From 22b2479b7820a2ac7ff75ae1431a7bdd2460fefc Mon Sep 17 00:00:00 2001 From: danielfong-act Date: Wed, 14 Jan 2026 15:30:01 -0800 Subject: [PATCH 1/9] Changed basic formuation of PTF in development.ipynb to correspond with implementation. Added note about difference in formulation. Fixed valuation (iota) summation term. --- docs/user_guide/development.ipynb | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/docs/user_guide/development.ipynb b/docs/user_guide/development.ipynb index eb059880..48b9d7ec 100644 --- a/docs/user_guide/development.ipynb +++ b/docs/user_guide/development.ipynb @@ -5474,16 +5474,19 @@ "\n", "### Formulation\n", "\n", - "The PTF framework is an ordinary least squares (OLS) model with the response, `y`\n", + "The PTF framework is an ordinary least squares (OLS) model with the response, `y`\n", "being the log of the incremental amounts of a Triangle. These are assumed to be\n", "normally distributed which implies the incrementals themselves are log-normal\n", "distributed.\n", "\n", "The framework includes coefficients for origin periods (alpha), development periods (gamma)\n", - "and calendar period (iota).\n", + "and calendar period (iota). Note that chainladder uses a formulation that is different from\n", + "but equivalent to the authors' formulation. Here, the first alpha denotes a baseline origin trend (corresponding\n", + "to the top-left cell). Subsequent alphas are incremental, in the same way gammas and iotas\n", + "are.\n", "\n", "\n", - "$y(i, j) = \\alpha _{i} + \\sum_{k=1}^{j}\\gamma _{k}+ \\sum_{\\iota =1}^{i+j}\\gamma _{\\iota}+ \\varepsilon _{i,j}$\n", + "$y(i, j) = \\alpha _{0} + \\sum_{k=1}^i \\alpha_k + \\sum_{m=1}^{j}\\gamma _{m}+ \\sum_{n =1}^{i+j}\\iota _{n}+ \\varepsilon _{i,j}$\n", "\n", "These coefficients can be categorical or continuous, and to support a wide range of\n", "model forms, patsy formulas are used.\n" From 510e7f7507924767caef1527622a1330530a7fc6 Mon Sep 17 00:00:00 2001 From: danielfong-act Date: Fri, 16 Jan 2026 20:22:50 -0800 Subject: [PATCH 2/9] Added documentation for utils.utility_functions.PTF_formula with example from 2008 paper. Updated reference list --- docs/library/references.bib | 8 + docs/user_guide/development.ipynb | 8228 ++++++++++++++++++----------- 2 files changed, 5106 insertions(+), 3130 deletions(-) diff --git a/docs/library/references.bib b/docs/library/references.bib index bef8e40e..aa718393 100644 --- a/docs/library/references.bib +++ b/docs/library/references.bib @@ -87,3 +87,11 @@ @article{shapland2016 year = {2016}, url = {https://live-casact.pantheonsite.io/sites/default/files/2021-02/04-shapland.pdf} } + +@article{barnett2008, + author = {Barnett, G. and Zehnwirth, B.}, + title = {Modeling with the {M}ultivariate {P}robabilistic {T}rend {F}amily}, + journal = {Casualty Actuarial Society E-Forum}, + year = {2008}, + url = {https://www.casact.org/sites/default/files/database/forum_08fforum_3barnett_zehnwirth.pdf} +} \ No newline at end of file diff --git a/docs/user_guide/development.ipynb b/docs/user_guide/development.ipynb index 48b9d7ec..c6669702 100644 --- a/docs/user_guide/development.ipynb +++ b/docs/user_guide/development.ipynb @@ -147,7 +147,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 1, "id": "mysterious-translation", "metadata": {}, "outputs": [], @@ -161,7 +161,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 2, "id": "6788e883-acdc-4436-ae4a-fca113442feb", "metadata": {}, "outputs": [ @@ -171,7 +171,7 @@ "chainladder.core.triangle.Triangle" ] }, - "execution_count": 13, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -202,17 +202,17 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 3, "id": "naughty-survivor", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "True" + "np.True_" ] }, - "execution_count": 14, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -240,17 +240,669 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 4, "id": "timely-illinois", "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
Development(average='simple')
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "Development(average='simple')" ] }, - "execution_count": 15, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -273,7 +925,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 5, "id": "female-function", "metadata": {}, "outputs": [ @@ -283,7 +935,7 @@ "9" ] }, - "execution_count": 16, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -294,18 +946,671 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 6, "id": "meaningful-aviation", "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
Development(average=['volume', 'simple', 'simple', 'simple', 'simple', 'simple',\n",
+       "                     'simple', 'simple', 'simple'])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "Development(average=['volume', 'simple', 'simple', 'simple', 'simple', 'simple',\n", " 'simple', 'simple', 'simple'])" ] }, - "execution_count": 17, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -341,84 +1646,2694 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 7, "id": "naughty-writing", "metadata": {}, "outputs": [ { "data": { - "text/plain": [ - "Development(drop_high=[True, True, True, True, True, False, False, False,\n", - " False],\n", - " drop_low=[True, True, True, True, True, False, False, False, False])" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cl.Development(\n", - " drop_high=[True]*5+[False]*4, \n", - " drop_low=[True]*5+[False]*4).fit(raa)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "alive-cooperative", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Development(drop_valuation='1985')" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cl.Development(drop_valuation='1985').fit(raa)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "restricted-herald", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Development(drop=[('1985', 12), ('1987', 24)])" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cl.Development(drop=[('1985', 12), ('1987', 24)]).fit(raa)" - ] + "text/html": [ + "
Development(drop_high=[True, True, True, True, True, False, False, False,\n",
+       "                       False],\n",
+       "            drop_low=[True, True, True, True, True, False, False, False, False])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "Development(drop_high=[True, True, True, True, True, False, False, False,\n", + " False],\n", + " drop_low=[True, True, True, True, True, False, False, False, False])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cl.Development(\n", + " drop_high=[True]*5+[False]*4, \n", + " drop_low=[True]*5+[False]*4).fit(raa)" + ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 8, + "id": "alive-cooperative", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Development(drop_valuation='1985')
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "Development(drop_valuation='1985')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cl.Development(drop_valuation='1985').fit(raa)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "restricted-herald", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Development(drop=[('1985', 12), ('1987', 24)])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "Development(drop=[('1985', 12), ('1987', 24)])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cl.Development(drop=[('1985', 12), ('1987', 24)]).fit(raa)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, "id": "democratic-wheel", "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
Development(drop=('1985', 12), drop_valuation='1988')
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ "Development(drop=('1985', 12), drop_valuation='1988')" ] }, - "execution_count": 21, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -464,7 +4379,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 11, "id": "045dc473-dd73-4b57-b74d-de857c3bd256", "metadata": {}, "outputs": [ @@ -611,7 +4526,7 @@ "1989 -0.428176 NaN NaN NaN NaN NaN NaN NaN NaN" ] }, - "execution_count": 35, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -634,7 +4549,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 12, "id": "c479daf1-9209-4d0e-984e-c9ee3ceca7f4", "metadata": { "tags": [ @@ -644,2934 +4559,17 @@ "outputs": [ { "data": { - "image/svg+xml": [ - "\r\n", - "\r\n", - "\r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " 2021-10-04T18:56:56.318708\r\n", - " image/svg+xml\r\n", - " \r\n", - " \r\n", - " Matplotlib v3.4.2, https://matplotlib.org/\r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - "\r\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABt4AAAXzCAYAAABT2E27AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3Qd4FOXWwPGTEBI6hCZNpASkBVEUFZQmKIIFBQHFq2IHVMSKXhUQFK+9Yrk2vBcLFuxdmoCAKC0UaQGl905IIPs95/WbvZNkk91NZrb+f8+zz87uzs7Ozs5OO+85b4LH4/EIAAAAAAAAAAAAgBJJLNnbAQAAAAAAAAAAACgCbwAAAAAAAAAAAIADCLwBAAAAAAAAAAAADiDwBgAAAAAAAAAAADiAwBsAAAAAAAAAAADgAAJvAAAAAAAAAAAAgAMIvAEAAAAAAAAAAAAOIPAGAAAAAAAAAAAAOIDAGwAAAAAAAAAAAOAAAm8AAAAAAAAAAACAAwi8AQAAAAAAAAAAAA4g8AYAAAAAAAAAAAA4gMAbAAAAAAAAAAAA4AACbwAAAAAAAAAAAIADCLwBAAAAAAAAAAAADiDwBgAAAAAAAAAAADiAwBsAAAAAAAAAAADgAAJvAAAAAAAAAAAAgAMIvAEAAAAAAAAAAAAOIPAGAAAAAAiphIQE7w1/e/vtt73L5Jprrgn37MioUaO886PDAAAAAAJD4A0AAACIIp07d84TtMh/S0xMlIoVK0rDhg2ld+/e8u9//1v2798f7tlGiAIkJb1FQsAHAAAAAKIZgTcAAAAghng8Hjlw4ICsW7dOPvvsM7nxxhulSZMm8vnnn4d71mJKgwYNvMEqXdZuvQeIxWw6AAAAIJYlhXsGAAAAABTPaaedJu3atcvzXG5uruzZs0cWLVoky5YtM89t3bpVLr30Uvn000/lggsuCNPcwi26DgwdOrRY7/3hhx9k5cqV3sfp6ekOzhkAAAAAxB8CbwAAAECU6tmzZ5F9L82aNUsGDBggGzZskGPHjsnNN98smZmZUrp06ZDOJ9xfD/QWrLlz55pSpJbzzjtPhg8f7vDcIVCaiUY2GgAAABD9KDUJAAAAxKgOHTrIhx9+6H28ceNGmTZtWljnCZFh586d0q9fP8nOzjaPjz/+eJk4caLpIxAAAAAAUHycVQEAAAAx7IwzzpCGDRt6H1vlJxHf/QBeeeWV8ueff5rHmgE5adIkqVatWrhnDQAAAACiHoE3AAAAIMbVrl3bO3zw4MEix12+fLk888wzpk+4E088USpWrGgCMzVq1JBTTz3VlCIMNHjXuXNnSUhIMDcr027z5s3y6KOPmn7JatWqJaVKlZIqVap436Ol9qz3vP322+a5Q4cOyfjx4+Wss86S4447TlJSUkyG1uWXX27KaQbrp59+MmU3W7ZsKVWrVjXTq1Onjim1+OKLL8rhw4d9vm/dunXeeVu/fr33eQ1sWs/bb/qdi/Met40dO1a+/fZb7+OnnnrKBGjdXn7+/PHHH3L77bdL8+bNpUKFClKpUiU56aST5L777pMdO3b4fX+DBg28y1GXu9Iyqw8++KCZjq5n5cuXl2bNmsmtt96a5/fIb86cOd5pFbVssrKypEyZMt5x9T9SGM0uLFeunBlPl1n+5aTruzWdwkpO6vphjaP/L8vXX39t/g9NmjQxy05ff/bZZ73/p0GDBnnHnTBhgs91zz69whw9elTeeecd6datm9StW9d8D92+9O7dW7788ku/7wcAAADiAX28AQAAADFuy5Yt3mENdhVGSw/aS1PaaeBDb7/99ps899xzMmzYMHnyySdN4CxQn332mQkA7N69O+D3aJCvb9++JiBopwGV999/39weeughGT16tN9p/fXXX3LVVVf5DG5pQFBv33//vYwbN85M9+yzz5ZY8+OPP+bpF7B///4mCBUIN5ffK6+8YoJuR44cyfP84sWLzU37otNgYVGBrfw+/fRTE3jau3dvgQCf3t544w2zvvfq1avAe/VzNIB14MABs87rvT7O75dffskzzwsXLjSfV7lyZZ996lnBNg08ly1bVkpKP0v/U5MnTxa3aala3UbMnj27wPZF/9vW//v111+nZCkAAADiGoE3AAAAIIbNnz9f1q5d631cVDDEKj2YlJQkLVq0MNkzmiWkwbVt27bJr7/+ai6+a6lCzabRgINmogVCL9ZrwCcnJ8eUNOzYsaNUr17dTHfBggU+37Np0yaTWaMBHZ0PnXcNHGoAcMqUKd6AysMPP2zmV4NIhdHA3TnnnGOmpTTD55RTTjHv0wCIfq8ZM2bI/v37zed2795dvvnmG+nSpYt3GpqBNXToUDOsWT86rtJglGYG5qcZQcV5j1v0O15xxRWSm5trHmtGowZJAuHE8iuMZnoNHjzYO08a9NJprlixwmQ06vqmfdJddNFFZj58BbV8BRg1K+/YsWNSv359OfPMM81vkZmZaQKHmrmlQTANJGVkZOQpx2r9B7SPxO+++86M+/PPP8v5559f4HPyByH183Q5XHjhhUWOG0h2WaAlQzXTzMq2099Dn9fvpM/p/0cDhrosNVNRacaf/pb56f+9MBp47NGjh5muZu3pf1GzTvX3njp1qvkfq7feesv8hvfee2+Jvx8AAAAQtTwAAAAAokanTp08ehivt5EjRxY57rx58zwNGjTwjn/JJZcUOf6IESM8kyZN8uzdu9fn67m5uZ7PP//cU6NGDe80f/7554DmNSkpyZOQkOAZM2aMJzs7O894WVlZ3uGrr77a+56UlBRzf++993oOHjyY5z07d+70dO3a1Ttuo0aNzPz5cuDAAU/z5s29455//vme1atXFxhPv/fgwYO949WuXduzZ88en9M84YQTvONlZmYWugxK+h6n5OTkeDp06OD9/HLlynmWLFkS0HvdWH7WONbvrOvUN998U2C86dOneypVquQdd/To0QEtX51m+fLlPf/5z38KrBcZGRmeunXrescdNGiQz+mNGzfOO87dd9/tc5yOHTua16tXr27Wbx0ePny4z3Ht6+uPP/5Y4PW33nrL+7r+D3yZOnVqnv+U3qenp3sWL15cYFz7/yqQaeen25f8/0V9r/737PS/efnll3vHrVChgllnAAAAgHhF/QcAAAAgSmm/Trfcckue25AhQ2TgwIGSnp5uytlZfV1dcskl8t///rfI6WmJwMsuu8xkBvmiGTSayfPFF194n3vhhRcCmlfNGhozZow88MADps84O+0nyhfNqNP+vR577DGTZWOnfYu9++67ps8upVl98+bN8zmdp59+2luqUpeDZgg1bty4wHj6vTWD7+qrrzaPNbtLSyDGgnvuuSdPf3j6vVq1ahXQe0Ox/DRDTTOq8tPMSO0T0PLee+8FND3tT+2jjz4yGWG63tpp33Svvvqq97GWm9T1Mz97tp6v8prav5uWj1Q9e/Y00y1sXJ0fLUupkpOTpX379lJSOs+aAarZn/p/z6+w/1Vx6H9R+5DT7ET979npf/PNN980GXBWdhz9vQEAACCeEXgDAAAAopSWfnzppZfy3F5++WUTkNKScKp27dqm/6dPPvmkQPCquE4//XRp3ry5GbbK1/lTp06doMvP1ahRw/TfVpjjjjsuT/9cvgJvWtryxRdf9AYiNBDkr/8pDfRYwZqJEydKtNPf/plnnvE+vvHGG+Uf//hHQO8NxfLT+WndunWhr2tZTi39qLRvtn379vmd5gUXXOAzkGfRQJnV36EGivL3Iajatm3rLQf6+++/F/hcLZ9q9e+mpSOtQN2iRYsK9GM4Z84cb/9u+v9xon83pf8PLdnqNg0WagC2MGXKlDGBOUthQXAAAAAgHhB4AwAAAGKYZh316dPHBFryBwOKsnLlShPA0yy1u+66S2699dY8mXVW/2ra99Zff/3ld3p9+/b1Bk8Cpdl1ekG/KCeffLJ32Mruy9/HndX/lPZrVbNmzYCChNoPltIApvVdo9Hq1atl0KBB3sfaL9vzzz8f8PtDsfw0y7IoGvyyMuy0SuX69ev9zoO/aWpg8KSTTipy3bH6ebP33WZnz2zToJvVb5v2oTd9+nRX+3ezFNWvoZPOOussb6CyuP9FAAAAIF4Ed+YLAAAAIGKMHDlSRo0aVeD5gwcPmgvf33zzjTz++OOyfft2U2ZywYIF8vPPP0tqamqh0/zqq6/kwQcfNOMGaseOHd4yc4XR7KFg+Sqfl1+1atW8w74yoazyfmrDhg0maBiIPXv2eAM9+r7KlStLtNEMKw14WsulSpUqpvxiMCUIQ7H8nPid3ZqmBsm+/fZbMzx16lSTSZc/mNagQQNz0wChBvT0O+u4vXv3LjCuNU0nNGzYsEDZR7e48RsBAAAAsYrAGwAAABBjtN8z7W9Kb1r+TUvbbdy4UZYuXSp33HGHvPXWWz7fp0G80aNHB/15+/fvD6hsZLACCXbZ+4vTsoj5bdq0yTu8ePFicwtWMJmCkWTo0KGm7KHSgNCECRNMsCYYoVh+TvzObk3THiSzB880qGmVU7TG0cCTBqh0GdnH1XKUWmpSadDzzDPPFCcU5z9VXG78RgAAAECsotQkAAAAEMPq1q1rMuMsmvm2ZcuWAuP98MMPeYJuGhx47bXXTOabZrRlZWWZTB7r1qlTJ++4WlrPn+L0aWX1E1YSTpSJPHr0qESbN998M0+A9e6775aLLrooIpefE7+zW9O09/O2cOFCbyafZgJa/btZfbvZg3BLliwxZVjV3LlzXenfzanpBMKN3wgAAACIVQTeAAAAgBh33nnn5QmC5O9/Sj3xxBPe4WuvvVZmzZolN9xwg7Rp08Zk8uQvTxhIllukZP9ZbrvttjzBw0BvTvbJFQqa5WYvCdmxY0d59NFHizWteFx++ft50/7N8vfdpqUkLfbAmzWs39vKerOPG83LAgAAAEBgCLwBAAAAMa527dp5Hq9fvz7P42PHjnkDComJiTJu3Di/GS5//vmnRIPjjjvOO+wr0y/WaN9a2q+blWGl3//999+XUqVKFWt68bb8fLEHy6wgmhVUa9y4cZ7+DTXIaf138o+bf1oAAAAAYhOBNwAAACDGHTp0KM9jDa7ZaSnJ7OxsM1yzZk1zK8qyZcvMe6KBlvazzJ4922Qihav0XijK9Q0aNEhWr15thjXYpkG3/IHXSFh+0SR/P2+++nezVK1aVU466STvuG717xYsSkUCAAAAoUPgDQAAAIhxv//+e4F+3woLxFmZUkV5+eWXJVp06NBBqlSpYoY3bNggX3zxhSPTLVOmjHc4JyfHtfcE46mnnpJPPvnE+3js2LElzrBya/lFE3s/b4sXLzbLwApU28tMWqxlvnTpUvn8889N/4hWENO+DoSS2+seAAAAgP8h8AYAAADEuGeeeSZP5kvXrl3zvK59uFWuXNkM792712cfcBbt+y2aAm+aZXT77bd7Hw8ZMkQ2btwY8Pu3bt3q83ldZpZAp1ec9wRKf5cRI0Z4H1944YVy7733RuzyiyaaOXj22WebYc34GzNmjPc1X4E3+3MPP/xwkeOGipvrHgAAAIC8CLwBAAAAMWrPnj1y00035clSuuKKK/L022VlvPXs2dP7+JprrvGW0rObNGmSGU/7hCtfvrxEizvvvFNatmzpDTqceuqp8uGHH0pubq7P8bWM5muvvSannHKKPPHEEz7HadWqlXdYpxWI4rwnENu3b5f+/fvL0aNHzeMGDRrIhAkTHCsv6Mbyizb2zMGMjAxz36RJE6lTp06BcbWfNyuL1Bo3/zRCzb7uzZ07N2r6aAQAAACiUVK4ZwAAAABA8Xz99dc++1rTPt3WrVtn+payl45s2rSpPP300z6n9cADD8inn35qxtf3nnHGGaY/Kn2PltX75ZdfJDMz04x7ww03yMqVK4vMjIskFSpUMCX/unXrZr7Dli1bpF+/flK9enXzPWvVqmUymXbt2mX6r1u1apU3qJQ/O9DSp08fefXVV83w+PHj5bfffjOBpnLlynnHGTx4sDRu3LhE7wnEtddemyeLqWHDhvLggw9Kcb344ouuL79o4ytoVlgGm5bmbNOmTZ4Sr5o5qMsqXPQ3at++vemnT0tfaj90PXr0MP3/WUFCXe90/QMAAABQMgTeAAAAgCj166+/mlsgLrroIhP0qVmzps/XW7RoIe+9957JiNPAnQZS9CK93uxuvPFGef755+W8886TaNKoUSOZP3++3HzzzfLRRx+Z76dByy+//LLQ92gAJT093edr3bt3l8svv9wsMyuLSG92F1xwQZ4gWnHeE4glS5bkeTx16lRzcyrw5sbyizYaIK1UqZLs27cvoNKRGqizB9406Bau/t0szz33nAmE7t+/32TDvv/++3le79SpE4E3AAAAwAEE3gAAAIAYo9k12mdbWlqaueCvwbS2bdv6fd/FF19sSuNpVtz3339vytElJSWZcnodOnQwJSi1jF60qlq1qimXqd9Rg1/Tpk0zGVw7d+40WT8aKNJlpkEWze7SQFlRwZKJEyeaQJlOa+HChSYQpdlERSnOe2J1+UVjP29fffVVQKUjNShnzy4NZ5lJi5YIXbx4sbzwwgsmMLt27Vo5cOCAKR0LAAAAwDkJHm2qCAAAAAAAAAAAAKBE/i7mDgAAAAAAAAAAAKBECLwBAAAAAAAAAAAADiDwBgAAAAAAAAAAADiAwBsAAAAAAAAAAADgAAJvAAAAAAAAAAAAgAMIvAEAAAAAAAAAAAAOIPAGAAAAAAAAAAAAOIDAGwAAAAAAAAAAAOAAAm8AAAAAAAAAAACAAwi8AQAAAAAAAAAAAA4g8AYAAAAAAAAAAAA4gMAbAACFSEhI8N5iybRp07zfq3Pnzj7HWbdunXecBg0aSKzT72h9X/3uCHxdiefl7dbyiWQffvihXHjhhVK3bl1JSUkJ+fePx2WOyBEt69+oUaO886nDkSKcyy9Wj+nCKd6OFWPFNddc4/3d3n77bZ/j6PPWODp+pHv22WfNvCYmJsr8+fPDPTsx7cwzzzTLukWLFpKTkxPu2QGAiEbgDQBihF7MGDJkiJx66qlSo0YNSU5OlrJly0rNmjXNc1dccYU888wz5mTE4/GEe3YBAFFE9xsDBw6Ufv36yZdffimbNm2S7OzscM9WTNAAhD0oEMwtGi6IIrYu1LPOFb+hSf6bBgkqV64sDRs2lIsvvliee+452blzZ7hnOWbX3WBuhQWkEHm2bt0qI0eONMP9+/c3571OrgtFNRSwN3IoaWOCoj6/VKlSUqVKFWnSpIlcdtll8vrrr8uBAwdcP87Q6wv5PfbYY+Z++fLl8sILL5ToOwNArCPwBgBRTg96teVZly5d5OWXX5bffvtNduzYYVqgZWVlyfbt281z7733ntxxxx1y2mmnSXp6eolaQQIA4su7775rbpZ27dqZ/cXQoUPN7ZJLLgl6mmRLRA+yhQB3GjTs27fPbAs///xzuf322+WEE06QV199NeTzwvYY0Wr06NHmf6Tr7kMPPSSxKDc3V/bu3SurV6+Wjz76SG644QYTsJ88eXLI56VTp07SsWNHMzxmzBjZs2dPyOcBAKJFUrhnAABQfAsWLJCuXbvmOeA97rjjTEu/WrVqmRMQbTmbkZFhDtStTDcOkAEAwfjPf/6T5yJXrF7cCjdtHKNBzUCdccYZrs4PAOecc8450qxZM+9jPS7fvXu3/Prrr+Y4XR08eFBuvvlmOXLkiNx2221hnNvYo8tef4NANG/e3PX5gTMBY83+Upo1GujvFsy6oDTTLJR69+5tSnrbA2/asPaXX36RDRs2mOf0cd++fU0gLpjGT8EcZ9jnwW7EiBEyY8YMc03hySeflLFjxwb8+QAQTwi8AUCU0ow2LR9pBdHq1KkjL730klx00UWmdE1+mvn22WefmYuna9euDcMcI5poa2dKkkJL07AeQP3+++/e4euuuy6s8xLLevbsGVF9cgFOivd9ypVXXlloqc4vvvhCrr76ahOIU/fee6/06dOn0AvfkSDajhVPP/10efHFFyXeaUWTWKlq8tRTT3n7GdPs+1hZF4YNG+azdKUG4CZMmCCDBw82wXl9rMPnnXeelCtXLmTHGT169DAZd5mZmeb6w3333Sfly5cv0TQBIBZRahIAotSnn34qK1asMMPal9vUqVNN6zhfQTel/b5df/31Mn36dJ/12gEAKIx1MVjVrl07rPMCALHmwgsvzBMM0XLxeoEdgG9aevGtt94ywxoECiaDLVrpef6gQYPk8ccfz9PHnV4XCCWtqnPttdeaYW0EHCuBXABwGoE3AIhS33//vXdYS2s0bdo04Pc2btzYpbkCAMSio0ePeocLa+ABACg+rVqhAQSLlnID4NsHH3xgSrOqyy67LK76IL3pppukTJkyYd1W9OvXzzv85ptvhvzzASAacNYMAFFq48aN3mHtiN2JcjF6wmJvXast6qyO1u03X+UptNXhe++9Z04EtHxH9erVJTk5WSpVqmQCfZdffrlMmjTJlMTwR1vNWZ9lL8mjHUhri+D69etLSkqK1KxZU84991z573//G1SpG53XcePGmRr3qampUqFCBTnxxBNNR9W//fabBGv9+vXy8ssvm+/YqlUrqVy5spQuXVqqVasm6enppgTInDlzApqWfl/ru1utB7Ul4XPPPWc6staSQ0lJSeZ1X331rVq1Sm6//XbTd4GW/Khataq0adPG9Mdk9QkQaJ8J1nzoupGfZk36WjcCuRVFf0f9nbXckgaTdVnqieXxxx9vMjp1/bQHAPzRMiwvvPCCnH322SbrU7NDdX3UMq2aJeoG+7Kxl4n5+uuvzTqi/UToOqevP/vssz6nsXz5crn//vtNHwzab6P+l3T+9b+lv+WmTZsCmpcDBw7IK6+8Ir169TL/Gy1Do+umLlddR/T/9Oijj5p+IIP5LqFY3oGuMxadP2v8orJ6ndxWBUMzlO+55x7TJ5f1mbpu63asbdu2Znur67c9s8wJ3333nWmVrP8n/Y76m+g+Q/sD0W2MVaKpqP1C/t8g2P91Ydt4+wVm3Y4WZ5thmTJligwYMEAaNWpklqtuf3WbqaWkivqOvvz1118yZswYsx5rGWfd3+i29OSTT5a77rpLVq5cKZFK1x/dXlrLTvc//mj/LNb4uo5Y5ajt/3+7wn4n3W+4uUx97R8PHTok48ePl7POOstsK3W6+v31fzxr1iwJhlP7T7e25xbdluo2Vf/Huq5rBqouV10OujwiWSD7lMKOP+bPn28qN+i2TPdlevymy1T3YdbFdyfotl9L1lnzoPtr3Y6Giq5zFn/rxuHDh02mi/YFZ/0HdP3SedZlp9v5N954Q7Kzs13ZHvs7VvRFj4dvueUWadmypfkNdR2uV6+eKV2n22snf0unuH2Oo+9799135fzzzzfbL92O6W+ppUa1T6/89PfUrgM0w0vH12Wox3h67Kzbm+JsS4Oxbds28/31/aVKlcpzTurvGF/XM+uzP//8cymJiRMneof1HCGe6Dpi788u2P2IE3Rb3KJFC2858kDWPQCIOx4AQFTq1auXRprMrV+/fiWe3gknnOCdnr/byJEj87z3448/9qSkpAT03pNOOsmzdu3aIuflrbfe8o5/9dVXe/bs2eO56KKLipxujx49PIcOHfL7PX/++WdPnTp1Cp1OYmKiZ/To0WZc+/OFueuuuzwJCQkBffcBAwZ4Dh48WOT86fe1xtflMHPmTM/xxx/vc3q7d+/O896XXnrJU6ZMmUI/v0qVKp7PP//cM3XqVO9znTp18jkfmZmZ3nF03cjPPo1gb4VZtGiRp02bNn7ff+KJJ3qWLl3q8WfZsmVm3KKmdfPNN3uys7PzrP/63Usi//LV9feSSy7x+fnPPPNMnvdmZWV5brrpJk+pUqWKnO+yZct6XnjhhSLnY/bs2Z66desG/Lvk5OT4/S6hXN6BrDN2On/W+Drfvji9rQp0+eg2099vat0GDhzoccLWrVs955xzjt/Pa9KkiefXX38t8X4hGPZtfLDTzr/Mjxw54rnhhhuKfP8pp5zi2b59u9/5OnbsmOfBBx8scjuqt6SkJM/999/vyc3N9TjBvu7m378Why4j3ZdZ09TtfmF+//13T3JysnfcCRMm5JlOML+Tr/+yk8s0//5R9wPNmzcvcroPPfRQQMvMyf2nG9tzpdvoa6+9tshptWjRwrNixQqzHjm5TtmXvQ4XV3GOP3Sd0N/Rvk7nvzVs2NCzZs2aIj87kO2Vbk/0mNoar2rVqp5ffvnFUxL27aiut/5cccUVebbPhZkzZ46nQoUKAf03GzRoYP7rTm+P/R0r2h04cMDTv39/v9OvXbu25+uvv/Y4paTrrtvnOLpv6tq1a6HT1HOMN9980/v+VatWFbnd0+355MmTA14mha2T+eczvz59+nhfHzt2bEDL8ocffsjzOx89etRTXLt27fJuWytWrOjzGNat7ZidfVvrb5/gj/13LOw41q59+/be8bt37x7S4wzLLbfc4p3u448/7th0ASBWJIU78AcAKB57uUjtkH3ZsmXeVmfFoa0kd+7cKT/99JO37zhtSaktv/PTFsb5Wz5qpovSVqs6H7Vq1TItkjXjRlvAaUs4PadYtGiRyUJYuHChyUjwR7ObtMWnzpe2rmzfvr357tr3xc8//yx//vmnGe/bb7+VO+64w2SeFUaz2bQ1qc6T5dRTTzVZadp6VFvhrlmzRkaOHGla4QZCW/Hr99KWm5o1pzf9XppVpMtzwYIFZprq/fffl3379smXX34ZUBbH6tWrTet7bWlbsWJFs9w0U0AzGvKXFHn11VfzdCqun6+tybVF/K5du0wrc73v27evaR1eUpp5F2gn5pp1oL93UfT7aPaVLh9r/jUjUbPDdFhbVc+cOdP87n/88YdZD7QVsL21p5221tb1d/Pmzd7ntHX1KaecYpa9ro+a5aXZYIF2Rl4cum5ceeWV3t9c1zf9f+jz+vn29UBbeWvn6PYsDV3XNRtK10f9/fQ1bdWqrdxvvfVWs7w0k8LXeqnT2r9/f57lmZaWZr6vfpYuU/0/Wsu8JCJlefvj5raqMJqtOnr0aO9jbSmvWW+apaLLRn9X3ebqZx87dsyR76n9fXTo0MG77bHWJW2pr62kdX8xd+5cb5ZPly5dzDZU3+Nrv6Beeukl7/OB/vcLo/9bnYaun++88455TrdxV111VdDTuvHGG02moJa/1O+n+yzNHtDtuW4rlP6mOm3NOi2MLvv+/fvLxx9/nGc7p/s7zU7S9UOXmS5T3S/pdnT79u3y2muvSaTRbf+9995rMruVZjwuXry4QN98mh2lmVNWNoxmDNp/A/t2PpDfX7M/QrVMdTvYrVs3s82pUqWKyfjS//KOHTtM9qPuN9XDDz9s/uc6H4VxY//p5Pbcor+NZt1Y9Hvrf1e3T3ospPOp/+2ePXuakoWxQref+jta2WB6zKa/kW6b9b+tMjMzTcaLPtaqAMWh66NmiP3444/edVXLupfk2Lo47JkrmvVUGD0WtI5nNXNa97m6X9NsTf1v6zHkvHnzzH9L9/edOnUyy0ePA9zaHhdG56dr165mfix6PKv/W83O03nVYzzdZuh/WtdfXdf1Pxdubp/jXHrppeZ8RrPW9DfSzDXdPuh5j1a20OlqpqceD2uGkS5HPcbT7a1+lm7XdZ+v660uZ92e63Z96dKlebIYnab7XmvbrmUGddvl79xGsy/tWXeaLVdcup23jpn0mKq4//toFui2wk36H9ZMVfXDDz/I3XffHZb5AICIFe7IHwCgeKZMmZKnZVy1atVMS7MNGzaUaLqBtILMT1uBjxs3zrTCLIy2AD3vvPO8077uuusKHdfeytJqZXr++ecX+G7aulEzzuytQgvLntFWzPYWoppFphlB+Wlrf/1MewZAUbtLXeY6v0VlU8yYMcOTlpbmndZ//vOfgJa/ZgDo/dChQz379+/PM55mDWkmgVq5cmWelvraqvGvv/4q0PL+9ttv97aGDbbFeXEtWLDAU758ee+0RowYUWCczZs3e2rWrOkd56qrrvJs2rSpwHhbtmzJkzmWnp5eaGtZe6ZP5cqVPV988UWBcbRFdWpqqhmndOnSrmS8Wb+hzuvixYsLjKu/i0W/t/W+pk2b+mztqt93/Pjx3v+Ftvb1tR5bv7Xezj77bM/GjRt9zqv+h6ZNm2ayrHwty0CzO9xY3oH8/4LNeHN6W+Vv+ejyrV69uncc/Wz97/qyc+dO06r9X//6l6ekdHtpfab+/957770C42iWW6NGjfJsE/Nn0Zbk9whEcbYz9mVu/Q9OO+00z/Lly/OMp1kyzz77bJ75nj59eqHT1awsa7xatWqZLAdf2VeTJk0y67g17gcffOApKTdaout6psvFmu65555b4PvYMwXr169vsnOd/P2dXqb2/aP12997770FMsn1v2TPINH1vLBMOjf2n05vz9U777yT5zfQLIP8Wf6637S+t30+oznjTb+HHts1btzYM3fuXJ/rjn1/Ys/YDGYd1mM4+/9Fs7fXr1/vcUIwGW+6DS5Xrpx3fD3GLSrjTbNElyxZUmTm8z/+8Q/v9HRf7eT2OND3DB482Duerue6bbaOYe3/xbZt23rHq1SpUomPx5xYd0NxjnPxxReb3yp/Rpcev1njdunSxdO7d29v9YB9+/blGV+3W/bznEGDBrma8abbVM00tcbR89Ki6HbZ+r76n169erWnJO6++27vZ995550BvSeWMt7++OOPPOO/+OKLYcl4s8+HZoY7VQkAAGIFgTcAiGIXXnhhnoNu62RGLxjoifZzzz1nLlQEUn6jJIG3YC4Etm7d2kxbL3TpSWUgZW/0xLOw76AH+PaLJY899pjP8V577TXvOPrZ+S/S2v33v/8tsFxLSi8eWBf32rVrF9Dy19v1118fVFmili1bFlnOUqdnn76bgTcNqNnLZOoFA18nZPbSWbfddluR09QLlfYLqu+//36Bcb7//vs8/4eiLgZoUDR/qVAnA2/WBWd/Ze50Pqzx9QKjv/Ht/xEts5qf/eJVUReLgvkuha0rbi1vNwJvTm+r/C0fvSBqvd6hQwdPOBplfPnll4WOq8veHvCwyuz64uT2sCTbmfz/Ly3Flr9hgl3fvn294+rFysLmwypZpaXl/F0QtC9jvdBZ0gtN9nVX92fa2CLQm17MLIz+9+2l6J5++mnva5988on3eS3hp//NogT7+7uxTPPvH++7775Cp6cNNeyNPjRIEar9p9Pbcw1Q2Pel11xzTaHT0mCcte2KhcCb1bCssMYjyt4Ay9fy87cOa4DNXib51FNP9Wzbts3jlGACb/Z1TP8/WsLZCfbGGIVN063Am/737WVCiwoQ6L5Wy2IGEjwqzrrbrFmzgLarWvo8VOc4nTt3LrQR2bp16wqUqi3q/6fl6a3xiiq/6ETgTT3yyCMBl8l+/vnn8wQRS8oe6Pz3v//t2rpg3TQwHCmBN/1ddVtnD1Lv2LHD8eOMQBrz6v7JamSoN11nAQD/Q+ANAKKYXmwsrO8o+00vPmm/Cv5aI7odeFOazeGv35n8J6W//fZbkdPUFuPWuJdeeqnPcTTYZY2jrSSDqZvv1IVm68KHBh727t3rd/kXdeJubx1t73viq6++KnJ8nZ79YqRbgbfDhw97Tj/9dO80tO827d8jP724ZbXM1wCVvs8f7W/Fmq4Gn/Oz989y2WWX+Z2e/cKrG4E3XT/9sVox6+3TTz8N6HP0ooG1PuU/4dZghDW9orJYgvkuha0rbi3vcAbeAt1W+Vs+s2bN8r6uv3Eo2PvQ0b4xg/me2udKYUEkp7eHTgXeNIuqKJppae/rzRd7hqhmYgR70c/fPiqYdTfYm7/tlWZRWuPqvmLhwoXmYpoGw6zn//nPf/qdx2B/fzeWqX3/WKNGDb/7C/u2SS/6hmr/6fT23L4Oa39w/i6w2htDxELg7amnnipymhpIsgfpglmHMzIy8vSFqhlhRQXynQ686fZWg+ffffddnvU/mP9NIDSLtKj/gpuBN81KtR8L+muoYJ9X/X+W5BjGV8A+kJu/PtKcPMfRyhBFsWe96fLInxmXnz1IX1g2pFOBN82ytYIues5SVNa89n9nTW/ixImektJMYmt633zzjWvrgr/jylAF3jTApb+9Npqxn9Pq8v/oo49cOc7wt276Wue0igYA4H/irxAyAMQQ7Rfhk08+Mf3WPPvss6Y/AO3bxldfIx988IG5ab8Jb7/9dsB9mAVL+yPQvnW0bwHtG0j7P7DPk9V/nNI+ELRfr6I0atTI9BNVlJNPPtk7rP1Y5Kf9VsyfP9/7OJB+K7Rvo9mzZ0swtI8V7b9i5cqVZjlovy1/n0eJtw8SZfUDoXXxi3Luuef6/Z10Hq2+J7SPjx49ehQ5vk7P6jvDTdddd523DyntC+Pzzz83/Y7kp31SWP0LaT8X2seFP9qPk05L12vtEyS/qVOnBv1bv/vuu+KWovoWsvr40H4RlPbZccEFFwQ0Xe3bR/9Puj5pX0H2Pn2OP/5403eX0n7VtL8nt0Ta8g7XtsoX/R3sy0m3DdpHi5vsv4f27eXPoEGD5L777jPfXfvW0X7RfPXtGYl0e+Hvd/G3f1D2vt+0b5xAaD873333nRnW7ZC//VS46O+r/fdNmjTJ7Cv0+2lfMNqHkNL+1kaNGuX457q9TPV397e/0N9ev3dhv70b+083tuf2/7T23+av7yjt+077J9u4caPEgssuu6zI13V7VbZsWXPMpdtyPebTPsr80X5ie/XqZfpKU9qf2MSJE01/wm7+H/VWFO1HbMyYMaYPrEBp3166P1uyZInpJ1GXgb3PUPu64K/PXadpX1wW/U7++gHTfvaqVq1qtlH6/9Tfyd9/M1qPG7TfR+23sCjap6H2Aaf0vEG3VUVp1aqV6QPOOu/Qx27R/uV0G/fpp5+aPpj12G7IkCE++9jW8x5rO6rH+yWl/dpZStIPb6TSfYI/2q/4U089ZbZj4aR9F1vr3JYtW8I6LwAQaQi8AUAM0AsxetOT7WnTppmLSXqSs2DBAm/H6xYNgOiJm57IBnJhIlAbNmyQESNGyEcffeS9kOXPjh07/I6jJ5z+2E+49u3bV+D1xYsXe0+M9TtrB/T+nHnmmRIoXZb63fXE2B5oK+l3b9u2rd9x9De26AXUxMTEgL6bm4G3sWPHegMremH0s88+yxOAyL/s7L/TLbfcEtRn6QUzDcBZQT29uKT/A4t2uO6PjqMXggL97YKhHdvrBaSi6PfW76BKly4tw4YNC2jav/76q3fYOuG19OvXz3uxS9dNvRA8cOBA6d69u7mo55RIW97h3Fb5ouu9fl+9ULd3717zn/7HP/5hLix26NBBypUrJ07S32Pbtm3ex+3bt/f7nho1aphgoHXB8Pfff4+awJtedNL/TEn2D3rxVAOiSi+4jx49OqDPXrZsWaH/v5IYOXKk44GwV1991WxrdT51vq1518Y7uq1OSnL2lDAUy9SJYwM39p9ubM/t8xnIsYluX7WBijbMinaVK1cu9PjB/n31Yr4G3qzf2t/xrQaGNaCnASt10003yfjx4wNaB9ykxzLaWCbQC+kanHrooYfknXfeMcE2N/dnxaH7eXugL5B9kv5v9P+oDQasfZJTgTdt+KONDyPluCGQoJi9AV4g5y/2Y05f2z2n3XjjjSbwpt544w2fgTd93nLllVcG1MjOH2s7q4pzLFXcdSFSaAMa/d/rfyXcxxn25W//XQAABN4AIKboBVS9kGC1DtaW13rB96233jIH5/pYaUvNf/7zn/L888878rl6Ueicc87xthoOVCAXCfSiiz/2C685OTkFXrcHBvQCjr/Wtqp+/foSiDfffFOuv/76oIMIgXx3/T39sX+3QOc50PGKQy/06UUg+/Ip6qRw06ZN3mHNcPCVweaPrndW4M2+PPREUFth+qNZCbqeaUtmpwXyG9qXgV6wfumll4L+nPz/PV0n9aKVdTFEs2H1Zv3+GnzX1rQXX3xxQMuoMJG2vMO5rSqMXnDSTB5tna0NIV5++WVz02CHtnTv2LGjnHfeeWa+SpUqJSVh/z00AySQ9U81aNDAG3gL5UXZkgp2/2DtA+00y8+i2bdO/P8iTZUqVeS///2v+c/bszNeeOEFk3HhtFAsU6ePDZzaf7qxPY+0/XwoBfI7B/Jb56f7Pmt7oAGVcePGSSjodt7esEEbZGg2pjaY0/+mXrTWLCndR2gwsCjr1683+w+tthCq/Vmw9PvZf48TTjgh4H2SJdz7pHCf49gbRgQ7fiD/hZLS4xf9XXV91CCpBlrtWXwaELdXOdDjU6eFqyGXm3r37m0yl+37kzVr1ngbaegxpR7Lf/zxxwFnVrslFpc/ADglvE26AACu0pOvs846y1z4nT59umndbvn3v//tbR1cEtrys0+fPt4TUr3Q+8ADD5jSSNpqWy8i6MWE/+9X1AQBLb7KYuYXSJDMH3vWX6CtIn2VRfTVOl8vjFgnHNoS9bnnnjPlJvWEyCo1ad20dWUw310vnIfruxX34oRm81jL48EHH5TLL7/c70WZkrJfTC/O8nBzmQTyGzq9DJQGcDQI+vrrr0uLFi3yvKYX6bScll78qFOnjrm3ys4FK9KWdzi3VYXR5a8llm699dY8F830N9MSuE8//bT3wpX+XiVh/z2CWcb2cUN5UbaknNg/uPH/i0SaBWEPTmjGga53bgjFMo3UYwM3vnsk7edDzYnf2Rf7f0GzM0MRoLCyfV588UXv7T//+Y+plqClobVEqNL9z9ChQ/2WO9cSrlbQTTP8hg8fbhrcrF271qwzWmrS2p/Zy5WWZH8WrPxVNwJdLyNlnxRp5zhu/R9KQrNEtby8r+w2pYEha7t42mmnSevWrR35XPs64sT5bKTRbGn7tkIzrfX8Uo8nTzrpJG/DFj3P0oBcONmXf6zsewDAKWS8AUCc0PIu999/v7kprcWvrea0tWxJ6AmV1XeZtszTaWrN/8KE4wTaHnC0ygr5E0ipDO1Xz7pAphcwtYxnUX2DuPHd3fpuwdKa/tonjTUPmnUZSHkx+wmaBiD0wlGol0e4S6PYl4FekLD6wSgpvUCjF0P0phcWNfiufQfpRT69MKf0YqNeJNEStVqKLtAMqUhc3v4ucoVzW6UlgTTD+IknnjBZyPob6EVV/T2sUlBaJvKGG24wpeqKm41s/z2CWcb2cZ0sQRwN7P8/zcZ0InASaay+3ewl0vQYQPtb0gv1Tl/MjZZl6sb+043teaTs52PJl19+abJE9IKxNlIZMGCAvP/++35L17pF+zPWstxaSlT3ARo00/+nVqjwNU+6/7ACc7p+6H4lfyMbu3AFr+zrrrKXBo+GfVI0nONEAu1PVo/5db3Vhl16rGOVk7QH4pzMdtP+o619S7izIkNJ9yvff/+96QNVjxs1uK3L1R5cDzV7Vrb+LgCA/yHjDQDiSP4+EuzloIrLKl+nbr/99iJPSJWWIgk1ezBB+2kIpCRGIH322L+79mtWVNDNre9u/26Blhtysj8i6wKulm3SZau0H6sJEyYEdDFXAxIWJzrkti8PvUCppVn80Qsl4bww7PQy8EX78NKgjvZnoS1j//jjD7njjju8pQ31uUD7YQrV8raXSwoko8jfNCNhW5WSkiKdOnUyLea1jyG9WPTNN9+YzGR7+T97f0/F/T30gnKgF6O01JmlJKVHo5H9/6dB0GACyNHinnvukSVLlphhzXK1LmTrxTttQBKvy9SN/acb2/NI2M/HGi3/q8E3KyvdCr6FM3tVsxm1PLd17KRZcK+99prf/ZlWUygq6BauY2+lWd72wGGg62+k7JMi4bghGmhQUvsaV5odOHnyZO+xpTb6Uhpw9VcFI9g+lC3W+Ue8qFmzpjlWtGjjua+++ios86KN3uz7OnuZWAAAgTcAiCv5O7PWi8D5Bdvy3d6fSXp6ut/xZ8yYIeFoHailUKyLgFoi0h/N/nHyu2tQQFsxO+3kk0/2DuvF+kBK2wTy3YJt6arlT6yLupr5F0iJRXX66ad7hzX7x4mTf/tFSm0F7o+OE87+CbQvDOu/uG3bNlm9erXrn6mBuKeeeipPsE1/t0ha3popY/EX0NNyO5rVF23bKr0gqQ0ifvzxR2nVqpX3+S+++KJY09PfQy/IWPyVKlManLMvO21FHSqRUDZLL6Rq35/BLLNo8t1333kv0Ol+UPt6s2dU3nfffY7vm6Jlmbqx/3Rje26fz0C2sbp9nTt3bok/Nx6Cb7qttQff+vfvH9bgmzZc0uxUe6MubdwUiv2ZG9tjnaa9v69AtgW6/O2NT0K5T4qG44ZIdeONN3qHrSw3DSRbx3taCcPJ7EV7yUptTBZvLrnkEunQoYP3sTboCgdtIGBtM7U/2UD7cQSAeEHgDQDiSP6SR/Xr1y8yOBdInxdWQEv5a9X+22+/FTuToyT0RO/UU0/1PtY+Nfx55513HP3u2neTG32IaAlR6yKf9iunGQz+AoDFCbAUZsyYMabfAau1tk5bg2+B0hKdVmaTXpBxoixXly5dHP+t3aQX/fQCoGX8+PEh+2wtD2rR9SeSlre91ezChQuLHFfXO18XJ6NlW6X/4XPPPbfEv0X+30MzHP3RcayAg/53TzzxRAmVYPc3btGSc+H4/4Wi/JOWq7MufN51111m/dDn9CKo0vKTmoXg7/8T7G8VDcvUjf2nG9tz+39aM2X99ck5ZcqUuMsAKa5zzjmnQPAt3Jlv2j+utb/STBJfWW/B7M80eKRlLMO1Pbb/H7Qagr+GN59++qm3sY3Ok5bfDJdIPm6INOeff763wYVug7TRgf0YxMkyk6pdu3beYadKtEebUaNG5TlOdvL8LlD2Za99+AEA8iLwBgBRSvvD0iyJQOkJ46OPPpqnHJK9FaqlWrVq3mGtHR9IvxSWog749fPtrSFDzX7Cp639i8qO0X4+Zs6c6dh319aAxSnjFwhtXagdv9tLihXVyfi9995boLP74vroo49k5MiR3lbNekFFW2sHm6Fz5ZVXmmG9GHPVVVd5+7zyR4MF9n4FfP3WkyZNKrIFsmbZvfvuuxJu+rtYNDslmP+2r3JmgZYYtJcjs2dKBcOt5W3PhiwqgKTry4gRIyJyW6UllwLJonHqt1A33XSTd1jLPWnGU1FlsR555JE87w1lFppuv6wLm/pfDlfw7c477/SWXdVlFkjA0u3ysE5lI1vzp1kjmj1jefXVV6VevXpmWLPANShXlGCPDaJhmbq1/3R6e65BeeuCtm6fdD4LowFUXfYofvBN+/UKZ/BNGz/o51sef/zxPP0zBrM/0z63dH+mWeHh2h5rmWtrur///nuh5TPVnj178qzf2ihAy1WGS7Sc40QC3d7rPsc6ntdjeytjsHnz5nmys5wK6Fr7GM3wDWewPFy6detmGpBY7Pv4UNE+iy3du3cP+ecDQKQj8AYAUUpL++kBrrYu0xbVRWVI6AmJ9itk9fFiXRiyt+S02MudaQtZfyfrF154oXdYAy9avk5P9O201aNeONIT7kA6VXeDBnSsTA69sKbLzlcpJu0UfNCgQX77a8v/3bW/LF8XuLV/iM6dO5t+rdz67g899JC31b7+xr169SpwYVQv2uiFVb3YGsh380d/S+1XxGq5rIHFvn37FmtaeuHf6jdDS55pK9aiMg+0Jf8zzzxjfs8PPvigwOv621oZAjp/vXv3NlkC+elnaMaXBkbsfZCEg/4/dXkqvXigv+G4ceMKvcirF1e1Vbj2rWfPWrNns2oQRfvWKCzwM3/+fLn11lvztFYuDreWt73clgbDX3zxxQLjrFixwlx80X5EfJXODfe2SrehWtbzySefzNNnTf7/pn43DWSX9LdQ+lvY36//yw8//NBn63y9aKMXOpVe2L/tttsklPQ3a9KkiRnWi7y6TodD48aN85Rp0ouHur0sLICt/1Fdn//xj3/kKQMYSfS4QPuwsrKRNeBt/9+lpqaaDFXrOOCll17y+b/1dWzga32K1mXqxv7T6e25XlzW7HJ7GTftbyp/lqIG7XQ7pxkITuzn4y34Zi+THe7gm/53rP+mro9vvfVWntd1nbIaSWj/Trp+5g8a6/qggWXt+ymQ/Zlb22PdFtgbhNxyyy1me5P/2MTa/2ZmZnrLTev/M5yi5RwnUlx33XXe9dZ+jqXPO033YVYwT8+x4jXb0P4f0WXw7bffhvTzNbvRV6Y7AOBv/+u1HgAQlfTiud6GDh1qTm5btmxpOiLX8n3aYlVLT1gnsfa68PYL7nZ6wVYvPOgJvL5XWylq4Ehbwlon+XqCaZVF0/uOHTuaLBe96K4n/3pCra3rtZWqZntpCUE9UdXspmHDhhXZWtstekFBLzLqRemDBw+aDt7POOMME+TRC4oaYNS+U6z+WDQrzt9FaL3wpSUkdTlr6Sftq0m/t3Zyr8tKT8KXLl3qLamoWSyBlOILlgagNANS1wE1depU00pXfzetta9ZN/qclu7Ri3Ea6Lr77rtL9Jnait8qu1OhQgUT+NWLKYHIH0DR8nYaoNCO2fWirPbVoMtL1xf9fbQPMb0IpK9lZGQUWJ990QuTWp5I50u/v16k0t9Zfx/9bRYsWODt10iDpnqRTbN/wkkv6m7evNlcfNb18f777zetVzXzSwNpug5rkESDTLocrBbwvrIM9f+rrcr1pqVWNbtV1wW9KKTLUQNW1rqpdBnbS9YEy43lfdZZZ5npWB3G6zZLty36v9Vp6nqi/1m9eKel83S90EBjYcK1rdLfS/9vetPfUfslsTLa9MKofgd76biBAwfmacFcHHqRVi9I6Wfrxf5+/fqZC6q6Luk2QDOc9KKYFTjX9UJLxup2PtT0wrCVja3fXTOj0tLS8gSJNHDpNs3e1eCoVQpNL7Dqdk7LFOu+VYNXml2p4+i6rPuR/JlgTtDgV6AZq0rnSzNi7JYvX54ng033D75KiOo+QtfLf/3rX+axNjrR4JOvjEv9nazGJdpw55tvvjHHG/aA9z//+U9zMTTSlmk49p9Obs+VBvJ03dCsYvXcc8+Zsr16TKPLSzNmdT51Og0bNjRBvGeffVbcoAEqXxUTCnPzzTebW6TThgj63TT4qftQ3U9pxpVuG62S2KGix95aDtZqXPTYY4+Z4IW1XWzWrJkJUlulm/W/pcF1bYyn/1/9T+m+Ttc9PQZ44oknAvoN3Noe63v0XEUDAxrM1ONF/U66n9djSP0f6PxaQS1d3npcYS85HQ7Rco4TKbQBj54L2Rtx6HZTGz+6QddRq8qCBoqDKUuqx0CBnrdY9H9UVB/Wuo4Hs23Ubc3DDz8sJaHnS7pfsQKd2khDf4NQ0PXf6jddG8zodgsAkI8HABCVXnvtNU/Dhg31qmnAt7Jly3oefvhhT05OTpHTfvnllz0JCQmFTmfkyJF5xt+yZYvnlFNOKfKzW7Ro4Vm6dKnnrbfe8j539dVX+/z8QMaxy8zM9I5/wgknFDnu9OnTPbVq1Sp0PhMTE73fz/58YWbPnu2pXr16kd+9d+/enj179pjvYj2n39GXQMYpzPPPP+9JSUkpdD4qV67s+eyzzzxTp071PtepU6diLVP7fAZ7K8y6des855xzTsDTOe644zzffvttodPLyMjwNGnSpMhp3HDDDZ7s7GzzHa3n9LuXRCDLtzBHjx71PPjgg55y5coFtAxKly7tGTp0aIHpVKhQIeDleNJJJ3mWL19e4u/ixvLeuXOn59RTTy1ymtddd50nKyvLzJ/1nM63L05vq/wtnw8//LDIbWn+bc+QIUPM8nGCfteuXbv6/dy0tDTPvHnz/E4vkP9wcei2sVmzZgFvM4rz/wpm3nU7mpqaGtBvpr/tRRdd5Ckp+7ob7E2363ZHjhwx/2nr9YsvvrjIz9b1rW3btt7xe/XqVeh4HTt2LHJeCvsvO7VMg90/BnMs4eT+0+ntuf038Lfv1f+Sbs/1OKawY7biKMk+3/75Thx/+BLIPiXQ7cD3339vjpetcfv27ev3uDnQeQvmuE73qfb9x+uvv57n9YMHD3rOPffcIpd9vXr1PDNnzgx4vQ12exzMb7V//35Pv379/K4vtWvX9nz99dcep9jX3UDOKfIL9zlOsP9lp841gp1Py6effppn2ej/xy26vpYvX958jp4T5+bmurYd09vu3buL/H2CveVfrvbXCjuO9eWrr77K894ff/yxyOMMJ/YJauzYsd5pvvDCC45MEwBiDaUmASBKaZ8Ja9euNa3TNYNIa+lrK3LNXNHWhdo6tWrVqib7SsvlaOtrLVejnbb7a7mrrWK1Zru2ptUyaZoNUVS/P9pfnLb41PnQ1quaNaHzoP3HaPkezbrRVq46L+GmLVc1G0BbnlstVrXVvbbo1VJYv/zyS1CZP9q6UjOH7rvvPpPho9PSm7bm1ywTbT2t/duEoo8KzQjSrAG91+wWbZWpv0V6erqZP33NVxmrSKHZBdoXjq5Lw4cPNy3/teW2rsv6XXR90tb9mm3www8/mJKT2tKzMJqNod9ZMwM0g0j/D2XKlDHZAPrbaCaCrpvhLjOZv6SYtn7V1uraQlxbrWp2hK5TOp+a2aDrrWY/aEt0/U/7KsGo2Rm6jLRclS4jzeDQ/7FOX1u/a6tU3WbouqmZmdp6vqTcWN46DV0ftGze2WefbR7rtkXXFS2hqNPUrFN/ZSbDta3SedSsF81K0FJbmq2n67R+pt50e62ZaZpBpNtybUnv1Pqo31VL3WpmkmYE6jZOMwt0WWmrdN0WvPnmm6a1smZJhItuG3WZa9aVbp91mYTzP6nbT83G1N9Cy6bq+qvLTfebms2l21Pdp77yyitmPM3WjSS6rddSg0pL+Or/oyi6rDVTxiqRphmmvrYpOp5un19++WWTGVSrVq2AyxlGwzJ1Y//p1Pbcou/R8fR/3b9/f7Pd0t9A/+u6HdFtr/6XnNiexzMtn6zroJXZomWANfMt1GUndZ9q74NQy5Xa50HXI92+ayUF/U/q+qTriP7vdX3QTE5db4PpW8vN7bH+5zWDT/fBgwcPNsch+nm6DmvlA80u02oTmkVTknLLToumc5xIoNUr7Mdk9n6Anabrj2ZqK616EEx/mrG2zPUagKWkWXSB0DihHkNav4MeZwIACkrQ6JuP5wEAAAAAAADALy35raV6lTaS0kaivvoUd4o2bNBGolqSXkvshquv2HijQX8N+CktpaxlmAEABZHxBgAAAAAAAKDYtG8+i1YScTPoprQfQCurTquMaFUTuM/qG1YzQEvabzgAxDIy3gAAAAAAAAAUy5YtW0wp4aysLFNKWEsHaxlRt23dutVkve3bt8+ULX7vvfdc/8x4NmPGDOnUqZMZ1jLKd955Z7hnCQAiFhlvAAAAAAAAAIJ27NgxGTZsmAm6Ke3bNxRBN6sfvtGjR5th7Ufwt99+C8nnxqsRI0aYe+2n8bbbbgv37ABARCPjDQAAAAAAAEBA3n33XZk3b54cOHBAfv75Z1m5cqV5PiUlRZYsWSJNmjQJ9ywCABBWSeH9eAAAAAAAAADR4vvvv5cJEyYUeP7pp58m6AYAAIE3AAAAAAAAAMVRsWJFadu2renv64ILLgj37AAAEBEoNQkAAAAAAAAAAAA4INGJiQAAAAAAAAAAAADxjsAbAAAAAAAAAAAA4AACbwAAAAAAAAAAAIADCLwBAAAAAAAAAAAADiDwBgAAAAAicvvtt0tCQoKUK1dONmzY4Nrn6GdYN4TOgAEDzDKvWbOm7NmzJ9yzAwAAACBGEXgDAAAAEPcyMjLkpZdeMsPDhg2TevXq+Ryvc+fOeQJngd6mTZsm0WbdunXy73//W6688ko56aSTJDU1VUqXLi1Vq1aV1q1by0033STTp08P2fysXLlSHn74YTnzzDPN75OSkiLHHXecmbcrrrjCzKvOc2HGjh0rSUlJsn37dnnooYdCNt8AAAAA4kuCx+PxhHsmAAAAACCcevbsKd98842UL19e1q9fL9WqVSs08FacYNPUqVPNe5U90y0ST8cWLFggN998s8ybNy+g8fV7TZgwQerXr+/K/Bw4cEAeeOABefHFF+XYsWNFjturVy/58ssvC3396quvlnfeeccE4FasWCGNGzd2YY4BAAAAxLOkcM8AAAAAAITTrFmzTNBN3XDDDYUG3fI77bTTpF27dgGNW7duXYkWf/zxR4GgW9OmTaVVq1ZSvXp1U6Zx9uzZ3nKcms2nWWg///yzNGrUyNF50c/q1q2b/Pbbb97nTjjhBGnbtq2ZlyNHjpgst4ULF8revXv9Tu/ee+81gbejR4/KyJEj5b///a+j8wsAAAAABN4AAAAAxLXHHnvMm4k2ZMiQoLLkRo0aFfTnRWKWmy9paWly/fXXm1KT+QOHubm58vbbb8utt94qhw4dkk2bNsnAgQNNQM6pvus0OHb++ed7g25t2rSR559/Xs4+++wC42omnH62lqMsSosWLaRTp04ma/H999+XRx55xATyAAAAAMAp9PEGAAAAIG6tWrVKvvrqKzPcsWNHadKkicS72rVry1tvvWVKMWqGmK9svcTERLn22mvzZIzNmTNHvv/+e8fm41//+peZpvXbzJw502fQTZUqVcq8dt111/mdrgYTrWCdlq8EAAAAACcReAMAAAAQtzTAZGWg9e/fP9yzExE0I+yaa64xwSx/LrnkkjzlNq0gZklt27ZNxowZY4YrVKggEydONP3vOeHiiy+WlJQUM2yVnQQAAAAApxB4AwAAABC3NKBj6d27d0g+U0sxWrdAfPjhh3LhhReazDMNGNWrV0+6d+8uEyZM8AaNNFBmTVNLQIZShw4dvMPa35oT3nzzTdN/m9JSl/qdnVKxYkU555xzvAG+H374wbFpAwAAAACBNwAAAABxafHixfLnn3+a4WbNmpkSi5Fk7969cu6550q/fv3kyy+/NP2oZWdny8aNG+XHH380wbbOnTvLli1bwjqf9gCilm90gr2EZZ8+fcRpXbt29Q7rsgUAAAAApxB4AwAAABCX7JlOhfUdFi6a7dWjR48881inTh1TDlP7MdOAW1JSksyaNUsuvfTSsJZLXLJkiXf4+OOPL/H09uzZI8uWLfM+btu2rbn/+OOP5YILLjDZb5r5V6tWLbMcnnjiCdm3b19Qn2H/vcl4AwAAAOCkJEenBgAAAABRYu7cud7h1q1bSyQZO3aszJkzxwwnJibK448/LsOHDzfDlrVr18rll18uv/zyi/z+++9hmU/NGJwyZYr3cbdu3Uo8zfnz53v73dP+3TSjrmfPnvLNN9/kGW/r1q3mNn36dPnXv/5l+mvT8QKRnp5u+rDTDL1Vq1bJ7t27JTU1tcTzDgAAAAAE3gAAAADEbalJi5aaDNbXX38tO3bs8DvefffdZ/pnC5QGgZ588knv40ceeUTuvPPOAuM1atRIvvvuO2nTpo2sX79ewuGOO+7wlpesX7++6YuupP766y/vcNmyZU2pSSu4d8IJJ5g+5cqUKSMrVqwwwcnc3FzZuXOnXHTRRfLpp5+arDh/dLo6LQ1eWutCp06dSjzvAAAAAEDgDQAAAEDc0Ywqe7BKyxcG69dffzU3f66//vqgAm/vvvuuZGVlmWENDt11112FjlulShV5+OGH5eqrr5ZQmzBhgin/aBk3bpwpAelEqUnL9u3bTdBNs9OeffZZGTp0aJ4+5RYuXCh9+/aVNWvWmACgLgcNyNWoUcPv5+hvYgXe1q1bR+ANAAAAgCPo4w0AAABA3Nm7d683uKWqVasmkWLatGneYe3TTftyK4oGnjQDLJS0HOTNN9/sfawlL6+44gpHpn3w4MECz2k/brfcckueoJvSbL/vv/9eypcvbx7v2rVLXnzxxYA+p3r16t7hLVu2lHi+AQAAAEAReAMAAAAQd/IHd8qVKxf0NEaOHGky5/zdNDgUDM3ispx++ul+x9d5b9WqlYRKZmamKSlpBS61f7xXXnnFsennDyJqNuJtt91W6PhacnPw4MHexx988EFAn2P/zX0F+wAAAACgOAi8AQAAAIh7GiCLFFpe0XL88ccH9J7ilMosjs2bN0v37t29GWIa9Pr222+lUqVKjn1GhQoV8jzWvtu01GRRLrnkEu/wH3/8Yfp8i6bfHAAAAEDsIPAGAAAAIO5YpQkthw8flkhx4MCBoDPx8ger3KDBLA26aX9qqnbt2vLjjz+aeyflL/vZokULv+9p3rx5nsebNm3y+x77b55/fQAAAACA4iLwBgAAACDuVK5cOU9Jwx07dkiksAfRDh06FNB73C6VuG/fPjnvvPNk6dKl3v7RNOjWsGFDxz+rWbNmQQcVK1asmOfx/v37g8osrFWrVlDzCAAAAACFIfAGAAAAIO4kJCRIgwYNvI83bNggkUKDWsHOl5vzr0G9nj17ym+//eYNWmp5yUAy0YrjxBNPlKSkJJ8ZgIXJH2jTefRn48aN3mH7ugAAAAAAJUHgDQAAAEBcat26dZ5+wSJFmzZtvMNz584NqGRiRkaGK/OSlZVl+libNWuWt/TlV199JW3bthW3JCcny9lnn+19vGzZMr/vWb58eZ6gat26dYscXzMJ169f73180kknFXt+AQAAAMCOwBsAAACAuNSuXTvv8KJFiyRSdO7c2Ts8adIkOXr0aJHjf/zxx670UZeTkyN9+vSRKVOmmMcpKSny2WefSYcOHcRtl156qXf4iy++kNzc3CLH//TTT/ME0apUqVLk+BqotKbZpEkTv+MDAAAAQKAIvAEAAACIS927d/cOz5w5UyLFFVdc4e1/LjMzU5555plCx927d688+OCDjs/DsWPHzHx8/fXX5rGWftQgYLdu3SQUrrzySqlataoZ/uuvv+TFF18sdNx169bJyy+/7H18zTXX+J3+zz//7HM9AAAAAICSIvAGAAAAIG5LTdavX98Mr1ixQjZv3iyRQANOd9xxh/fxiBEj5Nlnny2Q9aUBpx49eph7zUZzisfjkeuuu04++ugj8zgxMVH+85//mJKTJaVlIK3bqFGjCh1PM9DsAcU777zTBNd03uwWL14s5557rrcfuIYNG8oNN9zgdz6sLD51wQUXFPPbAAAAAEBB/+uxGgAAAADizMCBA2XcuHHecoWDBw+WSPDQQw/Jjz/+KPPmzTMBt+HDh8uTTz5p+j6rUKGCrF27VmbMmGHKUJ555pnSqFEjmThxojdQVhIa4JowYYL3cePGjU1GYKBZgUVlpwVj2LBhMmfOHPnggw/M9xwyZIg8/vjjptSlZgRqv3yzZ8/2BiQrVqxoym5qP3RF2b9/v/z0009muGbNmmS8AQAAAHAUgTcAAAAAcWvQoEHy2GOPmUwqDfBESuBNM9i+++67PH2sbdy4Ud5///0847Vv394EmzQjzFKpUqUSffa2bdvyPF61apW5BcqpwJtmxb3zzjty3HHHyQsvvGB+I83u01t+TZs2NRl66enpfqf7+eefy5EjR8zwP/7xD1NGEwAAAACcQqlJAAAAAHGrSZMm0qtXLzM8ffr0oAJMbtNyi5qZpQFBncdatWpJcnKy1KlTR8455xx5++23Zdq0aeb5Xbt25XlfrNDv+9xzz8lvv/0mt912m7Rs2dJ8Pw1M1qtXTy6++GKzHJYuXRpQ0E29/vrr5r5UqVJyyy23uPwNAAAAAMSbBE/+IvkAAAAAEEe0XKGWL7TKG2p/atGmbt26smnTJjO8ZcsWkyWGgpYtWyatWrUy2XNXXHGFtzwnAAAAADiFjDcAAAAAcU3LNZ5//vnebKidO3dKNNG+16yg2/HHH0/QrQjaR5wG3bS85OjRo8M9OwAAAABiEIE3AAAAAHFPAzIajDl48KA8+eSTEi2ys7Nl+PDh3seaxQXf1qxZI++++64ZvvnmmyUtLS3cswQAAAAgBhF4AwAAABD3tPzg0KFDzbD2KbZx48Zwz5IMHjxY3nzzTdm/f7/P1zMyMqRr164yf/5887hChQoyZMiQEM9l9HjggQckJydHatSoIWPGjAn37AAAAACIUfTxBgAAAAARqHPnzjJ9+nRJSUmRNm3aSJMmTUxwbd++fbJ48WJZunSpKZuoEhIS5I033pBBgwaFe7YBAAAAIK4lhXsGAAAAAACFO3LkiMydO9fcfKlSpYq89NJLlJkEAAAAgAhAxhsAAAAARKAtW7bI5MmTTdbbH3/8ITt27JCdO3ea16pVq2bKY3bv3l2uvfZaE3wDAAAAAIQfgTcAAAAAAAAAAADAAYlOTAQAAAAAAAAAAACIdwTeAAAAAAAAAAAAAAcQeAMAAAAAAAAAAAAcQOANAAAAAAAAAAAAcACBNwAAAAAAAAAAAMABBN4AAAAAAAAAAAAABxB4AwAAAAAAAAAAABxA4A0AAAAAAAAAAABwAIE3AAAAAAAAAAAAwAEE3gAAAAAAAAAAAAAHEHgDAAAAAAAAAAAAHEDgDQAAAAAAAAAAAHAAgTcAAAAAAAAAAADAAQTeAAAAAAAAAAAAAAcQeAMAAAAAAAAAAAAcQOANAAAAAAAAAAAAcACBNwAAAAAAAAAAAMABBN4AAAAAAAAAAAAABxB4AwAAAAAAAAAAABxA4A0AAAAAAAAAAABwAIE3AAAAAAAAAAAAwAEE3gAAAAAAAAAAAAAHEHgDAAAAAAAAAAAAHEDgDQAAAAAAAAAAAHAAgTcAAAAAAAAAAADAAQTeAAAAAAAAAAAAAAcQeAMAAAAAAAAAAAAcQOANAAAAAAAAAAAAcACBNwAAAAAAAAAAAMABBN4AAAAAAAAAAAAABxB4AwAAAAAAAAAAABxA4A0AAAAAAAAAAABwAIE3AAAAAAAAAAAAwAEE3gAAAAAAAAAAAAAHEHgDAAAAAAAAAAAAHEDgDQAAAAAAAAAAAHAAgTcAAAAAAAAAAADAAQTeAAAAAAAAAAAAAAcQeAMAAAAAAAAAAAAcQOANAAAAAAAAAAAAcECSExOBf2vWrJEFCxbIihUrZMOGDbJv3z4pVaqUVK1aVU488UTp2rWrNGvWrMSfM2nSJPnoo48CGnfkyJHSsmXLEn8mAAAAAAAAAAAACLyFhAa4li9fXuD5o0ePyubNm81t2rRp0rFjR7n55pslKYmfBQAAAAAAAAAAINoQ4QmBXbt2mfvU1FQ588wzTWZb9erVJTc3V1auXClffvmlGWfGjBly7NgxGTZsmCOf++STTxb5es2aNR35HAAAAAAAAAAAABB4C4m6devK5ZdfLmeccYYkJubtVq9p06Ym0+3BBx80mW+zZs2S7t27S4sWLUr8ufXr1y/xNAAAAAAAAAAAABCYvFEguGLEiBHSvn37AkE3S6VKleSqq67yPp4zZ04I5w4AAAAAAAAAAABOIPAWIVq2bOkd3rp1a1jnBQAAAAAAAAAAAMEj8BYhjh496h0uLDMOAAAAAAAAAAAAkYs+3iLEsmXL8vQJ54SxY8fKunXr5ODBg1K+fHmpV6+etGnTRrp16yYVKlQo9nR37twZ0HjVqlUr9mcAAAAAQDTjvAkAAACITwTeIkBubq58+umn3sfaH5wTFi9e7B3et2+fCe7p7bPPPpMhQ4bIaaedVqzpDh482O8477zzTrGmDQAAAACxgPMmAAAAID4ReIsAX331laxevdoMt2vXTho1alSi6dWvX98E1dLS0iQ1NVWOHTsmmzZtkpkzZ8qiRYtMBtxTTz0l9957r5x88snihtKlS7syXQAAAACIFZw3AQAAALEnwePxeMI9E/FMM9DGjBljgmOVK1eWJ5980twXl1VWsjA//PCD/Pvf/zbDGpR74YUXJDk52fGSKVWrVpWEhATR1Usz+uC+UqVKmXtdlwA3sI7BTaxfcBvrGEKxfumxrx4DA4rzpvBj2+8ulq+7WL7uYvm6i+XrLpavu1i+oVm+sY6MtzD666+/5IknnjB/Ym3pOHz48BIF3VRRQTfVvXt3WbNmjUyZMkV2794tc+fOlbPPPjuozwimDwI9edy6dWtQ00fwEhMTpVatWmZ4+/btnLTDcaxjcBPrF9zGOoZQrV+6bsXLiST847wpvNj2u4vl6y6Wr7tYvu5i+bqL5esulm/olm+sSwz3DMSrbdu2ydixY02Gmq5wt99+u7Ro0SIkn92tW7c8GXcAAAAAAAAAAAAoOQJvYbBr1y5TXlIzzrSsiHa6rX2yhUq9evXyzAsAAAAAAAAAAABisNRkTk6OfPfddzJ//nzZu3evVKpUSU4++WTp2bNn0H2RRaJ9+/aZTDerjMigQYOkU6dOIZ0H+p0AAAAAAAAAAACI4sCbllYcOXKkGW7btq1cf/31BcbJzs6Whx9+WFatWuV9btOmTbJixQqZPn26jBo1qsR9oIXToUOH5JFHHpENGzaYx1dccYX06NEj5PNhfb5KTU0N+ecDAAAAAAAAAADEopCVmpw3b54pa6i3U0891ec4kyZNyhN0s9MA3PPPPy/R6siRIzJu3DjJzMw0jy+99FLp3bt3WOblhx9+8A6Hql85AAAAAAAAAACAWBeywNvKlSvNfUpKirRq1arA61lZWabEpKVr165yzz33yLXXXisVK1Y0z2VkZJhbtDl69Kg8+eST8scff5jHWjZzwIABQU9n2rRp0q9fP3PTIGV+f/75p2zZsqXIafz4448yZcoUM1ylShVp165d0PMBAAAAAAAAAACAMJaa3Lhxo7mvX7++JCUV/Fjt001LTaouXbrITTfd5H2tdu3apkSjmj17ts/AXSR79tlnZdGiRWZY512DihokK4wunzp16gT9OWvXrpVXXnlFWrZsafrF02VdoUIFyc3NNct/5syZ3vlITEyUG2+8UcqUKVOCbwYAAAAAAAAAAICQB960xKQ67rjjfL5uz2TL3+9Z69atpWbNmqafuDVr1ki00TKb9u951113FTl+jRo15KWXXirWZ2mQbcmSJeZWGM0gvPnmmwst+QkAAAAAAAAAAIAIDrxpKUlVtmxZn68vX77c3FetWlUaNGhQ4PUTTjjBBN62b9/u8pxGL81y04CalvVct26d7N27V/bv3y8ej8dkvulyPemkk6Rz585Srly5cM8uAAAAAAAAAABATAlZ4E1LG2o2lvZ3lt++ffu8fZM1b97c5/srVapk7g8fPizRxld/bMWhATO9FaZy5cqmjKXeAAAAAAAAAAAAEFqJofogzbhSvjLW7GUmmzZt6vP9OTk55t5X/3AAAAAAAAAAAABA3ATe6tWrZ+61DOKhQ4fyvDZ79mzvcIsWLYrsI87KfAMAAAAAAAAAAADiMvDWpk0bc5+dnS2vvvqqHDlyxBt0+/XXX81wzZo1pX79+j7fr32WqVq1aoVqlgEAAAAAAAAAAICAhaxuo/ZNNnnyZDl48KDMmTNHfvvtN0lJSZEDBw54xznvvPN8vnft2rXe8Ro1ahSqWQYAAAAAAAAAAAAiL+OtYsWKMnjwYElMTPT22WYPumnfbueff77P986aNcs73Lx58xDMLQAAAAAAAAAAABChGW/qtNNOk7Fjx8onn3wiK1askMOHD0u1atXkzDPPlD59+kipUqUKvCcrK0umTJlihkuXLi2tWrUK5SwDAAAAAAAAAAAAkRd4U40bN5a777474PGTkpLk8ccfN8MamEtOTnZx7gAAAAAAAAAAAIAoCbwFSwNvNWrUCPdsIMp4PB45evSoWX8SEhLCPTsAAAAAgDCcF2o3F3oPAAAAhErEB96AYOzcuVOWLFkimZmZ3sBbw4YNJT093ZQ1BQAAAADE/nlhRkaGOS/UwBvnhQAAAAglAm+IGatXr5Zp06blac2owbdVq1aZ1zp37ixpaWlhnUcAAAAAgHs4LwQAAEC4JYZ7BgCnWjTmP7my0+f1dR0PAAAAABB7OC8EAABAzGW89e/fX9ym/XW9//77rn8OoouWl/RXt19f1/G0hSMAAAAAILZwXggAAIBIEHUZb3SKDF/rhNbuD4SOxzoEAAAAALGF80IAAABEiqgLvAH5ab1+vTk9LgAAAAAgOnBeCAAAgJgsNfnBBx84OTkgIElJSeYWyImTNS4AAAAAIHZwXggAAIBIQcYbop72+9ewYcOAxtXxdHwAAAAAQOzgvBAAAACRgsAbYkJ6errfEyd9XccDAAAAAMQezgsBAAAQCQi8ISZUq1ZNOnfuXOhJlj6vr+t4AAAAAIDYw3khAAAAIgFFzREz0tLSJDU1VZYsWSKZmZmmtr/W7dcyItqikZMrAAAAAIiP88KMjAxzXpiTk8N5IQAAAEKKwBtisoVjp06dvIE3avcDAAAAQHydF3bp0kUGDBhgAm87d+4Uj8cT7tkCAABAnAhb4G3hwoUmM2ndunWyf/9+OXz4cEAHwhpEeeGFF0Iyj4heup6ULl063LMBAAAAAAjjeWFycrK5J/AGAACAmA28rVy5Ul5++WXZtGlTqD8aAAAAAAAAAAAAiI3A2+LFi+Wxxx6TY8eOhfJjAQAAAAAAAAAAgNgJvGVlZclzzz3nDbp1797d9MX13XffyYwZM8xzL774oik5uWPHDlm2bJl5fu/evVKmTBm57rrrpHnz5qGaXQAAAAAAAAAAACAoiRIiU6ZMkQMHDpjhCy+8UK6//npJS0uTsmXLesepUaOG1K9fX0455RS58sorTSCuW7duJmj3yiuvyPr16804AAAAAAAAAAAAQNwG3hYtWmTutWPjvn37BvQeHfeGG26Qrl27mky58ePHy549e1yeUwAAAAAAAAAAACCCA29//vmnuW/SpIkpHemLx+Px+fxVV10lKSkpcvDgQZk6daqr8wkAAAAAAAAAAABEdOBt//795r5mzZp5ZyDxf7OQnZ3t871ajrJFixZm+Ndff3V1PgEAAAAAAAAAAICIDrxZ2WxJSUl5nrf38bZ79+5C35+ammrud+zY4do8AgAAAAAAAAAAABEfeKtQoYK5z8rKyvN8lSpVvMMbN24s9P27du0y91puEgAAAAAAAAAAAIjbwFudOnXM/fbt2/M8f8IJJ3iHf/vtN5/vPXTokKxevdoMly9f3tX5BAAAAAAAAAAAACI68Na4cWNzv2HDhjzPN2nSRCpWrGiGp0+fLsuWLStQovKNN96QAwcOmMdpaWmhmmUAAAAAAAAAAAAgYHk7XHNRenq6fPHFFyaAtnbtWmnUqJF5vlSpUtKtWzeZPHmyHD16VMaMGSNt2rSR+vXry5EjR2TBggWyZcsW73R0XAAAAAAAAAAAACBuA2+tWrUy/bxp4G3GjBnewJu69NJL5ffff5f169dLbm6uGdZbfp06dZJTTjklVLMMAAAAAAAAAAAARF7gTTPbHn/8cZPFlpycnOc1fTxy5Eh5/fXXZfbs2QXeq69feOGF0rdv31DNLgAAAAAAAAAAABCZgTdVrVq1Ql8rX768DBs2TP7xj39IRkaG7N69WxISEuS4444z2XL6OoDIpH0xaqnYpKQk878FAAAAAAAA4M51uJycHHMPIDKFNPAWiKpVq0rHjh3DPRsAArBz505ZsmSJZGZmegNvDRs2NH06FhVoBwAAAAAAABDcdThNWNHrcBp44zocELkiLvAGIDqsXr1apk2blqd1jQbfVq1aZV7r3LmzpKWlhXUeAQAAAAAAgGjHdTgguiSGewYARGcLm/w7ezt9Xl/X8QAAAAAAAAAUD9fhgOhD4A1A0LS8pL860vq6jgcAAAAAAACgeLgOB0SfkJWa/OijjxybVt++fR2bFoDg6I5ca0kHQsfr1KmTJCQkuD5fAAAAAAAAQCzhOhwQnUIWePvwww8dmxaBNyB8tH603oIZt3Tp0q7PFwAAAAAAABBLuA4HRCdKTQIISlJSkrk5PS4AAAAAAACA/+E6HBCdQvZPDDRLTdNnDx06JH/++aesWLFCjh07ZqL0PXr0kJSUFNfnE0DRNF29YcOGsmrVKr/j6niktwMAAAAAAADB4zocEJ1CFni77LLLgn7P7t275e2335Y5c+bIokWL5P7775fU1FSJRmvWrJEFCxaYYOKGDRtk3759UqpUKalataqceOKJ0rVrV2nWrJmjnzlz5kyZNm2arF+/3gQzK1eubD5Dg5hNmzZ19LMQX9LT02X16tVFduyqO3odDwAAAAAAAEDxcB0OiD4RnXuqQbbhw4fLiy++KD///LM8/fTTMnr0aElMjK4KmSNHjpTly5cXeF5r7m7evNncNEDWsWNHufnmm0ucEpydnS1PPfWUCfTZ7dixwwTjZs2aZTIQixMMBVS1atWkc+fOZr31tdPXnb2+ruMBAAAAAAAAKB6uwwHRJ6IDb5ZrrrlG5s6dKytXrpQZM2aYDUk02bVrlzeQeOaZZ5qss+rVq0tubq75Tl9++aUZR7+bltYcNmxYiT5v/Pjx3qBby5YtpWfPnuaztXzn5MmTZevWrfLhhx+a57p16+bId0T8SUtLM+vQkiVLJDMz0wSSNWisae3awoadPQAAAAAAAODcdbiMjAxzHS4nJ4frcEAEi4rAW4UKFaRFixaycOFCk/kWbYG3unXryuWXXy5nnHFGgWw9LfmomW4PPvigyXzTbLTu3bub71scuvGdPXu2GW7btq3cfffd3s/UDfSpp54qI0aMMNlvEydONPOkyxcoSYubTp06eQNv1JIGAAAAAAAAnL8O16VLFxkwYIAJvO3cubPI8pMAwidqajZaUXvtHy3aaKCrffv2hZbIrFSpklx11VXex9qnXXF98cUX5l77j7v++usLfKZ+1sCBA83wwYMHZcqUKcX+LMCiwbbSpUsTdAMAAAAAAABcpNffkpOTuQ4HRLCoCbwdOnTI3B84cEBikZaEtGgpyOI4fPiwKfunikoxPv3006Vs2bJmeN68ecX6LAAAAAAAAAAAAERh4C07O1uWLl1qhmO1LKKW6bMUlhnnz5o1a7zTKapUpZYD1BKX+d8DAAAAAAAAAACAGA68aVDotddek3379pnHTZo0kVi0bNmyPH3CFYe9DGedOnWKHNd6/dixY7Jly5ZifR6A0NPa3VrHmxreAAAAQNH0mFkb8nLsDAAAgFBKCkdgyZ/c3FzZv3+/rFu3TmbNmiXbt2/3vtatWzeJNfp9P/30U+9j7Q+uOLRDTUthZSZ9vb5jxw6pV69esT6nMFWqVDH9zJUkgw+Bsy9jlnds0v/d4sWLZe3ataZBgmauNmrUSFq3bu33/+4E1jG4ifULbmMdg5tYp1AYzpvCf+ycmZlpGq2F+tg5HrBvdRfL110sX3exfN3F8nUXy9ddiXG0TEMWeBs9enSJp3HOOedImzZtJNZ89dVXsnr1ajPcrl07c0JQ3D7eLGXKlClyXPvrWVlZQX3O4MGD/Y7z8ssvmxMaPYmsVatWUNNHydSsWTPcswCHad+NGpzXIL1Fg28rV640247evXubfh1DhXUMbmL9gttYx+AmK4ACKM6bwiPSjp3jAftWd7F83cXydRfL110sX3exfFESURFi1CDRwIED5YYbbpBYo5mA7777rhmuXLlyib6jtuSzaIu+othf19IbACKTloLNf+HAV8YsJWMBAAAQ7zh2BgAAQFxlvDVv3lwSEhICGldb+5UtW1Zq1Khh+nRr27atJCcnS6z566+/5IknnjD9rJUuXVqGDx9ugm/FpdOwt+griv31YJettsoMpGSK0u9mLxUK99J0rVYY27ZtK/REE9Fn6tSpfn9PfV3H69Kli2vzwToGN7F+wW2sYwjV+qXHvmS9wcJ5U/weO8cD9q3uYvm6i+XrLpavu1i+7mL5hm75xrqQBd5GjRoVqo+KCvrHHTt2rBw8eNCscLfffru0aNGiRNPUYGWg5SPtr/srS5lfsDXx2UCFli5vlnls0E7gtU+3QOh4HTt2DLiBQ0mwjsFNrF9wG+sYgFDhvCm0IvXYOR6wb3UXy9ddLF93sXzdxfJ1F8sXMV9qMtbs2rVLxowZI7t37zYH+lr7/7TTTnP0xM5fR97216tXr17izwbgPM1M9Ze9WpxxAQAAgFjDsTMAAAAiBYG3ENu3b5/JdNu6dat5PGjQIOnUqZMj065Xr553eNOmTUWOa71OJ95A5NK+GP3111iccQEAAIBYw7EzAAAAIgWBtxA6dOiQPPLII7Jhwwbz+IorrpAePXo4Nv3GjRt7Tx6WLVtW6Hjasm/lypUF3gMgsmhGbMOGDQMaV8ejVA4AAADiFcfOAAAAiBQE3kLkyJEjMm7cOMnMzDSPL730Uundu7ejn6F9vKWnp5vhJUuWFFpucu7cuXL48GEz3K5dO0fnAYCz9D/t76KAvm799wEAAIB4xbEzAAAAIoGjqU7Tp0+XUHCqNGOoaIbZk08+KX/88Yd53LNnTxkwYEDQ05k2bZqMHz/eDPft21f69etXYJwLL7xQFixYIMeOHZM33nhD7rrrLklMTMxT6nLixIlmuHz58tK1a9cSfDMAbtO+Gzt37mz+/9phvK8LB/q6vY9HAAAAIB5x7AwAAICYC7xZQSE36YFytAXenn32WVm0aJEZbtWqlQl2/fnnn4WOr6Uf69SpU6zP0um3b99eZs+eLfPnz5cxY8ZIr169JDU11XzmJ598Ijt27DDjDhw4UCpUqFDMbwUgVNLS0sx/WDNZNWtWg/m6ndASOdpalwsHAAAAQN5j54yMDHPsnJOTw7EzAAAAQirqOvfy1Wot0s2bN887rAf/moVWlBo1ashLL71U7M8bMmSIKSWpmW9Lly41t/zByz59+ki3bt2K/RkAwtN6VxseWIE3+qUAAAAAfB87d+nSxVSa0cCbdsMQjdcSAAAAEJ0cDbwFkommF4y1jzG9NzOQlCTHH3+8VK9eXVJSUkxfaHpQrNlZ9nHOOOMMKVWqlJOzG7OSk5Plvvvuk5kzZ5oSG+vXr5eDBw9K5cqVpXnz5tKjRw9p2rRpuGcTQDFosK106dLhng0AAAAgKo6d9fxY7wm8AQAAICoDb5ppVZQ9e/aYvs40oFalShXTR1mHDh2kTJkyBcbNysoy5RInTZoku3fvlq1bt5pMMX1ftNHv4ATNdtFboM466yxzAwAAAAAAAAAAgPsSJURyc3PlmWeekVWrVkmDBg3kiSeekHPOOcdn0E3p89oXmo6n4+v79P06HQAAAAAAAAAAACBuA29a9nDFihWSmJgow4cPl0qVKgX0vooVK8rtt99u3qfv//nnn12fVwAAAAAAAAAAACBiA28zZsww982aNZNatWoF9d7atWub9ykCbwAAAAAAAAAAAIjrwNvGjRvNfbBBN4v1Pms6AAAAAAAAAAAAQFwG3vbt22fuDx8+XKz3Z2Vl5ZkOAAAAAAAAAAAAEJeBN+2rTS1fvlw8Hk9Q783NzZVly5aZ4QoVKrgyfwAAAAAAAAAAAEBUBN4aNWpk7vfs2SOfffZZUO/94osvzPtU48aNXZk/AAAAAAAAAAAAICoCb507d/YOv//++/Lxxx/LsWPH/Ga6ffLJJ/Lee+/5nA4AAAAAAAAAAAAQKZJC9UHt2rWTNm3ayMKFC02pyUmTJslPP/0k7du3l6ZNm0r16tUlOTlZsrOzZceOHbJy5Ur55ZdfzLBF36/TAQAAAAAAAAAAAOI28KaGDx8u48aNkxUrVpjHO3fuNGUkA3HiiSea9wMAAAAAAAAAAABxXWpSlSlTRh566CG57LLLTHZbIHQ8HV/fp+8HAAAAAAAAAAAAJN4z3lSpUqWkb9++0rNnT5k5c6YsXbpU1q1bJ/v27ZOsrCwTXKtUqZI0aNBAWrZsKWeddZaUK1cu1LMJAAAAAAAAAAAARHbgzaLBtHPPPdfcAAAAAAAAAAAAgGgX0lKTAAAAAAAAAAAAQKwi8AYAAAAAAAAAAAA4gMAbAAAAAAAAAAAA4AACbwAAAAAAAAAAAIADksRB/fv39w4nJCTI+++/7/O1ksg/XQAAAAAAAAAAACCmM948Hk9UTRcAAAAAAAAAAAAoCUpNAgAAAAAAAAAAAJFWavKDDz4o1msAAAAAAAAAAABAtCPjDQAAAAAAAAAAAHAAgTcAAAAAAAAAAADAAQTeAAAAAAAAAAAAgEjr481J27Ztk71790rlypWlZs2a4Z4dAAAAAAAAAAAAIDICbx6PR5YuXWqGy5YtK40bN/Y53sqVK+W1116Tv/76y/tcnTp1ZNCgQdK6detQzS4AAAAAAAAAAAAQmaUmly1bJmPGjDG3uXPn+hznzz//NK/bg25q06ZNMm7cOPntt99CNLcAAAAAAAAAAABAhAbeFi5c6B3u2LGjz3EmTJgg2dnZ3scVKlSQpKS/k/Jyc3Pl1VdflaysrBDMLQAAAAAAAAAAABChgbc1a9aY+9TUVKlXr16B1zdv3iwZGRlmuGLFivLwww/LG2+8YcpOtmnTxjyvfb7NnDkzVLMMAAAAAAAAAAAARF7gbevWreb+hBNO8Pn6r7/+6h3u06ePnHjiiWa4fPnyctNNN0lCQoJ5/Pvvv4dkfgEAAAAAAAAAAICIDLzt27fP3FepUqXQPuDMDCUmyllnnZXntapVq0rTpk29/cABAAAAAAAAAAAAcRt4y8nJMfelS5f2+frKlSvNfYMGDUypyfyqV6+eJ4AHAAAAAAAAAAAAxGXgLSUlxdwfOnSowGt//fWXHDx40AxbJSbzK1OmTJ4AHgAAAAAAAAAAABCXgbfU1FRvkC2/BQsWeIebNWvm8/1WwM4KwAEAAAAAAAAAAABxGXhr1KiRt4+2NWvWeJ/Pzc2VqVOnmuGEhARp0aKFz/dv3rzZ298bAAAAAAAAAAAAEGmSQvVBZ555psyaNcsMP/HEE9K/f3/Tl9tPP/0kmzZtMs+3atVKKlWqVOC92dnZsmHDBjNct27dUM0yAAAAAAAAAAAAEHmBt9NOO02aNGkiq1atkt27d8srr7yS53XNduvTp4/P9/7+++9y9OhRM6zTAAAgFDwej9n/JCUlmf0UAAAAoutYTvuJ13sAAAAg5gJv6u6775Zx48ZJZmZmnuf1YuaVV14pzZs39/m+adOmeYfT09Ndn08AQHzbuXOnLFmyxOyvrMBbw4YNzT6oWrVq4Z49AAAA+DmWy8jIMMdyGnjjWA4AAAAxG3irXLmyPProoyaDbfny5XL48GFz0HvGGWcUWkJy//79ptSk9v1WpkwZadCgQShnGQAQZ1avXm0afNhbRmvwTTO29bXOnTtLWlpaWOcRAAAAvnEsBwAAgLgKvKnExEQ59dRTzS0Q2g/cQw895Pp8AQCgraPzX6ix0+f19dTUVFpLAwAARBiO5QAAABAJEsM9AwAARAotL+mvDxB9XccDAABAZOFYDgAAAJGAwBsAAP9/ESZ/H6SF0fH8XdQBAABA6HAsBwAAgLgtNWnRftsWLlwoK1asMOUgDh48KLm5uQXKSurBsI6rSpUqZTpFBgDAadr3h96CGbd06dKuzxcAAAD841gOAAAAkSIsUazPP//c3Pbv3+933AMHDsiQIUNM8K1JkyYyduzYkMwjACC+aMMOvQVywcYaFwAAAJGBYzkAAABEipAeaeoB8BNPPGEy3QJVsWJF6dSpk/zwww+yatUq2bJli9SqVUuizd69e2X16tXmtmbNGnOzAo/6/YYOHerI50yaNEk++uijgMYdOXKktGzZ0pHPBYBol5CQIA0bNjT7Gn90PB0fAAAAkYFjOQAAAMRl4O3111/3Bt20pIMGnFq1aiUzZ86U+fPnF/q+s88+2wTe1O+//y49e/aUaHPDDTeEexYAAH6kp6ebBhJF9fmhF2l0PAAAAEQWjuUAAAAQV4G3tWvXytSpU81w1apV5YEHHpC6deuax8uXLy/yvSeeeKKUK1dODh06ZPqEi8bAm1316tXNd1+0aJGrn/Pkk08W+XrNmjVd/XwAiDbVqlWTzp07y7Rp03xesNELNfq6jgcAAIDIwrEcAAAA4irwZgXd1K233uoNugWqQYMGsmzZMtm4caNEo759+0rjxo3NrUqVKrJt2za55ZZbXP3M+vXruzp9AIhFaWlpkpqaKkuWLJHMzExTJln7ANGSRNo6mgs1AAAAkX8sl5GRYY7lcnJyOJYDAABAbAbeli5d6g0GtWjRIuj3a5ac2rVrl0Sjfv36hXsWAABBtpbWkshW4I1+QAAAAKLnWK5Lly4yYMAAE3jbuXNnkeUnAQAAACclSojs3r3bm7lWHGXKlDH3WVlZjs4XAACF0WCb9klK0A0AACD66DFccnIyx3IAAACIzcBbdna2udcLmMVhBdysABwAAAAAAAAAAAAQl6UmK1WqZMpE7tmzp1jv37Rpk3c6CMzYsWNl3bp1cvDgQSlfvrzUq1dP2rRpI926dZMKFSqEe/YAAAAAAAAAAABiSsgCb3Xr1jWBt1WrVklubq4kJgaebLdjxw4TQFKNGzd2cS5jy+LFi73D+/btk2XLlpnbZ599JkOGDJHTTjutWNPV+vj+VKlSRUqVKmWGg/mtUTz2ZczyhhtYx+Am1i+4jXUMbmKdQmE4bwovtv3uYvm6i+XrLpavu1i+7mL5uovl667EOFqmIQu8aabVkiVLTABo+vTppqPjQH3wwQcmWGdNB0WrX7++CaqlpaVJamqqHDt2zGQMzpw5UxYtWmQy4J566im599575eSTTw56+oMHD/Y7zssvv2w6tNaTyFq1ahXzm6A4atasGe5ZQIxjHYObWL/gNtYxuMkKoACK86bIwbbfXSxfd7F83cXydRfL110sX3exfBEVgbfOnTvLxx9/LIcOHZJ33nnHBIcCyV776KOPZMaMGWa4atWq0r59+xDMbfTq1auX9OvXr8DzTZo0kU6dOskPP/wg//73v00g85VXXpEXXnjBdDYNAAAAAAAAAACAKAm8aZ9i/fv3l7feessE3x566CE577zz5KyzzpKcnBzvePqa9gO3YsUKEyRau3at97Wrr75akpJCNstRSftyK0r37t1lzZo1MmXKFNm9e7fMnTtXzj777KA+Q1tlBlIyRWm23fbt24OaPoqXpmu1wti2bZs3QxRwCusY3MT6BbexjiFU65ce+5L1BgvnTeHFtt9dLF93sXzdxfJ1F8vXXSxfd7F8Q7d8Y11Io1g9evSQLVu2yDfffCNHjx6Vr776ytzsBg0a5PO9ffr0kTPOOCNEcxrbunXrZgJvSvt8CzbwpqVQgsEGKrR0ebPM4SbWMbiJ9QtuYx0DECqcN0UOtv3uYvm6i+XrLpavu1i+7mL5uovli5IIefrYNddcY8pM/uc//zHZbf6UK1fOZLppqUo4o169et7hXbt2hXVeAAAAAAAAAAAAYkVY6jZ27drV9NWmWVcLFiyQlStXSlZW1v9mKilJ0tLSpG3btiY7S4NvcE5CQkK4ZwEAAAAAAAAAACDmhK3DtDJlykjPnj3NTWngTTPg9HkCbe7asGGDdzg1NTWs8wIAAELP4/GYst/a2IkGOQAAAAAAADEQeMtPA25680f7JGvRokVI5ilW/fDDD95hliUAAPFj586dsmTJEsnMzPQG3ho2bCjp6elB90UEAHDOwYMHZdq0aWyPAQAAgBgQMYE3fxYvXiwff/yxrFixQj744AOJR3oiNn78eDPct29f6devX57X//zzT0lOTpZatWoVOo0ff/zRlPhUVapUkXbt2rk81wAAIBKsXr3aHEtotptFg2+rVq0yr2l/ulrqGwAQHmyPAQAAgNgQ8YE37QNOA256EhLNNGC4ZcsW7+N9+/Z5h/V5vRBmpydbwVq7dq288sor0rJlSzn55JOlfv36UqFCBcnNzZWNGzfKzJkzZdGiRWbcxMREufHGGwPKMgQAANGf6ZY/6Ganz+vrWoKaTAsACB+2xwAAAED0C0ngbe/evbJ7927Jzs42WVY1a9b0+5758+ebgJsGk2LBTz/9JNOnT/f52h9//GFuJQ28KQ2yaQkpvRWmYsWKcvPNN8upp55arM8AAADRRY8LCgu6WfR1Ha+4xyAAAGewPQYAAACim2uBNy1d9O2335rShps3b87zWqVKlaRbt25yySWXmNKI+ftwmzhxoimxkZ+W2+jTp49bsxz1NMtNA2orV66UdevWmYDn/v37zYmbZr41aNBATjrpJHMCV65cuXDPLgAACAE9DtA+3QKh43Xq1EkSEhJcny8AQOHYHgMAAADRK8mtjqEfe+wxEwDyRcssfvLJJ7J8+XK57777JCUlRXJycmTChAnyww8/FBi/SZMmpk+zNm3aSLQaOnSouZWEBsyKavVYuXJl6dq1q7kBAABYjaH0Fsy4pUuXdn2+AACFY3sMAAAARC9XAm+vvfZaoUE3Ow28vf3223LdddeZQF1GRkae10888UQTcGvdurUbswkAABDzkpKSzC2Q4Js1LgAgvNgeAwAAANHL8SN5LXE4Z84c72PtEFozsLTMoZaV1L7eFi1aJL/88ovpj2zGjBlSqlSpPEG3hg0bysCBAyU9Pd3p2QMAAIgrWqZMj61WrVrld1wdj7JmABB+bI8BAACA6OV44E0DaZaWLVvKPffcI2XKlMkzjtaq1z7eHnnkEdP62iovqScW/fr1k969e0tiYqLTswYAABCXtDGT9p+r/b0VRo/DaPQEAOHH9hgAAACIbo5Ht/SijtKyGLfcckuBoJulRYsWcuGFF+Z57oorrpBLL72UoBsAAICDtAKB9hNbWPaEPq+v63gAgPBhewwAAABEP8cz3rZs2WLumzZtKlWrVi1y3Pbt28vkyZPNcKVKleT88893enYAAAAgImlpaZKamipLliyRzMxMU3VAG0ppOTPNrOAiLwCEV5MmTdgeAwAAADHA8cDboUOHzP1xxx3nd9xatWp5hxs3biylS5d2enYAAACQL/NNy35bgTf6EAKA8CtfvrzZPgMAAACIfo4H3nJycsx9cnKy33Ht4/jLjgMAAIAzNNhGgycAAAAAAADnRUxnatriGgAAAAAAAAAAAIhWERN4AwAAAAAAAAAAAKIZgTcAAAAAAAAAAADAAa7Vd/z111/lr7/+cnx87ZPkoYceKuHcAQAAAAAAAAAAAFESeNu1a5e5uTU+AAAAAAAAAAAAEEkoNQkAAAAAAAAAAABEYsZb3759nZ4kAAAAAAAAAAAAEH+Bt8suu8zpSQIAAAAAAAAAAAARj1KTAAAAAAAAAAAAgAMIvAEAAAAAAAAAAAAOIPAGAAAAAAAAAAAAOIDAGwAAAAAAAAAAAOAAAm8AAAAAAAAAAACAAwi8AQAAAAAAAAAAAA4g8AYAAAAAAAAAAAA4gMAbAAAAAAAAAAAA4AACbwAAAAAAAAAAAIADCLwBAAAAAAAAAAAADiDwBgAAAAAAAAAAADiAwBsAAAAAAAAAAADgAAJvAAAAAAAAAAAAgAMIvAEAAAAAAAAAAAAOIPCGmOTxeCQnJ8fcAwAAAAAAABa9XpSdnc11IwCAK5KcnNj48ePFbQkJCTJ48GDXPwfRaefOnbJkyRLJzMyUo0ePSlJSkjRs2FDS09OlWrVq4Z49AAAAAAAAhPG6UUZGhrlupA22uW4EAIj4wNv06dMlFAi8wZfVq1fLtGnT8rRW0uDbqlWrzGudO3eWtLS0sM4jAAAAAAAAQo/rRgCAUKHUJGKmxVL+gyc7fV5f1/EAAAAAAAAQP7huBACI2oy3QDLRduzYIZMnTzYtSlTTpk2lSZMmUr16dSlTpoxkZWWZndzKlSvNzcxkUpJccsklZhzAFy0v6a8ut76u42kLJgAAAAAAAMQHrhsBAKI28OZvx6Sp2++8844JurVu3VquvfZaqV27dqHjb9myRd566y1ZuHChfPPNNzJixAgTpAPyHxhpbe5A6HidOnUyfQUCAAAAAAAgtnHdCAAQs6UmDxw4IE8//bQcPHhQOnToIPfff3+RQTdVq1YtE2zT8a336z1gp4FcK4PSyXEBAAAAAAAQ3bhuBACI2cDblClTZNeuXaac5A033BBwyxEdT8fX9+n7f/zxR9fnFdFFS5HqzelxAQAAnGhhnZOT47e0EQDAebrtzc7OZhsMxDmuGwEAQi1ke5I5c+aY+5YtW0rZsmWDeq+Or+/77bffZO7cudK7d2+X5hLRSIOzDRs2NKVM/dHxKBcAAADcpn0Wax8hWq5IW03rBRw9DklPT5dq1aqFe/YAIOa3wRkZGWYbrI0f2AYD8Y3rRgCAmA28bdu2zdxXqVKlWO+33rd9+3ZH5wuxQU+gVq9eXWRLRj1w0vEAAADcpMck06ZNy3NcosE3vdijr2m/yGlpaWGdRwCIVWyDAfjCdSMAQEyWmszKyjL3e/bsKdb7rfdZ0wHstNWinkAV1ipJn9fXad0IAADczrLIf8HXTp/X13U8AICz2AYDKAzXjQAAMZnxlpqaarLetNzDoUOHpFy5cgG/V8fX91nTAXzRVou6flDWCQAAhIseh/jrS0hf1/H04g4AwDlsgwEEct2IUrQAgJgJvLVq1UqmTJkiR44ckddee02GDRsWcM1kHV/fp7SvN8BfC6ZOnTp5A2/U5gYAAKGgF3P1Ik4gdDw9XuE4BQCcwTYYQKDXjbp06SIDBgwwgTfNgPUXsAcAIGJLTZ577rmSmPj3x/3yyy/y6KOPyqZNm4p8j76u4+n4St9/3nnnhWR+Ed30BKp06dKcSAEAgJDRRj96c3pcAIB/bIMBBEOvFyUnJ3PdCAAQ3RlvmrZ98cUXy+TJk83jxYsXy/Dhw6VRo0bStGlTqV69uqSkpJjMth07dpiOj9esWZNnGhdddJGZDgAAABBpNNNeb4FczLXGBQA4g20wAAAAIkVIjzQ1jTs3N1c+++wz73Nr1641N38uvPBCufzyy12eQ/fs3btXVq9ebW4aUNTb/v37zWta4mLo0KGOf+bMmTNNx9Hr1683/eRVrlxZmjVrJj169DDBTgAAADhHW0xrIzFtQOaPjkcLawBwDttgAAAARIqQN/G64oorpE2bNvLee+/JypUr/Y6vASINuLVo0UKi2Q033BCyz8rOzpannnpKFixYkOd5zSTUYNysWbOkb9++ctlll4VsngAAAOJBenq6aWhVVF8herFXxwMAOIttMAAAACJBWGoraBBtzJgxsnHjRlm6dKnp2Hjfvn2SlZUlZcqUkUqVKpkWaC1btpS6detKrNGymvq9Fi1a5Mr0x48f7w266TLs2bOnpKamyp9//mlKfW7dulU+/PBD81y3bt1cmQcAAIB4VK1aNencubOpOuDrwq9e8NXXdTwAgLPYBgMAACAShLWouQafYjGw5otmmDVu3NjcqlSpItu2bZNbbrnF8c/JyMiQ2bNnm+G2bdvK3XffLYmJieZxWlqanHrqqTJixAiT/TZx4kQ544wzpEKFCo7PBwAAQLzSYy5t4LRkyRLTwEz7G9K+hLRhmWZZcMEXANzfBuu5sW6Dc3Jy2AYDAAAgpOhNOET69esXks/54osvzH2pUqXk+uuv9wbdLJpNOHDgQHnuuefk4MGDMmXKFLnoootCMm8AAADxlnWhfflagTf6EwKA0G2Du3TpYvqZ18Dbzp07iyw/CQAAADgpb1QGUe3w4cOmZbUqqiXf6aefLmXLljXD8+bNC+k8AgAAxBMNtpUuXZqgGwCEgW57k5OT2QYDAAAgfjLe1q1bJytWrDBlDzX7Kjc3VwYPHhzOWYpqa9asMS2qrX70CqMtrps2bWr6mLPeo88BAAAAAAAAAACg+MISbZkzZ458+OGHsmHDhgKv5Q+87dmzR+699145duyYNGvWTO66664Qzml0sS/POnXqFDmuvq6BN12uW7ZskXr16oVgDgEAAAAAAAAAAGJXyANvr732mvz0008Bj1+lShVp1aqVzJw5U+bPny+7du2SqlWrujqP0Urr1lv8dRhtf10zDoMJvNk/p6jfTfuZU/n7mYPz7MuY5Q03sI7BTaxfcBvrGNzEOoXCcN4UXmz73cXydRfL110sX3exfN3F8nUXy9ddiXG0TEMaeHv//ffzBN1OOukkE1RbuHChLF26tND3aaf0GnjTzpB///136datW4jmOPr6eLOUKVOmyHHtr2dlZQX1OYGUA3355ZdNcE9PImvVqhXU9FEyNWvWDPcsIMaxjsFNrF9wG+sY3GQFUADFeVPkYNvvLpavu1i+7mL5uovl6y6Wr7tYvoiKwNvmzZvls88+M8PlypUzJSNbtmzpzbgqKvCmwbmUlBQ5cuSILFu2jMBbIXJycrzD/vpss7+enZ3t6nwBAAAAAAAAAADEg5AF3n788UfJzc01wzfddJM36BZoCuIJJ5wgK1eulL/++svFuYxupUuX9g4fPXq0yHHtrycnJwf1OdoqM5CSKUr7kNu+fXtQ00fw9D9itcLYtm2b978GOIV1DG5i/YLbWMcQqvVLj33JeoOF86bwYtvvLpavu1i+7mL5uovl6y6Wr7tYvqFbvrEuZIG3jIwMc6/lM84444yg31+jRg0TeNM+3uBb2bJlAy4faX/dX1nK/Pz1H5cfG6jQ0uXNMoebWMfgJtYvuI11DECocN4UOdj2u4vl6y6Wr7tYvu5i+bqL5esuli9KImS92Vmt99LS0koUVLL3Y4bCT+z8deRtf7169equzhcAAAAAAAAAAEA8CFngTftnK052Vf7328spIq969ep5hzdt2lTkuNbrdOINAAAAAAAAAAAQZYG3ChUqmPt9+/YV6/1bt24195UqVXJ0vmJJ48aNJSnp7+qhy5YtK7J/Ny3bmf89AAAAAAAAAAAAiILAm5VVtXr16qDfu3//flm7dq0ZPuGEExyft1ih5TjT09PN8JIlSwotNzl37lxvyc527dqFdB4BAPDF4/FIdna2uQcAAEDk4/gNAADAt5ClOrVu3VpWrFghu3btkl9//VVOO+20gN/76aefmiwtazrxatq0aTJ+/Hgz3LdvX+nXr1+BcS688EJZsGCBHDt2TN544w256667JDHxf/FVzTicOHGiGS5fvrx07do1hN8AAIC8tJFIRkaGZGZmSk5OjsnCbtiwoWlIYu+7FAAAAJGB4zcAAIAICbx17txZJk+ebA7KXn/9dZO5VrNmzYCCTV9++aW3XGXHjh0lGmnQccuWLd7H9pKb+rx+z/zLqzhatWol7du3l9mzZ8v8+fNlzJgx0qtXL0lNTZU///xTPvnkE9mxY4cZd+DAgd4SoAAAhJpmwev+z95KWhvarFq1yrym+8K0tLSwziMAAAD+h+M3AACACAq8aasnzcbSwM+ePXvkvvvuk8suu0w6dOhQYFwtVaB9kH333Xcyb9487/M6fpkyZSQa/fTTTzJ9+nSfr/3xxx/m5kTgTQ0ZMsSUktTMt6VLl5qbXUJCgvTp00e6detW7M8AAKCkLaXzX7Sx0+f1dW04QstpAACA8OP4DQAAIMICb0pLI27YsMEE0w4cOCBvvfWWuWlZAsugQYPk0KFDBd7bqVMn6dGjRyhnN2olJyebwObMmTPNQe/69evl4MGDUrlyZWnevLlZjk2bNg33bAIA4pj2ReqvPxB9XccrSWMUAAAAOIPjNwAAgAgMvGmm1fDhw+XDDz80/bbl5uaa563+21T+oJv2T3bppZeabLdoNnToUHMrCT1wDebg9ayzzjI3AAAiiV6Q0T5BAqHjaeMbPYYAAABAeHD8BgAAEKGBNyuQ1r9/f+natat89dVXsnDhQtm8eXOB8bQswSmnnGLKUx533HGhnk0AAOASbXBjb3QTyLilS5d2fb4AAAgXrVCi1UrS09Mp0YeIxPEbAABABAfeLDVq1JBrrrnGDGvZyd27d5tst5SUFKlSpYq5AQCA2KMlpvUWyMUba1wAAGLdqlWrZPXq1abKSVpaWrhnB8iD4zcAAIDARcSRUIUKFcwNAADEPi07VKdOHfnzzz/9jqvjUaYIABBP5fw08y01NZXMN0QUPR5r2LChCRD7o+Nx/AYAAOJZYrhnAAAAAAAA/C/4tmTJknDPBlCAlkL1F1DT13U8AACAeBayjLePPvrIO9ylS5egW+9pX3BadkP17dvX8fkDAAChu6C4adOmgMbV8XR8Wk0DAOJJZmamdOrUif0fIopex9FSqJqVqcdn+en6qq+TrQkAAOJdyAJvH374oXf4hx9+kLvvvjuouvW///67fPfdd2aYwBsAANFL+wYJpH8Q+7ilS5d2fb4AAIgU7P8QqfQ6jpZCzcjIMAHinJwc05+blpfUTDeCbgAAAGHq423Pnj0yatQoGTx4sHTo0CEcswAAAMJEL87oLZDgmzUuAADxhP0fIpkG17SS0YABA0zgbefOnT4z4AAAAOJVyPt4s0pl6MHZ888/L5MmTQr1LAAAgDDSYwFtFR0IHY8yWwCAeMP+D9FA19Hk5GTWVQAAgHAH3rRV1FlnneV9/PHHH8szzzwj2dnZoZ4VAAAQJlqKyN9FGn1dxwMAIJ6w/wMAAACiW8gDb1qj/tZbb5X+/ft7n5szZ46MHDnSlKAEAADxUaKoc+fOhQbf9Hl9nX5CAADxhP0fAAAAEP1CHnizXHrppXLnnXdKSkqKebx27Vq57777zD0AAJFA+6rQ0sj0WeGOtLQ0ueSSS6Rp06amYY7S/myaNGlintfXAQCIF+z/AACxQs+htboZ59IA4lVYe2tu166dPPzww/Kvf/1Ldu3aZW6a+TZ06FA544wzwjlrAIA4ph3EL1myRDIzM+Xo0aMmGKR9rWjZJ1qgO0uXp5ahHjBggAly6rLn5AwAEG/Kly9vMt0AAIhmej6XkZFhzqX1/I5zaQDxKmwZb5YGDRrIuHHjpHHjxuaxtoZ49tlnTd9vAACE2urVq2Xy5MmyatUqE3RTeq+P9Xl9He6U1kpOTvbb7xsAAAAAIHLPpVeuXGmCbopzaQDxKuyBN1WlShUZPXq0tG/f3jzWlu6TJk2S559/3ruhBgAgFK3zpk2bVmjGlT6vr+t4AAAAAACAc2kAiMjAm9K+XYYNGyb9+vXzPjdr1iwZNWqU7NmzJ6zzBgCID1pe0l+ZQ31dxwMAAAAAAJxLA0DEBt4sffr0keHDh5tyU0rTkO+//37ZuHFjuGcNABDD9CRA69AHQsejHzIAAIAIdfiwVLrzTu1MVqRXL0kgwwIAXMO5NAAUlCQR6IwzzpDjjjtOHn/8cdm1a5dJQyYVGQDgJq09b/XpFui4mq0NAACAyFL5wQel3Hvv/f3g66+lysGDsnPiRO1UNtyzBgAxh3NpAIiCjDdLw4YN5dFHH5XGjRuHe1YAAHEgKSnJ3JweFwAQOtqCWvuIpiU1EL/KfvyxlLeCbv8vZfp0KTdhQtjmCQBiGefSAFBQyLZ0zZs3l4SEBKldu3bA70lNTZXRo0fLSy+9JL/88our8wcAiG+6j9JGH6tWrfI7ro6n4wMAIoNWx9A+Q7R8kbai1gs6uq1OT0+XalpqDkBcSFq9WiqPGOHztQqjR8vW9HSp2LZtyOcLAGIZ59IAEMbA26hRo4r1Pk09vv322+XKK6+k5SoAwFV6gVb7Fi1qf6MnCToeACAy6HZ72rRpebbdGnzTiz/6WufOnSUtLS2s8wjAfQmHD0vqTTdJ4qFDPl9Pys6WCoMHy+p33pG0Zs1CPn8AEMs4lwaAKCk1mV/16tWlRo0a5gYAgBs0K0Iv0BbWAk+f19fJngCAyMl0yx90s9Pn9XX6iwZiX6WHHpLSK1bkeW5/hQp5HtfduFGOjR3LNgEAHMa5NABEaeANAIBQ0KyISy65RJo0aeKtPa/3+lifJ2sCACKHlpf0VxVDX9fxAMSusp98IuXffTfPc1tr1pSXhwyRHfku8nacPl02fP55iOcQAOLnXLpp06amgpniXBpAvKI3SwAACmmt16lTJ29fQdShB4DIogE17dMtEDqebtPZlgOxp5T263bvvXmeyy5dWj687DI5XK6cTL7kErnujTck8f+D9KVyc+XU556T7P79JaFcuTDNNQDE7rl0ly5dZMCAAZKTk2MyjOk6CEA8cjTwNn369DyP9eS2sNdKwj5dAADcohdorZZ6AIDIog0j9BbMuGzTgRhz+LBUvfnmAv26fXnBBbLz/7up2FSvnvx89tnSacYM7+s1tm+XfePGyYExY0I+ywAQL+fSycnJ5p7AG4B45Gjgbfz48d5h3bDaA2T210oi/3QBAAAAxB/NRtZbIME3a1wAsaXyyJFSevnyPM/9fvLJsuSkk/I8N6NTJ2myapXU2bzZ+1ylN9+U7PPOk+yzzgrZ/AIA4IgjR/QiebjnAkA4+nhzqzUDrSQAAAAAaIO8hg0bBjSujkeZSSC2lP30Uyk/cWKe5/bUqyffnH9+gXFzS5WSyZdeKjn5AvBVhg+XhL17XZ9XAAAckZ0tFcaOFalcWaRcOanWrZtUvvtuKfff/0pp7dM4Jyfccwjg/zna7LOoTDSy1AAAAAA4KT09XVavXl1k4zwNuOl4AGJHqTVrpPI99+R5LrdsWdn24otybNEibbFb4D07atSQn7p1kx7ffut9LmnTJqn80EOy57nnQjLfAAAUV6nMTEkdOlSSdT/3/0ovXWpu8u675rEnJUVyWrSQnJNOkuyTTjL3R9PSREqVCuOcA/HJ0cDbkCFDivUagOimF7u0zJOWcKI1OQAACJVq1apJ586dZdq0aT6Db3pcoq/reABirF+3gwfzPL133DipcNpp0jk1tdBtwrzTT5fTt22T1N9/9z5X7qOPJOu88ySrZ8+QzD4AAMEqO3myVB4xQhIPHChyvIQjRyR5wQJzK///z+WWKyc56el/B+PatJGc1q3lWIMGlKosgh5D5OTkUHkPJUJHBwCKbefOnbJkyRLJzMz0Bt60lJO2KucCFwAACIW0tDRJTU3lmASIE5VHjZLSy5blee5Q//5y+LLL8mwTMjIyzDZBL5zZtwnZvXpJ7jnnSOL+/f+b5j33SPapp0puzZoh/z4AABQm4dAhqfzAA1Lugw+KPY3EQ4ckZe5cc7PkVq5sAnAmK65NG8lu3Vpy69SJ+2CcXucs7PiBcwoEK8FD6BYuOnbsmGzdujXcsxHzEhMTpVatWmZ4y5Ytkpub6/pnalknf63L9aQXsSEc6xjiB+sX3MY6Fj/CkYVvX7/02LcUpXxQDJw3BabMZ59J1XzVdHJOPFF2fPWVeMqWLfDfPO6448yFM72QZj9vKfvRR5I6bFie8bPOOUd2TZgQ9xcdA8W+1V0sX3exfN3F8nVG0tKlkjp4sJRes6bgiyeeKPLoo7Jv8WJJWrjQlJ9MWreuRJ93rEaNv4NxmhX3/2Uqc6tXl3jBdc7Qbx9iHRlvAIKmJ66F7YyUPq+va0tTWoQAAIBQ0ZPi0qVLh3s2ALig1Nq1UuXuuwv067b7lVcKBN3s24Tk5GRzbz93Odynj5T57jsp+/XX3ufK/PSTlHv3XTk0cKCL3wIAAD88Hik3YYJUfvhhUzoyv0MDBki5118XKV9eDrVv7w1sJuzeLclLlkjpRYvMLXnhQim1eXPAH1tq+3Yp9dNPZn9oOVq3rjcIZ7LjWrcWT+XKEmu4zgk3EHgDEDQt5eQvWVZf1/G0RQgAAAAAFFtWllS96aaC/bo9+qgcbdo0+OklJMjef/1Lkn/91VxotFQaNUqOnHWWHDvhBCfmGgCAoGjwrMpdd0nZb78t8Fpu+fKy97HH5EjfvlKuvNWD2/94UlPlSMeO5mZJ3Lbt7yDc4sVSeuFCM1xq586A5ydp40ZzszdUOdqwobevOC1TmdOqlXjKlZNoxnVORHzgbVm+OutuadGiRUg+B4DvHY3WOg6EjtepU6eQlXqKB+EooQUAAACEU+XRowv269avnxzu16/Y08ytWlX2PPmkVLv66jz94FQZNkx2fvyxCGVjgZg/t9ZStPTAg0iRPG+eVBk6VJI2bSrwmvbBtnv8eDnWsKEkBjFN7bv0SPfu5mZ4PFJq06a/g3CLF5usOL1P3Lcv4GkmZWaam0ye/PckExNNIxiTFWcF45o3F0lJkWjAdU5EReBt9OjR4jZdsd9//33XPweAbxr00Vsw41LyyZm0d21Zozt5K/BGB68AAACIdWU+/1zKv/NOnudymjaVvY88UuJpH+nWTQ4OHCjlJ070Ppfy669S4ZVX5MDQoSWePoDIPLfOyMgw59YaeOPcGmF37JhUeP55qfj005Lgoz+8AzfdJPtGjBBJTi75ZyUkyLG6dc0tq1evv5/LzZVS69aZfuKsMpWllyyRxMOHA5tkbq6UXrHC3Mp98IF5zlO6tAm+2ctUmgz1pMgrvsd1Trgl8tZ2P2iJAoSXHpTqLZCdkjUunO/gVZf/qlWrzGt08AoAAIBYVCozs2C/bmXK/N2vm0NlrfaNHCkpM2dK0vr13ucqPvGEZHXuLEdbtnTkMwBEBs6tEWkSt2yR1FtukZRffinw2jHNzH72WTlyzjkuz0SiHGvUSA7r7ZJL/v/Dj0nSqlV/l6m0gnHLlklCdnZAk0zIyTHlLfUm//mPd/99tFWrv/uK+/9gnH6ufn44cZ0TbnF0TWnevHlAqZYrV67MszJXqFBBqlevLikpKXLkyBHZsWOHHDhw4H8zmZQkTYtTtx1xi3J87tHlqa3B9MDUHx2P5V8ydPAKAACAuJSVJak33yyJtmsD3n7dTjzRsY/xlC8ve557Tqpdeqk300AvGKYOGybbv/oqakplASga59aINCk//ihVhg+XUrt2FXjtSPv2svuFFyS3Vq3wlEotVUqONmtmbof79//7uezsvzPbbGUqk1aulIRjxwKaZGJWliTPn29ultyKFSUnPT1Pn3HH6tUzmXmhwnVOREXgbdSoUUW+npWVJePHjzcBkeTkZOnVq5epi1q7du0C427ZssXs8L7++msTjKtYsaIMGTJEypQp4+QsI8ZQji80dHlqa7CidvC6I9LxUDJ08AoAAIB4VPnhhyU5IyPPc4f69v3fBUAHZZ92mhwYMkQqvvii97nSy5dLxSeflP3//Kfjnwcg9Di3RsTIzpZK48ZJhddeK/CS9pe2/8475cCtt/rsazSspVKTk/8OjrVu7X0q4fBhScrIyFumcs2agCeZuH+/pMyebW72TD97iUq9zz3uOHET1znhhpDmRr700ksyb948qVGjhvzzn//0GXCz1KpVSwYMGGB2dmPGjJG5c+dKbm6u3HXXXaGcZUQRSgaEju7MdXkW1lpMd0b6OsHOkqGDVwAAAMSjMl98IeUnTMjzXE6TJrJ33DjXPnP/HXdImZ9+MgE3S4WXXzb9wGWffrprnwvAfZxbI5JKKKcOGfJ3CcZ8jtapI3teekmy27WLmuuenrJlJee008zNkrBvn+kjzh6MS/rrr4CnqRmApaZOlTJTp3qfO1arljcIZwJyrVuLp2pVx74H1zkR1YG3X3/91QTd1PDhw4sMuuUPwN1xxx1y//33e6fRrpANEOIXJQNCT3fmujzJMHQPHbwCAAAgLvt1y9fg1ul+3XxKSTFlvWr07OntwybB45Eqt98u23/4QTwVKrj32QBcxbk1IkHZTz6RyiNGSOLBgwVeO9yjh+x58knxpKZG/XVPT6VKkt2hg7lZEnft+jsIZ5WpXLRISm3dGvA0S23ZImX19t133ueOnnCCyb7zlqnUYFwJ9tXWdc6wZRQi5oQs8Db1/6PUuhI3btw4qPfq+Po+K7JP4A35UTIgPKwWIdoajD71nEcHrwAAAIgrR45I6uDBBft1e+QR08+M2442by777rlHKo8d630u6c8/pdKoUbL3ySdd/3wA7uDcGuGUcPCgVH7gASk3aVKB1zwpKbL3oYfk0NVXF9mvWbRf98ytWlWOdOlibpbELVvyZMVpn3GJe/YEPM2k9evNrewXX5jHnoQEOZqW5u0rzmTItWghUrZsUNc5u3TpYqrwaeBNA56u9aOHmBeyPcn69evN/fHHH1+s9+v7NPBmTQew/B979wHlVLU1cHxP75VepA5FARUFERtVsGJ5PsX6bE8FRLA+sTdUFAVFwc+uz67YG4K0Z0ERLHQYmtKnMr1mvrUPJCZTMzPp+f/WuivJvTfJmcslt+xz9iZlgPfp9qQ3mOtR4BUAAADBJPHBByVy1SqHeUX/+Idb6rrVpfCaayR6/nyJ+ukn27y4t9+WklGjpHTUKI+1A4DrcG0Nb9H6Z5pasra6Z+Xdu0vOnDlS0adPUN73tLRtKyU6jR59YEZVlYT99ZcZFaepOM3ouFWranTGqYuOUo/YtMlMMnfugY/UgHuvXrY0lTo6Tl9LA/cwdftFRkaaRwJv8PnAW+7BiLVGi5vC+j7r5wBWpAxAIKPAKwAAAIJB9OefS/wrrzjMK09LO1DXzZM3EMPCJHfmTGk1cqRDOrDkW2+VjKOPFguppgC/xLU1PKqqSmJffVWSHnxQQkpLaywuHDtW8h580KkUykFz3zMkRCo7dTJTyZgxB+ZZLBK+ZcvfKSr1cc0aCSkpce4jdVusWWMmeest2yhDHQlnAnEakNNgnGbnCwtz51+HIOSxwFtcXJzs379fNm7c2KT3W98X686c7vBLpAxAIKPAKwAAAAJd2PbtNeq6VVnrusXFebw9etMv7/77HdoUlpkpSf/5j+S88IJnA4EAXIJra3hKSE6OJN98s0M9MitLfLzsf/RRKT7nHKc/L6jve4aGmvSROhWfd96BeVp7beNGhzSVEevWmSCbMzQQGvnrr2aynmFY4uKkvF8/k6ayon9/kZNPFunWzX1/F4KCx/4ndurUyeSZ3bdvnznINSbf7JIlS8z7VOfOnd3YSvgjUgYg0FkLvOpvqKYNsNbTo8ArAAAAAqKu23XXSWh+vsPs/Q89ZGqueUvR2LESPW+eSTtpFfPVV1Ly/vtSfP75XmsXgOZfW69evdpcW2t2La6t4UqRP/0kKRMmSNju3TWW6eiqnNmzpbJLl0Z9Jvc9q4mIMOk5TYrOiy46MK+kxATfTK24g8G48E2bJMRiceojdYR71LJlZrLp0EGipk6VYg3CAb4ceDvhhBPMTWP1wgsvSGhoqJx00kkNvu+7774z69t/jr/LyMiQr776SlauXGmKNOpBvm3btjJ48GAZPXq0REVFNfmzNag5e/Zsp9YdP368TxbcbApSBiBYeudprm5r4C3gT6YAAAAQ8BIfesjUcrFXdO65JvDlVSEhkvv449JqxAgJy8qyzU66+24pO+44qezY0avNA9D0a+thw4bJ2LFjTeBN78tRwwnNVlkp8U8/LQlPPllrsKfg2msl7/bbRSIjm/Tx3PdsQHS0lPfvb6aig7NCCgslYvVqhzSV4du2Of+ZO3dK8nXXSdn8+VLJ6Df4cuBNbxbPnz/f/EjoTeNnn31W5s2bZ4JvPXv2lJYtW5qAU2lpqWRmZpoo/v/+9z+H1JTdu3c3n+PPfvnlF5k1a5YUFxfb5unfvHnzZjN9++23MmXKFBOIg/NIGYBgofuyX+bqBgAAAKqJ/vJLiX/5ZYd55d27mzRcvpDO0dKqleyfNk1Sr77aNi+0oECSJ0+WrPfeMymwAPjvtXVkZKR5JPCG5gjdvVtSJk6UqB9/rLGsMjVVcp96SkqHD2/Wd3Dfs/E0VXXZoEFmsgrJzT0QhNNRcX/8YYJy4bt21fkZWksu+aabJGvuXGrAwXcDb/oDcOutt8r9998vuw7u0BqE08kZ7du3l9tuu82vR3joMPaZM2dKWVmZREdHy9lnny19+/Y1r7///nsTdNu9e7c88sgj8uijj0pMTEyzvu/OO+80Q+jrEmg/xqTjAwAAAAA/qut2880+U9etLiWnnipF//ynxL7/vm2e3lyNe/FFKbzmGq+2DQDgXVELFpjOGGE5OTWWlR5/vOQ8/bRYXDS4glSpzVeVnCxlJ51kJqvQjAyHFJUajLMf6R61fLnEvfQSx3w0mkerLSYnJ8vUqVPltddeMxF6Z+kot3/9618S50Mn303x6quvmiBbWFiY3HXXXWakn5UG4Nq1aydvvPGGCb599tlncn4z88br57Vu3VqCCen4AAAAAMAP6rqNGyeheXkOs/c/8IBUHHaY+BptV+QPP0j4zp22eYmPPiqlet3Zq5dX2wYA8ILSUkl8+GGJf/HFGouqwsIk/+abpeD6610+SopUqe4Z3V46cqSZVFhxsbTRum5bt9rWSZw2TUpGjJDK7t292FL4G4/nRYiNjZVx48aZkV9jxowx6SM1OGJPX+t8Xa7raS0yfw+66ci+devWmef6A2kfdLM644wzpEOHDua51oDTwBGal46PoBsAAAAA+JbEqVNNz3J7ReecI0UXXSS+qCoxUXJnzpQqu+vLkNJSSb7hBpGyMq+2DQDgWWFbtkjLs86qNehW0aGDSUtYMGmSW1MT2qdKhWuZUfevvFIj5WTKjTeaWn6AT454qz4a6+KLL7a9LioqkpKSEpOCUYNzgebnn3+2PdfAW21CQ0PNSK233npLCgsLZc2aNXLEEUd4sJUAAAAAALhP9FdfSfxLLznMq+jWzWfqutWl7LjjpPDf/5b455+3zYtcvVoSZsyQ/P/8x6ttAwB4RszcuZI0ZYqEFhbWWFZ86qmSO326SWcIPzdkiMjEiSKzZtlmRa5YIXEvvCCF113n1abBf3hsxJuml9Tp9ddfr3UklwbbUlNTAzLopjZs2GAeo6KipFu3bnWud5hdWg3rewAAAAAA8Hdhf/4pyTfd5DCvKipKsrWuW3y8+Lq8//xHyqtlr4l/5hmJWLHCa20CALhfSGGhqeWWcsMNNYJuehzLffhhyXnhBYJugeSRR6SiSxeHWYmPPSbh6eleaxL8i8dGvH355ZfmsXfv3jVSSwaDHTt2mMe2bduaGm91ad++fY33NNWcOXNk165dkpeXZwKa+t1abHPUqFEmyAkAAAAAgEeUldVd161PH/EL0dGSM2uWtDr9dAk52KE4xGIxN2Iz5s+XqgDtSAwAwSx89WpJHTdOwrdsqbGsPC1NcubM8cn6pGimuDjZP2OGpJ57roQcrKNn0kxPniyZn3zi1lSiCAwei4DFxMRIcXGxSTEZbMrKyiQ/P99WBLM+8fHxZlRcaWmpKZDZHJqq0kq/X6dNmzbJZ599JpdffrmcrIUim8CZdiUnJ9sCjJpC09O0sKiOrNQgbzDkO7bfxt7Y3gh87GNwJ/YvuBv7GNyJfQr+fN3kSQkPPyyRv/3mMK/4nHOk5NJLJdQN12zu+u23HH64FNx8syRMm2abF75tmyQ99JDkabrMIMGx1b3Yvu7F9nWvgNm+VVUS+/LLkvDAAxJSSz3PogsvlPyHHjKdLjz5VwbM9vVRuk31vnJ5eblUDB4sRVdfbVJMWkX++qskPP+8FE6Y4NV2+qvQINpnPRZ4S0lJMYG32tJMBjqtXWelNewaouto4M3+fY3Rpk0bOeaYY6Rnz562QN++fftk2bJl8tNPP5kfjhdeeMEEpEaOHNnozx83bpxTo+30u/UiUkfaecqePXvM37l27Vrzd0ZERJj0nccee6xH2+FNrVu39vh3Wg9Iur2DIdAZ7LyxjyF4sH/B3djH4E71ZbZA8PHl6yaP057hdjetjB49JOa11yQmIcH/fvsfekhkyRKRZctss2Jfe01ix44VOeUUCTYcW92L7etebF/33idq1aqVf94n0s4zV14p8umnNZfpcev//k9iL7xQvD3Omf3X9feVf/jhB4f7yv1GjJBTv/3WYcRjwuOPS8KFF2rNKK+2F77NY4G3Xr16mbSH27dvl2Ac8WblTJpN6zr273OWBtyGDBlS46CWlpYmxx13nKxYsUKmT58ulZWVpubegAEDTC/LQLBq1Sr5+OOPxWKx2Obpj+Tvv/9ulp199tkm1SZch0AnAAAAgHpt2yZy+eWO86KiRN5778DNS3+k1+z//a/IEUeIFBX9PV9v0q5apaluvNk6APCagLhPtHSpyMUXaw2gmssGDhR5+22R7t290TJ44b7yyvXrJXPYMLl861ZbykkpLT1wbvPDDwfOCYBaeGzPGDp0qCxatEj+/PNP2bBhgwnEBYvIyEjbc2dG/FnXsX+fs7SWW32OPvpoOe+88+Tdd981o+oWLlwo5557bqO+Q3tlNsQazNMAX0ZGhngijUv1H0d7Ol+X63DWhtJ9+iP9u6y9XHR0Y13bwZXS09PN/+m6Ap3Dhg0zAV8EBm/sYwge7F9wN/YxeGr/0nNfRr3Bl6+bPK6szNRGiczNdZi9//77pVhvwO7Z47+//fHxEnPPPZJ0++1/z9u9W4qvukr2P/ecBDqOre7F9nUvtq97+P19ospKiXvqKYl/4glTv7O6wnHjJF9/8/V+rRuPXw1h//X8feU/DzlElg0eLIM10Ga1fLnk33uvFE6c6LmGBoBQu/030Hks8Na7d28ZMWKEfPvtt/L000/L3Xff7T89HZrJPr2kM+kjres4k5ayKTS95HvvvWeGfWsPlMYG3hobuPLEAUAP4g19jy7X9TQIHMj073T3NtcDkgZtdR+qqw26PCkpKSADncHOE/sYghf7F9yNfQyAp/jidZOnJU6damqh2CseM0YKL7lE/2C//+3XvyNq3jyJXrTINi/mk0+kZNQoKT77bAkWHFvdi+3rXmxf1/D3+0Shu3dLysSJEvXjjzWWVbZoIbkzZ0rp8OEHZvjQ/sL+67n7yguHDZPDtm6VpN27bfPip0+X4hEjpKJ3bw+0Ev7Go9XsrrzyShk1apRkZmbKbbfdJm+99ZZs27Yt4H8gdORawsEUGg0V2C4oKDAj0ZS7DkR6kIuPjzfPs7Ozxd/pQX3r1q1Oravr1XUSAOdpT6WGtqMu1/UAAAAABJ/oefMk/vnnHeZVdOkiuY89JuKP9X5qExIiudOni6Va+YakO+6Q0F27vNYsAPA0f75PFDV/vrQ6+eRag26lxx8vGfPn/x10Q8Bx9r5yRUSEfDhmjFSF/h1OCSkrk+Qbb9ShnW5uJfyRx0a8XX/99Q5DCjW49Mknn5hJa5rFxcU5lVpRa5fNmjVL/E3Hjh1l3bp1JtdxfSlotA6e/XvcxS8Lm9aTmtOZFJ7262qOaXgm0FlbzUEAAAAAgStsx44DN6LsVEVGSvb//Z9U+WtdtzpY2raV3EcekdRx42zzQvfvl+Sbb5bsN9/UGyBebR8AuJvf3icqLTUjs+NfeqnGoqqwMMm/5RYpmDBBhDTiAa0x95X/bNdO8v79b0n6v/+zzYv84w+Jnz1bCiZNcmMr4Y88dgao+eqtU/URbrpz79+/32GduibNXeuPrDXtNOC4ZcuWOtfT1I/V3+NqeXl5kp+fb56npKSIv9PArU6uXheuC3QCAAAACBJlZZJy3XUm+GRv/333SUXfvhKISsaMkaJzznGYF710qcS+9prX2gQAnuKP94nCtmyRlmPG1Bp0q+jQQTLnzpWCG24g6BYEGntfueDWW6W8Wq3ChBkzJHzdOje1EP6Krlcecswxx9iea6HR2mhAcsmSJea5jgDs06ePW9qyYMEC2/Dvww47TPyd9pLp2rWrU+vqej7Rq8aPEegEAAAAUJfERx+tWdftzDOl6LLLJJDtf+ghqaxWxz7xoYckLD3da20CAE/wt/tEMXPnSqtTTpHI1atrLCs+7TTJ+OYbKR840Cttgx/cV46JMTX/HFJOlpdL8uTJpJyEA4/90j3zzDMSzNLS0uTQQw816SY18DZ06FDp2bOnwzqff/657Ny50zw/9dRTaxyI1qxZI/fff795rsOyJ+hwZzs6GrCwsLDeH4sVK1bIBx98YJ5ras9hw4ZJIOjXr5+kp6fXm09af0h1PbjmgLRp06YG1yXQCQAAAASPqG++kXi79Eu2um6PPx44dd3qUJWcLLkzZkiLCy+0zQstKZGUyZMl8+OP9W6zV9sHAMF+nyiksNDU4Iw9eF/UXlVUlOy/994DnUQC/HiF5t9XLu/fXwrGj5cEu3iHBnLjn3lGCqql2kbw8tiZX6tWrSTYXX755XL33XdLWVmZPPTQQ3LOOeeYUW36+ocffjAj0VS7du3kzDPPbPTnaypODcxpQO/oo4+Wzp07S1JSklm2d+9eWbZsmfz000+2H5FLL71UUlNTJRC0aNHCBDMXL15c64+k/jjqcl0PzUegEwAAAIC9sJ07JaWWum45zz0XcHXd6lJ60klScMUVEv/KK7Z5OvovftYsbsQBCGi+fp8ofPVqU4szvJbyP+U9ekjO7NlSEQBZweC5+8r5N90k0d98IxEbN9rmJcycKSWjRkmFm7LYwb/Q5cqDtFfH5MmTZdasWVJcXCxvv/12jXU06DZlyhSJiYlp8vds3LjRTHWJioqSf/3rXzJy5EgJtFGFWrNu1apVplir5ozWUYO63fXATtDNdQh0AgAAALApLz9Q1y0312G2jh4oD7LOePl33ilRS5dKxObNDrVfSocPl/IjjvBq2wAg6O4TVVVJ3Msvm9S/IWVlNRYXXnih5D3wgFTFxnq2XfDZ+8qrV68295XLy8vrv68cFWVGumutwJDKSjMrpKLCdELK+PxzTTXnnT8EPoPAm4cNGDBApk+fLl9++aWsXLlSsrOzzX/itm3byrHHHiunnHKKCYw1Rbdu3WTixIkm6LZlyxbJycmR/Px8qaysNDXjDjnkEOnbt6+MGDHCNhIuUA/0morTGngj1aF7EOgEAAAAoBKnTZPIlSsd5hWffroU/etfEmyqtPbLU09Jy7PO+vtGXGWlJN9wg2R8/bVIMzrZAkBABS7cLCQ7W1J0VNL8+TWWWeLjJfexx6TkrLM82ib4Nt1HtSzT2LFjzf6blZVV7yjO8iOPPJByctYs27yINWvM6/ybb/ZQq+GrQqrq23uAZtKgn6a5hHuFhoaa4K3as2ePWCwWj36//owQ6Azsbe3tfQyBjf0L7sY+Bk/tX3ruGxYW5u0mwQ/583VT1Pz50uLyyx3mVXTubIJMVYmJQfvbnzB9uhnpZq/gqqvMyIpA4O3tG+h0+7Zp08apG79oPPbfwN9/I5ctk5QJEyRsz54ay8qOPNKklqzs3Fn8Efuvj23f0lJpddppErF+vW1WVXi4ZHzxhVT07evu5vr19g10jHgD0GwaAIqIiPB2MwKanqwyuhAAAAC+JFTruk2eXHtdNy8G3XxB/qRJErVwoUT+/rttXvxLL0nJySdL2YknerVt8P1rP18ZMQQ05z5RZGSkefRo4K2yUuKfesp0fAipJWBSMG6c5N12G2kA4TrWlJNnnOGYcnLyZMn48kv2tSDmtcDbb7/9Zm4ib9u2zaRD1JpnzvwQ6w+21kgDgGChBYqr50nX4NumTZvMMk2vqikdAAAAAI8pL5fU8eNr1nW75x4pP/xwrzXLZ0RESO7TT0ur0aMlpKTENltrv+z79lupCtDyD2gerv2ApgvdtUtSbrhBon78scayyhYtTBrg0mHDvNI2BDY97ymYOFESZs60zYtYt868ztdAL4KSxwNvWn9szpw5smvXLk9/NQD4ZW/HuooTK52vyzWPOr0fAQAA4CkJjz0mkb/84jCv+LTTpKha2slgVpGWJnl33CFJ99xjmxe2e7ck3XWX5NKhGNVw7Qc0XdQ335iODdU7g6jSE06QnKefFkubNl5pG4JnpHv0vHkm4GYV/8wzUnLKKXRIClKhnvyyP/74Q+677z6CbnCr0D17JGrBAjO8HPB3OjK4odHAulzXAwAAADwh6ttvJWH2bId5FZ06Se4TT2iaGq+1yxcVXnGFuelrL/bDDyX688+91ib4Jq79gCYoLZXEe+6RFldcUSPoVhUWJnm33y5Zb71F0A3up6m2Z8409d2sNPVksqbkLi31atMQ4IG3kpISeeqpp0zRaHXyySfL1KlT5aSTTrKt88wzz8jjjz8u//nPf+TMM8+UpIOpF6Kjo2XChAlmuU5AfeLefFNa/Otf0mbQIEl44gkJ27nT200CmkQvqjSvvzN0PQpuAwAAwBN13ZInTXKYVxURQV23uoSGSs6TT4ql2rZJuv12Cd2712vNgm/h2g9ovLDNm6XlmDGmfmZ1FR07SubcuSb9n4SFeaV9CD4VfftKwQ03OMyL2LDB1BxE8PFY4G3hwoVSUFBgnmtQ7eqrrzZ5qWNiYmzrtGrVSjp16iRHHXWUXHLJJSbINnLkSBO0e+6552T79u1mHaBOlZUS+/bbthQeCU8+Ka0HDZLUSy+V6K+/NnUIAH+hufx1cvW6AAAAQJOUl0vKhAkSlpPjMDtP67odcYTXmuXrLB06yP6HHnKYp9sw+ZZbNOLitXbBd3DtBzROzAcfSKtTTpHI1atrLNO0xxnz5kn5wIFeaRuCW/7EiVLep4/DvPhnn5WI337zWpsQ4IG333//3TxGRkbKeeed59R7dN1///vfMnz4cDNSbvbs2ZJbS65ewCpq0SITcLMXUlUl0QsXSupVV0mbY46RhEcflbDt273WRsBZ4eHhZnL1ugAAAEBTJEyfLlHLl9e4wanpFFG/4nPPleLTT3eYp9epsW++6bU2wXdw7Qc4J6SgQJJvuEFSJk2S0KIih2VVUVGS+8gjkvP881KVnOy1NiLIacrJGTNMNgCrEItFkm+8UVMCerVpCNDA259//mkee/ToYVJH1qauofKXXXaZREVFSWFhoSxatMit7YSfi4iQsnp6Wobt2ycJs2ZJm+OOkxZjx0r0p5+KlJV5tImAs0JCQqRr165Oravr6foAAACAO0QtXCgJ1Uo/VBxyiOROn05dN2eEhEjuo49KZevWDrMT779fwrZt81qz4Bu49gMaFrFqlRnlFjt3bo1l5T16SMYXX0jRZZdxTILXVfTpI/nV0nJHbNxoMrMheHgs8Jafn28eW1c7yQwN/bsJZXUEQDQd5WGHHWaeL6/Wuw6wVzpkiGR++aXsmzdPCi+7TCwJCXWuG/W//0nquHHSZsAASXzwQZMbGvA1/fr1a/CiSpfregAAAIA7hO7aZUYY1FrX7WBtdjSsKjX1QKDSjo7Y0JEbWjYBwY1rP6AOVVUS9+KLpp5beC21EAsvusjcC6w49FCvNA+oTcH110tZtd/r+DlzJGLlSq+1CQEaeLOOZqs+HN6+xltOtTzx9lJSUsxjZmam29qIwKG5dDMfeED2rFhhClmXHX10neuGZWVJ/HPPSZuTTpIW550nMR9+yNBf+IwWLVrI0KFD67wA0/m6XNcDAAAAXK6iova6bnfdJeVHHum1Zvmr0hEjpPDiix3mRf7yi7kZh+DGtR8Cid4H1gEWdWU3c1ZodrakXnGFJN17r4RUG7Chne2zZ8+W/Y8/LlWxsc1sMeBiERGSS8rJoOaxpNDx8fGmPltJtR0r2S7n7s6dO6Vt27a1vj87O9s8arpJoC5ZWVmyatUq2bp1qyk2rIFeTcPQ75VXpE1GhsS+9ZYZkh5aR63AqB9/NFPS3XdL0T/+IUUXXywVvXp5/O8A7KWlpZnOB7Xu2/36ceEFAAAAt0l4/HGJ+vlnh3nFp5wihVdd5bU2+bu8e++VqO+/l3C7FJNaP69k6FCp6NvXq22Db1z7rV692lz7lZeXc+0Hv7sv56r9N/LHHyXl+uslbM+eGsvK+veXnGeflcrOnV3YesC1dBRm/k03SeK0abZ5Eenpkjh9uunAhMDmscBb+/btTeAtIyPDYX5nux/IFStWyNG1jEwqKiqS9PR08zwuLs4DrYU/0n1k8eLFDr1pNECxadMms0x7hqU98IDkTZkiMV99ZYpYRy1bVutnaWAu/qWXzFQ2YIAZtl4yZoxU2Y3QBLzR+3HIkCG2wBt5/QEAAOBOUYsX117X7YknqKHTDFVxcZIzc6a0PPdc0/tdhZSXm5STWqNIoqO93UR4+dpv2LBhMnbsWBO40EBGc0cNAT5zXy4treEPqqiQhKeekviZM22/kfYKxo2TvNtuE4mMdPWfALhcwfjxEv311xL5+++2eXHPPWc6MZUPGODVtiFAUk12797dPO7YscNhfo8ePSThYB2uJUuWyNq1ax2W64/1Sy+9JAUFBea1Uz/QCDp6Ilr94G5P5+tyXU9iYqT43HMla+5c2btkiRRcd51UpqbW+dma9iPlppukTf/+knTHHRK+erUb/xKgfhpsi4iIIOgGAAAAtwrdvVuSJ06sWddtzhypsstcg6YpHzjQ3IyzF7F+vSQ+/rjX2gTfotd8kZGRXPsh8O7LNVBTtMUFF0jCk0/WCLpVtmghWW++eWCkEEE3+Ivw8AMpJ+322ZCqKknRlJPFxV5tGgIk8GYt/qoBtC1bttjmh4WFyciRI229IB588EGZNm2avP322/Lqq6/K5MmT5bvvvrOtb10XsKcp+BrqAabLdT17lWlpknf33bL3l18ke84cKT3xxDrfH5qfL3GvvSatR4+WlqedZkbMhRwMCAMAAABAwNV1O1jywSrvzjulvH9/rzUr0OTffLOUH3aYw7y4//s/iawjMwsABNp9OXtR33wjrU8+udbsVKUnnCAZ8+dL6dChLmkv4ElaxkiP+fbCt2yRxMce81qbEECBt759+5o6b2rp0qUOy84991xbykmLxSIrV66Ujz/+WL766ivZY5fHV1OsHXXUUZ5qMvyEHrg1d7QzdL1aTwSiokwqyax33pG9338v+ddfL5WtW9f5OTo8OPm22w6Mgrv1Von47TdtSHP+DAAAAADwCQlPPCFRP/3kMK949GgpvPpqr7UpIEVGSs6sWTV6wSdPniwh+flebRoAeOy+XGmpJN5zj7S44gpT+sXhs8PCJO/22yXr7bfF0qaNK5sNeJRmXNPahPbiXnhBIpcv91qbECCBNx3Z9thjj8mMGTPkjDPOcFimQ+fvvfdeOe6442p9ry7/xz/+Idddd52HWgt/oiMldXLVupVdukj+lCmy9+efJfvFF6Vk+HCpqiO1Q2hRkcS99Za0Ov10aTVqlMS++qqE5OU16e8AAAAAAF+o6xY/a5bDvIqOHanr5iYVvXtL3n/+4zAv/K+/JPG++7zWJgDw1H25sM2bpeWYMRL/0ks11+3YUTI//FAKNO1xqMduYQPuTTkZFVWzsw0pJwNSuKcLxNYlLi5OJk2aJJdeeqmsXr1acnJyTB7rNm3amNFyuhyoTXh4uJmcOchb13VKRISUnHqqmcJ27JDYd94xU9ju3bWvvnatJN95pyQ++KCUnHmmFF18sZRpkUwuTgEAAAD4gdA9eyT5hhvMjSCrqvDwA3XdUlK82rZAVvjvf0v0/PkO6dXi3nlHSkeNkpLRo73aNgBw1325mPffl6Q77jCd2qsrPu00yZ0+XaqSktzSZsAbKnr0kLxbb5Wkhx6yzQvftk0SHn1U8u6/36ttg+v5XHeB1NRUOemkk+Sss86SMWPGyKBBgwi6oV4aoO3atatT6+p6TSlMXNmxo+Tfcovs/eknyXrtNSkeNcoMd69NaEmJxL7/vrQ8+2xpNXy4GTYcUq02AgAAAAD4XF2366+XsKwsh9l5d9wh5ZR8cK+wMMmdOVMs1e59aFmD0MxMrzULANxxXy60sFCSJ06UlMmTawTdqqKjJffRRyXn+ecJuiEgFV5zjZRVO6+Ke+kliayW4hv+z+cCb0BT9OvXr8GAmi7X9ZolLExKR46UnFdeMako8267zQx9r0vExo2SdN990nbAAEm+/nqJ/OEHasEBAAAA8DkJTz4pUT/+6DCv5OSTzQ0iuF/lIYfI/gcecJinQdCk227jGhJAwNyXGxgWJq1Gj5bYDz+ssby8Rw/J+PxzKbr0UrJHIXCFhUmOppyMjnZMOXnTTRJSy+hP+C8CbwgImsZ06NChdR7kdb4ury/daWNZ2raVgkmTZN+PP0rWW2+ZYfCahqXW7y8tldiPPpKW//yntD7pJImbM4eeiwAAAAB8QtTSpRL/9NMO8yo6dDA3hrj56TnFF1xgsqvYi5k3T2Lee89rbQIAl9yXE5GLMjMl7dJLTWq96govvlgyv/pKKg491AOtBbyrMi3NpJy0Z1JOPvKI19oE1yPwhoCRlpYm55xzjvTo0cOWL1of9bXO1+VuERoqpUOGSM4LL8jeX36RvDvvlIouXepcPXzLFpPLt82AAZJy7bXmIlcsFve0DQAAAAAaqut2/fU167rNnk1dN08LCZH9jz8uldU6jCbdc4+E/fWX15oFAI25L9ezZ0+JiIiw3Zfr27atTF64UNJmzZKQ8nKH91gSEiR7zhzZ/9hjUhUT46WWA96p71o2YIDDvPiXX5bIatkH4L9Cqqpcl7Pggw8+EE8477zzPPI9aL7KykrZu3evx79Xd2st6qoH+KbUdGs2i8X8UMa+9ZbEfPmlhJSV1bt6RadOUnThhVJ0wQViadOm0V8XGhoqbdu2Nc/37NkjFgJ5cDH2MbgT+xfcjX0Mntq/9Nw3rI46wIAvXjdJZaW0uOCCGikm9999txRed534M3/+7Y+eN09Sr7zSYV7p4MGSpSPfQn2j/7Q/b19/wPZ1L7av+7dvmzZtpLy8XPI/+8x07gjbs6fGemX9+5tOHpWdOnmlnf6K/Tdwtm/Y5s3SetQoCSkpcbhHnLFggVRVq/saiNs30NWeF6+J3n//ffEEAm9oiAbbrL1rvCI0VMqOP95MednZEvPBByYIF7FpU62rh//5pyROmyYJ06dLyciRUnTxxVI6dKjJ+wsAwUA7TOiFmQv7AwEAgAYkzJhRs67byJFSeO21Egj89fyiZPRo0ykz9t13bfP03ynu+ef9PiAKIDiEVFZK5NSpkvrggw4jqq3yx4+XfK1h6c17d4CXVXbvLnm33y5J993neI/44Ydl/9SpXm0bfCzwBqAmS2qqKUiuQ4gjly+X2DfflJjPP3fozWB/YmJy+M+bJxXt20vx2LFSOHasWDp08ErbAcDdsrKyZPXq1bJ161ZzY0xHKnft2tUU53ZlXU4AAOAoUuu6zZzpME+vQQKhrlsgnF/sv/9+ifz+ewnfscM2TztragfNit69vdo2AKhLSGGhRP76q8gzz4j873+mtpu9ypYtJfeppw50NgcghVddJdFffilRP/9smxf36qtSfOqpUnbCCV5tG3wo1aQzI96Kiorkm2++MWkAVWpqqskB3LJlS4mKipLS0lJzkrxp0ybJzs426+hJ8ujRoyXmYK7ff/7zn65qMgI1ZYqPC8nNlZiPPpK4N9+UiHXr6l23SmvIDR1qRsGVjBhRa28ghpnD3djH4A7p6emyePHiWnuh68hlLc7ttvqcCCr8hsGdSDUJf7xuCt27V1qNGiVhmZkOdd0y586V8mr1RvxNIJ1faPmCFv/8p8NokfI+fSTj889FIiO92jaOre7F9nUvtq/rhO7bZzqZR/70k3mMWLPGdCqvTemJJ0rO00+LpXVrj7czkLD/Bt72Ddu6VVqNHCmh9iknO3aUjG+/lar4eAkkoaSabJqGAmK7du2SRx55xATdOnXqJJdeeqkcfvjhda6/atUqef311+XPP/+U5cuXy5QpU6R9+/aubDLgFVXJyVJ0xRVSdPnlEvHbbwdGwX3yiYQWFdVYN8RikeiFC81U2aaNFJ1/vhRddBE5sAH4Ne1kU9dNMaXzdXlKSorf9EwHAMAvVFZKitbbsQu6KU115O9Bt0A7vygbPNhkT4n/v/+zzdOb2glPPin5t9/u1bYBCEJVVaYmVZQG2n7+2Uzh27Y1/LawMMn/z3+kYNw4n6lTCfiSyq5dJf+OOyTpnnts83TEe+JDD8n+Rx/1atvQdB77tSsrK5MnnnhC9u3bJ3379pWpU6fWG3RTmgbi4YcfNuvr+/T9OiIOCBghIVLev7/snz5d9q5cKbnTpklZPf8vwvbulYRZs6TN4MGSeuGFEv3ZZ/qfy6NNBgBX0M41DQ261+W6HgAAcJ2EmTMl6ocfHOZpZo1AqOsWiOcXebfdJuXVUkvGP/usRCxf7rU2AQgS5eUSsXKlxD33nKRcdZW0OfxwaTNkiCTfcovEvveeU0G3yo4dJfPDD6VgwgSCbkA9Cq+4QkqPPdZhXtx//2tSg8M/eewXT3uV7dixw6SNnDhxokQ6mRYhIiLCrK/v0/cvWrTI7W0FvKEqIUGKLrlEMr/6SjK+/loKL71ULPUMJ45eulRSr7tO2gwYIPEPPiiycaNH2wsATaU3vLTmijN0PRdmxQYAIKhFfvedxGsNNzuV7dpJjtZ68/MbogF7fhEdLTlPPSVVdiUHNCtKyuTJppYSALhKSH6+RC1ZIgmPP27S3Lbt3VtanXmmJD34oMR8/bWEHSwJ1BBNXSyDBonce69kLljg96OpAY8IDZXcJ58US2ysw2wNdOv/Tfgfj51Zf//99+axT58+kpyc3Kj36vo66k39+OOPbmkf4EvK+/UzQ4n3/vqr5Dz5pJQddVSd64ZlZUn87NkivXqJDB0q0R9+KGKXExgAfI2mnLbWenXlugAAoP46PJpi0r5emKb/yp4zR6pSU8XfBfL5RUXfvpJ/000O83SkSaJ2wASAJgrds0eiP/1UEu++W1qOHi1tDztMWlx0kW1ktH29qfpY4uKkZMgQybvlFsl8/33Zu2GDyLJlIvfdJ1VJSW7/O4BAUdm5s+TdeafDvPCdOzne+ymX1nirjxYjVC1btmzS+635162fAwSDqthYKb7gAjOFr1snsW+/LbEffCCh+/fX/oYlSyR5yRJJ1Bpy550nRRdfLBU9e3q62QBQLx3FrpMzN7ys6wIAABfUdcvIcJitdcLKBw6UQBDo5xcF48dL9IIFErlihUMKqpJRo6R0+HCvtg2AH6iqkvD0dFtttsjlyyV8+/YmfVRlmzZSdswxZio95hip0HS4dr+poX4+ghrwpqLLLpOYL75wSAse9+abUnL66VI6ZIhX24bG8diZZkFBgXnMb+LQSOv7rJ8DBJuKQw+VvAcekLwpUyTmyy8l9q23JEp7ENUiNDdX4l980UxlAwZI4cUXS8mZZ0pVTIzH2w0A1YWEhEjXrl1l06ZNDa6r6+n6AACg6eKfflqiDmahsSoZPlwKrrtOAkXAn1+Eh5uUk61GjZLQoiLb7OSbb5Z9334bEKMWAbhQWZlE/PGHCbBZA21hOTlN+qjyHj0OBNoGDpSyQYOk8pBD9EfX5U0GcDDl5BNPSKsRI2oe7xculKrERK82Dz4YeNN0kZmZmbJmzRop1+KcdvnJG6Lr6/tUEkOUEexiYqT4H/8wk/ZW0gCcFrUNreMEKvKXX8xkufdeKT7nHBOEq+jTx+PNBgB7/fr1k/T09Hrrq+gNMV0PAAA0r65bwhNPOMyrbNtWcp96yu/rugXb+UVl166Sd889knz77bZ5Yfv2SfKUKZLz3HPcCAeCWEhenhkRaw2yRf76q4Q0oQyJ1pMsP/xw22g2rc9mIbAPeFRlp06Sd/fd5vhuFbZ7tyQ+8IDsnz7dq22D8zx2lt1L60+JSGFhobz55puNeq+ur++z/xwAIhVpaebCa9+vv4q8847IiBF1rhualydxr70mrUeNkpanny6xb74pIYwgBeAlmkJ66NChdfY21/m63JpqGgAANF5oRoakTJxYo65bzpw5AXkjNRjOL4ouucSMVrQX8/nnEvPxx15rEwDPC921S6I/+USS7rxTWp188oH6bJdcIgk6wvnHH50OulkSEqRk2DDJ+89/JHPuXNm9bp1kfvqp5N11l5SOGhWQxwrAHxRdeqmUnnCCw7y4t9+WqIULvdYm+OiIt+HDh8v3B1NbfPXVV1JSUiKXXHKJxMfH1/keDba98cYbstBuhxo5cqRH2gv4lagokQsuMFPGsmUS/eabEvvuuzVqOFhF/vabmRLvv1+Kzz5bii66SMqPOIIekgA8Ki0tTVJSUmT16tWydetWM8Jd661o+iftie7PN8UAAPCJum4TJ5oRUfbyb7vNjGQIVAF/fhESIrnTp0vr4cNNiQErvfleOmiQWNq392rzALiBxSLhmzb9XZ/t558lfMeOJn2UjnjW3wpr6khTny0szOVNBuCC472mnNTj/cEBSSr51lsPpJwkK6DPC6mqLweDi82ZM0cWL15sex0ZGSn9+/eXnj17SsuWLSUqKkpKS0tNSkrNy/7rr7+a11ZDhgyR8ePHe6q5cIHKykrZu3evt5sR8LRwbdu2bc3zPXv2iMVi0Rytpvi2jmyLWrzYoZdrbcr79JHCiy6S4nPPJV8wnNvHABfuX23atDE3xrKysupNDwU0Bb9h8NT+pee+Ydy8go9cN8XPmCGJ1dIR6aiG7NdfD7gUk8F4fhH92WeSWq1GX+mJJ0rWW2955N+XY6t7sX2DfPuWlkqk1mezBtp++cUh0N4Y5b162WqzabCtskMHt3e69vnt6+fYvsG1fWPfeEOS//Mfh3lF558vuTNmiL9v30DnsRFv6tprr5WysjL54YcfzGt9/tNPP5mpIYMHD5brAqjwM+B2ERFScuqpZgrbsUNi335bYt95R8L27Kl99TVrJPnOOyXxwQelZMwYE4TTXN7OnJDpRWxFRYXpSep3RcoB+AT97dAOOfoYaDfGAADwtMgffpCEJ58MirpuwXp+UXLmmVL0zTcS++GHtnlR//ufxL36qhReeaVX2wb4A/1N0MC8L/w2hOzfb4JrtkDb779LiN1ABGdVRUZK2RFH2EazlQ0YIFUpKW5pMwDPKLr4Yon+4guJXrrUNi/2vfek+PTTpZTMgD7NoyPerJYuXSrvvPOO6XXWEE0DccEFF5jRbvA/jHjzsd4YFRUStWiRxOkouG+/lZAGem1ozyhNQ1n0j3/UerKm/4dXrVplUrhYA28Bk8IFPt3jB4GF/Qvuxj4Gd2LEG3ztuknrurUaNcohxaTWdct6/30z4iFYBMNvv96s15ST9p0rq6KjJWPePFMP3J2CYft6E9vXffQ+hrdT0Ybt3Pl3kG35cglfv77BLEW1sSQlmeCaCbTpdPjhItHR4m3sv+7F9g2+7au/GSblZEGBbV5lmzYHUk4mJ4s/CQ2iEW9eCbwp/drff//dHOy2bdsmeXl5pu5bdHS0JCYmSpcuXaRv375y+OGHm38Q+CcCb757UAjdvdvUgdORcA3lBq+KijI9KTQIV3bssWYUXHp6ukkdW9tPiLVoudZXQGDwxRMPBA72L7gb+xjcicAbfOq6yWKRVO0ZbdcrWuXdfrsUTJwowSRYfvsjly6Vlhde6DBPR7xkfvKJyYLiLsGyfb2F7eseXrmPofXZNmyQyJ9+MkE2U59t164mfVRFhw5/j2Y75hip6NXLJ0cxs/+6F9s3OLev3r9NvuUWh3lF5513IJuBHwkNosCbR1NNVj+gHXnkkWYC4HmWdu2kYPJkcwGuKUm0Flz0N99ISEVFjXU1xYGmMNGpols3yTj7bPk5PFyqYmNr/Ww9idWTWS1qzsg3AAAAwDPiZ82qEXQrGTpUCiZM8Fqb4F5lJ50kBVdeKfEvv2ybp2nqdF8ouOkmr7YN8LWRbnUF3Vx6H6OkxPwfdKjPlpfX6I+pCgmRit69/x7NNnDggfpsAIJS0dixB1JOLlpkmxf7wQcHUk6OGuXVtsHHAm8AfERYmJQOHWomTUujeYJj33pLwrdtq3X18C1bpN2TT8qNoaGyvndvWXn00bKla9cavaz0pFXTUGqPMQAAAADuFfnjj5IwfboEe123YJR/xx0StWSJRGzebJuXMHOmlA4fLuV0dgYMvT/RUNKvptzHCMnJsdVni/r5Z4n44w8JKStrdPs001DZkUfaRrOVHX2036WQA+BGISGS+9hj0nrECIdgfvJ//iP7Bg6knqMPIvAGwMbSqpXpDVswbpwpyK4BuJivvqr1pDHMYpE+a9eaKSc5WXZ26CAV4eFSGR4uFWFh5nnV4sUS/9tvps6AREaaE8mqg49i99w8WtexX35wmYSHmwMM4EAvmsrKzIhM3UdN8emSEttzs9/qa/vl+mi/Ti3zxG598xnWizPrPnjwUXsg1ja/znm1zW/osxr6nOZ8ZgPvr+07XPaZ1T5PR8FLXJypRxAbHy8VrVuLpW1bc7OwsnVrn6hTAACALwvNzJSUCRMcajhXhYZKzrPPiqVlS6+2De5XFRMjuU8/LS3HjJGQykozTx+Tb7hBMufNM8uBYKYBNa3p5gxdb8iQIQeuUWp+kITt2OFQny1iw4YmtcmSnGwLspUOHCjlWp9N74UAQB0s7dvL/vvukxS7Ee1a0zfpnnskd9Ysr7YNNRF4A1BTaKiUnXCCmfKysyXm/fdNEC4iPb3W1VNyc81Uq8WLm90cvWlgAnB2wTgTnDsYsDPLqgXxbOtb51vXryf4pzf3q+oI/lnfT2/hgwGv8vK6g1sHA1r1zav3dfV5BwNj1YNs5nMRcBLruCg1Qbg2bQ4E5Nq0qflcA3QapAcAINhYLCbAElatRlz+LbccqM+MoKAj2/InT5bEJ56wzdMRcAkPPyx5Dz7o1bYB3lZRUWGmxqwboTUSKyslfN06E2CLOhhsC9uzp2ltOOSQv0ezaX22Hj24vwCg0YrPP19iPv9cohcutM3T0kAlp58uJaec4tW2wZHX7lBpYcKdO3dKRkaGFBUVmWLSztKeJwA8w5KaKoXXXiuF11xjTjZj33hDIj75RCKcPGl1Be25awIvOnlZVUTE34E6a2DO+touyGcL9NkH/pwJBFpf248CrPZ9ZrSQM4GrhkZ2WZfVNs/6nmqjxfR1G12/gRQdgCuF5uaaKWL9+jrX0dFzOmrXBOEOBuM0WFc9UKe/aVzgAgACSfwzz0j0kiUO80q07tfEiV5rE7xD/82jFyww9aWstPZbycknm1pwQLAKDw83U0PBt/Dycum0Z48kz54tUcuXH6jPlp/ftPpshx0mpQdrs+mkI1UAwGUpJ4cPd0g5mXT77eY3p0rveSA4A28aaJs7d678+OOPUtKEm+g61JvAG+AFISG2nlnfjx4t8R99JEetWCFt9u2TYBKiI73KyyWYkfQTvkiDwZpiQSdZtarO9ao0Ja59Kku7QJ39vKrERFLcomFVVRKSn28LDuukdT7sX+ukvaWrEhLEkpDw92Niolji4w882s+Pjzf1VwHAGZHLlknC4487zNPjmEk3REeT4BMRYVJOtho9+kDHxYM0JdW+b7+VqqQkrzYP8Ba9l9i1a1fZtGmTw/yYwkLp9Ndf0unPP+WQP/+U9rt2mbIajaWdZsv693esz6bXEwDgBpZ27WT/Aw9IyuTJtnlhGRmSdPfdkvvss15tG7wUeFu5cqXM1AK/zUgP1lAhVH+gwcevvvrKbI+srCzT66Zt27YyePBgGT16tES5KKfzr7/+KgsWLJDNmzdLXl6eJCYmSvfu3WXkyJHSv39/l3wHglPvY4+Vj3bvlp+POUY67Nwpnbdtk6iyMgmvqJCwigoJ13QMFRXSuV07idKbknYjrRzSBVZPHxjkAS24jjXdaI3RhdVHJNq/rj4iUR81vYjetLIee6o/1jXP7rVtdGBjPqOxn+nMZ9TxWfbzG2xrQ59ZyzJnPlMvhGO19khenpRt2yahe/YcmNwwyjVEf6N27RLRqR6W6GjbaDkTmKsj1WVVbKzL2wgvqKyUkP37awTMTCDN+rxaQM3M37/fVkvHlSxxcTUDdfqYmGgCcw6POt8awLML5JnaiASPgYAWmpVFXTfUUJGWJnl33mluvlmF7d4tSXfdRf0XBLV+/fpJenq6VFVWylG//iqDli2T1hkZTfqsypQUW8dkDbaV9+t3oDQFAHhI8XnnHUg5uWCBbV7sxx8fSDl52mlebRs8HHjLzMyUGTNmSJneeD8oOTlZOnfuLPHx8Sb4FAx++eUXmTVrlhQXF9vmaSBSg2M6ffvttzJlyhQTiGtOGs/nn39eFtrlelXZ2dlmWr58uQwfPlyuueYaCaUXJJqgRYsWMnToUFm8eLHs7NjRTPb0JrouL0pLk6LGfLDeNLCv4VU9XWL1ul+1pE+0BffqSp9o/Qz7FIzVv1MfAyDI7w0ONfKsQSy7IFj1eQ7BrmqpNeuaVz3FZ/V52tOXm83+RY9FsQePe9l79pjjmHUkkdarCd292zya5/q4Z8+B5/q4b59bgvYa9Avdtk3Ct22rdz0NfDSU3lJH2HEh7iHl5SYYVn3kWdj+/VqwQ0+GJGnXrhqj0jTo5ku/+6GFhSKFhU2uIWId3WkdWecQrKs+2q62UXd2j4y+A3y8rlu134n8m2+WssGDvdYs+IbCyy+X6G++kaj//c+x/suoUVJy5plebRvgzfsYp/TqJa2mTJGuW7c26r0VnTv/PZpt0CCp6N6da04A3k85OW2atB4x4kCWFbuUk/o7ZWnRwqvNgwcDb59++qkt6Jaamir//ve/5aijjpJgsnXrVjPiT7dDdHS0nH322dK3b1/z+vvvvzdBt927d8sjjzwijz76qMRo7/8meOedd2xBNx1KP2bMGGnTpo3s3bvX/DtoO3S5joC76KKLXPxXIlikpaVJSkqKrFq1yuxTmitdA+i6z2lPMj2pbTQNBMfESJVO4kV681VTSloDd/bBvvqCgU0M/DmsUz246GQtvaqwMMeRWtWDUgdrxjnUpqteR66eeSExMZLarp0ZQZGZny+VGtyyH1V28HNJaQSXCQkxwYAKTdGihcfrYrEcGIl0MBhnC8hZg3PWeRkZDiMCXEVzqpu86tXS1lRXmZpaa3pL+0CdGZ1AkOMADXw2ZuSZdSooaPCjm3Z25X/0+BGWkyOiUzNYYmP/DtBVH3VX26i8ao8m8MfoO8Dl4mfPlujFix3mUdcNNjry8YknpPXIkQ71X5Jvv132HXOMOQ8BgorFIrGvvy4Dpk6V0KL6uwfryOHyPn1so9lMfbZmdI4HAHfR36b9Dz4oKXbnf2FZWZJ0552S89xzXm0bPBh405vzKiwsTO68807pWG2ETDB49dVXTZBNt8Fdd90lPXv2tC3TAFy7du3kjTfeMMG3zz77TM4///xGf8euXbvMe5Wmlbz//vsl8mAvew2UDBgwQO677z4zuk7X05FvzRldh+BmHfmmdRetgTcd7eb39G+wjtzSWjveTn9mH+zT5xZLjfSI4uZRw2Z07MHfigrriCTAF4SGmp5cOlX06VP3ehUVJvjmEJw7OHou1H5eM4MUdQnLzjZTxNq19V7kW1q3dhwtZw3O2QXqqlJS/COIoaMWi4rqrHtWI2h2MKhm5rkhzai7mRFmKSliSU42U9XBR530N1pHcJp6cPaPGrgtKDiwzIdG3NkzN6eKiiSsmdum1hSZDQTtHEbn6ei7IMmQATQk8qefJOGxxxzm6ehqre1FBw5YWTp0kP1TpzrcjNNjbfItt0j266/7x7kE4AJh27dL8s03S9SPP9Zdn+2oo/5OHan12bx9HwAAnFR8zjkS/fnnEjNvnm1ezGefSbGmnGSUe/CkmlR9+vQJyqCb5pFet26deT5s2DCHoJvVGWecIYsWLZKdO3eaGnDnnntuo1Nwfvnll1J5sNbIFVdcYQu6WWn9OJ2vgT9d7/PPP5err766WX8boMG2CB0BBdfTkWw6+tXbowABN9MaruXl5e6r5apBkXbtzFRvYsqSElOU2ATk7EfN2ae31EcnRlY1lo7IM9/TQHpBDbY3mN6yTZsDNwxccVPNYjkQKKoeMKslmFY9kOaPtTu1U4N9AM0WSKtlnv18U++vlu2t+3SDnVN0GxcVHQjE1Rags3/My5OQggLHR52vATwfDVjq6DvrvtHs0Xf1ja47+NykgD3kECk7/niX/Q2ArwjNzpaU8eMd6kuaum7PPCOWVq282jb46M24efNMDRir6IULJfaNN6To0ku92jb4wPlxMIxye+01SdRRbnblXmw6dRJ59lnZe8QRYqHTAgB/FRIi+x99VKJ++skx5eQdd5j049T9DYLAm95s0NFerYL0YuDnn3+2PdfAW10jSnTk0FtvvSWFhYWyZs0aOeKII5z+Dj0Z0/ptqkOHDrUG95TOb9++vRkdpzXnrrrqqsAYpQQA8DtZWVmyevVqk7JWbyw0O2Vtc0VHmxv2OtXHBDwOjpSrK72lvjapZF1MR76G//WXiE4NBClqHTWnwblWrSSkuLjuoNnBoJqZp/XP/HCUqyUu7u+RZykpEqWjdlNTpUADl9VGpNlP2tHBVfu20+mYQ0NNoNSMBmvOl5aVHQjAVQ/g1RWsqyO45/Oj7/bubXBdTbmXTeANfkSv/7R+cr3HP63rNmlSzbpuN91EoBl113955BGJXL7c4bcz8f77pfSEE6Sya1evNg9+cn7sh8K2bTswym3ZslqXa+A59plnRDStvf6m+uG5LgBYaeYcM8p9wgTbPM24kzRliuQ8/zyj3AM98NayZUv5888/pbi2XiZBYMOGDbYRZ926datzvcMOO8zhPY0JvO3bt09yDqbIOvTQQ+tdV79HA2/Z2dmSkZEhrVu3dvp7ACBYODVSBc0aDa43Ge178er23rRpk1mmqWw1TbIv0gBJpU5aWL3OlapM4KpGesvqqS737XMYueDKIEXoli0SvmWL+DNLUlLNUWb1jDwzU1KSSRls37nJmlq7wAPpcr22b0dGiiU11QQYm7xH2Y++swbxagvm1TcaT197efQdKaLgjxr6jYifM8eMVrKnwZOCG27wYCvhb6pSUyV3+nRpYTfCTUf/pEyaJJkffkgaXx/jz+fHPsFikbhXXpGERx6pdZRbRceOkvv441IxdKjEJCRIeVkZIwoBBITis86S6C++kJgvv7TN0+fFn34qJWed5dW2BSuPnWEdffTRJvC2ceNGCUY7duwwj3rTR2u81UVHolV/T2O/wzrirT7Vv4fAGwA0caQKmryNq99UsKfzdXlKSor/bvOQEBMMqtCpd++616usNKnDzEi53bv/Ds5ZU1xa69AdTNvtj0z9uqSkvwNmddRCq7FMeyH72Q1Bv9+33TD6zjrKzjairq7UmdaUmfa175oYJNV0k4A/qus3IvLnnyVh2rQadd00xSR13dCQ0uHDpfCSSyTujTds8yJXrJD42bMJ3PoQvz+H8LKwrVsPjHL76adalxdedpnk3XmnZJaWyupFixhRCCDwUk4+/LBE/vijQ+36pDvvlLLjjiMluRd47E7GqFGj5Ouvvza13r777js54YQTJFhois38/HzzvKGDeHx8vBkVV1paak66GsN+/Ya+R0cg1va+xn5PXZKTk20BRu1lDvey38Zsb7hDMO1j2pNU623aj4ix9jLdvHmzSRdML9Pm0/Q5DfUu1eW6Xl0pmgOG/p86WLPNcvjhddegKy83o+PsU1vaas5Zg3P6vJl1tOpTFRHhGCxLSXEMnFV7bat/lpBw4O9sBB1jGuKHv2Hs2wdFR5upqmVLU6O0SeEzHTVaWHggAFfLyDtb4K6WYJ6la1ePHa8C/biIpmvsdVNdvxEhWVkmdZBDXTe9ufLss+b4wR5Yu2A6f3VGwX33SdR330n4tm22eQlPPCFlI0ZIRb9+jf48tq/rcQ7RjFpuL75oRrnVNuK+4pBDJO/JJ6XshBNkM9d6HsHvg3uxfd3Lr7dvmzaS/+ijknzttbZZGoRLnjJFcl96ySdSTob62zb1h8BbamqqjB8/XmbMmCEvvPCCJCYmyuGHHy7BoMTuwB+tNyEaoOto4M3+fa7+Hg3u1fY+Z4wbN67BdebMmWOCf3oRaU3tBM9g9CLcLZD3sT179tS4ELOn83W5Xozx29Z0esNAe5g6Q9cbO3YsqT6tGqg9Z2gdrN27RXbtcpx27vz7+b592tvHpCRszBQSFydhfv5v4c7fMPZt3xGhN5S98L31ZbZA8GnMdVOdvxF6E/6qqw78dtsJufdeST3vPJe2N5AF8vlro7z1loh2gj54rhtSUSEtb7xR5JdfDnSYaCK2b/NxDtFEmzaJXHmlyHff1b58/HgJnzZNUuPjudbzEn4f3Ivt615+uX2vuUZk/nyRDz6wzYr+6itpu2iRyEUXebVpwcZjgTcd6aa1zf7973/LSy+9JA8//LAcddRRMnjwYOnUqZPExsY6fdJgP1rLX0a8WekQ9oZY17F/n6u/JyIiotb3AUAwW7ZsWYO1n3S5rnf22Wd7rF2BRlO66NSYdSPt6nWhAbGxIlp7rr76c3AL9m0ArmL7jXjqKRG7Wh3G8OEid93lrabBnw0eLHL77SIPP/z3vDVrDuxP06d7s2VBj3OIRtIRwE8/LXLHHdqbvObyrl1FdHSH3chArvUABI3Zs0WWLBHJyPh73vXXH/hNbNfOmy0LKh4LvE2YMKHGvBUrVpipMTQ4984774g/sT8Z0iHsDbGu09iTqMZ8j/0JXWO/R3tlOpMyRVVWVkqG/X9yuG2YrrUXxr59+xo8mQQaKxj2Me1lukZvPDhB1xs0aBC9TJuxrbWDiDPHRF1PU3WxreEPv2Hs28HJfv/Sc19GvaEp1021/Ubkff21tJgyxSHtbmWrVpI1Y4ZYuMZqUDCcvzbJtddKi08/lYjVq22zqp58UrKPO07KjzvO6Y9h+7oW5xDOC0tPl6SbbpLI5ctrXV545ZVScMcdUhUXpylNzDyu9TyL3wf3Yvu6V6Bs36iHH5aUf//77xk5OVJyxRWS+8orXk05GWq3fQOdf1WrP3iw9Df2aR+dSetoXceZtJRN/R5NZVnb+5zR2GKz/voD5a90e7PN4U6Buo9phwRnLnSVrqejhe1HD6NxtIC51lJwZj099vvj8R/B+RvGvg2gqddN9nq1bCkp111Xo65bzqxZUqEZYALwXMydAvX8tUnCwyXnqaek1amnSsjB7Dea0jRp0iTJWLDgQF3WRmL7ugbnEA2orJQ4LV3z+OO113Lr3FlytW6hjuxUdvsk13rew++De7F93cuft2/xaadJ9JgxEvPpp7Z50fPmSdQHH0jxP/7h1bYFC48F3vwtPaQr6YiyhIQEyc/Pb7DAdkFBgS0o1tgLNfv1G/oeTf1Z2/sAIFhpz9HG9DJ1JnUw6tavXz9JT0+v94aB9jLV9QB/wr4NoLk0CDLqrbckTOt12imYPFnKTjzRa+1C4Kjo3Vvy/vMfSXrwQdu88B07JOneeyX3ySe92rZgxjlE3cLT0yX5xhslcuXKWpcXXHWV5N9+u1RpyvXa3s+1HoAgtH/qVIn84QcJs4sDJN19t5Qef7xYqGXpdh47kjz77LMSzDp27Cjr1q0zxVzrS0Gzy65otr6nsd9htXPnznrXbc73AEAg0ovYxvQyJfVI82inj6FDh8rixYtrvbmg21eX0zkE/oZ9G0Bz6G/EJXv3SuLSpQ7zSwcPlvwbb/RauxB4Cq+5RqIXLJCoH3+0zYt9910pGT3aTPA8ziHqGeX22GMSYpe5yaqiS5cDo9yOPbbej+FaD0AwsqSmyv5HH5XUq6+2zQvdv1+S//MfyX71Va+mnAwGod5uQLDo1auXedTRbFu2bKlzvbVr19Z4j7M0P2pKSop5rkG++liXp6amSqtWrRr1PQAQqLT3aEMXWcHay9Qd0tLS5JxzzpGePXvaUrlo79IePXqY+boc8Od9W/dla49p9m0ADdHfiIu7dZOuzz/vML+yZUvJ0Y6s1A+EK4WGSq7WC4yPd5iddOutEmrXMx6exfmx4yi3lmefbUZmVg+6aepdHeWWMX9+g0E3K671AASjklNPlaKzz3aYpx1vYt5/32ttChaMnfaQY445Rj7++GPzfNGiReakqTrNGbtkyRLzPC4uTvr06dOo79AThIEDB8o333xjRrxt3LjRnKxVp/OtI+IGDBhATx4AOIhepp6n23LYsGEyduxYU3tBUyUHXb0KBPTvyZAhQ0xaI71pxjkXgLro9d+wI46QVqNG1VrXzdKmjVfbh8BUecghsv+BByTlppts88KyskzwLefll+kJ7yVBf35cUSHxzz8vCdOn1z3K7cknpWzQoEZ9LNd6AILV/gcflKjvv5ewjAzbPE0vXXriiWJp186rbQtkjHjzEO2VdOihh9oCbxr8qu7zzz+3BcROPfXUGjml16xZI+eff76Z6krdedppp0lo6IF/1ldeecUUhLWnr3W+0nSXp59+uov+QgAIDIxU8Q690NWaqAQmEGh0n9Ye6+zbABqScuONEm5XEkAVTJokZSed5LU2IfAVn3++FFdLLRnzzTcS8+67XmsTgvf8OHzjRjPKLXHq1NpHuf3735KxYEGjg25WjCgEEIyqNOXktGkO80Lz8iT5tttEgqljh4cx4s2DLr/8crn77rtN8Ouhhx4yB3Ud1aavf/jhB1mwYIFZr127dnLmmWc26Tvat28vY8aMMaPrNm/ebL7vrLPOkjZt2sjevXvlk08+ka1bt5p19Tv0uwAAjhipgkCnvXzZtwHAd4QUFkr0/Pk167rZjUQC3CIkRPY/9phErlghYXYpJpPuuUfKjjtOKjt18mrzgv18TUe8BcVoNx3l9txzkvDEExJSrQO5Wdy1q0mNWjZwYLO/KuhHFAIISlq/tejccyX2ww9t86IXLpSY996T4gsu8GrbApVPBN6KioqkuLjY6QNdy5YtxR9pgdbJkyfLrFmzzN/79ttv11hHA2FTpkyRmJiYJn+Pnjzs37/fjKzTINvMmTNrrDN8+HCzHgCg4ZEqQKDQGwurVq0y5wfWwJuen2gtC9LqAID3hOTlObyubNFCcp55hrpu8AhLy5aS+/jj0uKKK2zzQgsLJfnGGyXrvffYD71wvrZ69WpzvqaBoUA/XwvfsEGSb7pJIn/7rcYyHeVW+O9/S/5tt0lVM+6TNTSikMAbgGCg6aWjvvtOwvbtc0w5ecIJYunQwattC0ReCbxlZGTI/PnzzY2fP//809z4cZYeEN955x3xV1pTbfr06fLll1/KypUrJTs725xEtW3bVo499lg55ZRTJCoqqlnfoakmx40bJ4MGDTKj6HTkW35+viQkJEj37t3l5JNPlv79+7vsbwIAAL4vPT29Rk0LPQfbtGmTWaajPEmvAwDeEVLtRnOu1nVr29aLLUKwKR01SgrHjpU4u/stUcuWSdwLL0jhddd5tW3BJKjO13SU25w5kvDkk7WPcuvWTXKefFLKXTDKDQAgUpWSIrnTpjl2tMnPNykns994g9qu/h54+/TTT+Xdd99tVLDNXiD0QmnVqpX861//MlNjaFrK97S3mZOOOuooMwUjUmgBAODYc7quQvJK5+vylJSUgOxJDQD+pOCGG6R0yBBvNwNBKO+++yTq++8l/K+/bPMSp00z+2PFwZr1QZsK0QOC6XwtfP16M6Iy8o8/aiyrCg2VwmuukbxbbhFx8Sg3AAh22tGm6LzzJPaDD2zzohcvlti335aiiy7yatsCTbing25vvvmm7XV0dLR5LCkpsaWQ1OcFBQUO79Oh34mJiZ5sKvwUKbQAAKhJj40N3RTT5bqe9qQGAHhH6bHHUtcNXlOVkCC5M2dKi/POk5CD5w06Einlhhsk44sv9OZMUKZC9JSgOF8rL5f42bMlYcYMCSkvr7m4e3fJ1VFuAwZ4pXkAEAz233//gZSTe/bY5iXef7/paFNJykmXCRUPyczMtKWI1ICb1jp75ZVXZIhdT75nn31WXnrpJXn11Vfl9ttvt6VD1ACKpkfU5ToBtdG0Cx999JFJwWAdUWlNyaDzdTkAAMFGb9DojTFn6Hr0WgcA7zB13fR6N9wnSrEjSJUde6wUXnutw7yItWsl4YknHK67N27caIJuiuvu5guG87Xwdeuk5ZlnSuJjj9UIuukot/zx4yVj3jyCbgDgZlXJyZL72GMO80ILCiRJRxr74fFFgj3wprXGKisrzfMrr7xSBg8ebGqR1SYmJsYE3TT4NmnSJJMq8O2335YP7IZAAk1JyaDrAQAQTPRmmLMpvhuzLgDAtXKffpq6bvAJebfeKuW9ezvM01FKxd9+y3W3mwT0+ZqOcps5U1qdeqpErlpVc3FammR+8onk33knqSUBwENKR4yQogsucJgXvXSpxNplK4SfBN7WrFljHjVl5EknneT0+4477ji57LLLzPO5c+fKtm3b3NZGBEdKBgAAgommf9LJ1esCAFzHEh8vpf6aOg6BJzpacp56SqoiImyzQiwWaX3LLRJ+sFRIXbjubppAPV8LX7tWWp5xhiQ+/njto9wmTDgwyu2oo7zWRgAIVvvvvVcq27VzmJf4wAMSZlfrFX4QeNtzMGdoWlqaGcFWG+uIuOpGjx4tycnJYrFYZNGiRW5tJ/xPMKRkAACgqfS8S+uuOEPXq+s8DQDgPlXx8d5uAuCgom9fyb/5Zod5Cfv2yehvvmnwvVx3N17Ana/pKLcZMw6Mclu9uubinj0l89NPJf+OO0ygFwDgeVVJSZI7fbrDvNDCQknW47/F4rV2BQqPBd4KCwvNY0pKisN8+146paWltb5XTygOPfRQ81wL+AJBk5IBgFfpDQOtXcGNA/i7fv36NXiDRpfregAAL/D1m+gISgXjx0tZtXpbR69YIWkbN9b7Pq67g/t8LXz1aml1+umSOH26hFTbD8wot+uvl4yvvpLy/v291kYAwAGacaHwoosc5kV9/73E/ve/XmtToPBY4K2uYfCxsbG259nZ2XW+P/pgD5j61kFwCtSUDAC8Xzfy1VdftU3Uq4A/a9GihQwdOrTOmzk6X5fregAAAEZYmEk5abG7b6PGfPqpxBzsXF0brruD9HytrEwSnnjCBN0iDpabsVfeq5dkfvaZ5E+Zwig3APAheffcIxXt2zvMS3zoIQn780+vtSkQeCzwlpSUZB6Liooc5rdq1cr2fMuWLXW+f+/eveaxrKzMbW2Efwq4lAwAvCo9PV0++ugj2bRpk62nrj7qa52vywF/pOm+zznnHOnRo4ftZpg+6mudr8sBAADsVXbpInn33uswL6GgQE7/4gtND1Hre7jubv75Ws+ePSXiYI09fzhfs45yS3jyyZqj3MLCJH/ixAOj3I480mttBADUriohQfY/8YTDvNCiIkm+6SZSTjaDx7ogdejQQfbt22cLoFnZB0y+//57Oemkk2q8d9euXbJhwwbzPDU11QOthb/RVAt6M7y+dHD+kJIBgG+MdKvrt0Tn63JNm+yzPU0BJ3pSDxkyxASU9UYON8YAAEB9ii6+WKLnzZPohQtt8/qsXSsb/vhDVh1xRI31DznkEA+3MPDO14YNGyZjx441ae/1GsVnU9/rKLennpL4Z56pEXBT5b17S+6MGVJ++OFeaR4AwDmlJ50khRdfLHFvvmmbF/XjjxL72mtSdMUVXm2bv/LYiLfevXubx7/++sucOFh16tRJ2rVrZ57/9ttv8uGHH4rFLpKqwbqnn35aKisrzes+ffp4qsnwI36fkgGAT1i1alWDF7W6XNcD/JkeF7UXNUE3AADQoJAQyZ0+XUri4x1mn/bll5K4f3+N1fW+D5pPz9MiIyN99nwtYtUqaXXaaZIwc2bto9wmTZKML78k6AYA/pRysmNHh3mJU6dK2LZtXmuTP/NY4O3wgwdaDbqtqZbr+eyzz7Y9f/fdd+Xqq6+Wu+++W2677TaZNGmSbN261SwLCwuT008/3VNNhp8hhRaA5tCAmvV40xBdz2d7nQIAAAAuVtm6tXxxxhkO86JLS+Wsjz+WqJISh/mcKwe40lJJeOwxaam13Natq7G4/NBDJfOLLyT/tttEoqK80kQAQONVxcebjjb2QouLJfnmm0k56cupJrt162YmHSK/YsUKOdIur7OORFq7dq0sWbLEvC4sLJSNGzc6vF97+Fx55ZWkLEC9SKEFoKn0N8Na083Zda11FwAAAIBApue+q3v3lrTDD5cj/vjDNr/b1q1y62OPyZ+dOsnGnj3NlN2yJefKASri999NzZ+I9etrLKsKD5eCiRMl/4YbRCIjvdI+AEDzlJ14ohRedpnEvf66bV7UsmUS98orUnjVVV5tm7/xWOBNPfLII3UuGz9+vCke+9lnn8mePXsclun8Cy64QPr27euBViKQUmjBM7Q3I4FO+Dvdf3VyJvhmXRcAAAAIBtbz369OPVW6bNsmSXl5tmVhFot03bbNTKO/+UayWrSQqJ07pWTkSCkbNEiEa/PAGOU2Y4bEz54tIQdLwdgrP+wwyZkxQyq4bwcAfi/vrrskatEiCbdLHZ3w8MNSMmyYVHbr5tW2+ROfums4cuRIM+mouJycHHMDv3Xr1pKQkODtpgGohf5f1VpXmkrEGnjr2rWr9OvXj3p68Dt6zNH9d9OmTQ2uq+sRZAYAAEAwnit/cvbZcsl//yuhdaSTbJGVJfLCCxL/wgtiSUiQ0qFDTRCudPhwsaSmerztcMEotxtvlIgNG2od5aa13Aquv55RbgAQIKri4iT3iSek5fnn2+aFlpSYEc9Zc+dqPTCvts9feKzGW2PoDXutx9W9e3eCboCPSk9Pl48++shceFlHCOmjvtb5uhzwNxo0biigpst1PQAAACAYz5W3dusmb118sWxKS5OKBm6+hebnS8xnn0nKpEnS5vDDpeVZZ0n8rFkSrrXBqAPn+6PcHnlEWp55Zq1BNx3llvHFF1Jw000E3QAgwJQdf7wUXn65w7yo5csl7qWXvNYmf+NTI94A+M9It8WLF9dZMFvn6/KUlBRGvsEv60TWtX/rjQZdzn4NAACAYGQ9R96clmamiNJSU+et58aN0mPjRkkoKKjzvSFVVRL5yy9mSnz0Uano0EFKR448MBruuONEoqM9+JegPhG//nqgltvGjbWPcps8+cAoN9KIAkDAyrvjjgMpJ7dvt81LnDZNSkaMkMru3b3aNn/gscCb1mhTo0ePliuvvLLR7//vf/8rn3/+ubnp+c4777ihhQCcpekl6wq6WelyXU+DFIA/0RHXGjQmjSoAAADwNz0/rq48Kko29O5tJrFYpN2ePXJsZqb0Tk+XyD/+qPfzwnfulPDXXpO4114TS0yMlJ500oFAnKakbNvWjX8J6lRSIglPPinxc+ZIiMVSY3FZ376S++STUtGnj1eaBwDwQsrJ886zzQspKZGUG2+UzI8+IuVkoI14a+hmPwD3/x/UYIQzdL0hQ4ZQCwt+O/JN919r4I39GAAAAMHKqevA0FDZ3b69fNapk7R4+mkJ27tXohculKgFCyRq6VIJLS6u+63FxRIzb56ZVNnhh9tGw5VrmvdQn6yUElAiVq48UMutlrIRVRERB0a5TZjAKDcACCJlgwdLwVVXSbxdisnIFSsk7oUXpPC667zaNl/nd4E3AN6lQQhrTTdn143gxBx+SoNt7L8AAAAIdk25Dgxp21aKLrrITDqSKurHHyVag3Dz55vRbvXR0XI66eiryjZtTForDcSVnniiVMXGuuivglFSIonTp0vc//1f7aPc+vWT3BkzpOLQQ73SPACAd+XffrtEf/uthG/bZpuX+Nhj5rhckZbm1bb5Mr/pMlRZWWkeddQBAO/R/4PO/j9szLoAAAAAgAC9DoyOltJhw2T/1Kmy76efZN+330relClSOnCgVDUwmk1HzsW99ZakXnmltO3bV1IvuURiX31VwnbsaM6fBB3ltmKFtBo9utbUkjrKLe+22yTzs88IugFAENMOL5pmuMouE1RIaakkT56sQRuvts2X+U3gbc+ePeYxlp5NgNdHAGmtK2foeqTnAwAAAAD/5tLrwJAQqejdWwquv16yPv5Y9v7+u+Q89ZQUn3mmWBIS6m9HaalEL1okyXfeKW0GDZJWI0ZIwiOPSOTy5dz8a4ziYkl88EFpefbZtaaW1FSfGV9/LQWTJpFaEgAgZYMGSeFVVznMi/z1V4n/v//zWpt8nc8H3iwWiyxbtkz+OFiUt2PHjt5uEhD0+vXr12BATZfregAA36zTUl5eTu1cAADg9etAS2qqFJ93nuQ895zsWbVKMt97TwquuUYqunVr8L0R69dLwjPPmABSmyOOkOQbbpDoTz+VkLy8RrUhmEQsXy6tR42S+OeeqznKLTJS8m6//cAot969vdZGAIBvppysqNYJJ2H6dAnfuNFrbfJlbskBd/3119e5bOnSpbJy5Uqn00vm5eU55BHv37+/S9oIoOlatGghQ4cOlcWLF9d601YvtnS5rgcA8B1ZWVmyatUq2bp1qzm/0jRQ2itdb5Dxmw0AAJy5Dly0aFGd6zT7OjAiQsqOP95MeffeK2GbN5u6MtHz50vkzz9LSD115sJyciR27lwzVYWHS9kxx0jJyJFmquzeXYJdSHGxJDz2mMS98IKE1HIdX3bkkSaVWEWvXl5pHwDAt1XFxEjOjBnS8pxzbMcRk3Lyxhsl85NPNNe0t5voU9yyNTIyMupcVlxcbKam6NChg4wePboZLQPgKmlpaZKSksINXADwE+np6TU6TOhv96ZNm8wyvVGmv+0AAAD10Y6WdXXAdDUNmBXqdM01ErJ/v0QtWSLRCxZI1MKFJtBWZxsrKiTqhx/MlPTAA6aHvjUIp+mygi19oqbi1Buj4Vu31limo9zyb7lFCq69lpumAIB6lQ8caI7J9ikmI3/7zYyi1hTS+JvPH1H1xK1du3YyaNAgGTNmjERFRXm7SQCq9XgcMmSILfBGTTcA8M2RbnWNUlY6X5drhwo6TgAAAF88n6hKSpKSMWPMpPXcIlauNEE4HREXsW5dve/VgFP8Cy+YSevIlQ4daoJwpcOHm1SXAT3Kbdo0iXvxxdpHufXvf2CUW8+eXmkfAMD/5N16q0QtWCARmzfb5iU88YQ5rpKm2M2Bt2eeeabGydfEiRPNc71B/89//rPBz9Cb9xERERIXF2du5gPwXdb/rwAA36Sjkxuq56bLdT3tUAEAAODT5xNhYabXvU75U6ZI2I4d5iagGQ33/fcSUlZW51tD8/Ml5rPPzFQVEiLlRx9tGw1nbhgGSGfSyJ9+kuSbbpLwbdtqLKuKijowyu2aaxjlBgBonJgYydWUk2efbasVqsddk3Ly00+DblR5XdxydG3VqlWdy6Kjo+tdDgAAANfRG2CaEtgZup52kmL0MgAA8KfzicqOHaXo8svNFFJYKFHffWcLxIXt21fn+3QUWOQvv5gp8dFHpaJDByk9GIQrPe44vYkl/iakqEgSHn1U4l5+ue5RbjNmSEWPHl5pHwDA/2mnlYLrrpOE2bNt8yL/+EPiZ8+WgkmTvNo2X+Gxbi3jxo0zjx07dvTUVwIA0OwbDKRRhb/TfVinxqzLKGYAAOCv5xNVcXFSMnq0mfZbLBKxevWBINz8+eamYH3Cd+6U8Ndek7jXXhNLTIyUnnTSgUCcpqRs21Z8XeSyZZJ88811jnLLu+02Kfz3v82IQQAAmiP/5pvNsTVi0ybbvIQZM6Rk1CipOPRQCXYeC7yRtggA4E/1KzRFjvbWtQbeunbtKv369aP+FfyO7r86OXOzzLouAMCzCgsLTW0szjXgq/z2fCI0VMoPP9xMBTfdJKF79kj0woUmEBe1dKmEFhfX/dbiYomZN89Mquzww22j4cr79TOf7VOj3B55ROJffrnW5WVHH32glltamsfbBgAIUNHRB1JOjhnzd8rJ8nJJnjxZMj//POhTTvrOWQIAAD4gPT1dPvroI9m0aZPtxoI+6mudr8sBf6KjNTVw7Axdj9GdAOAdnGvAlwXK+YSOWiu66CLJefll2bN6tWS98YYUXn65STHZEB0tl/Dkk9LqtNOkzYABknTrrRI9b54JenlT5I8/SquRI2sNulVFR8v+u++WzI8+IugGAHC58v79pWD8eId5katXS/wzz0iw85EuSCI5OTmyYMECWb9+vXmuKQm0p1///v3lpJNOkqioKG83EQAQBCPdtLd5XUXjdb4uT0lJoTc6/IqOoNAbuXXt20pvkOl6AADv4VwDvizgzieio6V02DAzyUMPSfeqTgsAAQAASURBVPiGDSZlltaFi1ixotb6aFZhe/dK3FtvmUlTOGo9OFMXbuRIU2/OE7SWXeLDD0vcq6/WurxswADJeeIJqSTgBgBwo/ybbjqQcnLDBtu8hJkzpeTkk6Wib18JVm4Z8bZs2TJZuHChmXJzcxtcXy8sbrjhBvnggw9k9erVsnPnTtm2bZusWLFCXnzxRbnxxhtNQA4AAHfS9JL13UhQulzXA/yJ3rzVtN919T7X+bqcm7wA4H2ca8BXBfT5REiIVPTuLQUTJ0rmJ5/I3j/+kJynnpLiM88US0JC/W8tLZXoRYsk+c47pc2gQdJqxAiT9jFy+XKRykq3NDfy++/NKLfagm5mlNu990rmhx8SdAMAuF9UlEk5WWVXPzSkokJSbrxRpKxMgpXLR7wVFBTIzJkzzcVCfHy8nHjiifWu/+OPP8qcOXMaHIHwyCOPyIMPPiidOnVycYsBADhwk0trujlD1xsyZIjPptABapOWlmZGUFC/EAB8H+ca8PXzCe00rftpeXl5QJ5PWFJTpfi888wk5eUS+fPPZiSc9ugPb+CaIWL9ejMlPPOMVKakSOnw4QdGww0dKlWJic0f5TZ1qsS99lqty0sHDjS13Cq7dWvW9wAA0BjlRxwhBRMmSMLTT9vmRaxdKwmzZkn+zTdLMHJ54E1PvqyjBfRCQVNG1qWoqMiMaLOnwbpevXpJZGSkbN++XXbt2mXml5SUyAsvvGCCbwAAuJoGIZwpFm+/bn3HOMCXe6rrOZo18MZNXQDwPZxrwNfPJ4YNGyZjx441gTftLN1Q1gi/FhEhZccfb6a8e++VsM2bDwThFiwwATnt1V+XsJwciZ0710xV4eFSdswxJginU2X37o1qRuR330nyLbdI+F9/1VhmiY6W/ClTpPCKK0TsRhwAAOAp+ZMnS/Q335jOJ1bxTz8txaNHB2XKyXB3FIS2OvbYY+td95tvvjEj5KyOP/54ufbaax3quS1dutSMiLNYLLJx40bz+T169HB1swEAQU4DEDo5E3yzrgv4Kw22cTMXAHwX5xrwl/MJ7TStjwEdeKtGA2aFOl17rYTs3y9RS5aYIFzUwoUm0FYXDdBF/fCDmZIeeEAquna1BeHKBg0yAb5a31dQIEkPPihxr79e6/LSY46RXK3lxig3AIC3U07OnCktTz9dQg6mWjYpJydPlowvvxSJjJRg4vIabzpKTcXGxkrPnj3rXfd///uf7Xn79u1lwoQJDkE3ddJJJ8k///lP2+uffvrJ1U0GAMDcMNAUOc7Q9RglBAAA3IVzDcA/VCUlScmYMZL79NOy9/ffJePjjyX/+uulvHfvBt+rKSvjX3hBWl5wgbTt109SrrtOYj74QEKzs/9e6dtvpeWwYbUG3SwxMbL/gQcka+5cgm4AAJ9Q3q+fqZdqL2LdOkmYOVOCjcsDb/v27TOPXbp0qXe93Nxc2bFjh+316aefLmF1DIc/7bTTbL2yt2zZ4tL2AgBgpXUpGrrJpct1PQAAAHfgXAPwU2FhUj5woEn5mPHtt7J32TLJnTpVSoYNk6oGevmH5udLzGefScqkSdLm8MMldcwYkQsuEBk5UsLs7p1ZlR57rGQsWCCFV10lEuryW3sAADRZ/qRJUn7ooQ7z4p95RiL++EOCicuPzvv37zePDRXU3bBhg8PrgQMH1rludHS0dD