHWq63r59ezp06EDz5s2JiYmhV69eGkZm3caPH88ff/whYwLNVNTr+PTTT5uut2/fHm9vb3r16sXJkydp3rx5ZYdp1Vq3bs2hQ4dITU1l/fr1jBo1ij179lj0Mey2y6xBgwbo9foCI9EvXLiAl5eXRlFVDW5ubrRq1Yq///5b61BsmvF9KO9Ry2vWrBkNGjSQ92gxJkyYwKZNm9i9eze+vr6m7V5eXmRmZpKSkpLneHlfFq6o17Ew/v7+APK+LISTkxMtWrSgS5cuzJ49m44dOzJ//nyLvh/tNiFycnKiS5cu7Ny507QtJyeHnTt3EhAQoGFktu/atWucPHkSb29vrUOxaU2bNsXLyyvPezQtLY24uDh5j5rp/Pnz/Pvvv/IeLYSiKEyYMIENGzawa9cumjZtmmd/ly5dcHR0zPO+PH78OGfPnpX3ZS4lvY6FOXToEIC8L0shJyeHjIwMi74f7brLbNKkSYwaNYquXbty1113MW/ePK5fv87o0aO1Ds2mTJ48mQcffJAmTZqQkJDAtGnT0Ov1DBs2TOvQrN61a9fy/Bo8deoUhw4dol69ejRu3Jjw8HBmzZpFy5Ytadq0Ka+//jo+Pj4MHDhQu6CtUHGvY7169ZgxYwaDBg3Cy8uLkydP8uKLL9KiRQuCg4M1jNo6jR8/njVr1vC///2POnXqmMZhuLq6UqNGDVxdXXnyySeZNGkS9erVw8XFhYkTJxIQEMDdd9+tcfTWo6TX8eTJk6xZs4Z+/fpRv359fvvtN55//nm6d+9Ohw4dNI7eukydOpW+ffvSuHFjrl69ypo1a4iJiWHr1q2WfT9adiKc7fnwww+Vxo0bK05OTspdd92lHDhwQOuQbM6QIUMUb29vxcnJSWnYsKEyZMgQ5e+//9Y6LJuwe/duBShwGTVqlKIo6tT7119/XfH09FScnZ2VXr16KcePH9c2aCtU3Ot448YN5f7771fc3d0VR0dHpUmTJsqYMWOUpKQkrcO2SoW9joCyatUq0zE3b95Uxo0bp9StW1epWbOm8vDDDyuJiYnaBW2FSnodz549q3Tv3l2pV6+e4uzsrLRo0UKZMmWKkpqaqm3gVuiJJ55QmjRpojg5OSnu7u5Kr169lG3btpn2W+r9qFMURTE3exNCCCGEsGV2O4ZICCGEEMJIEiIhhBBC2D1JiIQQQghh9yQhEkIIIYTdk4RICCGEEHZPEiIhhBBC2D1JiIQQQghh9yQhEkLYDJ1Ox8aNGy1+3unTp9OpUyezz+Pn58e8efPMPo8QovJJQiSEKLPHH3+8wPIh69evp3r16rz//vsV9riJiYn07du31MdHRkbi5uZW4nGTJ0/OsxaSEML+2PVaZkIIy/joo48YP348S5curdC1ACtqNfXatWtTu3btCjm3EMI2SAuREMIsc+bMYeLEiXzxxRdFJkPGlpqNGzfSsmVLqlevTnBwMOfOnctz3JIlS2jevDlOTk60bt2aTz/9NM/+3F1mp0+fRqfTERUVRY8ePahZsyYdO3Zk//79AMTExDB69GhSU1PR6XTodDqmT59eaHz5u8yMLWDvvfce3t7e1K9fn/Hjx5OVlWU6Jjk5mQcffJAaNWrQtGlTPv/88wLnTUlJ4amnnsLd3R0XFxd69uzJ4cOHAbh48SJeXl689dZbpuP37duHk5OTtFYJoQFJiIQQ5fbSSy/xxhtvsGnTJh5++OFij71x4wZvvvkmn3zyCT/88AMpKSkMHTrUtH/Dhg2EhYXxwgsv8Mcff/DMM88wevRodu/eXex5X331VSZPnsyhQ4do1aoVw4YNIzs7m27dujFv3jxcXFxITEwkMTGRyZMnl/q57d69m5MnT7J7925Wr15NZGQkkZGRpv2PP/44586dY/fu3axfv57FixeTnJyc5xyDBw8mOTmZzZs3c/DgQe644w569erF5cuXcXd35+OPP2b69On8/PPPXL16lUcffZQJEybQq1evUscphLAQy61HK4SwF6NGjVKcnJwUQNm5c2eJx69atUoBlAMHDpi2HT16VAGUuLg4RVEUpVu3bsqYMWPy3G/w4MFKv379TLcBZcOGDYqiKMqpU6cUQPnoo49M+48cOaIAytGjR02P6+rqWmJ806ZNUzp27Jjn+TVp0kTJzs7OE8uQIUMURVGU48ePK4Dy448/Fng+H3zwgaIoihIbG6u4uLgo6enpeR6refPmyrJly0y3x40bp7Rq1UoZPny40r59+wLHCyEqh7QQCSHKpUOHDvj5+TFt2jSuXbtm2t6uXTvTmJzcA6CrVavGnXfeabrdpk0b3NzcOHr0KABHjx7lnnvuyfMY99xzj2l/cXEYeXt7AxRoqSmPdu3aodfr85zbeN6jR49SrVo1unTpYtpvfD5Ghw8f5tq1a9SvX9/0etSuXZtTp05x8uRJ03Hvvfce2dnZrFu3js8//xxnZ2ezYxdClJ0MqhZClEvDhg1Zv349PXr0oE+fPmzevJk6deoQHR1tGmtTo0aNCo/D0dHRdF2n0wGQk5Nj0fMaz12W8167dg1vb29iYmIK7MudOJ08eZKEhARycnI4ffo07du3L2/IQggzSAuREKLcmjRpwp49e0hKSqJPnz5cvXqVJk2a0KJFC1q0aEHDhg1Nx2ZnZ/Pzzz+bbh8/fpyUlBRuu+02AG677TZ++OGHPOf/4YcfaNu2bbnjc3JywmAwlPv+RWnTpg3Z2dkcPHjQtM34fIzuuOMOkpKSqFatmun1MF4aNGgAQGZmJiNHjmTIkCG88cYbPPXUUxZp3RJClJ0kREIIszRq1IiYmBiSk5MJDg4mLS2t0OMcHR2ZOHEicXFxHDx4kMcff5y7776bu+66C4ApU6YQGRnJkiVLOHHiBHPnziUqKqpMA6Hz8/Pz49q1a+zcuZNLly5x48aNcp8rt9atW9OnTx+eeeYZ0/N56qmn8rSI9e7dm4CAAAYOHMi2bds4ffo0+/bt49VXXzUlhq+++iqpqaksWLCAl156iVatWvHEE09YJEYhRNlIQiSEMJuvry8xMTFcunSpyKSoZs2avPTSSwwfPpx77rmH2rVr8+WXX5r2Dxw4kPnz5/Pee+/Rrl07li1bxqpVqwgKCip3XN26dePZZ59lyJAhuLu7M2fOnHKfK79Vq1bh4+PDfffdR0hICE8//TQeHh6m/TqdjujoaLp3787o0aNp1aoVQ4cO5cyZM3h6ehITE8O8efP49NNPcXFxwcHBgU8//ZTY2FiWLFlisTiFEKWjUxRF0ToIIUTVFhkZSXh4eJ4uJSGEsCbSQiSEEEIIuycJkRBCCCHsnnSZCSGEEMLuSQuREEIIIeyeJERCCCGEsHuSEAkhhBDC7klCJIQQQgi7JwmREEIIIeyeJERCCCGEsHuSEAkhhBDC7klCJIQQQgi7JwmREEIIIeze/wOixl29BWkhSwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkn5JREFUeJzs3XtcU/X/wPHXmIBX8MpNULxmmpfSIiwK08JbaYjlpTIr66tYmtrFX+Wti2Vl2kVNM+2GloZWhrcMFUOpLM3MzAxFuYg3wBu3sd8fh03GHXbY2dj7+XjswXZ2dvbenNv7fC7vj85oNBoRQgghhHBiLloHIIQQQgihNUmIhBBCCOH0JCESQgghhNOThEgIIYQQTk8SIiGEEEI4PUmIhBBCCOH0JCESQgghhNOThEgIIYQQTk8SIiGEEEI4PUmIhBDV9vDDD9OwYUOtw7Awa9YsdDpdtR8fGhpKaGio+faxY8fQ6XSsXLnS+uCEEHZLEiIhHJxOp6vUZfv27eYfd51OxyuvvFLq8UaPHo1Op7O7REcIIWpSHa0DEEJY57PPPrO4/emnn7J169YS26+99lquXLkCQN26dVm1ahUvvviixT6XLl3im2++oW7dujUbtANp3bo1V65cwdXVVetQhBA1SBIiIRzcAw88YHF7z549bN26tcR2ULp/AAYOHEh0dDT79++ne/fu5vu/+eYbcnNz6d+/Pz/++GONxu0odDqdJgliQUEBubm5kpwKYSPSZSaEEwoODqZNmzZERUVZbP/iiy/o378/TZs2rdLx/vvvP8LCwmjQoAF+fn7MmTMHo9Fosc9bb71F7969adasGfXq1aNnz56sXbu2xLF0Oh0TJ05k/fr1XHfddbi7u9OlSxc2bdpUYt9du3Zx4403UrduXdq1a8eHH35YpbiXLl1Ku3btqFevHjfddBNxcXEl9iltDNEff/zBww8/TNu2balbty4+Pj488sgjnD17tsTjt2/fTq9evSxiLG2ck+l1f/HFF3Tp0gV3d3fza67qe7dmzRo6d+5MvXr1CA4O5sCBAwB8+OGHtG/fnrp16xIaGmpOkIUQ0kIkhNMaOXIkn3/+Oa+//jo6nY4zZ86wZcsWPvvss1KTj7IYDAb69+/PzTffzLx589i0aRMzZ84kPz+fOXPmmPdbuHAh99xzD6NHjyY3N5fVq1czfPhwNmzYwKBBgyyOuWvXLqKjo5kwYQKNGjXi3XffZdiwYSQlJdGsWTMADhw4wF133UWLFi2YNWsW+fn5zJw5E29v70rFvXz5cp544gl69+7N5MmT+e+//7jnnnto2rQpAQEB5T5269at/Pfff4wdOxYfHx8OHjzI0qVLOXjwIHv27DEnO7///jv9+/fH19eX2bNnYzAYmDNnDi1atCj1uD/++CNfffUVEydOpHnz5gQGBlb5vYuLi+Pbb78lMjISgLlz5zJ48GCeffZZFi1axIQJEzh//jzz5s3jkUcekZZAIUyMQohaJTIy0ljWf+3ExEQjYHzzzTeNf/75pxEwxsXFGY1Go/GDDz4wNmzY0Hjp0iXjmDFjjA0aNKjwucaMGWMEjE8++aR5W0FBgXHQoEFGNzc34+nTp83bL1++bPHY3Nxc43XXXWe84447LLYDRjc3N+O///5r3rZ//34jYHzvvffM24YOHWqsW7eu8fjx4+Ztf/31l1Gv15f5+os+t5eXl7FHjx7GnJwc8/alS5caAePtt99u3mZ6z1asWFHmazEajcZVq1YZAePOnTvN2+6++25j/fr1jcnJyeZtR44cMdapU6dEjIDRxcXFePDgwRLHrsp75+7ubkxMTDRv+/DDD42A0cfHx5iVlWXePn36dCNgsa8Qzky6zIRwUl26dKFbt26sWrUKgKioKIYMGUL9+vWrfKyJEyear5u6bXJzc/nhhx/M2+vVq2e+fv78eTIzMwkJCeG3334rcbx+/frRrl078+1u3brh4eHBf//9ByitUps3b2bo0KG0atXKvN+1115LWFhYhfH++uuvpKen87///Q83Nzfz9ocffhhPT88KH1/0tWRnZ3PmzBluvvlmAPPrMRgM/PDDDwwdOhQ/Pz/z/u3bt2fAgAGlHvf222+nc+fO5T5fRe9d3759zS1LAEFBQQAMGzaMRo0aldhuek+FcHaSEAnhxEaNGsWaNWv4999/iY+PZ9SoUVU+houLC23btrXY1rFjRwCLMSobNmzg5ptvpm7dujRt2pQWLVqwePFiMjMzSxyzaJJj0qRJE86fPw/A6dOnuXLlCh06dCix3zXXXFNhzMePHwco8XhXV9cSr6U0586dY9KkSXh7e1OvXj1atGhBmzZtAMyvJz09nStXrtC+ffsSjy9tG2A+RnHWvHemBK94N6Bpu+k9FcLZSUIkhBMbOXIkZ86cYdy4cTRr1oy77rqrRp4nLi6Oe+65h7p167Jo0SJiYmLYunUro0aNKjH4GkCv15d6nNL21cJ9993HsmXL+N///kd0dDRbtmwxj7sqKCio9nGLtgSZqPXe2ft7KoTWZFC1EE6sVatW3HLLLWzfvp3x48dTp07VvxIKCgr477//zK1CAP/88w+Auevm66+/pm7dumzevBl3d3fzfitWrKhW3C1atKBevXocOXKkxH2HDx+u8PGtW7cG4MiRI9xxxx3m7Xl5eSQmJlqUIiju/PnzbNu2jdmzZzNjxgzz9uKxeHl5UbduXf79998SxyhtW1nUfu+EEKWTFiIhnNwrr7zCzJkzefLJJ6t9jPfff9983Wg08v777+Pq6krfvn0BpXVCp9NhMBjM+x07doz169dX6/n0ej1hYWGsX7+epKQk8/ZDhw6xefPmCh/fq1cvWrRowZIlS8jNzTVvX7lyJRkZGRU+N5RsWVmwYEGJ/fr168f69etJSUkxb//333/ZuHFjhTEWPY6a750QonTSQiSEk7v99tu5/fbbq/34unXrsmnTJsaMGUNQUBAbN27k+++/5//+7//M08sHDRrE/Pnz6d+/P6NGjSI9PZ0PPviA9u3b88cff1TreWfPns2mTZsICQlhwoQJ5Ofn895779GlS5cKj+nq6sorr7zCE088wR133MH9999PYmIiK1asqHAMkYeHB7fddhvz5s0jLy+Pli1bsmXLFhITE0vsO2vWLLZs2cItt9zC+PHjMRgMvP/++1x33XXs27evUq+zJt47IURJ0kIkhLCKXq9n06ZNpKWl8cwzz/DLL78wc+ZMXn75ZfM+d9xxB8uXLyctLY3JkyezatUq3njjDe69995qP2+3bt3YvHkzLVq0YMaMGXz88cfMnj270sd8/PHHWbRoESkpKTzzzDPm+j0V1SACZUZeWFgYH3zwAdOnT8fV1bXUVp+ePXuyceNGmjRpwksvvcTy5cuZM2cOffv2rXQF6pp474QQJemMMqJOCCFsaujQoRw8eLDUMVBCCG1IC5EQQtQg04K6JkeOHCEmJobQ0FBtAhJClEpaiIQQogb5+vqa1z07fvw4ixcvJicnh99//73UOkpCCG3IoGohhKhB/fv3Z9WqVaSlpeHu7k5wcDCvvfaaJENC2BlNu8wMBgMvvfQSbdq0oV69erRr146XX37ZYjqr0WhkxowZ+Pr6Uq9ePfr161ei3/3cuXOMHj0aDw8PGjduzKOPPsrFixdt/XKEEKKEFStWcOzYMbKzs8nMzGTTpk3ccMMNWoclhChG04TojTfeYPHixbz//vscOnSIN954g3nz5vHee++Z95k3bx7vvvsuS5YsISEhgQYNGhAWFkZ2drZ5n9GjR3Pw4EG2bt3Khg0b2LlzJ48//rgWL0kIIYQQDkjTMUSDBw/G29ub5cuXm7cNGzaMevXq8fnnn2M0GvHz82Pq1KlMmzYNUNYJ8vb2ZuXKlYwYMYJDhw7RuXNnfvnlF3r16gXApk2bGDhwICdPnrRYVFEIIYQQojSajiHq3bs3S5cu5Z9//qFjx47s37+fXbt2MX/+fAASExNJS0ujX79+5sd4enoSFBTE7t27GTFiBLt376Zx48bmZAiUlbJdXFxISEgotVZHTk4OOTk55tsFBQWcO3eOZs2aodPpavAVCyGEEEItRqORCxcu4Ofnh4uLdZ1emiZEzz//PFlZWXTq1Am9Xo/BYODVV19l9OjRAKSlpQHg7e1t8Thvb2/zfWlpaXh5eVncX6dOHZo2bWrep7i5c+cye/ZstV+OEEIIITRw4sQJ/P39rTqGpgnRV199xRdffEFUVBRdunRh3759TJ48GT8/P8aMGVNjzzt9+nSmTJlivp2ZmUmrVq04sWsXHg0b1tjzivIZCgrYu3cvZ86epXmzZvTs2RN9JTL+rdu2MXXqVACK9v+a2vrefvtt7ixcU6u2s+a9MBQUENa/P6fS00u9X4dyMrJp48ZK/bsIB3flCkycCHv3Krfd3CA3Fzw8YPNmqFdP2/iqwPT/ovj4kMp+R8h3TA0xGiEvD1q3hkpWbi8uKyuLgIAAGjVqZHU4miZEzzzzDM8//zwjRowAoGvXrhw/fpy5c+cyZswYfHx8ADh16hS+vr7mx506dYoePXoA4OPjQ3qxL/D8/HzOnTtnfnxx7u7uFqtGm3g0b46HCm+qqLqYmBhmzJhBSmqqeZufry9z5sxh4MCB5T522IgR1PPwKPH4ln5+zJ49u8LHF2UwGEhISCA9PR0vLy+CgoLMi3k6Amvei/j4eE6WkQyZnDh1ikNHj9K7d2/VYhZ2ymBQkh53d3jkEXj+ebj9djh2DHbuhAce0DrCSjEYDMx96y1yy7hfB7z+9tsMHT68zP/ran7HiCIKCuDCBSXJrmZCZKLGcBdNE6LLly+X6PPT6/UUFBQA0KZNG3x8fNi2bZs5AcrKyiIhIYHx48cDEBwcTEZGBnv37qVnz54A/PjjjxQUFBAUFGS7FyOqLSYmhnHjxpU4e0tNTWXcuHEsW7aswi+cgQMHEhYWZlUyY01SZk+q+14UP7Gwdj/hYFJS4N134emnoX59yM+H114DLy/o2BF0OnjnHeUHrHt3raOttISEBIv/08UZgeSUFBISEspN9NX4jhH2TdOE6O677+bVV1+lVatWdOnShd9//5358+fzyCOPAErGN3nyZF555RU6dOhAmzZteOmll/Dz82Po0KEAXHvttfTv359x48axZMkS8vLymDhxIiNGjJAZZg7AYDAwY8aMEskQKF9UOmDmzJmEhYVV+MWj1+ur3XKhRlJmT6rzXhQfi2ftfo7e2uY0MjLggw9g+XLIyVG6MObOBV9fuPZaKHrSOnQoZGcrrUR5eeDqqlHQladmom/Nd4ywZDAYSNi9m3NJSXh068Ytfftq/v2gaUL03nvv8dJLLzFhwgTS09Px8/PjiSeeYMaMGeZ9nn32WS5dusTjjz9ORkYGt956K5s2bbJYKfqLL75g4sSJ9O3bFxcXF4YNG8a7776rSoxGo5H8ggIMZVQnMBgM/PHHH5w9e5ZmzZrRrVs3zf9RHcnvv/+Oi5sb/q1bl7lPgdFIws8/0zs4uEZiUDMpc2RBQUH4+fqSmppa6nuhA/z8/CrV8lpbWttqtStXYMUKeP99yMxUtt14I4wdCwEBUNZnvW5dpYsjPV1pPbKR6ibYaif6wnqm74fU1FQaAceAFv7+LFy4kPDwcM3ikrXMULrhPD09yfz7b4sxRLkGA6kXL3I5P19pLi7myuXLZGRmYjAYzNv0ej2NPT2pV7++TWJ3dJcvX+bcuXPl7mM0GvFs1Igu/v40dHNTPYb4+Hgihg+vcL+1a9bU+rNDU0sZlD54tDItZWW1tlXlGKKGrVkDr78Oppm4HTvCrFkQEVG5Vp/Zs5XutU8+ARtU3bYmwTYYDAQFBVWY6O/Zs6dWn/DYi6LfDzowJ0S5hb+xa9eurVJSZP79zszEw8PDqthkLbMyFBiNJGZkoHd3x8/LCzdXV4qmRBcuXiQ5O5umTZqU+vjmTZvSSGasVejS5cuVmrHU0MODkxcu0KFJE9VnOMnYmasGDhzIsmXLSv74VHLwqLS2OYj9+5VkyM8P/u//lEHTVZk19u+/cO4cLFkCS5fWXJxY352t1+uZM2cO48aNQ0fpif7s2bPl82gD5X4/GI3mYTJDhgzR5N9DEqIy5BoMFAAB3t7UL/ZFYQT+S0ykvDHtp0+fpnnz5uXuI8C9bl1OnTpFXl5emfu4urri5+PD8ePHySsoUD0hkiZ1S9YMHlVrAKtQkdGozApr1gw6dYKLF+GxxyAwECZNAk/Pqh9zyhT4/HPYtAlOngQr67+URa0E29pEX6ijwu8Ho5ETJ04QFxdHaGio7QIrJAlReXQ6XErpKrt08WK5P+AAeXl5XLp4kYaVaCUymo6Zn49rnTo0aNjQaRIpHcrU1WPHj5e5T0s/P2XRvRqqIq7m2JnaorqDR6W1zY4YjfDjj8rMsN9/h969YdkyaNwY2rRRblfX9ddDaChs3w4ffggvv6xS0JbUTLBllpj2Kvv/PrWcf/OaJAlRNeTl56u2X2ZmJskpKRYJlqurKy39/PCszpmbA/L09CSwdety34eii/mqTZrU1aNma5vMUqsmoxG2bIEFC+CPP5RtdetC587QsqUyIFqNk4tp05SE6Kuv4NlnoQZquKmdYMssMW1V9vuhaN1BW5Jys9XgWqdyeWRF+2VmZnLs+PESrU15eXkcO36cTNPMj2ICO3Zk108/AfDaG28wcdKkSsVT9HH2xtPTk2uvvZZ2bdvSqlUr2rVty7XXXmuzpNDUpF78P6Kfn58MAq4CU2tbWT+3phbBilrbYmJiCAoKImL4cCZERhIxfDhBQUHExMSoHnOtsn073HWXMibojz+UcUH/+x8cPKiM9fH0VK+ldcAAuOYapQvu00/VOWYx0p1du1T4/aDTERAQQEhIiE3jMpGEqBoaNGyIawUzMVxdXWlQTneZqam3PMkpKaV24RT1f889x/sLF1awV8VWfvop/fr3t/o41tABDRs2pEnjxjTUoNtw4MCBJCQksHbNGhZ98AFr16xhz549kgxVgam1DSjx71fZ1jbTINriXSWmQbSSFJUjKQn++ksprDhxIhw6BIsWQdu26nc5u7goY4lAmW1WWFC3LAaDgfj4eNavX098fLzF7NyyqJVgC/tQ7vdD4edzwYIFmrUES0JUDab/hOVp6edX7g96VcYhCdsxNakPHTqU3r17SxdNNVjT2lbRIFpQBtFW5se01svPh+hoZWBzXp5SYHHgQJg+HQ4fVqbFt25dY2PvAHjwQRg/XpltVs4Qgeq2+KmRYAv7Utb3g7+/f5Wn3KtNEqKqunQJLl3Cs04dAps3xy0/H5crV3C5cgVdTg6urq4Etm6tdPUU7lvaJe/CBYvDuly5UurTVTQOadbLL/PY//5nvr1s+XL827bFp1Urli1fjs7dnZMnT5rvT/j5Z67t1o3GXl7mrrb//vuP/02cyPadO2nYtCldCpdJKW7f/v3c3q8fjb28aNW+PWu+/hqA8+fPM/LBB2nu50e7Tp34cNky82Mefuwxnnr6afqGhdGoWTPuGjjQou7Qjp076XnzzTT28iL0zjs5evRoua9XOIbqtrZVZRCt08rPV8bthIbCk0/CzJnKchpNmkCHDspyG/7+NZsImdSrp7RA9ewJly+Xuou1LX7SnW2fqtPiZ2L6fljz5Ze89eabbNm8mcTERE2TIZBB1VXXtKn5qmfhxST/zjvRb9hw9UzG37/MLwmPW25RBj0Wuvaeezi4dWuJ/So7XgngwJ9/8sz06fywcSNdOndmwlNPldhn/XffEffjj2RnZ3PDzTcz7N576RMaypL33+fzqCh+2LSp1GNnZmZy16BBvDZnDj9s3EhGRoZ5VfSJkycDkPTvv/x79Ch9+/en0zXXcPtttwHw1ddfs+X77+nYoQODhgxh4fvvM3vGDE6cOEHEyJFEf/klvYODWbRkCSMefJBf4uMr/ZqF/arOAFaZpVaSaXD56ZQUuhw6RLuYGHRJScqdnp7KIqstWyoJUTnHiIuLIzU1FV9fX0JCQtRtVfH0hPPnSyznoea0eZkhZj/UqERv/n7o2lWZ9WgH/5aSEKmoThX+QV30elxdXSusv1PeOKTivl63jvChQ+lVuMjti88/z8pigx0nP/kkzZs3ByD0ttvY/8cf9KlEvYcNMTF0aN+exwrXmWvRogUtWrTAYDCw5uuvOXzgAPXr16db1648NnYsUatXmxOi4eHhdOvaFYBh997Llh9+AOCL1au59557CLn1VgCejIxkzmuvcezYMQIDAyv9uu2JzIyyjgyitWT64emYmsobQEDh9pyGDXGfPFlpIargvYiOjmbSpEkWLcX+ai+TkJICL76orIVWpIVYzWnzMkPMPtS2dR+LkoSoqspbZqL4D1+RL6DidC4utMzNNdffOfTttyX2qWgcUnFpaWn4t2xpvu1fSrE07yJfnvXr1+fipUuVOvbJ5GTalJKknDlzhry8PFq1amXe1rpVK/48ePDqc3p7Wz5n4biopKQkPouK4qvCrjeA3NxcklNSHDIhkvW7rCc1oa6K+f57xj3+OEagLUoydBp4D/jg4kWWXX894ZVIhiIiIii+QlNycjIRERGVHrNRYQtTbi6sW6d00/33nzKIG2nxq21qeyV6GUNUVQ0alH0psuBshfvWq2euv+Pq6kpBkWrYFuOQqsDHx8di5trJchKy4nQVjDcI8PcvtXhi8+bNcXV1JcnUhA8knTiBXyXqSLRs2ZJxjzxCRnq6+XI5I4NbHPAsUGZGqUPtQbTWjHPQzP79FERGcmbyZOoCTYHfgCeADsDLwPnCJQ7Kez0Gg4FJkyaVSIYA87aKjgFKUhUYGEifPn0YNWoUffr0ITAwkOjo6Ks7de4M/fsrNZCKLOUhLX61S20f4ycJkcbUrL9z75AhfL1uHb/9/jvZ2dm8Nm9epR/r1aIFJ5OTyS9jEPegAQP458gRVnzyCXl5eZw+fZo/Dx5Er9cTER7Oi7NmcfnyZf48eJDlK1cy4r77KnzOUfffz5roaOJ27aKgoIALFy6wtuiXrIOQmVHqUmsQrUPVMjIYYONGCA+HgQNxWb+eYZcvUw9IBo4DSwFTZbKiSxyUJS4urtyTosocw9TCVPw4phYmi6Ro6lTl79q1yngiZNp8bVPbW/wkIbID1tbfMQIXL16kVatWzH7pJe4ODyewY0d6Xn89AO7u7hUe444+fQhs3ZoWLVvSrXAMUlGenp5s+u47lq9cSXM/P3r17s3hf/4B4P0FC8jPzyegXTvuCQ9n1osvVmpcUps2bVj92Wc8M306TX186NStG998912VXrs9qO1nTVqwtiaUw7TYXboEH38MISHK+mIJCVCnDid69aI/cAjIAMqaa1reEgeVXf6grP2q3MLUt68yQPbKFVi5EpBp86VxyFbLQrW9xU9nLO3T7mSysrLw9PQk8++/8SgsP5+dn09iVhZtWrWibvGuMDtS3tIfaWlpdOvVi+ysrAq7xOxddnY2iUlJtPHwoG4VZt7Zwvr165kQGVnhfos++IChQ4fWfEBOzmAwEBQUVGaSahqHtGfPHpv8EJc70H7uXHj/feW6p6dS1+epp9h+8iR97rijwmPHxsaWuQjmtm3b6NevX4XH+OGHH+jbt2+J7du3b6dPnz5Vi+HTT2HMGGWgd0ICuLkBpY+va+mEC6s6+jhD0/+tisb4Vfr/VkGBUjKiTZuSQ04qyfz7nZmJh4dHtY5hIi1EDqy0pT92xsVx8eJFDhw8yLTnn+eewYMdPhmyd7X9rMnR2FOLXfFuu1eGD2f0DTcQ8/33SkmOe+6B9u3h9dfh6FF47z3o0IGQ226jWbNm5R67WbNmNbrEQbVamEaMAF9fSE+HIpMlpAq8A7ValqO2t/jZ16m2qLSylv7YvHUr//fSS+hcXLixZ0+WLl5s++CcjMyMsi9qjnOwpoxCTEwMj40bRx1gAPA4EAT8eOYMTz7+OC4ffED/kSOVdcYKW1LUZO37UNkFNi32c3NTCkWeOAHFJkc487T52jQ7yzTGr0RLVy1o8ZOEyEGVtfTHq4XZu0mjKtQxEtVjOmsaN24cOrD40qsNZ02ORq0WO2u6NwwGA+9NncrzwP2AqfBELnAWZaD0Qy+9ROoTT5T6uYiLi+Ps2bPlPsfZs2eJi4srs8usWglNESEhIfj7+5OcnFzqOCKdToe/v3/JVqonnlBav44fV6pq21kXtzWqmyCrWY/JHtTWQpnSZeagKlrSo6r7CevI8gL2Q42ZTdZ2b5waN46NWVk8hZIMnQEWANcC96HMFjt97hzbt28v9fHWDogGJaGxpttNr9ezsHDh6OLd7hUuxFmvHnh4KIPGawlrZi3WxtlZtXHdR0mIymM0UmCnY84ru6RHVZb+sGdGUGqc2DEZJ2EfrB3nUK0yCn//rQwOBcjJ4e/LlykAYoEHgUDgaeC/YscrKyGytnVHLeHh4axdu5aWRQq+QiUW4tTpYPt2GDlSWWjWwVmbIMs4Q8dQO34ta4CbXo8LkHLqFC2aNcPN1bXK0+Frkr5OHfR16pRZNwigTuE+2dnZNoxMfUaUs2kd4Opi3zm8M4+TsCfWjHOobPfGL9u3c3N6OkRFwW+/waxZMGwYuLuzr2tXxsfFcQRKTawqYuquKq+OUEBAQLmDqtXodgMlKRoyZEjV10Jbswb274clS+Cdd8rf146pMf5Hxhk6BkmIyuCi09GmcWNSL14kJSXFNitHV1Fubi5ny1lKpFnTphwrUkHaYRmN6AD/Ro3Q23lCJOxHdcc5VNRt0QMYBfQcN05ZuwuUcTLp6cqCzvXr0z08nH8WLaowxrISEb1ez8iRI3nzzTfLfOyIESPKfS1qdLsVjae8pKlU06bBN9/A+vXwwgtQuIaio1Fj/I+9jTOUNRdLJwlROdz0elp5eJBfUIDBHrtrPDzYcfgw7773HqeLfIl7eXnx5JNP0rlzZw2DU5eri4skQ6LKqtNiV9a4mzrABqCbaUNODgQGKrWDxo5VrheeOIWGhtKsWbNyW2iaNWtWZpJhMBhYtWpVuXGuXr2auXPnlvlDpnm32y23wI03wi+/wPLl8NxzNfM8NUyt8T/2MjvL0Wsh1SRJiCqg0+lw1etx1TqQMoT17Uu/0FDJ9oVQSUFBAQB1gV7ArsLtdVBmiGUD3wNtXn6ZG559ttQp83q9nqVLlzJs2LAyn2fp0qVl/j+taNkNwLzsRllJVbVnialFp1OW8xgxAj7/HJ56Shls7WDUHP+j9eys2rxSvRokIaoFZNyKECrJyeHsqlW8D9wFNAT6AqlADjC18Hoa8GJODjfUQP0gUKe7yzRLLCIiAp1OZ5EUVThLTC3DhkGrVpCUBF9+CQ8/XHPPVUPUHv+j1fd1baqFVFOkD0II4dxyc+GHH2DSJOjenfDvviMcJRlKBjyBEygLrP6OkgxVxLQOWFl0FaxWr1Z3V7VniamlTh3lfQWMy5cTv2uXw63hVVuqM9tTBXd7JS1EQohaq1KDRzduhAkTzDdzmjRhxfnzrAF2UvbCquUNMq7KSvOlHUfN7q5qzxJTy2OPkb5yJe8nJfHJ/fdjKifrSONW7GX8jzVqYy0ktUlCJISolYoPHtUDdzdtyvNdutDqrrvggQcgOxt69lS6dfr2hREjqHPrrTzj7c3FixfLPHbDhg3LTYis7fJSu7urWrPEVBL9ww8MO3AAX5TWtszC7SmpqTw2bhwfOci4Fa3H/1hLaiFVTFa7p/TV7oUQjqvoOmI3AXcDgwDTxO8Lfn40io2FBg2gUSNwd1cuKK1K3t7eFc4QO3XqVJk/htVaKb4U0dHRTJo0yaK1KSAggAULFtR8d5cKir6XDYBWQBZQUGSfpk2asH//fpskFs483Vz1lerVYGer3UtChCREQtQmBoOB7t27M/38ee4Biv6PPocyQ2xjw4Z8duoU+vr1SzxejWTGYDAQGBhYYZdXYmJihT8+BoNBu+4uK23bto1+/foB0AR4DmgGzCi235erV9fcbLdCMt386iwzKL0Wks1nmdlZQiSDqgWgfOnGx8c73IBHIbhyBXbsgDfeAKOR+F27uHL+PJ4oydA5YDVwL+APPASsuniR7bt3l3o4NWd4QTXWASvlWKGhoYwcOZLQ0FCHSYbAcmmSdigJ0RiuLnZrsruMfwu1WLv0Rm0hay6WT8YQCTlzEo7FaISjR5W1srZvh/j4qxWjb7+d33bupAB4E5gH7AHzQN6itm/fTt++fUtsV3uGV/EuL39/f4fp8lLTryiD1G8DxgGv2Oh5Zbq5JUcfC1WTJCFyclKoS9irUsd7bNoEL78MJ05Y7uzjA6Gh4O/PuUaNOA4cq+D4pgKMxdWqGV4aCw0N5ZVXrqY+81ESotHA28CVwu3BwcE1FoMaS2/UNlK7rnSSEDkxOXMS9mrL2rV8M3s2gefO8SOwHwj08eHde++l14kT4OoKN90Ed90FAwZAjx7KNsBz165KLaha1hIdtWmGl9aKL2HyHXAE6ICSFH2EMqi6Jn+cZbq5qCwZQ+TEpFCXsAsFBfDPP7BqFTzzDBduvJF+kybxwblzPAPcDzQG0tPSiFi8mD1Tp0JqKsTFwYwZynpZrlcX1/H2Lj5CpXTl7ad5QcNawrSEiUkBsKDw+mMoP0Dz5s2rVHJZ3XGOMt1cVJamCVFgYCA6na7EJTIyEoDs7GwiIyNp1qwZDRs2ZNiwYZw6dcriGElJSQwaNIj69evj5eXFM888Q35+WaXURFFy5iQ0kZEBRYsWHj8Offooq6NHRdEoJQUXIAlYB+wAcxdYkk7HfV99haFxY/NCqsUVT2LKUtF+4eHhHDt2jNjYWKKiooiNjSUxMVGSoSoKDw/n66+/Nr/fK1EGurcCvnniiUp1ycfExBAUFETE8OFMiIwkYvhwgoKCKjUY2rT0RumfFqUlvGUVlt6wBzIJpmZo2mX2yy+/WPxD/vnnn9x5550MHz4cgKeffprvv/+eNWvW4OnpycSJEwkPD+enn34ClA/FoEGD8PHxIT4+ntTUVB566CFcXV157bXXNHlNjkTOnERNMhgMJMTHk/3HH7Q6e5a258/j8ttv8O+/EBYGCxdCXh54eoK/P7RsycmWLXkmOpp44CSW9WoAqKDCM1wdA1RepeiAgIBKjQFy5u4uNRUfS5W5ZQuNL1ygZyWTIWvGOZqW3hg3bhw6Sp9u7ghLb5jIJJiaY1d1iCZPnsyGDRs4cuQIWVlZtGjRgqioKCIiIgD4+++/ufbaa9m9ezc333wzGzduZPDgwaSkpJibv5csWcJzzz3H6dOncavkwovOWofILgt1CceUnw9nz0Lh/8OYmBiaRUbSJTeXhqXtf+ONEB2tFEZ0dVUubm6sWr2aUaNGVfh0UVFRjBw5ssz7o6OjiYiIKHNQtHR72YFLl5TWwUaNoIzvF9N3VFld+1X5jiotkWjpQEtvQNnJoWZ1hKwldYhKl5uby+eff84jjzyCTqdj79695OXlmYt6AXTq1IlWrVqZa1bs3r2brl27WowFCAsLIysri4MHD5b5XDk5OWRlZVlcnFFtWbRQ2NCVK/Dnn7BuHcybB+PGKd1d7dvD8OFw5Qpbvv6aZ8aNo15hMnQJiAfeAe4DYpYsgd27lVahJk2gYUOlSrROp/qUd39/f4vtAQEBkgzZi/r1lWTo8uUyd1FznOPAgQNJSEhg7Zo1LPrgA9auWcOePXscJoGoaBIMKJNgpPus+uxmltn69evJyMjg4YcfBiAtLQ03NzcaN25ssZ+3tzdpaWnmfYoPjDTdNu1Tmrlz5zJ79mz1gndgtWHRQqEioxEyMyE9HU6dUq4PHnz1/iFDoKyTjfR0DPn5/N9rr5EGPAVcAA4ChVWC0Ol07Hn1VRIfe4zS0myZ8u5EdDpISVES62nToHXrEruoPc7RkaebS/mAmmc3CdHy5csZMGAAfn5+Nf5c06dPZ8qUKebbWVlZBAQE1Pjz2isp1OUE8vPh9GnlkpEBt9129b433oBdu5Qk6PTpq0UOAdzcoHdv5cfLaFR+tJKTlRaha66Ba69VLp07Q5s2xMXHs7fwZGRHKWFUtMq7THl3Mi+8ANu2gYcHvPpqibtlnONVMgmm5tlFQnT8+HF++OEHoqOjzdt8fHzIzc0lIyPDopXo1KlT+Pj4mPf5+eefLY5lmoVm2qc07u7uuBcu5CgUjnzmVCtlZirFB6+77uq23buVZCQn5+olO1u5GAzw4otX9124EPbsuZoEnT2rJDQAderAgQPKdYMBDh+G336zeHqjpydXGjTggocHx/bupdfgwejd3SEqShn3U6f0r47UclpmLfYr50xXKjw7kalTlYRozRp49lllgH0RphliFY1zdKQZYtUlyWHNs4uEaMWKFXh5eTFo0CDztp49e+Lq6sq2bdsYNmwYAIcPHyYpKclc1TQ4OJhXX33V3KoBsHXrVjw8POjcubPtX4gQasjIUKouX74M+/dfTWQWLlRq75RlwoSrLTn79sHOnZb36/XQvDm0aKHs06SJ0gL01FPw0ENKteeWLfnm5595avp0kpKTlS6Nhx/G39+fhQsXVpiMqDkGSLq7nED//koL46FD8Omn8OSTFnfXthli1pDksOZpPsusoKCANm3aMHLkSF5//XWL+8aPH09MTAwrV67Ew8ODJwv/s8THxwPKILMePXrg5+fHvHnzSEtL48EHH+Sxxx6r0rR7Z51lJuzU66/De+8p148eVf66uMDbb8MffyizMdzdoV495brp8tJLStKj0ynJUFoaeHmZEx28vJTZXC5lz6Uoa3aWqbuqogHJaq7yLpzE8uXw2GPK5zQhodTWx9owQ0wNdrdavbXsbJaZ5gnRli1bCAsL4/Dhw3Ts2NHivuzsbKZOncqqVavIyckhLCyMRYsWWXSHHT9+nPHjx7N9+3YaNGjAmDFjeP3116lTRpN+aSQhEnbjzBkIDlZahz79FB54oMwChGozJTNl1e+pbDJjSqqAUscAySwvYSE7Wxmblp4O774LhT0CxZW6tp0TJtW1KjmUhMj+SEJkPfmyUsmsWbBsGXTtCnv3WixJUdO2b99Onz59KtwvNja2woHK0dHRJcYABQQEyBggUbo5c2DmTOjSBTZvttlJgKOqNd+3dpYQ2cUYIuHYpHKqSlJTlVYhUNbosmEypDx92QOdq7qfjAESVTJ+vNJ11qeP0mJUr57WEdk1mQRTMyQhElaxtqy+KOLdd5WZYzfeqNT7sTG1BkSbyJR3UWktWsB//ymD+C9dkoRIaMJuKlULxyOVU1VkNCrJkE6ndB3YuHUIrhZF1JXRXaHT6Sq9BpgQVabXQ+PGSimIghKr2AlR4yQhEtWmZll9p6fTwcsvw/btylRkDZiKIirhWCZF1SmKKESV1asH8fHw4YdaRyKckCREotqkcqqKCgqUFqLu3ctc6NIWTEURW7ZsabHd399fZoeJmrd7Nzz+OLz1Fpw7p3U0wslIQiSqTSqnqmTlSvjrL2WR04alrg1vU+Hh4Rw7dozY2FiioqKIjY0lMTFRkiFR8269VTkpyM6GFSu0jkY4GZl2j0y7ry6DwUBQUFCFlVP37Nkj3Sxl+esvuPPOq8tpdOqkdURCaOvzz+HBB5Wq6j//rBQhFbWTnU27lxYiUW2msvpwtVKqibOV1a+2N99U/vbvD8UKkwrhlO67D/z8lCKlX3+tdTTCiUhCJKwycOBAli1bVmIqtp+fn0y5r8jvv8OWLcpSGrNmlbukhhBOw7S+HsDSpVfX8hOihkmXGdJlpoZaUznVlkaNgh07ICICvvxSEiIhTM6fh4AApSbRF18oix2L2sfOusykMKNQhVROraI9e5RkqE4dpe6QJENCXNWkCYwdq/wfyc3VOhrhJCQhEsLWjEaYN0+5PmKEsn6TEMLSm29CXh6cOKG0JMhJg6hhkhAJu+E03W4GA4SEwNGj8OKLspClEKWpW1cZT1S/Ply+bBclKUTtJim3sAsxMTEEBQURMXw4EyIjiRg+nKCgIGJiYrQOTX116ijdAT//LDPLhCiPi4tSqHTZMpACr6KGSUIkNGdaILb4MiCmBWJrXVKUn6+0Cnl5SeuQEBUZO1apXP3RR1pHImo5SYiEppxqgdiCAmU68caN4OGhdAUIIcr3xBPK3y++gCtXtI1F1GqSEAlNOdUCsd99pxSamzZN6QqQ1iEhKnbvvdC6NWRkcPS111i/fj3x8fG14yRJ2BVJiISmnGaB2Px8ePtt5fr48VCskKUQogx16rD/jjsA0H38MZG1fYyh0IwkREJTTrNA7NdfK7PKGjeGqVO1jkYIhxEdHU3IihVkAm2Buwq319oxhkIzkhAJTQUFBeHn61tiLTQTHdDSz4+goCBbhqWu3Fx45x3l+lNPgbe3tvEI4SAMBgOTJk3iArC0cNv/Cv/WujGGQnOSEAlNOcUCsatWKcXlWrSASZO0jkYIhxEXF8fJkycBeBfIBs4BpkUeatUYQ6E5SYiE5mr1ArFXrsC77yrXJ0+Gpk01DcfZGAwGtm/fzqpVq9i+fbu0JDiY1CITLk4CfsDjlKwo7PBjDIVdkErVwi4MHDiQsLCw2lep2t1dqUa9ejVMnKh1NA7FYDAQFxdHamoqvr6+hISEVOnzEB0dzaRJk8wtDAD+/v4sXLiQ8PBwm8QgrFN87OB5IB8ovgR3s2bNbBWSqMUkIRJ2o1YuEOviArffDvfdp9QechBqJALWHMPaZCY6OpqIiAiMRssKV8nJyURERLB27doKj6NGQgWSVKntEuAD3AZ8q3EsonaRLjMhakpBAWRnK61Enp6Vfpga3TzWHCM6OprAwED69OnDqFGj6NOnD4GBgURHR9vkGKZkpmgiAleTmYqOYRqIWzwZAszbJk+eXO57Ym0MRY9j7XvpzErrCusF/ADMAxoUbjt79qwNoxK1lSREotYwGAzEx8drWrjNFMP3UVFcDgqiYMkSZVFKN7dKPd7RkxFrj6FGMlN0IG5pjEYjJ06cIC4ursZiAPWSKmceB1V8XCHAL8ARwAN4oHCbw5flEHZBEiJRK9jD4rBFY/jnmWeon5LCsfnzWbdjR6UeXxuSEWuPYW0yA5YDcctT1n5qxKBmUuXMLUwhISH4+/ujK1LV3QgUFrHgESDA17fSZTns4aRJ2C9JiITDs4fFYYvG0BQYV7h9tsHAsFGjbNLNYw/JiLXHsDaZgdJbFaqynxoxqPFeqtXCZC+q09Kl1+tZuHAhgEVS9ClwBggAFg8eXKkxWfZw0iTsmyREwqHZw+KwxWOIBBoCfwJRhdtquptHjWOokQhYewxrkxkovVWhKJ1OR0BAACEhITUWg7Xvg1otTEWPp2W3mzUtXeHh4axdu5aWLVuat10BviicpHDDL79UeAx7OGkS9k8SIuHQ7GFx2KIxeAMPF26fgzJF2BbdPGocQ41EwNpjWJvMQNmtCkVvL1iwoMxWBTVisPZ9UCNBNtG6202Nlq7w8HCOHTtGbGwsUVFRxMbGMvGvv5Sxefv2wc8/l/lYezhpEo5BEiLh0Oxhcdiix34KqAf8ChT/mq/Jbh41jqFGImDtMaxNZkxKa1UAZdp8RVPu1YjB2vdBjQQZtO92U7uly4KPD4wapczgPHq0zN3s4aRJOAZJiIRDs4fFYU3HbgKMLNw2Gyj+FV+T3TxqHEONRECNY1iTzBQ/TvFWhcTExEo93toYrH0f1EiQazQZqSS1WrrKauX6/rbb4O+/ISxMKXNRCns4aRKOQRIi4dDsYXFYUwzngWHAQqD4iISa7uZR6xhqJCNqHaO6yUxRer2e0NBQRo4cSWhoaJUKIlobgzXvgxoJsprdbtUdg6RGS1d5rVx3P/oo0bt2QYMGyjI5pbCHkybhGHTG0k4fnExWVhaenp5k/v03Ho2KF4UX9s40YBKwGCdg+imxxXpor7zyCosXL6YxyppLWcXuf+aZZ5g3b16FxymtOnJAQAALFiyo9A+xGsfQulJ1bVLd98GUCAAWrTymJKmipGrVqlWMGjWqwueJiopi5MiRZd5vTcXu7du306dPnwpjiI2NJTQ0tMR2g8FAYGBguYldQEAAib/9hv7rryEkBBo3LnGMoKAgUlNTSx1HpENZN3HPnj1O+fnUVEEBXLgAbdpA3boV718K8+93ZiYeVq4GIAkRkhDVBjExMcyYMcNirEBLPz9mz55d48mQwWDgrhtvJOnUKXJREqLijfcBAQEkJiZW6gtXkhFhYk1ya20yYnr+0pZAqWxSZkpokpOTS+260+l0+Pv7l/l/o7Kv4dRtt+G1cyc8+yxMmlTifns4aRKlkITIUnJyMs899xwbN27k8uXLtG/fnhUrVtCrVy9AOTOaOXMmy5YtIyMjg1tuuYXFixfToUMH8zHOnTvHk08+yXfffYeLiwvDhg1j4cKFNGzYsFIxSEJUOxgMBk0Wh923ejXXTp3KOuAJSrYOmZT3wyNEWaqb3Fa6daWMZKSix1eUzJhY09L1xRdf8MADD5R6X1Hx48YRvGwZeHkpM85cXUvso+VJkyiDnSVEmi7uev78eW655Rb69OnDxo0badGiBUeOHKFJkybmfebNm8e7777LJ598Qps2bXjppZcICwvjr7/+om7hGzh69GhSU1PZunUreXl5jB07lscff5yoqKiynlrUQmosDludpMrrs89wR1mB+0I5+1V2PIUQRZnGQVXncSNHjuTNN98sc58RI0aU+fmuyhik8uILDw9n2rRpzJ8/32LskYuLC1OmTCm3hen06dNl3lfUrx07EuztDadOQXQ03H9/iX0GDhxIWFiYJidNwjFomhC98cYbBAQEsGLFCvO2Nm3amK8bjUYWLFjAiy++yJAhQwD49NNP8fb2Zv369YwYMYJDhw6xadMmfvnlF3Or0nvvvcfAgQN566238PPzs+2LEg6rtDNIP19f5syZU/YZ5B9/4LdvHwZgJpQ6RsGksjOHhFCDwWBg1apV5e6zevVq5s6dW2pSoObU/7feeqtEl5nBYOCtt97i5ptvLjMpatGiRaViaOrrCxMnwksvwbJlcN99UMqAdDVOmkTtpekss2+//ZZevXoxfPhwvLy8uP7661m2bJn5/sTERNLS0ujXr595m6enJ0FBQezevRuA3bt307hxY3MyBNCvXz9cXFykroSotGpXsi08+95cty6/l3HsyswIEqIs1Z3hVVELD1DuLLOanvpvUt7U/+Iz9MrSsmVLGD8e6tWDQ4dg165KPU6IojRNiP777z/zeKDNmzczfvx4nnrqKT755BMA0tLSAPD29rZ4nLe3t/m+tLS0EtMl69SpQ9OmTc37FJeTk0NWVpbFRTivaley/eUX+PFH0Otxe/VVjDqdVcUEhSjOmirT1rbw2MPUf1MM5THH0KwZjBmjbFyypNzHCFEaTROigoICbrjhBl577TWuv/56Hn/8ccaNG8eSGv4wz507F09PT/MlICCgRp9P2LdqV7I1TaO/7z76Pf20KsUEhTCxtsq0tS08atS1sjYpM8VQXlJmEcPTTytdZSkpcOlSpZ5bCBNNEyJfX186d+5sse3aa68lKSkJAB8fHwBOnTplsc+pU6fM9/n4+JSoMJqfn8+5c+fM+xQ3ffp0MjMzzZcTJ06