@@ -19595,23 +19595,23 @@
1959519595Let \tcode{\exposid{REQUIRED-SPAN-SIZE}(e, strides)} be:
1959619596\begin{itemize}
1959719597\item
19598- \tcode{1}, if \tcode{e.rank() == 0} is \tcode{true}, otherwise
19598+ \tcode{1}, if \tcode{e.rank() == 0} is \tcode{true},
1959919599\item
19600- \tcode{0}, if the size of the multidimensional index space \tcode{e} is 0, otherwise
19600+ otherwise \tcode{0}, if the size of the multidimensional index space \tcode{e} is 0,
1960119601\item
19602- \tcode{1} plus the sum of products of \tcode{(e.extent($r$) - 1)} and \tcode{strides[$r$]}
19602+ otherwise \tcode{1} plus the sum of products of \tcode{(e.extent($r$) - 1)} and \tcode{strides[$r$]}
1960319603for all $r$ in the range $[0, \tcode{e.rank()})$.
1960419604\end{itemize}
1960519605
1960619606\pnum
1960719607Let \tcode{\exposid{OFFSET}(m)} be:
1960819608\begin{itemize}
1960919609\item
19610- \tcode{m()}, if \tcode{e.rank() == 0} is \tcode{true}, otherwise
19610+ \tcode{m()}, if \tcode{e.rank() == 0} is \tcode{true},
1961119611\item
19612- \tcode{0}, if the size of the multidimensional index space \tcode{e} is 0, otherwise
19612+ otherwise \tcode{0}, if the size of the multidimensional index space \tcode{e} is 0,
1961319613\item
19614- \tcode{m(z...)} for a pack of integers \tcode{z}
19614+ otherwise \tcode{m(z...)} for a pack of integers \tcode{z}
1961519615that is a multidimensional index in \tcode{m.extents()} and
1961619616each element of \tcode{z} equals 0.
1961719617\end{itemize}
0 commit comments