Skip to content

Commit b40e30e

Browse files
committed
Update examples to reflect new imports, exceptions
1 parent c94cadd commit b40e30e

File tree

6 files changed

+11
-13
lines changed

6 files changed

+11
-13
lines changed

dl4j-examples/src/main/java/org/deeplearning4j/examples/advanced/features/transferlearning/editlastlayer/presave/FitFromFeaturized.java

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -23,8 +23,6 @@
2323
import org.deeplearning4j.nn.conf.distribution.NormalDistribution;
2424
import org.deeplearning4j.nn.conf.layers.OutputLayer;
2525
import org.deeplearning4j.nn.graph.ComputationGraph;
26-
import org.deeplearning4j.nn.modelimport.keras.exceptions.InvalidKerasConfigurationException;
27-
import org.deeplearning4j.nn.modelimport.keras.exceptions.UnsupportedKerasConfigurationException;
2826
import org.deeplearning4j.nn.transferlearning.FineTuneConfiguration;
2927
import org.deeplearning4j.nn.transferlearning.TransferLearning;
3028
import org.deeplearning4j.nn.transferlearning.TransferLearningHelper;
@@ -61,7 +59,7 @@ public class FitFromFeaturized {
6159
protected static final int numClasses = 5;
6260
protected static final int nEpochs = 3;
6361

64-
public static void main(String [] args) throws IOException, InvalidKerasConfigurationException, UnsupportedKerasConfigurationException {
62+
public static void main(String [] args) throws IOException {
6563

6664
//Import vgg
6765
//Note that the model imported does not have an output layer (check printed summary)

dl4j-examples/src/main/java/org/deeplearning4j/examples/advanced/features/transferlearning/iterators/FlowerDataSetIteratorFeaturized.java

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -20,8 +20,8 @@
2020
package org.deeplearning4j.examples.advanced.features.transferlearning.iterators;
2121

2222
import org.deeplearning4j.examples.advanced.features.transferlearning.editlastlayer.presave.FeaturizedPreSave;
23-
import org.deeplearning4j.nn.modelimport.keras.exceptions.InvalidKerasConfigurationException;
24-
import org.deeplearning4j.nn.modelimport.keras.exceptions.UnsupportedKerasConfigurationException;
23+
import org.deeplearning4j.frameworkimport.keras.keras.exceptions.InvalidKerasConfigurationException;
24+
import org.deeplearning4j.frameworkimport.keras.keras.exceptions.UnsupportedKerasConfigurationException;
2525
import org.nd4j.linalg.dataset.AsyncDataSetIterator;
2626
import org.nd4j.linalg.dataset.ExistingMiniBatchDataSetIterator;
2727
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
@@ -39,7 +39,7 @@ public class FlowerDataSetIteratorFeaturized {
3939

4040
private static String featureExtractorLayer = FeaturizedPreSave.featurizeExtractionLayer;
4141

42-
public static DataSetIterator trainIterator() throws UnsupportedKerasConfigurationException, IOException, InvalidKerasConfigurationException {
42+
public static DataSetIterator trainIterator() throws IOException {
4343
runFeaturize();
4444
DataSetIterator existingTrainingData = new ExistingMiniBatchDataSetIterator(new File("trainFolder"),"flowers-"+featureExtractorLayer+"-train-%d.bin");
4545
DataSetIterator asyncTrainIter = new AsyncDataSetIterator(existingTrainingData);
@@ -51,7 +51,7 @@ public static DataSetIterator testIterator() {
5151
return asyncTestIter;
5252
}
5353

54-
private static void runFeaturize() throws InvalidKerasConfigurationException, IOException, UnsupportedKerasConfigurationException {
54+
private static void runFeaturize() throws IOException {
5555
File trainDir = new File("trainFolder","flowers-"+featureExtractorLayer+"-train-0.bin");
5656
if (!trainDir.isFile()) {
5757
log.info("\n\tFEATURIZED DATA NOT FOUND. \n\t\tRUNNING \"FeaturizedPreSave\" first to do presave of featurized data");

dl4j-examples/src/main/java/org/deeplearning4j/examples/quickstart/modeling/feedforward/regression/MathFunctionsModel.java

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@
1919

2020
package org.deeplearning4j.examples.quickstart.modeling.feedforward.regression;
2121

22-
import org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator;
22+
import org.deeplearning4j.datasets.iterator.utilty.ListDataSetIterator;
2323
import org.deeplearning4j.examples.quickstart.modeling.feedforward.regression.mathfunctions.MathFunction;
2424
import org.deeplearning4j.examples.quickstart.modeling.feedforward.regression.mathfunctions.SinXDivXMathFunction;
2525
import org.nd4j.linalg.activations.Activation;

dl4j-examples/src/main/java/org/deeplearning4j/examples/quickstart/modeling/feedforward/regression/SumModel.java

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@
1919

2020
package org.deeplearning4j.examples.quickstart.modeling.feedforward.regression;
2121

22-
import org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator;
22+
import org.deeplearning4j.datasets.iterator.utilty.ListDataSetIterator;
2323
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
2424
import org.deeplearning4j.nn.conf.layers.DenseLayer;
2525
import org.deeplearning4j.nn.conf.layers.OutputLayer;
@@ -44,7 +44,7 @@
4444
*/
4545
@SuppressWarnings({"DuplicatedCode", "FieldCanBeLocal"})
4646
public class SumModel {
47-
//Random number generator seed, for reproducability
47+
//Random number generator seed, for reproduceability
4848
public static final int seed = 12345;
4949
//Number of epochs (full passes of the data)
5050
public static final int nEpochs = 200;

dl4j-examples/src/main/java/org/deeplearning4j/examples/quickstart/modeling/recurrent/MemorizeSequence.java

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -150,7 +150,7 @@ public static void main(String[] args) {
150150
// first process the last output of the network to a concrete
151151
// neuron, the neuron with the highest output has the highest
152152
// chance to get chosen
153-
int sampledCharacterIdx = Nd4j.getExecutioner().exec(new ArgMax(output, 1))[0].getInt(0);
153+
int sampledCharacterIdx = Nd4j.getExecutioner().exec(new ArgMax(new INDArray[]{output},false,new int[]{1}))[0].getInt(0);
154154

155155
// print the chosen output
156156
System.out.print(LEARNSTRING_CHARS_LIST.get(sampledCharacterIdx));

dl4j-examples/src/main/java/org/deeplearning4j/examples/utils/PlotUtil.java

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@
1919

2020
package org.deeplearning4j.examples.utils;
2121

22-
import org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator;
22+
import org.deeplearning4j.datasets.iterator.utilty.ListDataSetIterator;
2323
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
2424
import org.jfree.chart.ChartPanel;
2525
import org.jfree.chart.ChartUtilities;
@@ -144,7 +144,7 @@ private static XYDataset createDataSetTrain(INDArray features, INDArray labels)
144144

145145
XYSeries[] series = new XYSeries[nClasses];
146146
for (int i = 0; i < series.length; i++) series[i] = new XYSeries("Class " + i);
147-
INDArray argMax = Nd4j.getExecutioner().exec(new ArgMax(labels, 1))[0];
147+
INDArray argMax = Nd4j.getExecutioner().exec(new ArgMax(new INDArray[]{labels},false,new int[]{1}))[0];
148148
for (int i = 0; i < nRows; i++) {
149149
int classIdx = (int) argMax.getDouble(i);
150150
series[classIdx].add(features.getDouble(i, 0), features.getDouble(i, 1));

0 commit comments

Comments
 (0)