o8nqEY6pWJdvkZPjjD2U2y4wZoNOpVkxQ1C7V6fJSo8q0Gi081hbZVKPbzRRD8ZaigICAkjF07KjMMtu0CaSijKgiTQdV33LLLRw+fNhi2z///EPr1q0BZYC1j48P27Zto0ePHoAyxS4hIYHx48cDEBwcTEZGBnv37qVnz54A/PjjjxQUFJRZndjd3R13d/caelXC0VSrkm3LlrBli7JswDXXmDdXd0aQqJ2qW9RQjRleptaViIgIdDpdqVPeK7su3JAhQ6o19d+UlFVUh6ii8XVViqFXL8jMhBMnlKSojIRQiOI0bSF6+umn2bNnD6+99hr//vsvUVFRLF26lMjISED5zzJ58mReeeUVvv32Ww4cOMBDDz2En58fQ4cOBZQWpf79+zNu3Dh+/vlnfvrpJyZOnMiIESNkhpmolGot/5GfrywqWcZsFiGs6fJSa4aXWuvCVXcJFLUW661yDA0aKMnQL79UKk4hwA4KM27YsIHp06dz5MgR2rRpw5QpU8wVReFqYcalS5eSkZHBrbfeyqJFi+jYsaN5n3PnzjFx4kSLwozvvvuuFGYUlVbpSrYFBcqXbMeO0KQJ+PpKQlSL1VRRRLUqNFe22KfWlcvVWE6mSv74A26/HVxclP+v1Sz6J2qYnRVm1DwhsgeSEAmoZCXbDRvgiSegTx/47jvlTFTUSvawhld1l7ywRzZNyvLyoG1bOHkSXn8dHnywZp5HWMfOEiJNxxAJYU8qrGRrMMBbbynXb7hBkqFarKw1vEzdXRV1N6k1u8ra8T/2xKbj61xdlTXNnnkGPvoIHnhAWnJFhTQdQySEvTFVsh06dCi9e/e2/MFZtw6OHFHGDk2bVurjq1tET9QMrWZ4qTm7Sko5VNNjj0HDhvDvv/DDD1pHIxyAJERCVEZeHsyfr1yfOBFKKelgTRE9ob7q/ntYW0wQ1JnyDkgpB2s0bgyPPqpcX7pU01CEY5CESIjK+OorOH4cmjdXir8VY20RPVGSNa1tWs/w0mx2lbA0ebIysDo+Hv78U+tohJ2ThEiIimRnwzvvKNcnT1aWCChCjS4WYcma1jZr/z3U6O4C6fKyC4GBEB6ujB/asUPraISdk1lmyCwzUYF//4WHH4YrV5RCjJ6eFnerPUW6tqjurKKyBjSbWlYqSibsbYaX1lPend6RI8pMJjc3pVSGDK62HzLLTAgH0749REcrLUXFkiFQr4iePbH2R7y6U9Yrat0xFWsdMmRImfHY2wwvqV6usQ4dlBmix44pJzX162sdkbBT0mUmREWys5Up9jfcUOrdanWxmKgxU83a8TfWDA63ZvyOGgOaZYaXKEGvh6ZNMfzzD3tiY1m/fj3x8fHSjS0sSJcZ0mUmrjIYDOY6RL4NGnDjyZO4DBgArVopA6rLeIxaXSzWFANU4xjWdldZW6F51apVjBo1qtwYAaKiohg5cmS5Majx7yHdXbXHkcGDafv998wEPi7c5ufry5w5c64WXhW2ZWddZtJCJEShmJgYgoKCiBg+nAmRkex6+GFcXnyRM6NHQzn/0dSaUaTGTDVrjqHG4HBrW3jUaN2RGV6iuOjoaN77/nv0wGNcXZInNTWVcePGERMTo2F0wl5IQiQEV9cyMy3b0QR4vPC+Z/7+m+gNG8p9vLVdLGokI9YeQ43uKmvH76hZv0e6vARc/X/xMXAeCAT6F95n+p8yc+ZM6T4TkhAJYTAYmDFjhsWirhOARsBfQBSVmzZvTRE9NZIRa4+hxuBwa1t41GzdkaKGAq7+v7gELCncNr7I/UYgOSWFhIQE2wcn7IrMMhNOLyEhwWJB1xbAI4XX5wC5YE4kKpotVN0ZRWokI9YeQ43uKlMLT0Xjd8pr4TG17pQ2Dqqqq6PLDC9R9PP+PjAV6AVcD/xeZL/09HTbBibsjrQQCadX/IvwSaAeypfl2iLba3LavBrJiLXHUKO7Sq0WHmndEWop+nlPAVYXXh9fbD8vLy9bhSTslCREwukV/SL0Ax4svD4LKNpJVtmEozrUSEasPYaayYwa43dkQLNQQ/H/F4UrEnIrUB9lgHVLPz+CgoI0ilDYC0mIhNMLCgrCz9cXHeAKxAO7ge8L76/sQF5rqJGMqHEMtZIZaeER9qL4/4v9wEgghKuzzWbPni0Jt5A6RCB1iMTVWWYAjYFzQBqVr7+jltJqCAUEBFRp7Iwax5D6O6K2Kf7/ojFwg7c3U195ReoQacXO6hBJQoQkREIRExPD6y++SNKpU5wACqh6IqEGNZIRSWiEKKno/wu/Fi241d8f/fnz0Lq11qE5J0mI7I8kRIJ//oGVKzE8+CDxV65w8sIFSSSEqM3+/RfCw+HsWdi9G+rIpGubs7OESD4BQgC89RZ8/z36M2cI+fZbcJHhdULUai1bQloanD4N336rJEfCqcm3vhB//gnffw86Hbz4oiRDQjiDevVgwgTl+tKlIJ0lTk+++YV4803l7z33wE03aRuLEMJ2JkwAd3c4cAD27NE6GqExSYiEc9u7F374AfR6mDFDWoeEcCZeXvDAA8r1JUvK31fUevLtL5zbvHnK34gIuP56bWMRQtjelCnK323b4OhRbWMRmpKESDivn36CXbuU2SUvvaSMIRJCOJfOnaF/f2UM0Zdfah2N0JDMMhPOq1MnGDNGGUPQubPW0QghtDJnDjz0EHTpoiRGcnLklCQhEs7L0xOefVYpyiZfgEKUqdYX+rzxRqXL/PhxyM5WZqAJpyMJkXA+pjPAixeVpKh+fa0jEqJGWZPQlLYUjL+/PwsXLqxda9PVqaN8Hxw7plx3ddU6ImFjMoZIOJ+NG+H+++GPP6BJE2kdEnbNYDCwfft2Vq1axfbt2zEYDFV6fHR0NIGBgfTp04dRo0bRp08fAgMDiY6OrtRjIyIiLJIhgOTkZCIiIip1DIfy2WcQFgZff611JEIDkhAJ52IwKFWpd+2ChARpGhd2zZpkxvT46iY0BoOBSZMmUdrqTqZtkydPrnKCZteys+HcOSnU6KQkIRLO5dtv4fBh8PBQxg9J65CoYdVt4bG2dcbahCYuLq7Ecxc/xokTJ4iLi6vopZjjsaalyyaeeELpQj98GHbs0DoaYWNWJUQ5OTlqxSFEzcvLU1qHQKlQ6+urbTyi1qtuC48arTPWJjSpqanlxliV/axt6bKZpk1h7Fjl+ocfahuLsLkqJUQbN25kzJgxtG3bFldXV+rXr4+Hhwe33347r776KikpKTUVpxDWW7tWGTDZpAlMnap1NMIBWNOqYU0LjxqtM9YmNL6VPGGoaD+HG4c0ebLScrxzp9JSJJxGpRKidevW0bFjRx555BHq1KnDc889R3R0NJs3b+ajjz7i9ttv54cffqBt27b873//4/Tp0zUdtxBVk5MD77yjXJ80CZo31zYeYfesadWwtoVHjdYZaxOakJAQ/P390ZXRrazT6QgICCAkJKTMYzvkOKT27WHIEOX64sXaxiJsqlIJ0bx583jnnXdITk5m+fLlPPHEE9x9993069eP++67jzlz5hAbG8vRo0dp3Lgxn3/+eU3HLUTVREdDcrKydtFTT2kdjbARrcbvWNvCo0brjLUJjV6vZ+HCheZ9iz8WYMGCBeVO31d7HJLNmFqQv/0WMjO1jUXYTKUSot27dzNo0CBcKlj4smXLlrz++us8/fTTlXryWbNmodPpLC6dOnUy35+dnU1kZCTNmjWjYcOGDBs2jFOnTlkcIykpiUGDBlG/fn28vLx45plnyM/Pr9TzCycSEQEzZ8KsWUqXmbB7Wk03V6NVw9oWHjVaZ9RIaMLDw1m7di0tW7a02O7v78/atWsrrEOk5jgkm7rlFpg9G9avBzc3raMRNlLlQdU7d+4kPT29xPa8vDx27txZ5QC6dOlCamqq+bJr1y7zfU8//TTfffcda9asYceOHaSkpFj8BzQYDAwaNIjc3Fzi4+P55JNPWLlyJTNmzKhyHKKWMxhg9Gh45BGtIxGVoOV0czVaNaxt4VEjmQHrExrTMY4dO0ZsbCxRUVHExsaSmJhYqceqNQ7J5nQ6mDFDqWB95YrW0Qgb0RlLOw0qh4uLC97e3qxbt46bb77ZvP3UqVP4+flV6Sxu1qxZrF+/nn379pW4LzMzkxYtWhAVFUVERAQAf//9N9deey27d+/m5ptvZuPGjQwePJiUlBS8vb0BWLJkCc899xynT5/GrZKZfVZWFp6enmT+/TcejRpVOn7hAK5cAb1eqUrt4yNjhypJjaUaqnsMUzJT/KvJlAhU9ENuMBgIDAwsM6nR6XT4+/uTmJhYajyrVq1i1KhRFcYZFRXFyJEjy40hOTm51JamimIwKa1KdEBAAAsWLKhSlWitlt5Q633QTG6uspxHQQHIb4P6CgrgwgVo0wbq1q3WIcy/35mZeHh4WBVOtabdjxgxgr59+7Jy5UqL7VXMrQA4cuQIfn5+tG3bltGjR5OUlATA3r17ycvLo1+/fuZ9O3XqRKtWrdi9ezegdOV17drVnAwBhIWFkZWVxcGDB6vxykSts2QJ3HabUojRyv8stqJGvRZrZ0dZO0Xakaebq9GqoWYLT3VbZ4rHExoaysiRIwkNDbVZ8qHW+6CZM2dg+nRlkHVBgdbRiBpW5YRIp9Mxffp0PvvsMyZOnMiUKVPMX1Rl9XeXJSgoiJUrV7Jp0yYWL15MYmIiISEhXLhwgbS0NNzc3GjcuLHFY7y9vUlLSwMgLS3NIhky3W+6ryw5OTlkZWVZXEQtdP68UkvkxAllbSIHGAugZTJieqy1U6S17q6yh/E7oE53FWiXzKhFrfdBEw0bwpYtyvT7H37QOhpRw6qcEJmSn/DwcOLi4li7di0DBgwgIyOjyk8+YMAAhg8fTrdu3QgLCyMmJoaMjAy++uqrKh+rKubOnYunp6f5EhAQUKPPJzSyZInSHHvNNfDgg1pHUyGtkxE1Wmdqw3RzNVs11GrhcXQO+z54eMC4ccp1KdRY61lVqfr666/n559/JiMjg759+1odTOPGjenYsSP//vsvPj4+5Obmlki0Tp06hY+PDwA+Pj4lZp2Zbpv2Kc306dPJzMw0X06cOGF17MLOnDkDy5cr1194AdzdtY2nAvaQjKjROmMP3VVqtPCo2arh6C08anHY92HSJGUc4p49yoLQotaqckI0ZswY6hVZENPHx4cdO3bQt29fWrVqZVUwFy9e5OjRo/j6+tKzZ09cXV3Ztm2b+f7Dhw+TlJREcHAwAMHBwRw4cMBi1tvWrVvx8PCgc+fOZT6Pu7s7Hh4eFhdRy7z/vjKguls3GDFC62gqZA/JiBqtM/bQXWVv43eEOjRbC61VKxg+XLm+ZIltnlNoosoJ0YoVK2hUbLS9u7s7n3zyCYmJiVU61rRp09ixYwfHjh0jPj6ee++9F71ez8iRI/H09OTRRx9lypQpxMbGsnfvXsaOHUtwcLB5dttdd91F586defDBB9m/fz+bN2/mxRdfJDIyEnc7bxEQNSglBT79VLk+Ywa4umobTyXYQzKiRuuMvXRXyfid2kXztdCmTFH+fv892FvNJKGaOpXd8Y9KNhV269at0k9+8uRJRo4cydmzZ2nRogW33nore/bsoUWLFgC88847uLi4MGzYMHJycggLC2PRokXmx+v1ejZs2MD48eMJDg6mQYMGjBkzhjlz5lQ6BlELxcQoS3XceCPcc4/W0VSKPSQjptaZiqZIl9c6o8YxTMlM8enm/v7+VZpuHh4ezpAhQzSZbi7UU1YZBtO4OJsMzL7xRrj1VmW26vLl8OKLNft8QhOVrkPk4uKCTqcrMaPMaDSat+t0Ovtak6aSpA5RLWM0wtatEBgIoaFaR1MpatRrUeMYph8fsCyjUdkaQGodw/R6JJlxbtbWlFLV1q3w009w551K3RxhPTurQ1TphOj48ePm60ajkeuuu46YmBhat25tsV/x245AEqJa5tIlZZp9q1bKYEgbsuZH3F6SETWKAapVUFA4t+3bt9OnT58K94uNjSXUFic/eXlw7JjyvVLNH3BRhJ0lRJXuMiue6Jgyc0dMgEQtlZKifFG5uiqLuNo4GSotCfD392fhwoWVXiLB2q4itY5hbVeTdFcJNdjdWmiurtC4MaSlKTNXq1h7T9i3Ki/dYdKoUSP2799P27Zt1Y7J5qSFqJb43/+U4mmvvQZPPmnThMja5SaK0nLZDCHsid21EAFER8OcOcr3jYOMUbRbdtZCJAkRkhDVCgcPwl13Kdd/+gl697bZU9vVOAchahG7XAvthReUk64bboDvvrPNc9ZWdpYQWVWYsapLdQhRY956S/k7eDAUWXTYFtSoISSEKMku10KbOFHpOvvtN9i713bPK2pcpccQXX/99RYfyCtXrnD33XeXWFH+t99+Uy86ISrj99+V9YZcXGD2bOWvDdndOAchahG1yjCoxtcXRo2CTz6BxYvho49s+/yixlQ6IRo6dKjF7SFDhqgdixDVM2+e8nfYMOjRw+ZPr0YNISFE2exukP6UKUpCtHkzHD8OMrmoVqj0GKKkpCT8/f1xsfHZty3IGCIHtns3REQo0+x//x2uu87mIdjlOAchRM26805lEsfDD8Orr2odjWNy1DFEbdq04cyZM1Y9mRCqO3xY6c8fMQK6dNEkBLsc5yCEqFlTpyp/16yBzExtYxGqqHRCVM3JaELUrAceUJbqmD1b05ogaq6OLoRwAGFhMHo0vP66zWueiZpRpaU7Tp06ZV5nrDaRLjMHlpEBnp7g52cXRdKk/o8QTubMGaVQY9OmWkfieOysy6zSg6oBXnrpJerXr1/uPvPnz7cqICEq5ZdflLOydu2UyrF2kAzB1dXRhRBOolEjOHsWcnOh2Kxr4ViqlBAdOHCgxDT7oqQukbCJggJ4/nn4+294912lLogQQmghJ0eZcbZnD3z2md2cnImqq1JCtG7dOry8vGoqFiEq57vvlGSoUSMID5cvICFEpdRIl3ZODrzzDmRnQ3w83HKLOsEKm6v0oGpp/RF2IT//alXq8eOh2CBmIYQoTXR0NIGBgfTp04dRo0bRp08fAgMDiY6Otu7ALVrAgw8q1z/80PpAhWZklplwLF9/Df/9p4wbMk17VZHBYGD79u2sWrWK7du3YzAYVH8OIYRtmRZfLr7ETnJyMhEREdYnRVOmKH9//BGOHrXuWEIzlU6IVqxYgaenZ03GIkT5cnPBNGj/qadA5e7bGjuDFEJoxmAwMGnSpFJP6k3bJk+ebN3JT6dOMHAgGI2wZEn1jyM0VamEaM+ePYwZMwZ3d/cK9718+TIHDx60OjAhSli1Ck6eVJqoJ01S9dA1fgYphNCEzRZfnjZN+RsdDefOWXcsoYlKJUQPPvggYWFhrFmzhkuXLpW6z19//cX//d//0a5dO/bKCsCiJjRqpCRDU6aoWvPDJmeQQghN2Gzx5dBQ6N5dGVy9YoV1xxKaqNQss7/++ovFixfz4osvMmrUKDp27Iifnx9169bl/Pnz/P3331y8eJF7772XLVu20LVr15qOWzijgQPhttuUIl4qqsoZpNQYEsKx2GzxZZ1OKQeybh307m3dsYQmKl2p2uTXX39l165dHD9+nCtXrtC8eXOuv/56+vTpQ1MHrdQplaodxLlz4O2ttBKpaNWqVYwaNarC/aKiohg5cqSqzy2EqFk2X3w5JweOH1fWWKzEMBOn5siVqgF69epFr169rHpSIaokKkqpSj1ggLJMh8psdgYphLA50+LLERER6HQ6i6SoRhZfdndXvqfOnJGEyMFUepaZEJrIyICXX1bGDf38c42Uxg8JCcHf37/MWls6nY6AgABCQkJUf24hRM2z+eLLJ0/CjBmwfbu6xxU1qsotRELY1NKlkJUFHTvC/ffXyFPY/AxSCGFz4eHhDBkyxDaLL3/yiTLbLD1dGWwtHIK0EAn7dfYsfPSRcv2FF2q0+dnmZ5BCCJszLb48cuRIQkNDa+4kZ/JkcHGBXbvgr79q5jmE6iQhEvbrgw/g0iXo0gVGjKjxpwsPD+fYsWPExsYSFRVFbGwsiYmJkgwJIaqmbVsYOlS5LoUaHUaVZ5n9999/tG3btqbi0YTMMrNDaWnK1NWcHPjyS7jvPq0jEkKIyjMt9Orqqox/lIXRS7KzWWZVbiFq3749ffr04fPPPyc7O9uqJxeiKIPBQHx8POvXryf1//5PSYZ69oR779U6NCGEqJrevSEoCPLyrnb9C7tW5YTot99+o1u3bkyZMgUfHx+eeOIJfv7555qITTiRmJgYgoKCiBg+nAmRkTy5eTN/1alD/F13KWdYQgjhaEwLUH/xBVy5om0sokJVToh69OjBwoULSUlJ4eOPPyY1NZVbb72V6667jvnz53P69OmaiFPUYjExMYwbN46UIqXz9wGD8vO5be5cWUdMCOGY7r0XbroJHnpIGQ8p7FqVxxAVl5OTw6JFi5g+fTq5ubm4ublx33338cYbbzhMITsZQ6Qdg8FAUFCQRTKkAxoDJ4ELaleRFUIIWzIa4fRpZQq+g67mUGMcfQyRya+//sqECRPw9fVl/vz5TJs2jaNHj7J161ZSUlIYMmSIVYEJ55CQkGCRDL0BTEf5YF5ExZWohRBCCzqdsjB1nTrKeCJht6pcmHH+/PmsWLGCw4cPM3DgQD799FMGDhyIi4uSW7Vp04aVK1cSGBiodqyiFkpPTzdf7wSMRkmGVgEFRfazeiVqIYTQirs77NmjVK5+7TWtoxFlqHJCtHjxYh555BEefvjhMrvEvLy8WL58udXBidqvWbNm5uvPoCRD3wO7i+3nVYkpqwaDwTZVaIUQoipSUmDcOMjPV0qI9OihdUSiFFVOiI4cOVLhPm5ubowZM6ZaAQnn1A0YABiAmUBVB7ZFR0czadIkTp48ad7m7+/PwoULpbCiEEIV1T7p8vdXEqGoKKVQoxRrtEtVHkO0YsUK1qxZU2L7mjVr+OSTT1QJSjiPs2fPAvBs4e11wG+l7Fe0a6246OhoIiIiLJIhgOTkZCIiImSWmhDCatHR0QQGBtKnTx9GjRpFnz59CAwMrPz3y5Qpyt+NGyE5ueYCFdVW5YRo7ty5NG/evMR2Ly8vXrOib/T1119Hp9MxefJk87bs7GwiIyNp1qwZDRs2ZNiwYZw6dcricUlJSQwaNIj69evj5eXFM888Q35+frXjELbl5eXFTcAdQB4wh9Jbh8rqnjUYDEyaNInSJkuatk2ePBmDwaBWyEIIJ6PKSVfPnnDbbUq32dKlNRSpsEaVE6KkpCTatGlTYnvr1q1JSkqqVhC//PILH374Id26dbPY/vTTT/Pdd9+xZs0aduzYQUpKikX3h8FgYNCgQeTm5hIfH88nn3zCypUrmTFjRrXiELYXFBTEdDc3AL4EDhS7X6fTERAQQEhISKmPj4uLK/ElVZTMUhNCWEPVk65p05S/X34JFy+qGaZQQZUTIi8vL/74448S2/fv328xQLayLl68yOjRo1m2bBlNmjQxb8/MzGT58uXMnz+fO+64g549e7JixQri4+PZs2cPAFu2bOGvv/7i888/p0ePHgwYMICXX36ZDz74gNzc3CrHImxPr9dzZcYM1gKvFLtPp9MBsGDBgjL76Ss7+0xmqQkhqkPVk65Bg6BDB6X2zmefqRilUEOVE6KRI0fy1FNPERsbi8FgwGAw8OOPPzJp0iRGVGNF8sjISAYNGkS/fv0stu/du5e8vDyL7Z06daJVq1bs3q3MQdq9ezddu3bF29vbvE9YWBhZWVkcPHiwzOfMyckhKyvL4iK0E3rvvdRfupRLLVtabPf392ft2rXlDoqubPFPRykSKoSwL6qedLm4KGOJunUDHx8rIxNqq/Iss5dffpljx47Rt29f6tRRHl5QUMBDDz1U5TFEq1ev5rfffuOXX34pcV9aWhpubm40btzYYru3tzdpaWnmfYomQ6b7TfeVZe7cucyePbtKsYoacOWKsk6ZTsfAUaM49sgjVZ7BERISgr+/P8nJyaU2aesKK12X1eUmhBDlUf2ka9w4GDMGkpIgNxcKhwwI7VU5IXJzc+PLL7/k5ZdfZv/+/dSrV4+uXbvSunXrKh3nxIkTTJo0ia1bt1K3miW7q2v69OlMMY34Ryn9HRAQYNMYnF5BAQwZokxHffVVqF8fvU5HaGholQ6j1+tZuHAhERER6HQ6i6SoMl1uQghRHtVPuvR6qFcPPDzg/HlJiOxItZfu6NixI8OHD2fw4MFVToZA6RJLT0/nhhtuoE6dOtSpU4cdO3bw7rvvUqdOHby9vcnNzSUjI8PicadOncKnsKnRx8enxKwz022fcpoj3d3d8fDwsLgIG9uwAQ4ehJ9+Am9vpbx9NYWHh7N27VpaVqPLTQghymM66YKrJ1kmVp10GY2wciX8VlqhEaGFKrcQGQwGVq5cybZt20hPT6egoMDi/h9//LFSx+nbty8HDljOKRo7diydOnXiueeeIyAgAFdXV7Zt28awYcMAOHz4MElJSQQHBwMQHBzMq6++Snp6urmS8datW/Hw8KBz585VfWnCVvLz4a23lOtPPKG0ElkpPDycIUOGSKVqIYTqTCddpRV/XbBgQfVOumbPVqbf798PK1aoGK2oriqvdj9x4kRWrlzJoEGD8PX1LZExv/POO9UOJjQ0lB49erBgwQIAxo8fT0xMDCtXrsTDw4Mnn3wSgPj4eEBJznr06IGfnx/z5s0jLS2NBx98kMcee6xK45lktXsbW7MGJk8GT084fFhpIRJCCDun6vJAf/4JXbsqA6137lRWfHc2drbafZVbiFavXs1XX33FwIEDrXriynjnnXdwcXFh2LBh5OTkEBYWxqJFi8z36/V6NmzYwPjx4wkODqZBgwaMGTOGOXPm1Hhsoppyc2H+fOX6k09KMiSEcBh6vb7K4xzLdN11cNddsGWL0lI0d646xxXVVuUWIj8/P7Zv307Hjh1rKiabkxYiG/rsM3j+eWjeHP7+G6pRu0oIIWqFLVsgLEwZZP3LL1CkFp9TsLMWoioPqp46dSoLFy4sdbS9EOUyGpXFDUHpMpNkSAjhzO68U2kpunIFPv1U62icXpW7zHbt2kVsbCwbN26kS5cuuLq6WtwvC2mKMul0SkIUFaV0lwkhhDPT6WDqVBg7VplxNn68TMPXUJUTosaNG3PvvffWRCzCGRiNSuuQlDoQQggYORJefBG6d4czZ8DPT+uInFaVE6IVMj1QVMfRo+DrC+7uyuwyIYQQynfiP/8oY2nOntU6GqdWrcKM+fn5/PDDD3z44YdcuHABgJSUFC7K6r2iNFlZcM89MHiw0lcuTcJCCHFV/frQqJHShZafr3U0TqvKCdHx48fp2rUrQ4YMITIyktOnTwPwxhtvMG3aNNUDFLXA0qWQkQEGg7LSsxBCCEv16sHp0/DRR1pH4rSq3GU2adIkevXqxf79+2lWZJbQvffey7hx41QNTtQC587BsmXK9RdeUP7Tl0HVomdCCOFI0tLgjjuUE8c77oBaVNrGUVS5hSguLo4XX3wRt2LdHoGBgSQnJ6sWmKglFi+Gixehc2dl8GAZoqOjCQwMpE+fPowaNYo+ffoQGBgosxaFEM7B1xdMBY+XLNE2FidV5YSooKAAg8FQYvvJkydpJEUNRVGnTsHHHyvXZ8xQBg+WIjo6moiICIs1ggCSk5OJiIiQpEgI4RxMw07Wr1dmnAmbqnJCdNddd5nXGgNltd+LFy8yc+ZMmyznIRzI++9Ddjb06AFlLH5oMBiYNGlSqYU+TdsmT55cahIuhBC1SkgI3HAD5ORcPZkUNlPlhOjtt9/mp59+onPnzmRnZzNq1Chzd9kbb7xREzEKR2QwwIEDyvXZs6FYAU+TuLi4Ei1DRRmNRk6cOEFcXFxNRCmEEPZDp7vaSvTZZ8oJpbCZKg+q9vf3Z//+/axevZo//viDixcv8uijjzJ69GjqlTNgVjgZvR4+/xx+/RUGDSpzt9TU1EodrrL7CSGEPatw8khEBDz3HJw4AV99BQ89pF2wTqbKCRFAnTp1eOCBB9SORdQmRqOysv2gQUpyVAZfX99KHa6y+wkhhL2Kjo5m0qRJFq3i/v7+LFy4kHDTsAJXV3jqKXjtNbh0SaNInVOVV7v/tIIF6B5ywGxWVrtX2caNcP31ysrNrVqVmxAZDAZzl2tpH0WdToe/vz+JiYkyBV8I4bBMk0eKf8/pdDoA1q5dezUpunxZuZw5o5QqKWPIgcOzs9Xuq5wQNWnSxOJ2Xl4ely9fxs3Njfr163Pu3DmrAtKCJETWMxgMJCQkcGXfPu547TVo3Bjdb79BYGCFjzV9UQAWXxalflEIIYSDMZ34lTVestQTP6MRUlKUSv+1dbkjO0uIqjyo+vz58xaXixcvcvjwYW699VZWrVplVTDCMcXExBAUFETE8OFcefVVdEYj2y9fJvrXXyv1+PDwcNauXUvLli0ttvv7+0syJIRweNWaPKLTKYtg79wJR47YIEpRrbXMiuvQoQOvv/46kyZNUuNwwoHExMQwbtw4UlJT6QoMBgqA53NyiLjvvkrXEAoPD+fYsWPExsYSFRVFbGwsiYmJkgwJIRxetSePzJwJ//sfLFxYA1GJ4lRJiEAZaJ2SkqLW4YQDMBgMzJgxA1Mn1zOFf9cDvxRer0oNIb1eT2hoKCNHjiQ0NFTGDAkhaoVqTx4ZMUL5+913ytIeokZVeZbZt99+a3HbaDSSmprK+++/zy233KJaYML+JSQkkFJ4RtML6AfkA3NASZKKNAOHhoZqFaYQQmgqJCQEf3//CiePhISEWN5x003QuzfExyuLvr74oo0idk5VToiGDh1qcVun09GiRQvuuOMO3n77bbXiEg4gPT3dfN3UOrQG2F9sP6khJIRwZnq9noULFxIREYFOpyt18siCBQtKbxWfNk2p9B8VBVOmQP36tgrb6VRrLbOiF4PBQFpaGlFRUVIrxsk0bdoUAHfgNJCN0jpUXPPmzW0YlRBC2J9qTx655x5o2xYyM5WkSNQY1cYQCedz6NAhAHKA/wNuAv4uZb8DpiU8hBDCiVVr8oheD08/rVxfvlxZFknUiCp3mU2ZMqXS+86fP7+qhxcOJCkpCQA9oAOOlrFfYmKirUISQgi7Zpo8UiUPPwwvvQTu7nDyJAZ/fxISEkhPT8fLy4ugoCCZhKKCKidEv//+O7///jt5eXlcc801APzzzz/o9XpuuOEG836mflFRewW2asVzQAxwALhcxn7t2rWzXVBCCFHbNGyorAtZrx5b1qzh/4YNM09oAfDz9WXOnDkMHDhQwyAdX5UTorvvvptGjRrxySefmKtWnz9/nrFjxxISEsLUqVNVD1LYp4d9fHAFxgBty9hHr9czYcIEG0YlhBC1ULt2fBMVxfTJk8kqdldqairjxo1j2bJlkhRZocpjiN5++23mzp1rsYRHkyZNeOWVV2SWmTMxGHBdsACAj4HzZew2ZcoU3NzcbBWVEELUSgaDgYnPPks+cFex+0xz1mbOnFnpum+ipConRFlZWZw+fbrE9tOnT3PhwgVVghIOYP16+Ocf8urXZ145u9188822ikgIIWqtuLg4spOTSQCWAi2L3W8EklNSSEhIsH1wtUSVE6J7772XsWPHEh0dzcmTJzl58iRff/01jz76qCyz4Czy8qBwwPwSFxdOlbGbTqerUqVqIYQQpUtNTeUMsBdlrMsTZexXtD6cqJoqJ0RLlixhwIABjBo1itatW9O6dWtGjRpF//79WbRoUU3EKOzNmjVw7Bh5Hh7MunixzN1KXbBQCCFElZnq/Jnmbt8PNCxlPy8vL1uFVOtUOSGqX78+ixYt4uzZs+YZZ+fOnWPRokU0aNCgJmIU9iQnB955B4C/7rqLc5V4iFSqFkII64SEhNCsWTM2AX8BjYCHiu3TtEkTgoKCbB9cLVHtwoypqamkpqbSoUMHGjRoUOr6LKIWKihQFhzs0IGsMWMq9RCpYC6EEOowcrWVaCxKHTihjionRGfPnqVv37507NiRgQMHms/+H330UZly7wzq1YOxY2HnTnoPGECzZs3K3b1Zs2YlFywUQghRJXFxcZw9exaAL4B0lIHV9xTZ59z58zKo2gpVToiefvppXF1dSUpKon6RRebuv/9+Nm3apGpwwg5lZyvVUouUXRBCCFGzkpOTzdezgUVAAdCt2H5paWk2jKp2qXJCtGXLFt544w38/f0ttnfo0IHjx4+rFpiwMxcuwKhRsGULNG4M7u4WZyxlOXv2rAyqFkIIKxUvd/Me0B1YgGW3WUXfyaJsVa5UfenSJYuWIZNz587h7u6uSlDCDn30EezYASdOQOHYocoOlpZB1UIIYZ0WLVpY3D5XeGkJNABMVQArGsYgylblFqKQkBA+/fRT822dTkdBQQHz5s2jT58+VTrW4sWL6datGx4eHnh4eBAcHMzGjRvN92dnZxMZGUmzZs1o2LAhw4YN49Qpy6o3SUlJDBo0iPr16+Pl5cUzzzxDfn5+VV+WKM/58/Dhh8r1//s/ZRwRlR8sLYOqhRDCOi1bFi/FqMgEWgE+hbd9fHxK3U9UrMotRPPmzaNv3778+uuv5Obm8uyzz3Lw4EHOnTvHTz/9VKVj+fv78/rrr9OhQweMRiOffPIJQ4YM4ffff6dLly48/fTTfP/996xZswZPT08mTpxIeHi4+XkMBgODBg3Cx8eH+Ph4UlNTeeihh3B1deW1116r6ksTZVmyROky69QJHnjAvDkkJAR/f3+Sk5NLnWWo0+nw9/eXQdVCCGEl07T74l1ikcCrKAOt58m0e6vojNWYL5+Zmcn777/P/v37uXjxIjfccAORkZGqtAQ0bdqUN998k4iICFq0aEFUVBQREREA/P3331x77bXs3r2bm2++mY0bNzJ48GBSUlLw9vYGlMKRzz33HKdPn670GlpZWVl4enqS+fffeDRqZPVrqFVOn4bgYLhyBT77zCIhAoiOjjb/+xT9KOl0OgDWrl0rFcyFEMJKBoMBb2/vEgnRHcA24DLQz8ODuD//RK93kMn4BQXKyXabNlC3brUOYf79zszEw8PDqnCq1GWWl5dH3759SU9P54UXXuCrr74iJiaGV155xepkyGAwsHr1ai5dukRwcDB79+4lLy+Pfv36mffp1KkTrVq1Yvfu3QDs3r2brl27mpMhgLCwMLKysjh48GCZz5WTk0NWVpbFRZThvfeUZKh7d7j//hJ3h4eHs3bt2hLNuf7+/pIMCSGESsqaxPIjsA+oD9yblSXT7q1QpS4zV1dX/vjjD1UDOHDgAMHBwWRnZ9OwYUPWrVtH586