-
Notifications
You must be signed in to change notification settings - Fork 3.8k
Description
Hi,
our detector does not output scores, thus we set all to 1, which gives wrong results using the coco metrics. We know, that the metrics are written assuming that there exist scores, but I believe it should be clearly clarified in the docs that the mAP is not correct if the scores are not set.
More details and an analysis of the cause are following:
Example with source code
import json
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
if __name__ == "__main__":
# GT
gt = {
"categories": [
{"id": 1, "name": "a"},
],
"annotations": [
{"image_id": 1, "bbox": [0, 0, 10, 10], "category_id": 1, "id": 1, "iscrowd": 0, "area": 100, "segmentation": []},
{"image_id": 1, "bbox": [20, 20, 30, 30], "category_id": 1, "id": 3, "iscrowd": 0, "area": 100, "segmentation": []},
{"image_id": 1, "bbox": [30, 30, 40, 40], "category_id": 1, "id": 4, "iscrowd": 0, "area": 100, "segmentation": []},
],
"images": [
{"id": 1, "file_name": "image.jpg"},
],
}
with open("gt.json", "w") as f:
json.dump(gt, f, indent=2)
# Pred 1
pred = [
{"image_id": 1, "bbox": [0, 0, 10, 10], "category_id": 1, "score": 1, "id": 1, "segmentation": []},
{"image_id": 1, "bbox": [10, 10, 20, 20], "category_id": 1, "score": 1, "id": 2, "segmentation": []},
{"image_id": 1, "bbox": [20, 20, 30, 30], "category_id": 1, "score": 1, "id": 3, "segmentation": []},
]
with open("pred1.json", "w") as f:
json.dump(pred, f, indent=2)
# Pred 2
pred = [
{"image_id": 1, "bbox": [0, 0, 10, 10], "category_id": 1, "score": 1, "id": 1, "segmentation": []},
{"image_id": 1, "bbox": [20, 20, 30, 30], "category_id": 1, "score": 1, "id": 2, "segmentation": []}, # Swapped this box with the next
{"image_id": 1, "bbox": [10, 10, 20, 20], "category_id": 1, "score": 1, "id": 3, "segmentation": []},
]
with open("pred2.json", "w") as f:
json.dump(pred, f, indent=2)
coco = COCO("gt.json")
pred = coco.loadRes("pred1.json")
eval = COCOeval(coco, pred, 'bbox')
eval.evaluate()
eval.accumulate()
eval.summarize()
pred = coco.loadRes("pred2.json")
eval = COCOeval(coco, pred, 'bbox')
eval.evaluate()
eval.accumulate()
eval.summarize()Output of the example source code
Output will be:
[...]
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.663
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.663
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.663
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.663
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.333
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.667
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.667
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.667
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
[...]
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.554
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.554
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.554
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.554
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.333
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.667
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.667
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.667
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
The cause for this is: For computing the AP, a discrete precision recall curve is computed. This curve is created prediction-by-prediction sorted by the score. But as the score is the same for all, they should actually be considered all at once, because there cannot be a different score threshold which excludes one prediction over the other (this should be independent of order).
Thus, the resulting PR-curves are different and not correct:
Reference code for plotting
import matplotlib.pyplot as plt
import numpy as np
def plot_pr_curves(eval_results, cats, output_dir="."):
"""
Function to plot Precision-Recall curves based on the accumulated results from COCOeval.
"""
# Extract the necessary evaluation parameters
params = eval_results['params']
precision = eval_results['precision']
#recall = eval_results['recall']
iouThrs = params.iouThrs # IoU thresholds
catIds = params.catIds # Category IDs
areaRngLbl = params.areaRngLbl # Labels for area ranges
recThrs = np.array(params.recThrs) # Recall thresholds
maxDets = params.maxDets # Max detections
k = 0 # category = a
a = 0 # area range = all
m = 2 # max detections = 100
t = 0 # IoU threshold = 0.5
pr = precision[t, :, k, a, m]
# Create the plot
plt.figure()
plt.plot(recThrs, pr, marker='o', label=f"IoU={iouThrs[t]:.2f}")
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title(f"Precision-Recall Curve\nCategory: {cats[catIds[k]]['name']}, Area: {areaRngLbl[a]}, MaxDets: {maxDets[m]}")
plt.legend()
# Create a unique filename based on category, IoU, area, and maxDet
plt.savefig(f"{output_dir}/PR_Curve_cat{cats[catIds[k]]['name']}_iou{iouThrs[t]:.2f}_area{areaRngLbl[a]}_maxDet{maxDets[m]}.png")
plt.close()
if __name__ == "__main__":
...
plot_pr_curves(eval.eval, coco.cats, "./")The cause for this issue lies here:
cocoapi/PythonAPI/pycocotools/cocoeval.py
Lines 378 to 379 in 8c9bcc3
| tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float) | |
| fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float) |
where the tp_sum and fp_sum are computed as cumulative sum, but this is wrong if the scores are equal. Then the cumulative sum should contain all predictions. It may only increment if the score from one to the next prediction differs, otherwise all must be the same value or for efficiency be collapsed.
Effectively, this could be added on top of the current implementation (e.g. a switch which allows for equal scores).