d2bdvH25ubjRu3Nhif29vb/O0wrS0NItkyHS/6b6yzJ07l9mzZ6v6OmqltDSlVQhgxgxwdS11t/DwcIYMGUJcXBypqan4+voSEhLiOGcpQghh58qbnDIf+BQYA+xOSbFVSLVOlQdVP/DAAyxfvly1AK655hr27dtHQkIC48ePZ8yYMfz111+qHb8006dPJzMz03w5ceJEjT6fw/LygjffhOHD4e67y91Vr9cTGhrKyJEjCQ0NlWRICCFUVF4vzGogGfACOh86ZKuQap0qD6rOz8/n448/5ocffqBnz54l1i+bP39+GY8snZubG+3btwegZ8+e/PLLLyxcuJD777+f3NxcMjIyLFqJTp06ZR5F7+Pjw88//2xxPNMstPJG2ru7u0uJgMrQ6eCOO+Chh8psHRJCCFHzevfujV6vx2AwlLgvD6Uu0etAu23b4MUXle9vUSVVbiH6888/ueGGG2jUqBH//POPeYHX33//nX379lkdUEFBATk5OfTs2RNXV1e2bdtmvu/w4cMkJSURHBwMQHBwMAcOHCA9Pd28z9atW/Hw8KBz585Wx+LU8vLg0iVo0ABkoLkQQmgqPj6+1GTIZClwCSg4eRL++89mcdUmlW4h+u+//2jTpg2xsbGqPfn06dMZMGAArVq14sKFC0RFRbF9+3Y2b96Mp6cnjz76KFOmTKFp06Z4eHjw5JNPEhwczM033wzAXXfdRefOnXnwwQeZN28eaWlpvPjii0RGRkoLkDWOHIH77lPWLHv+eZDuLyGE0FRFBW7PA4OBKXPmcHfz5jaJqbapdAtRhw4dLEqH33///SWKJFZVeno6Dz30ENdccw19+/bll19+YfPmzdx5550AvPPOOwwePJhhw4Zx22234ePjQ3R0tPnxer2eDRs2oNfrCQ4O5oEHHuChhx5izpw5VsXl9N5+G9LT4fffwcppjEIIIaxXmZnc24HGXbqA0ahMaRdVUuk6RC4uLqSlpeHl5QVAo0aN2L9/P23btq3RAG1B6hAV8eefEBam9D//9JNSg0gIIYSmDAYDgYGBFRbCTTx6FP3Jk/DPP9C1qwaRVoEj1yESTuCtt5S/gweDVDwVQgi7oNfrWbhwIXC18K2J6faCBQvQX7gAQ4bAPfcohXVFpVU6IdLpdGX+I4haYu9e2LoVXFxg1izlrxBCCLtQqUK4TZoorS25uaBiiRxnUKUuswEDBpgHK3/33XfccccdJabdFx3j4yiky6zQiBEQF6cMqF61ShIiIYSwQwaDofxCuF99paws0LQp/PyzeUFuu2NnXWaVnmU2ZswYi9sPFFvTSji4f/5RkqE6dZSq1JIMCSGEXTIVwi1TeDi0bg3Hj8OXX8LDD9sqNIdW6YRoxYoVNRmH0FrHjhAdDYcPg9RwEkIIx1WnDkyaBFOmKN1mDz0kJ7mVIO+QUOTnwzXXwJNPSoVTIYRwdI8+qpRN+e8/+OEHraNxCJIQOTujEZKT4eJF8PSE+vW1jkgIIYS1PDxg3Djl+jffaBuLg6jyWmailtm8GZ54goIHHmDXffeRvHOnrFYvhBC1weTJSvmUTp3AYJBVBypQ6VlmtZnTzjIrKIA774S//+ajBg0Yd+mS+S5/f38WLlyoTOMUQgjhmIxGSEqC7Gz7W5fSzmaZSZeZM/v2W/j7b7KAGUWSIYDk5GQiIiIcsoyCEEKIQjqdUpvo4kXIzNQ6GrsmCZGzys/HWFiV+gOg+LKBpobDyZMnl7vCshBCCDsXHa30BixYoHUkdk0SIme1di26xETOAfPL2MVoNHLixAni4uJsGZkQQgg1NWkC588rBXeL9QaIqyQhckY5OTBfSYMWAmcq2D01tXj7kRBCCIdx993Qvr0yXufzz7WOxm5JQuSM/voLMjLIbdyYhZXY3dfXt8ZDEkIIUUNcXJQijQAff6zMOBMlSELkjK6/HjZtQv/JJzTy9y9zkV6dTkdAQAAhISE2DlAIIYSqxoxR1jY7eRK+/17raOySJETOKDsbvLzQh4WxcKHSRlQ8KTLdXrBggdQjEkIIR1e/PowfD4Bx6VLi4+NZv3498fHxMnGmkCREzuTiRWUB10uXlEF27u6Eh4ezdu1aWrZsabGrv78/a9eulTpEQghRW0yciKFOHXS//8704cOZEBlJxPDhBAUFERMTo3V0mpPCjDhRYcaFC2HePIiIgC++ADc3810Gg4G4uDhSU1OlUrUQQtRC0dHRfDdsGMeAFOBC4XZT/8CyZcsYOHCg7QKys8KMkhDhJAlRRgYEB0NWFnz4ITz+uNYRCSGEsBGDwUBgYCAnT56kERAAZACmBEAH+Pn5sWfPHtudDNtZQiRdZs7iww+VZKhjR2VwnRBCCKcRFxfHyZMnAbhUeGlW5H4jkJySQkJCggbR2QdJiJzB2bPw0UfK9RdfBHd3beMRQghhU0XrydUH5gFxQPE2lfT0dBtGZV8kIXIGH3wAly9D165w//1aRyOEEMLGitaTuwh0BjyBh4rt5+XlZcOo7IskRLVdWhqsXKlcnzHDYiC1EEII5xASEkKzZlc7yUxLNo0F6hReb9qkCUFBQbYOzW5IQlTbpaaCry/06gVDhmgdjRBCCDsQBZwCfAH5ZVBIQlTb9egB69bBp5+Cq6vW0QghhNBAXFwcZ8+eNd/OAd4vvP5E4d9z58/LoGpRi12+DJ6eyuwyIYQQTik5ObnEtiXAFeA6oHfhtrS0NBtGZV8kIaqtjh5VFvG7cEFZv0aKLAohhNM6ffp0iW1ngE8Krz9a+LdoK5KzqVPxLsIhzZ8P69fDgQMQFaV1NEIIITTUokWLUrfPB5KBrSjFGYsOvHY20kJUGx06BN98o1x/8klpHRJCCCdXfL1KkyPAq0AqSn0iHx8fG0ZlXyQhqo3eeguMRhg0CHr3rnh/IYQQtVpISAj+/v6l3mdEWcajtZcXQTfcYMuw7IokRLXN/v2waRO4uMCsWcpfIYQQTk2v17Nw4UJ0Ol2p998MrK1XD/3775d6vzOQX8vaZt485e+994ITZ/pCCCEshYeHs3bt2hItRQEBAbwyaRKNjx9XSrTk5GgUobZkUHUtYDAYSEhIwBAfT8j27Rjr1EE3Y4a0DgkhhLAQHh7OkCFDiIuLIzU1FV9fX0JCQtAXFMDatZCcDGvWwAMPaB2qzUlC5OBiYmKYMWMGKampdARmA2dcXdEdOUJ4t25ahyeEEMLO6PV6QkNDi2+Ep56C555TFgMfPRrK6F6rraQJwYHFxMQwbtw4UgpXMT4K/A947MoVIoYPJzo6WtP4hBBCOJDHH4cGDeDIEYiN1Toam9M0IZo7dy433ngjjRo1wsvLi6FDh3L48GGLfbKzs4mMjKRZs2Y0bNiQYcOGcerUKYt9kpKSGDRoEPXr18fLy4tnnnmG/Px8W74UmzMYDMyYMQNjkW0NgUyU2QJGo5HJkydjMBg0iU8IIYSDadwYHnlEuf7hh5qGogVNE6IdO3YQGRnJnj172Lp1K3l5edx1111cunTJvM/TTz/Nd999x5o1a9ixYwcpKSmEh4eb7zcYDAwaNIjc3Fzi4+P55JNPWLlyJTNmzNDiJdlMQkKCuWXoDpQ6Es1REiKTEydOEBcXp0F0QgghHNLTTyvjT3ftUmraORFNxxBt2rTJ4vbKlSvx8vJi79693HbbbWRmZrJ8+XKioqK44447AFixYgXXXnste/bs4eabb2bLli389ddf/PDDD3h7e9OjRw9efvllnnvuOWbNmoWbm5sWL63Gmdab0QHTgS7ABWBXsf1KW79GCCGEKFWbNvDSS+DrC35+WkdjU3Y1higzU2nfaNq0KQB79+4lLy+Pfv36mffp1KkTrVq1Yvfu3QDs3r2brl274u3tbd4nLCyMrKwsDh48WOrz5OTkkJWVZXFxNKb1ZgZzNRl6o5T9Slu/RgghhCjTrFkwYgQYDEqRXydhNwlRQUEBkydP5pZbbuG6664DlFYQNzc3GjdubLGvt7e3uYUkLS3NIhky3W+6rzRz587F09PTfAkICFD51dS8Jk2aoAeeKby9GEgpZT9nXpdGCCFENTVsCPXqweXLWkdiM3aTEEVGRvLnn3+yevXqGn+u6dOnk5mZab6cOHGixp9TbefPnyccaA+cB94qYz9nXrlYCCFENeXlwcqVMHAgXLmidTQ2YRcJ0cSJE9mwYQOxsbEWFTR9fHzIzc0lIyPDYv9Tp06ZF6Dz8fEpMevMdLusRerc3d3x8PCwuDia5p6eTCm8/h5QVsdYWSscCyGEEGVydYXPP4d//4VVq7SOxiY0TYiMRiMTJ05k3bp1/Pjjj7Rp08bi/p49e+Lq6sq2bdvM2w4fPkxSUhLBwcEABAcHc+DAAdLT0837bN26FQ8PDzp37mybF6KBbocO0RolEXqnnP3KWuFYCCGEKJNer8w4A1i+HAoKtI3HBnRGo3YjpiZMmEBUVBTffPMN11xzjXm7p6cn9erVA2D8+PHExMSwcuVKPDw8ePLJJwGIj48HlGn3PXr0wM/Pj3nz5pGWlsaDDz7IY489xmuvvVapOLKysvD09CTz77/xaNRI5VdZMwynThF9660kXL7M22XsExAQQGJiInq93qaxCSGEqAUuXICAAMjMVKpXDxig7vELCpTnaNMG6tat1iHMv9+ZmVb39mjaQrR48WIyMzMJDQ3F19fXfPnyyy/N+7zzzjsMHjyYYcOGcdttt+Hj42NRgVmv17Nhwwb0ej3BwcE88MADPPTQQ8yZM0eLl2Qzek9PPN54g7LWJdbpdCxYsECSISGEENXTqBE88YRy3QkKNWraQmQvHKqFqKBAKZp17hx4exMdF8ekSZM4efKkeZeAgAAWLFhgUcBSCCGEqLKTJ5UWnPx82LABrr9evWNLC5GwygcfwP33K2vNeHoSHh7OsWPHiI2NJSoqitjYWBITEyUZEkIIYT1/f+U3B2DJEm1jqWGy2r0jycyExYuVv6NGQWEV7lJXLhZCCCHUMHWqUqAxPFz5q9NpHVGNkITIkSxbpiRD7dvDww9rHY0QQghncP318OmncPy4UpOofn2tI6oR0mXmKM6dg6VLlesvvKBUEBVCCCFsQa+HJk0gO1vrSGqMJESOYtEiuHQJOneGkSO1jkYIIYSzSUpS1jlbtkzrSGqEJESO4NQpWLFCuT5jBri7axuPEEII57NnD3z9tZIQ5edrHY3qJCFyBJ9+qjRTXn+9MqhNCCGEsLWHHoJmzSA5Gb77TutoVCcJkSOYNElpGXrlFWV9GSGEEMLW6tWDCROU60uXKjPOahFJiBxBXh6MGQNhYVpHIoQQwplFRirDNv74A37+WetoVCUJkT07fx5ycyEnR2mmlGU4hBBCaMnbG0aPBuDY88/zwgsvsGzZMnJzczUOzHqSENmzGTPgtttg3z5o2FDraIQQQgjeLuwqa/XPP8SuXMnMWbNo164dr7zyisaRWUcKM9qrw4dh3TqljzYgQFqHhBBCaO7ZZ5/lzRUraAacAUxViQwFBSxavBiAF198UavwrCKLu2Kni7uOGwcxMdC/P3z/vbKgqxBCCKGR3Nxc6tevj8FgAMATaAmcL7KP3sWFo0eP4la4tFS5ZHFXUaE//lCSIZ1OKYIlyZAQQgiNLVq0yJwMAVxEaSEqmsoYCgr45JNPbB2aKuSX1h69+abyd8gQuPFGbWMRQgghgKNHj1rcLgB6Ax8CRQvCHDt2zHZBqUgSInvzyy/w44/KmKGZM6V1SAghhF1o166dxW1XYB5wJ3Bvke2BgYG2C0pF8mtrb374Qfk7fDh0765tLEIIIUShCRMmoC8ywScXeK/w+uOFf/UuLowZM8bWoalCEiJ78+yzyrplM2cqY4iEEEIIO+Dm5saUKVMstn0IXAY6AyHAE088UbkB1XZIpt3bAYPBQEJCAunp6fg2aECvPn3Qt2qldVhCCCGEhXnz5gEwf/58DAYD54AVQCTwWkAA7Rx0yj3ItHtA22n3MTExzJgxA4/UVM4BOYDBz4/X33uPcFnIVQghhB3Kzc1l0aJFHD16lJ4eHoyZOxed0aiMgb3mmsodxM6m3UtChHYJUUxMDOPGjQNgE9AWGAesBtDpWLt2rSRFQggh7N+QIfDtt3D//TB/fuUeY2cJkYwh0ojBYGDGjBkYgQFAV8AI7Cz8azQamTx5skXNByGEEMIuTZsG118PQUHKCgsOSBIijSQkJJCSmooL8Ezhtg+B5CL7nDhxgri4ONsHJ4QQQlTFrbdCQgLccw9kZ1e8vx2ShEgjaWlpAAwFrgEyUOo5FJecnFzKViGEEMKO6HTg6gqNG8OVK1pHUy2SEGnk7Nmz1AGmFt5+H0gvZb/Tp0/bLighhBDCGgUF8PnnyuLkDkYSIo00a9aM+4A2KCsGlzUErUWLFrYLSgghhLDG55/DG2/AO+843FgiSYg04uPjQ3OUSp8LsFwtuKiWLVvaLCYhhBDCKo88Ao0awdGjV1decBCSEGkkKCiIb3x8uBN4t4x9AgICCAkJsWVYQgghRPV5esKjjyrXP/xQ21iqSBIijej1euY89xx/ARdKuV+n07FgwQKLdWOEEEIIuzd5srJA+e7dcOCA1tFUmiREWoiJgV9+4c5Bg1i2ejX+/v4WdwcEBEhRRiGEEI6pdWsYNky5vnixtrFUgVSqxsaVqrOyIDgYMjIgOhruvReDwUBcXBypqan4+voSEhIiLUNCCCEc188/K0Ua69SBPXvA17fkPnZWqVoWd7W1jz5SkqG2baF/f0DpPgsNDdU0LCGEEEI1N90Et9+uDLC+cKH0hMjOSEJkS+fOwdKlyvX/+z+oV0/beIQQQoia8sMPSjLkIAWGZQyRLS1Zonw4OnWCBx7QOhohhBCi5tSpAw0agLu7QyznIQmRraSnw/LlyvWXXlI+IEIIIURt5uYGZ87A66+DnS9WrmlCtHPnTu6++278/PzQ6XSsX7/e4n6j0ciMGTPw9fWlXr169OvXjyNHjljsc+7cOUaPHo2HhweNGzfm0Ucf5eLFizZ8FZX0/vtKhty9OwwfrnU0QgghRM3LzYW774Zly2DjRq2jKZemCdGlS5fo3r07H3zwQan3z5s3j3fffZclS5aQkJBAgwYNCAsLI7tI09vo0aM5ePAgW7duZcOGDezcuZPHH3/cVi+h8jp2hObNYeZMZQE8IYQQorZzcwPTb7JpDK2dsptp9zqdjnXr1jF06FBAaR3y8/Nj6tSpTJs2DYDMzEy8vb1ZuXIlI0aM4NChQ3Tu3JlffvmFXr16AbBp0yYGDhzIyZMn8fPzq9Rz22Ta/aVLkJcHHTpIQiSEEMJ5pKRAYKDyG/jdd3DDDcp2O5t2b7djiBITE0lLS6Nfv37mbZ6engQFBbF7924Adu/eTePGjc3JEEC/fv1wcXEhISHB5jGXyWiEnBzw85NkSAghhHPx84ORI5Xrdlyo0W4TorS0NAC8vb0ttnt7e5vvS0tLw8vLy+L+OnXq0LRpU/M+pcnJySErK8viUmPmzYMvv1Sm2Nd00UchhBDCHk2ZovzdvBmSkrSNpQx2mxDVpLlz5+Lp6Wm+BAQE1MwT/fMPvPsuTJ2qNBlK9WkhhBDOqHt3uOMOZaaZnY4lstuEyMfHB4BTp05ZbD916pT5Ph8fH9LT0y3uz8/P59y5c+Z9SjN9+nQyMzPNlxMnTqgcfaG331a6y+66C265pWaeQwghhHAE06ZB06bg6al1JKWy24SoTZs2+Pj4sG3bNvO2rKwsEhISCA4OBiA4OJiMjAz27t1r3ufHH3+koKCAoKCgMo/t7u6Oh4eHxUV1f/4JGzaATgezZoGL3b7VQgghRM0LC4P//oPISLhyRetoStB06Y6LFy/y77//mm8nJiayb98+mjZtSqtWrZg8eTKvvPIKHTp0oE2bNrz00kv4+fmZZ6Jde+219O/fn3HjxrFkyRLy8vKYOHEiI0aMqPQMsxrz5pvK37vvVha4E0IIIZyZi4vSOpSXB2lpdlegWNOE6Ndff6VPnz7m21MKB12NGTOGlStX8uyzz3Lp0iUef/xxMjIyuPXWW9m0aRN1i0zP++KLL5g4cSJ9+/bFxcWFYcOG8e6779r8tVjYu1dZw0WvV+oOSeuQEEIIoahfH3bvVpb1uP56raMxs5s6RFpSvQ7RiBEQFwf33w9RUZIQCSGEECYLF8LkyXDddcos7LZtpQ5RrTV+PPTsqaxZJsmQEEIIcdXIkRjd3eHPP/npgw/YuXMnBjtY50x+rWtCjx6wfj107qx1JEIIIYRdid61i6jCMjSXFy3irrAwAgMDiY6O1jQuSYjUZDRCfr7yt0kTZYaZEEIIIQCIjo4mIiKCVy5fJhs4B+iA5ORkIiIiNE2KJCFSi9GorGL/+utKN1n9+lpHJIQQQtgNg8HApEmTMBqN/A34Ak8C+SjrlwJMnjxZs+4zSYjUsmmTMmr+k0+UZTqkdUgIIYQwi4uL4+TJk+bbGcBplIQIlKToxIkTxMXFaRCdJETqMBiu1h0aNw5atdI2HiGEEMLOpKamqrqf2iQhUsN338Hhw+DhAc8+K61DQgghRDG+vr6q7qc2SYislZ8Pb72lXB8/HrSukC2EEELYoZCQEPz9/dGV0Wig0+kICAggJCTExpEpJCGy1tq1kJiozCorrLQthBBCCEt6vZ6FCxcClEiKTLcXLFiAvnBKvq1JQmSNggJ47z3l+qRJ4OWlbTxCCCGEHQsPD2ft2rW0bNnSYru/vz9r164lPDxco8hk6Q7AyqU7jhyB5cuVUuRNmtRMgEIIIUQtYjAYiIuLIzU1FV9fX0JCQqrVMqTm0h2aLu5aKzRvrowhkmRICCGEqBS9Xk9oaKjWYViQhKi6MjPB3R1cXcHTU+tohBBCCGEFGUNUHRcvQkgITJigTLF3d9c6IiGEEEJYQRKi6li2DM6ehX/+gWIDw4QQQgjheCQhqqrz5+HDD5Xr06fLmmVCCCFELSAJUVV9+CFcuADXXAMPPaR1NEIIIYRQgSREVXHmjDLFHuCFF2TskBBCCFFLSEJUFe+/D5cvQ9euMGKE1tEIIYQQQiWSEFVWbi5s3KhcnzFDmW4vhBBCiFpB6hBVlpsbbNgAmzfDkCFaRyOEEEIIFUkLUWUZjaDXw+OPS+uQEEIIUctIQlQZ+/YpxRgbNICqrnUmhBBCCLsnCVFF/v0X7r4bhg5VZpVVY/E5IYQQQtg3SYgq8vbbUFAA/v7g7a11NEIIIYSoAZIQleevv+Dbb5Xrs2ZJ65AQQghRS0lCVJ4331T+Dh4MwcHaxiKEEEKIGiMJUVl+/x22bAEXF6V1yEXeKiGEEKK2kl/5sphah8LD4frrtY1FCCGEEDVKEqLSXLyorGpfpw7MnCmtQ0IIIUQtJ5WqS9OwIaxaBSdOQJcuWkcjhBBCiBomTR+lyc9X/t5yC+h02sYihBBCiBonCVFRRiN89hmcOgWenkplaiGEEELUetJlVtSPP8Lzz4OfHxw8KK1DNmYwGIiLiyM1NRVfX19CQkLQS+0nIYQQNiAJUVELFyp/w8OVFiJhM9HR0UyaNImTJ0+at/n7+7Nw4ULCw8M1jEwIIYQzqDVdZh988AGBgYHUrVuXoKAgfv7556of5J9/lAHVzz0nrUM2FB0dTUREhEUyBJCcnExERATR0dEaRSaEEMJZ1IqE6Msvv2TKlCnMnDmT3377je7duxMWFkZ6enrVDzZ+vLJumbAJg8HApEmTMBqNJe4zbZs8eTIGg8HWoQkhhHAitSIhmj9/PuPGjWPs2LF07tyZJUuWUL9+fT7++OOqHcjTE6ZOrZkgRani4uJKtAwVZTQaOXHiBHFxcTaMSgghSjIYDGzfvp1Vq1axfft2OVGrZRw+IcrNzWXv3r3069fPvM3FxYV+/fqxe/fuqh3siSdkRXsbS01NVXU/IYSoCdHR0QQGBtKnTx9GjRpFnz59CAwMlC79WsThB1WfOXMGg8GAd7FExtvbm7///rvUx+Tk5JCTk2O+nZmZCUDWAw9AVlbNBStK8PDwqPR+WfJvI4TQwLfffsuDDz5YYvvJkycZNmwYn332Gffcc48GkQnT70Jpwy6qyuETouqYO3cus2fPLrE9oFs3DaIRlTF48GCtQxBCiFKVliwJ2zp79iyeVs4Od/iEqHnz5uj1ek6dOmWx/dSpU/j4+JT6mOnTpzNlyhTz7YyMDFq3bk1SUpLVb6gzy8rKIiAggBMnTlS65UeUTt5L9ch7qQ55H9Uj76V6MjMzadWqFU2bNrX6WA6fELm5udGzZ0+2bdvG0KFDASgoKGDbtm1MnDix1Me4u7vj7u5eYrunp6d8OFXg4eEh76NK5L1Uj7yX6pD3UT3yXqrHRYVF2B0+IQKYMmUKY8aMoVevXtx0000sWLCAS5cuMXbsWK1DE0IIIYQDqBUJ0f3338/p06eZMWMGaWlp9OjRg02bNpUYaC2EEEIIUZpakRABTJw4scwusoq4u7szc+bMUrvRROXJ+6geeS/VI++lOuR9VI+8l+pR873UGdWYqyaEEEII4cAcvjCjEEIIIYS1JCESQgghhNOThEgIIYQQTk8SIiGEEEI4PadPiD744AMCAwOpW7cuQUFB/Pzzz1qH5HBmzZqFTqezuHTq1EnrsBzCzp07ufvuu/Hz80On07F+/XqL+41GIzNmzMDX15d69erRr18/jhw5ok2wdqyi9/Hhhx8u8Rnt37+/NsHaublz53LjjTfSqFEjvLy8GDp0KIcPH7bYJzs7m8jISJo1a0bDhg0ZNmxYidUCnF1l3sfQ0NASn8v//e9/GkVsvxYvXky3bt3MhSyDg4PZuHGj+X61Po9OnRB9+eWXTJkyhZkzZ/Lbb7/RvXt3wsLCSE9P1zo0h9OlSxdSU1PNl127dmkdkkO4dOkS3bt354MPPij1/nnz5vHuu++yZMkSEhISaNCgAWFhYWRnZ9s4UvtW0fsI0L9/f4vP6KpVq2wYoePYsWMHkZGR7Nmzh61bt5KXl8ddd93FpUuXzPs8/fTTfPfdd6xZs4YdO3aQkpJCeHi4hlHbn8q8jwDjxo2z+FzOmzdPo4jtl7+/P6+//jp79+7l119/5Y477mDIkCEcPHgQUPHzaHRiN910kzEyMtJ822AwGP38/Ixz587VMCrHM3PmTGP37t21DsPhAcZ169aZbxcUFBh9fHyMb775pnlbRkaG0d3d3bhq1SoNInQMxd9Ho9FoHDNmjHHIkCGaxOPo0tPTjYBxx44dRqNR+Qy6uroa16xZY97n0KFDRsC4e/durcK0e8XfR6PRaLz99tuNkyZN0i4oB9akSRPjRx99pOrn0WlbiHJzc9m7dy/9+vUzb3NxcaFfv37s3r1bw8gc05EjR/Dz86Nt27aMHj2apKQkrUNyeImJiaSlpVl8Rj09PQkKCpLPaDVs374dLy8vrrnmGsaPH8/Zs2e1DskhZGZmApgXz9y7dy95eXkWn8tOnTrRqlUr+VyWo/j7aPLFF1/QvHlzrrvuOqZPn87ly5e1CM9hGAwGVq9ezaVLlwgODlb181hrKlVX1ZkzZzAYDCWW9/D29ubvv//WKCrHFBQUxMqVK7nmmmtITU1l9uzZhISE8Oeff9KoUSOtw3NYaWlpAKV+Rk33icrp378/4eHhtGnThqNHj/J///d/DBgwgN27d6PX67UOz24VFBQwefJkbrnlFq677jpA+Vy6ubnRuHFji33lc1m20t5HgFGjRtG6dWv8/Pz4448/eO655zh8+DDR0dEaRmufDhw4QHBwMNnZ2TRs2JB169bRuXNn9u3bp9rn0WkTIqGeAQMGmK9369aNoKAgWrduzVdffcWjjz6qYWRCKEaMGGG+3rVrV7p160a7du3Yvn07ffv21TAy+xYZGcmff/4pYwKtVNb7+Pjjj5uvd+3aFV9fX/r27cvRo0dp166drcO0a9dccw379u0jMzOTtWvXMmbMGHbs2KHqczhtl1nz5s3R6/UlRqKfOnUKHx8fjaKqHRo3bkzHjh35999/tQ7FoZk+h/IZVV/btm1p3ry5fEbLMXHiRDZs2EBsbCz+/v7m7T4+PuTm5pKRkWGxv3wuS1fW+1iaoKAgAPlclsLNzY327dvTs2dP5s6dS/fu3Vm4cKGqn0enTYjc3Nzo2bMn27ZtM28rKChg27ZtBAcHaxiZ47t48SJHjx7F19dX61AcWps2bfDx8bH4jGZlZZGQkCCfUSudPHmSs2fPyme0FEajkYkTJ7Ju3Tp+/PFH2rRpY3F/z549cXV1tfhcHj58mKSkJPlcFlHR+1iaffv2AcjnshIKCgrIyclR9fPo1F1mU6ZMYcyYMfTq1YubbrqJBQsWcOnSJcaOHat1aA5l2rRp3H333bRu3ZqUlBRmzpyJXq9n5MiRWodm9y5evGhxNpiYmMi+ffto2rQprVq1YvLkybzyyit06NCBNm3a8NJLL+Hn58fQoUO1C9oOlfc+Nm3alNmzZzNs2DB8fHw4evQozz77LO3btycsLEzDqO1TZGQkUVFRfPPNNzRq1Mg8DsPT05N69erh6enJo48+ypQpU2jatCkeHh48+eSTBAcHc/PNN2scvf2o6H08evQoUVFRDBw4kGbNmvHHH3/w9NNPc9ttt9GtWzeNo7cv06dPZ8CAAbRq1YoLFy4QFRXF9u3b2bx5s7qfR3Unwjme9957z9iqVSujm5ub8aabbjLu2bNH65Aczv3332/09fU1urm5GVu2bGm8//77jf/++6/WYTmE2NhYI1DiMmbMGKPRqEy9f+mll4ze3t5Gd3d3Y9++fY2HDx/WNmg7VN77ePnyZeNdd91lbNGihdHV1dXYunVr47hx44xpaWlah22XSnsfAeOKFSvM+1y5csU4YcIEY5MmTYz169c33nvvvcbU1FTtgrZDFb2PSUlJxttuu83YtGlTo7u7u7F9+/bGZ555xpiZmalt4HbokUceMbZu3dro5uZmbNGihbFv377GLVu2mO9X6/OoMxqNRmuzNyGEEEIIR+a0Y4iEEEIIIUwkIRJCCCGE05OESAghhBBOTxIiIYQQQjg9SYiEEEII4fQkIRJCCCGE05OESAghhBBOTxIiIYTD0Ol0rF+/XvXjzpo1ix49elh9nMDAQBYsWGD1cYQQticJkRCiyh5++OESy4esXbuWunXr8vbbb9fY86ampjJgwIBK779y5UoaN25c4X7Tpk2zWAtJCOF8nHotMyGEOj766CMiIyNZsmRJja4FWFOrqTds2JCGDRvWyLGFEI5BWoiEEFaZN28eTz75JKtXry4zGTK11Kxfv54OHTpQt25dwsLCOHHihMV+ixcvpl27dri5uXHNNdfw2WefWdxftMvs2LFj6HQ6oqOj6dOnD/Xr16d79+7s3r0bgO3btzN27FgyMzPR6XTodDpmzZpVanzFu8xMLWBvvfUWvr6+NGvWjMjISPLy8sz7pKenc/fdd1OvXj3atGnDF198UeK4GRkZPPbYY7Ro0QIPDw/uuOMO9u/fD8Dp06fx8fHhtddeM+8fHx+Pm5ubtFYJoQFJiIQQ1fbcc8/x8ssvs2HDBu69995y9718+TKvvvoqn376KT/99BMZGRmMGDHCfP+6deuYNGkSU6dO5c8//+SJJ55g7NixxMbGlnvcF154gWnTprFv3z46duzIyJEjyc/Pp3fv3ixYsAAPDw9SU1NJTU1l2rRplX5tsbGxHD16lNjYWD755BNWrlzJypUrzfc//PDDnDhxgtjYWNauXcuiRYtIT0+3OMbw4cNJT09n48aN7N27lxtuuIG+ffty7tw5WrRowccff8ysWbP49ddfuXDhAg8++CATJ06kb9++lY5TCKES9dajFUI4izFjxhjd3NyMgHHbtm0V7r9ixQojYNyzZ49526FDh4yAMSEhwWg0Go29e/c2jhs3zuJxw4cPNw4cONB8GzCuW7fOaDQajYmJiUbA+NFHH5nvP3jwoBEwHjp0yPy8np6eFcY3c+ZMY/fu3S1eX+vWrY35+fkWsdx///1Go9FoPHz4sBEw/vzzzyVezzvvvGM0Go3GuLg4o4eHhzE7O9viudq1a2f88MMPzbcnTJhg7Nixo3HUqFHGrl27lthfCGEb0kIkhKiWbt26ERgYyMyZM7l48aJ5e5cuXcxjcooOgK5Tpw433nij+XanTp1o3Lgxhw4dAuDQoUPccsstFs9xyy23mO8vLw4TX19fgBItNdXRpUsX9Hq9xbFNxz106BB16tShZ8+e5vtNr8dk//79XLx4kWbNmpnfj4YNG5KYmMjRo0fN+7311lvk5+ezZs0avvjiC9zd3a2OXQhRdTKoWghRLS1btmTt2rX06dOH/v37s3HjRho1akRMTIx5rE29evVqPA5XV1fzdZ1OB0BBQYGqxzUduyrHvXjxIr6+vmzfvr3EfUUTp6NHj5KSkkJBQQHHjh2ja9eu1Q1ZCGEFaSESQlRb69at2bFjB2lpafTv358LFy7QunVr2rdvT/v27WnZsqV53/z8fH799Vfz7cOHD5ORkcG1114L8P/t2rFLamEYx/Gfkg0hTVYgBU6mtjVEGZRDoKO0nAgHFckWoSUcHNsipFykScHJpbFBEA7ECRr8C1p0k3ApokEKm5Rr3OBmwb3c8/3AWc57zsPznunH8x4Fg0FZljVW37IshUKhifubnp7W29vbxO9/JhAI6PX1Va1Wa3RvuJ+h1dVVdbtdTU1Njb7H8PJ4PJKkfr+vRCIhwzB0cnKiTCbzI9MtAF9HIALwLUtLSzJNUw8PD4pGo3p6evrtcy6XS7lcTnd3d2q1Wkomk1pfX9fa2pok6fj4WNVqVeVyWff39yoWi7q6uvrSj9Af+Xw+PT8/q9lsqtfr6eXlZeJav1peXlYsFlM2mx3tJ5PJjE3EdnZ2tLGxoXg8rkajoXa7rdvbWxUKhVEwLBQKenx8VKlUUj6fl9/vVzqd/pEeAXwNgQjAty0uLso0TfV6vU9D0czMjPL5vPb397W5uSm32616vT5aj8fjuri40NnZmVZWVnR5ealKpaJIJDJxX+FwWIeHhzIMQ3Nzczo9PZ241keVSkVer1fb29va3d3VwcGB5ufnR+sOh0PX19fa2tpSKpWS3+/X3t6eOp2OFhYWZJqmzs/PVavVNDs7K6fTqVqtppubG5XL5R/rE8CfcQwGg8HfbgLA/61arero6GjsSAkA/iVMiAAAgO0RiAAAgO1xZAYAAGyPCREAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALC9dyi0n1TSoj3jAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -713,12 +882,15 @@ } ], "source": [ + "# Scale factor\n", + "scaleFactor = 4\n", + "\n", "fig, ax = plt.subplots()\n", "\n", "for name, df in dic.items():\n", " pos = int(name[1:-2])\n", - " df = df[df[\"error\"] < 0.25]\n", - " sct = ax.scatter(x=np.repeat(pos, len(df)), y=df.index * 4 * 1e-12, color=\"black\")\n", + " df = df[df[\"error\"] < 2]\n", + " sct = ax.scatter(x=np.repeat(pos, len(df)), y=df.index * scaleFactor * 1e-12, color=\"black\")\n", "\n", "# light cone overlay (air background; ± branches)\n", "idx = np.arange(len(KX))\n", @@ -726,8 +898,8 @@ "k_mag = (2 * np.pi / latticeConstant) * np.sqrt(np.array(KX) ** 2 + np.array(KY) ** 2)\n", "# frequency in THz: f = c |k| / (2π)\n", "f_light_thz = (td.constants.C_0 * k_mag / (2 * np.pi)) / 1e12\n", - "ax.plot(idx, 4 * f_light_thz, \"r--\", label=\"light cone\")\n", - "ax.fill_between(idx, 4 * f_light_thz, 800, color=\"red\", alpha=0.1)\n", + "ax.plot(idx, scaleFactor * f_light_thz, \"r--\", label=\"light cone\")\n", + "ax.fill_between(idx, scaleFactor * f_light_thz, 800, color=\"red\", alpha=0.1)\n", "\n", "ax.set_ylim(0, 800)\n", "ax.set_xlim(0, len(KX))\n", @@ -736,6 +908,7 @@ "ax.set_title(\"TM band diagram\")\n", "\n", "ax.legend(loc=\"upper left\", fontsize=\"small\")\n", + "\n", "plt.show()" ] } From ab4605ed7a9dcc02286f06f96ceda50b7af7362f Mon Sep 17 00:00:00 2001 From: "filipe@flexcompute.com" Date: Tue, 16 Dec 2025 10:12:42 -0300 Subject: [PATCH 3/3] removing FT code --- HexagonalLatticeBands.ipynb | 44 +++++++++++++------------------------ 1 file changed, 15 insertions(+), 29 deletions(-) diff --git a/HexagonalLatticeBands.ipynb b/HexagonalLatticeBands.ipynb index c7d4ca8d..a4c7a7b8 100644 --- a/HexagonalLatticeBands.ipynb +++ b/HexagonalLatticeBands.ipynb @@ -307,7 +307,7 @@ { "data": { "text/html": [ - "
15:32:20 -03 WARNING: The monitor 'interval' field was left as its default      \n",
+       "
09:56:18 -03 WARNING: The monitor 'interval' field was left as its default      \n",
        "             value, which will set it to 1 internally. A value of 1 means that  \n",
        "             the data will be sampled at every time step, which may potentially \n",
        "             produce more data than desired, depending on the use case. To      \n",
@@ -319,7 +319,7 @@
        "
\n" ], "text/plain": [ - "\u001b[2;36m15:32:20 -03\u001b[0m\u001b[2;36m \u001b[0m\u001b[31mWARNING: The monitor \u001b[0m\u001b[32m'interval'\u001b[0m\u001b[31m field was left as its default \u001b[0m\n", + "\u001b[2;36m09:56:18 -03\u001b[0m\u001b[2;36m \u001b[0m\u001b[31mWARNING: The monitor \u001b[0m\u001b[32m'interval'\u001b[0m\u001b[31m field was left as its default \u001b[0m\n", "\u001b[2;36m \u001b[0m\u001b[31mvalue, which will set it to \u001b[0m\u001b[1;36m1\u001b[0m\u001b[31m internally. A value of \u001b[0m\u001b[1;36m1\u001b[0m\u001b[31m means that \u001b[0m\n", "\u001b[2;36m \u001b[0m\u001b[31mthe data will be sampled at every time step, which may potentially \u001b[0m\n", "\u001b[2;36m \u001b[0m\u001b[31mproduce more data than desired, depending on the use case. To \u001b[0m\n", @@ -649,7 +649,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f0e4da7112f2424eb4a397b7325de0c8", + "model_id": "367eb6fd928c45609c1e0dbf378faa19", "version_major": 2, "version_minor": 0 }, @@ -673,11 +673,11 @@ { "data": { "text/html": [ - "
15:32:33 -03 Started working on Batch containing 30 tasks.                      \n",
+       "
09:56:30 -03 Started working on Batch containing 30 tasks.                      \n",
        "
\n" ], "text/plain": [ - "\u001b[2;36m15:32:33 -03\u001b[0m\u001b[2;36m \u001b[0mStarted working on Batch containing \u001b[1;36m30\u001b[0m tasks. \n" + "\u001b[2;36m09:56:30 -03\u001b[0m\u001b[2;36m \u001b[0mStarted working on Batch containing \u001b[1;36m30\u001b[0m tasks. \n" ] }, "metadata": {}, @@ -686,11 +686,11 @@ { "data": { "text/html": [ - "
15:33:12 -03 Maximum FlexCredit cost: 0.750 for the whole batch.                \n",
+       "
09:57:10 -03 Maximum FlexCredit cost: 0.750 for the whole batch.                \n",
        "
\n" ], "text/plain": [ - "\u001b[2;36m15:33:12 -03\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.750\u001b[0m for the whole batch. \n" + "\u001b[2;36m09:57:10 -03\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.750\u001b[0m for the whole batch. \n" ] }, "metadata": {}, @@ -714,7 +714,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4bb0390a5c204013a6acf99692418293", + "model_id": "ececfb9288d34c1fa304cc6c23e5f22a", "version_major": 2, "version_minor": 0 }, @@ -728,11 +728,11 @@ { "data": { "text/html": [ - "
15:33:36 -03 Batch complete.                                                    \n",
+       "
09:57:35 -03 Batch complete.                                                    \n",
        "
\n" ], "text/plain": [ - "\u001b[2;36m15:33:36 -03\u001b[0m\u001b[2;36m \u001b[0mBatch complete. \n" + "\u001b[2;36m09:57:35 -03\u001b[0m\u001b[2;36m \u001b[0mBatch complete. \n" ] }, "metadata": {}, @@ -751,7 +751,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "146c036b27e74f478bfa14f52801df16", + "model_id": "f6922b79ee83476ea0ed7b2d6073e39a", "version_major": 2, "version_minor": 0 }, @@ -790,9 +790,7 @@ "[ResonanceFinder](https://docs.flexcompute.com/projects/tidy3d/en/latest/api/_autosummary/tidy3d.plugins.resonance.ResonanceFinder.html)\n", "plugin to track the resonances for each simulation.\n", "\n", - "To make sure we compute **weakly confined modes above the light cone**, we\n", - "first analyze the source decay time and mask the data immediately after the\n", - "decay." + "To ensure that we compute **weakly confined modes above the light cone**, we first analyze the source decay time and only use the data immediately after the decay.\n" ] }, { @@ -830,27 +828,15 @@ " return signal.where(signal.t > t_start, drop=True).where(signal.t < t_end, drop=True)\n", "\n", "\n", - "def ftField(field, **args):\n", - " \"\"\"x axis in nanometers\"\"\"\n", - " dt = np.mean(np.diff(field.t))\n", - " fmesh = np.fft.fftshift(np.fft.fftfreq(field.size, dt))\n", - " spectrum = np.fft.fftshift(np.fft.fft(field))\n", - " return fmesh, spectrum\n", - "\n", - "\n", "from tidy3d.plugins.resonance import ResonanceFinder\n", "\n", "# Analyzing resonances\n", "dic = {}\n", - "FTs = []\n", "for i in range(len(KX)):\n", " for pol in [polarization]:\n", " resonance_finder = ResonanceFinder(freq_window=(0e12, 200e12))\n", " sim_data = batch_data[f\"s{i}{pol}\"]\n", " signal = getSignal(sim_data, pol)\n", - " fmesh, ft = ftField(signal.real)\n", - " bm = (fmesh > 0) & (fmesh < 300e12)\n", - " FTs.append(abs(ft[bm]) / max(abs(ft[bm])))\n", "\n", " resonance_data = resonance_finder.run_raw_signal(signal, sim_data.simulation.dt)\n", " df = resonance_data.to_dataframe()\n", @@ -892,11 +878,11 @@ " df = df[df[\"error\"] < 2]\n", " sct = ax.scatter(x=np.repeat(pos, len(df)), y=df.index * scaleFactor * 1e-12, color=\"black\")\n", "\n", - "# light cone overlay (air background; ± branches)\n", + "# Light cone overlay (air background; ± branches)\n", "idx = np.arange(len(KX))\n", - "# convert reduced coordinates to |k| in m^-1\n", + "# Convert reduced coordinates to |k| in m^-1\n", "k_mag = (2 * np.pi / latticeConstant) * np.sqrt(np.array(KX) ** 2 + np.array(KY) ** 2)\n", - "# frequency in THz: f = c |k| / (2π)\n", + "# Frequency in THz: f = c |k| / (2π)\n", "f_light_thz = (td.constants.C_0 * k_mag / (2 * np.pi)) / 1e12\n", "ax.plot(idx, scaleFactor * f_light_thz, \"r--\", label=\"light cone\")\n", "ax.fill_between(idx, scaleFactor * f_light_thz, 800, color=\"red\", alpha=0.1)\n",