+Y+3r37t0uaScAAHXVv6or+KbzdXmgFI0HAAC+hXMNIHBUHnKIFF1+uWS/8YbsWb1asl9+WQovukgqW7eu930hVVUSuXy5yHvv1TrKLfehhyTr/felsoEO7wAAeEVkpOTMnGlqm1pp6snkyZNFSkslWLg8aXxZWZktWFafzZs32563bdtWkpKS6l2/TZs2sn79eikqKnJRSwEAqCktLU1SUlJk1apVsnXrVlPzTWusaMon7X3OjTAAAOAOWsuccw0gMFXFxUnJ6NFm2m+xSMSqVQfqwi1YIJFOjgAoHTz4QC23zp3d3l4AAJqjom9fM/It8YknbPMiNmyQ+CefFHnqKQkGLg+8aWHdkpISKS4udjrw5kxNHf1c+8AeUB+LxWL2Qw0Ah5J2AUATR74NGTLEFnijzgoAAHCXuLg4c+4BIAiEhkr5EUeYKf/mmyV0zx6JXrjQBOGili6V0Gr30yyxsZJ3551SdNllpJUEAPiNgokTJebrryVizRrbvLhnnpGqxx+XkAZSMAcClwfe4uPjTcCjvpSQGhRJT093GF3QkMLCQvMYFRXlopYiEGlAd/ny5ZKfn2+bl5CQYFKZWtOVAoCzNNhmrTEKAAAAAK5madtWii66yExSUiKl8+ZJ+UcfSfzatZKZmir/O/lkSenSRfrl5DAiFgDgPyIiJGfGDGl1+ukSUl5uZoVYLFKZmSlh7dtLoHN54K1z586SmZlp0nPl5uZKcnJyjXXWrl1rgnNWhx12WIOfm52dbR4TExNd3GIEiu+//97sW9VpEG7hwoWyZ88eOf74473SNgAAAAAAgPqk79ghizMypErvXdjdv8jctMl0YNeRsc50XgcAwBdU9Okj+ZMnS+Ljj9vmhVksEgxcPka9T58+tlFt77zzTq3rfP7557bnqamp0q1bt3o/Uz9LA3mqXbt2Lm0vAmekW21BN3u63D7FKQAAAAAAgC/IysqSxYsXS1VVVa3Ldb4u1/UAAPAX28eOlV1BGNNxeeDtpJNOsqXlWrRokTz//PMm7aTWyNm1a5fMnj1bfv31V4f1G7Jx40YpLS21jagDqtP0kq5cDwAAAAAAwFNWrVpVZ9DNSpfregAA+ItV69fLx2efLZVBVqfU5akmtZ7WeeedJ2+//bZ5/e2335qprgLSZ555ZoOfuXTpUtvz3r17u7C1CAQ6ItK+plt9dD1dPzTI/qMDAAAAAADfpAE1a6anhuh6Q4YMMfWoAQDwh+NbRZs2snjoUBmxcKEEC5cH3tRZZ51lRrctWbKk7i8OD5eJEydKfHx8vZ9VUFBgandZ3+NMPThfpiP3vv76a1m2bJmpOaYjAbU47lFHHSWnnnqqtGrVqlmfv2/fPrn++uudWldP1CZMmCD+zr5eoLPrx8bGuq09AAAAAAAAztJ7Qzo1Zl1rtikAAPzh+Pb98cdL7/XrpYMEB7cE3rTXzfjx4029t08//VR27NjhsPzQQw+Viy++WHr06NHgZ2k9OGtgpV+/fhIdHS3+SgNtjzzyiEm9aU+DlDrpyMAbbrhBjj76aK+10R81dp/w530I0J4iesDSjgj0cAQAAADgzWuT8vLyBtMjomF6faeTM8E367oAAPjT8a0qLMyknByv8SMJfG49UuuIKp2ys7PNpOn9Wrdu3eAoN3sjRoyw1YFrzPt8TXFxsUPQTf+u448/XiIjI2X16tXy8ccfm3VmzpwpDz74oHTp0qXZ3zl27FgZMGBAncv9eXva0/1KU5w6k25S1yPNJPyRFtDWXP5mePbBwFvXrl1NhwQdNQsAAAAAnro20fsYem2igTeuTZpPO1XqNty0aVOD6+p6dMIEAPjj8S2zdWspjIuTwIhK1M8jXWRSU1PN1BTNTb3oK3TknzXodskll8iYMWNsy3r27GlGB953330mFeWrr75qnjeXbvNOnTpJMBg4cKAsdCJHrK4H+Jv09HRZvHixQ09SDb7pQUuXDR06VNLS0rzaRgAAAACBj2sT99HApW7D+kYQ6g1MXQ8AAH89vlnCwiQYMPTHA/Qk9KuvvjLPO3ToIGeccUaNdXr16iXDhg0zz9euXWt2Rjive/fuDdb/0+W6HuBvvUmrX9ja0/m6XNcDAAAAAHfh2sS9dLSgBi7rGs2m83U5owoBAIF0fAtUBN48YM2aNVJUVGSea+rNulId6g5o9fPPP3usfYFCU3cOHz7cpJO0p691vi4H/I2ml2yoZoIu1/UAAAAAwF24NnE/HS14zjnnmMxIERERZp6m8uzRo4eZz2hCAIC/H9+CBdVYPWD9+vW25/WNytLRWFFRUSbd5IYNGzzUusCi21Ani8UiJSUlEh0dTU03+C29aNW6Cc7Q9TSwH2y9RwAAAAC4H9cmnh0ZoBmRxo4da2ro6QjChgKeAAD4y/EtodqgmUBF4M0DduzYYXuuqSbrEhYWJm3btpXt27fLzp07m/29mt5y7ty5kp2dbXpI6c7du3dvGTlypHTr1q3Jn+tM2ojk5GTz9yhvBL70O+Pjg6FMo9TYxgQaA4deZGmqWmfoehpwtvaKdDX2MbgT+xfcjX0M7sQ+BX++bgpk/PYH7rVJMNB9VgOXkZGR5jdCtydch98H92L7uhfb173Yvp45vgUDAm8eoIEvpaPZ4uLi6l1Xg2MaeMvLyzMnts05UbXvjaafpQFAnRYsWGCCb1dccUWTPn/cuHENrjNnzhzzt1iDifCc1q1be7sJcBHt1aj/R/X/b0N0vY4dO3rk4MU+Bndi/4K7sY/BnawBFEBx3eQ7+O0P3GuTYMD+615sX/di+7oX29e92L5oDgJvHlBcXGweNe1hQzQ4Z6WpEpsSGNPg3sCBA6VPnz7Srl078xk5OTnyxx9/yMKFC83navBNH2+44YZGfz4Az9ALVU1P+/vvvze4rq7HhS0AAAAAd+DaBAAAwHkE3jzA2iNM0z02xD7QVlZW1ujvSk1Nleeee84hgKe6du0qRx11lIwePVoefPBByczMlO+++06OO+44GTBgQKO+Q3tlOpMyRVVWVkpGRkYj/wo0ZZiutRfGvn37SEMRQLSIthYnr+/fVP/9db09e/a4rR3sY3An9i+4G/sYPLV/6bkvo95gxXWTd/HbH7jXJsGA/de92L7uxfZ1L7ave7F9Pbd9Ax2BNzvnn39+sz9j/PjxMnTo0FqDac7kQ7dP26C5vBtLg3v1Bfh0BNzEiRPl3nvvtdWBa2zgTVOhNAY/UJ6l25ttHjhSUlJMYfLFixfXWlBbe5Lqcl3PU//u7GNwJ/YvuBv7GABP4brJd/DbH7jXJsGA/de92L7uxfZ1L7ave7F90RwE3jwgJibGPGpqx4aUlpbanjuTmrIpDj30UJNvXeu9rV+/3vyAUCwS8F1paWnm4lV7l2rtRg3ia4BdR7L269ev0Td1AAAAAKA51yarV6821ybaeZhrEwAAAEcE3uzMmDGj2Z+hJ6C1pX+0BtUKCwtNDba6ZGVlmcfExMQm1XdzljXwpifJBQUF5vsCifa+swYnyC2PQKAXsDqaVnuQsm8DAAAA8Oa1ybBhw2Ts2LHmnoLex6htBBwAAECwIvBmp0OHDm4Lcv3000/m+c6dO6Vnz561rqd5/a150N3VlkCnJ/yMCgIAAADgT7SDpqbv47oF/kQ7AmqJDH0k8AYAnqO/udrxgd9ewHcRePOA3r17256vXbu2zsDb5s2bbakme/Xq5dY2aQBQ6ai6+Ph4CQTp6ek1cs1r8G3Tpk1mmY4W0rQYgD8iqAwAABDYuG4BAAAN3Rsi1S/gHyjs5QF9+vSR2NhY83zJkiV19kbQoJHVMccc47b2aF23v/76yxYUDIT6bnrgqavAs9L5utyayhPwJ3oD5qOPPjI3YzToZh9U1vm6HAAAAP6P6xYAAFDfvaGNGzeaoJvi3hDgu/w/4uIHtPfBqaeeahtp9tlnn9VYR380Fy1aZJ4fdthhdfZwPP/88800YcKEWpf//PPP9Q4z1lSWTz/9tO31qFGjJBDoSKCGhlfrcl0P8CcElQEAAIIL1y0AAMAe94aAIE81ef3114u7ae7wWbNmib8ZM2aM/PDDD7J792554403TADsuOOOM/nQ16xZY3omaI03fX355Zc3+XumT58ubdu2NSPmNHinw4w1nWROTo78/vvvsnDhQikpKTHrDh48WAYNGiT+Tg8uOsTaGbrekCFDzH4EBFpQWdMSAQAAwP9x3QIAAKy4NwQEeeAtIyPDlR8XUGJiYmTKlCnyyCOPmODbggULzFR9nRtuuEG6dOnSrO/SoN6nn35a7zo60u1f//qXBAIdVm1Nv+fsuhqMBHwdQWUAAIDgxHULAABQ3BsC/JNLA2+on45EmzZtmsybN0+WLVtmAmR6MaWj0vr37y+nnXaatGrVqlnfcdttt5m0lZrXVwOh+fn5UlpaaoJ6bdq0MTXdhg0bJp06dZJASuWpkzPBN+u6gD8gqAwAABCcuG4BAACKe0OAf3LpmfwzzzzT4DorVqyQ//73v+ZHoGXLlnLCCSdIz549zfOoqCgTJNJ8tBo8+v7772Xfvn3mguPSSy+Vo48+WvxddHS0nHXWWWZqivfee6/e5QMGDDBTMNFeHF27djXFRBui69HrA/6CoDIAAEBw4roFAAAo7g0B/sml/xMbGq2l9cVeeeUVcwFxwQUXmOBTWFhYjfU6d+4sRx11lJx//vkmZeI777xj3qf1z4YPH+7KJiNA9OvXz4zyqy/fse53uh7gLwgqAwAABB+uWwAAgBX3hgD/FOqpL9q1a5e89NJL5vlFF10k5557bq1BN3uhoaFy9tlny8UXX2xev/zyy+ZzgOo0XacWD63r4KLzdbmuB/gTvenS0EkTN2cAAAACA9ctAACgOu4NAf7HY4G3+fPnmyGxKSkpMmbMmEa994wzzjDvKy8vl2+++cZtbYR/S0tLk3POOUd69OhhG1atj/pa5+tywN8QVAYAAAgOXLcAAIDacG8I8D8eS/r6xx9/mMdDDz200e/VHw993w8//CCrVq1yQ+sQaAeiIUOGmECvBt4YYg1/pzdftPOB/v5t3brVtm9rCgHtzcSJFQAAgH+Li4sz1zEAAAD13RtavXq1uTekA1S4NwT4Lo8F3jIzM81jdHR0k95vfV9WVpZL24XApMG2iIgIbzcDcBmCygAAAAAAAMF9b2jYsGEyduxYE3jT++RVVVXebhYAb6aatNq9e3ez3sePCQAAAIDa6LWC3oTgmgEAAMB79FysrKyMczI30Y7YkZGRdMgGfJjHRry1bt1a/vzzT9mwYYPs2rVL2rdv7/R7df3169eb561atXJjKwHAN2kvJlJNAgBQO46T8HeFhYWyePFi9lkAgN+fk5EKEQA8OOLtqKOOMo8Wi0Vmzpwp+fn5Tr1P19P1rT0kjj76aLe2EwB8TXp6unz00UeyadMmczNR6aO+1vm6HACAYMVxEoGCfRYAEAjnZBs3bjRBN8U5GYBg5bHA26mnniqxsbHm+fbt2+WWW26R+fPnS1FRUa3rFxcXy4IFC8x6ur7S9+vnAEAw9RbT3s91pWfQ+bqc+pcAgGDEcRKBhn0WAOCPOCcDAC+lmkxOTpZx48bJjBkzzKi33NxcefHFF+WVV16RDh06mOHGUVFRUlpaan6Ed+7cKZWVlbb3h4aGynXXXWc+BwCChabNaignui7X9YYOHeqxdgEA4As4TiIQsc8CAPwN52QA4KURb+qYY46RW2+9VRITE23zNLimtd9+/fVXWbZsmXnU1/ZBt4SEBLn55ptl0KBBnmwuACfpyZOmEaBormvp9tS86M7Q9dj+AIBgwnESgYx91jV0G5aVlbEtAcCNOCcDAC+OeLOv9aaj3j777DMzxFhHvtVFR7cNGzZMTj/9dBN8A+BbdHSq9lbSEyfN203RXNfSbWqtVePsuhEREW5vFwAAvoDjJAIZ+2zzr1NWr15trlO0gyDXKQDgPpyTAYAPBN5UfHy8XHjhhWbasWOHbNu2TfLy8qSkpESio6PNiLguXbqYFJQhISHeaCKABmhR3Or5u61Fc3WZpg5IS0vzahv9nd4g0MmZE1jrugAABAuOkwhk7LNNx3UKAHgW52QAUJPXf+k6duxoJgCBVzQ3JSWFHqXNoB0PtGeu3iRoiK5HRwUAQDDhOIlAxj7bNFynAIDncU4GAF6u8QYg+Irmonk0HU5DJ6W6XNcDACDYcJxEIGKfbTquUwDAOzgnAwBHBN4ANApFcz1Le+JqOpy6TmB1vi6nxy4AIBhxnESgYZ9tOq5TAMB7OCcDAB9JNZmdnS0//vijrF+/3qSDKCwsFIvFIrNmzXJYr7S0VDIyMmy14ZKTk73UYgCKorneUV+6HAAAgpnWatK0cTqCRW+m67mH1g7RVEbaq5obPPAnnNs1HdcpAOAb52SrV68252Tl5eWckwEIWh4PvJWVlcl///tfWbhwoVMnxXrhcffdd0tRUZF06tRJHn/8cY+0E0DtKJrrnToV9aFOBQAg2Fl7WQ8ZMsQWeKN+CPwV53ZNw3UKAHifHruGDRsmY8eONYE3vadBpxIAwcijqSY1eKZBtG+++cbpnmjR0dEyYsQI8/zPP/+U7du3u7mVAJwpmusMiuY2H3UqAABwnp536AgWzj/gzzi3axquUwDAd+hvbGRkJL+1AIKWRwNvmkZy27Zt5nlSUpJceOGFMnXqVDnxxBPrfd8JJ5xge/7rr7+6vZ0A6kfRXM+gTgUAAEBw4tyuabhOAQAAQFAF3jS/78qVK83zjh07ymOPPSZnn322yf8bGxtb73u7dOkiiYmJ5vnGjRs90l4AdaNoru/WqQAAAID/49yuabhOAQAAgC/wWFLz//3vf7YT3RtuuEGSk5Mb9f7OnTubdBs7d+50UwsBNKVorv6/1B651noqFM11HepUAAAABCfO7Zp/naKdf/U6RWsMcZ0CAAAAT/LYmfz69evNY/fu3U0QrbGsgbr9+/e7vG0AmtejdMiQIbbAG/m7XV+nYtOmTQ2uS50KAACAwMG5XfOvU4YNGyZjx441gbesrCxSdwIAACDwUk3m5uba0kw2RVRUlHksLS11absANJ/eFIiIiODmgBtQpwIAACC4cG7n2m0ZGRnJdQoAAAACM/BmsVgOfGFo076yuLjYPDZUDw4AAgl1KgAAAIIH53YAAACA//NYqsnExETJzMyU7OzsJr1/+/bt5rGxteEAuJ+mbSHVpPtQTw8AACDw9ejRg3M7AAAAIAB4LPDWqVMnE3jbuHGjlJWVmXQPztq5c6fs2LHDdjECwDdorQQNBm3ZskUqKyslLCxMunXrxg0DN6CeHgAAAAAEVwdXrVFIfUIAAPyPxwJv/fv3l5UrV0pRUZF8/fXXMmbMGKff+/rrr9ueH3XUUW5qIYDGSE9Pl0WLFjnM0+Dbpk2bzKTFzHWkFtxTTw8AAACBRc+h9RxbO1txHg0EdwfX1atXm2wnGngj2wkAAP7HYzXedJSGNU3ku+++K7/88kuD79FRHc8995z89ttv5nW7du1k4MCBbm8rgIYvBKoH3arT5boeAAAAAOfoyJbFixdzHg0EKQ2+f/TRRyZblAbdrPfGNDCv83U5AADwfR4LvEVFRcnll19uO2l4/PHH5YknnpBly5ZJXl6eQy03DbRpcO7666+33dwPDQ2Va665htRqgA9wJnDemPUAAAAA/B1803TuAIKLBtw18F5XakkC8wAA+A+PpZpUgwcPNicIb7zxhjlh+Pnnn81k77bbbqvxPg26XX311XLYYYd5sLUAaqP/d//66y+n1tX1dH0C5gAAAIDzNMWcZo3hPBoIHhpwb6iemzUwrylpAQCA7/LYiDerM844Q+68805p27atU+vrenfccYeMGDHC7W0D0LDGFHe2FoMGAAAA4DzNEqMTgOCg184acHeGrufsNTkAAAiCEW9WWhB25syZsmLFClm5cqXJVZ2dnS1FRUUSHR0tSUlJppj00UcfLYMGDTIj3gAAAAAACAbh4eFmAhAcGhNst64bERHh9nYBAICm8dqZvKbMGDBggJkA+A89udf/v870sNP1uBgAAAAAGqdr166kmQSCMNjuTPCNwDwAAL6PoWQAGkVvABxyyCFOravrccMAABDMrGmXSQkFwFl6/qxZYgBfp8e2srIyjnEu+n+vAXdnEJgHAMD3eayLzJIlS8xjhw4dTBrJxtqyZYv89ddf5rkWmQbgPTpSVf8/1neBZR3VCgBAMMrKypJVq1aZOizae117puuNMr2Z3qJFC283D4CP0nPooUOH8jsBnz/GrV692hzjtHMJxzjX0O2Xnp7e4HU2gXkAAHyfxwJvs2fPNo+jR49uUuDt+++/l88//9ycZBB4A7xLL6b0hsDixYtrvSjghgEAIJjpTbPqx0gNvmldY12mx8imnA8DCGw9evQgcAGfxzHOfbjOBgAgcPhdUmhSGAC+QS+mUlJS6M0PAEC1UQB13TBTOl+X6zGUYyUAq7i4OHNDHfBlHOM8d53NiEIAAPyb3wXeAPhejzwdhWoNvJFrHgAQzLRDSkMdxXS5rsdNdgCAP+EY57nr7GHDhsnYsWNN4E0DnnRCBwDAv4SKnyguLjaPUVFR3m4KgGo02BYREUHQDQAQ1PSmmPZOd4aux000AIC/4BjneXp9HRkZyXU2AAB+yG8Cbxs3bjSPSUlJ3m4KAACAX9ObYdqDmptirqWjv3Vy9boAgKbR41xZWRnHOxfgGAcAAODlVJNr166tc1l2dna9y+1VVlaa9ZctWyZ//fWXmdetWzeXtRMAACCYaKoianO6j25PnZy52WhdFwDgnuMdNbJci2McAACA89xyJnT//ffXuWz58uVmairNcw0AAIDGSU9Pl8WLFzv0+tebZ5s2bTLLtBZLWlqaV9vo7zQVlN7Y1W3aEF2P1FEA4Hoc79yDYxwAAEAApppUZ599thx55JHebgYAAIDf9fyvfhPSns7X5boemkdHUzR0s1GX63oAANfieOdeHOMAAAC8OOLt0EMPrXEyZk0vmZKSIu3atXPqc7SIbHx8vBxyyCEyaNAgp9/ni0pKSmTLli2mh51OmzdvloyMDLOsVatW8uyzz7r8Ozds2CDz5s2T9evXy/79+yU2Nla6dOkiQ4YMkRNOOMHl3wcAAHyTppdsqL6NLtf1dCQAmk5TmOk2rOvGr54j63JSnQGA63G8cy+OcQAAAF4MvN1333015l1wwQXm8ZhjjpErr7xSgs20adNkzZo1Hvu+9957T+bOnetwMqzBt99//91M3333ndx0000muAkAAAKXngtojRtn6HraQYf0UM2jKcy0sxn19ADAczjeefYYRw09AACAulHt1kPsA2A6iq979+5mRJqOhHO1+fPnywcffGCet2nTRs455xzp1KmT5OTkyJdffmkCgCtXrpQ5c+bIpEmTXP79AADAd2jQR6fGrBsREeH2dgXLqAC9sWsNvHGDFwDch+OdZ49xw4YNk7Fjx5rAm6bubGikIQAAQDDxWODt3XfflWCmqR1Hjhxpeoe1bdvWzJswYYLLA28FBQXy5ptvmuctW7aUqVOnSmJiom350UcfLY8//risWLFCvv/+e9OmPn36uLQNAADAd2jARydnbkZa14XraLCNG7sA4H4c77xzjNMsOvpI4A0AAOBvoXbP4UYa4NLgmzXo5i7ffvutFBUVmecXX3yxQ9BNhYaGytVXX20e1aeffurW9gAAAO/Sm2Ga/skZuh6jsgAA/ojjHQAAAHwFgbcAs3z5cvMYExMjgwYNqjMthOZeV5qXvbi42KNtBAAAnqXH/YZuMOpy6/kBAAD+iOMdAAAAfIFXcytomsWMjAwT+HE2F7s67LDD3Nouf6XbMD093Tzv2bNnvakzdBv+/vvvJh/75s2bpW/fvh5sKQAA8Ea9scWLF9eaCkpvQupyXQ8AAH/F8Q4AAABBGXjTINuXX35p6ovt2rWr0XnA9UT5nXfecVv7/JluT4vFYp536NCh3nXtl+/cubNRgTctnNyQ5ORkCQsLM8+taS3hPvbbmO0Nd2Afgzuxf3mGdsrRG41//PGHbNmyxXTY0U463bp1k8MPPzygb0Kyj8Gd2KdQF66bvHu8W7VqlTneaWfTYDneeRLHVvdi+7oX29e92L7uxfZ1L7ave4UG0Tb1aOBNT3ofe+wxycnJafJnULC3btnZ2bbnqamp9a5rf7HhzAWhvXHjxjW4zpw5c8x36EWku+vawVHr1q293QQEOPYxuBP7l3vpMblPnz7mfEpvREZERARdjRv2MbiTNYACKK6bvIfjnWdxbHUvtq97sX3di+3rXmxf92L7wi8Cb/n5+TJ16lQpKChwiHDqCXF8fHy9aRHhHPtabdHR0fWuGxUV5ZDyEwAABA+9+RgZGentZgAA4FYc7wAAAOANHot2ffbZZ7agW0xMjFx44YUyZMiQBgNEcJ725LNqKJCpPf6sysrKGvU92ivTmZQpqrKy0tTxg3tpENvaC2Pfvn22lKOAq7CPwZ3Yv+Bu7GPw1P6l576MeoMV103exW+/e7F93Yvt615sX/di+7oX29e92L6e276BzmOBt19//dXW4+z222+X3r17i685//zzm/0Z48ePN8WavcE+mKZ1W5wN0jW2B2Bjc+LzA+VZur3Z5nAn9jG4E/sX3I19DICncN3kO/jtdy+2r3uxfd2L7etebF/3Yvu6F9sXzeGxanYaIVa9evXyyaBbINCRhM6mjywtLbU9Z9QhAAAAAAAAAACAH41406LGqkOHDuKrZsyY0ezPSElJEW9JTU21Pc/Ozq533aysrCb3xAQAAAAAAAAAAIAXA28a3Nm1a1ej64l5ki8HBZ3Rvn17kydVh8Du3Lmz3nXtl/v73w0AAAAAAAAAABBUqSaPOOII87h582ZPfWXQCQ8Pl7S0NPN848aN9dZ5W7t2ra0uXPfu3T3WRgAAAAAAAAAAgEDlscDbqFGjTGBIR7398ccfnvraoDNw4EDzWFxcLD/99FOdaSZXrVplnvft29ehNhwAAAAAAAAAAAB8PPCmaRD/9a9/meezZs2Sv/76y1NfHTD27dsn559/vpnuu+++WtcZMWKExMbGmudvvfWW5OfnOyzXNJQvvviieVRjxozxQMsBAAAAAAAAAAACn8dqvFlHvUVGRsoLL7wgU6ZMkZEjR8qxxx4rnTp1sgWLAtWePXtk/fr1DvNKSkpsj4sXL3ZYduSRR0pycnKjvyc+Pl4uvvhis40zMjLkjjvukHPPPdds45ycHPniiy9kzZo1Zt3jjz9e+vTp06y/CwAAAAAAAAAAAG4IvF1wwQWNWv+rr74yU2OEhITIO++8I/5Gg26zZ8+udZmOSqu+7N57721S4E2dfPLJJsg2d+5c2bt3r8yZM6fGOv3795dx48Y16fMBAAAAAAAAAADg5RFvrlBVVeXtJvgFTUd5xBFHyLx582TdunWyf/9+iYuLk86dO8vQoUPlhBNO8HYTAQAAAAAAAAAAAorfBd78lQa7dGqO1q1by3vvvef0+r169TITAAAAAAAAAAAA/Czw9u6777ry4wAAAAAAAAAAAAC/EertBgAAAAAAAAAAAACBgMAbAAAAAAAAAAAA4AIE3gAAAAAAAAAAAAAXIPAGAAAAAAAAAAAAuACBNwAAAAAAAAAAAMAFwsVDLrjggma9PyQkRGJiYiQuLk46dOgg3bt3lxNOOEHat2/vsjYCAAAAAAAAAAAAPh94a66qqiopKioyU0ZGhvz2228yd+5cGThwoFx99dWSnJzs7SYCAAAAAAAAAAAgiPl9qsnly5fLlClTJCsry9tNAQAAAAAAAAAAQBDz2Ii3d9991zzOmzdPXn/9damoqJA+ffrIiSeeKD169JDU1FSJjo6W0tJSE0RLT0+X//3vf7J69WqJiIiQyy67TEaMGCEFBQWyfft2+eGHH2Tp0qVSWVkp2dnZ8uSTT8rUqVM99ecAAAAAAAAAAAAA3ks1+cEHH8j7778vUVFRMmnSJDnmmGNqrKN13Dp27GimoUOHyi+//CJPP/20vPTSS5Kfny//+Mc/5PDDDzeTBuIefvhhk35SA3UrV66Uo446ypN/EgAAAAAAAAAAAODZVJObN282gTc1fvz4WoNutRkwYIBZX+n7t2zZYlumI+WuuOIK2+uffvrJ5e0GAAAAAAAAAAAAfCrwNn/+fKmqqpJ27drJscce26j36vr6PovFYj7H3gknnCCJiYnm+caNG13aZgAAAAAAAAAAAMDnAm/r1683j2lpaU16v/V969atc5gfGhpqRr6p/fv3N7udAAAAAAAAAAAAgE8H3rKzs81jeHjTyspZ32f9HHvJycnmsaSkpFltBAAAAAAAAAAAAHw+8BYWFmYe//rrrya9f8eOHQ6fY09TUKq4uLhmtREAAAAAAAAAAADw+cBb27ZtzePmzZtly5YtjXqvrr9p0ybzvE2bNjWW5+TkmMeEhASXtBUAAAAAAAAAAADw2cDbgAEDzGNVVZXMmDFD9u3b59T7MjIyzPpWAwcOrLGONZDXokULl7UXAAAAAAAAAAAA8MnA2ymnnCJJSUnmuQbdbrnlFnn33Xdl165dta6v89977z2znjVIl5iYaD7H3vr16yUvL88879Gjh9v/DgAAAAAAAAAAAKA24eIhWn/thhtukGnTpklZWZmUlpbKhx9+aKbY2FhJTU2VqKgoMz87O1uKiooc3h8ZGSmTJk2qUcftyy+/tD0/+uijPfXnAAAAAAAAAAAAAN4JvKm+ffvK3XffLc8++6zs2bPHNl+DbNUDbdXrw40fP1569epVY9lll10ml156qXneqlUrN7UcAAAAAAAAAAAA8KHAm+rZs6dMnz5dFi1aZKatW7eaum/VhYSESNeuXWXYsGEydOhQM+KtNi1btvRAqwEAAAAAAAAAAAAfC7ypiIgIGTVqlJlKSkpk+/btpk6bPo+OjpaEhATp3LmzxMTEeKN5AAAY2jGkoqJCwsPDTYcQAAAAAPDUtUh5eXmtndUBAIBv80rgzZ4G2mpLIQkAgLdkZWXJqlWrzKhsa+BNR2H369dPWrRo4e3mAQAAAAjga5HVq1ebaxENvHEtAgCA//F64A0AAF+Snp4uixcvduhZqsG3TZs2mWWa/jgtLc2rbQQAAAAQeLgWAQAgMIR6uwEAAPhS79LqF7r2dL4u1/UAAAAAwFW4FgEAIHAQeAMA4CBNL9lQDQVdrusBAAAAgKtwLQIAQOBwaarJ2bNn256HhITIuHHjal3WHNU/FwAAV9CLWK2j4Axdb8iQIeaYBAAAAADNwbUIAACBxaWBtyVLlji8tg+QVV/WHATeAACuprUTdGrMuhEREW5vFwAAAIDAxrUIAACBhVSTAABoT5TwcDO5el0AAAAAqA/XIgAABBaXHqnrG4nGKDUAgC/TVC1du3aVTZs2NbiurkdqFwAAAACuwLUIAACBxaWBt6FDhzZpGQAAvqBfv36Snp5eb1FzvcjV9QAAAADAVbgWAQAgcJBqEgCAg1q0aGE6itTVg1Tn63JdDwAAAABchWsRAAACB0mhAQCwk5aWJikpKbJq1SrZunWrKVyuNRQ0pYv2LuVCFwAAAIA7r0VWr15trkXKy8u5FgEAwA8ReAMAoI7epkOGDLEF3qijAAAAAMAT1yLDhg2TsWPHmsBbVlZWveknAQCA7/Fa4K2srEx+++03Wb9+vTmJKCwsFIvFIvfcc4/DenpyoeuqsLAwc/MTAABP0GBbRESEt5sBAAAAIAivRSIjI80jgTcAAPyLV6JYn376qZny8/MbXLegoEDGjx9vgm89evSQhx56yCNtBAAAAAAAAAAAABojVDxI03U98sgj8uabbzoVdFMJCQkm1ZfatGmT7Nmzx82tBAAAAAAAAAAAAHw88Pbiiy+a9JJKU3eNHDlSJk+eLAMGDKj3fSeeeKLt+cqVK93eTgAAAAAAAAAAAMBnU01u2bJFFi1aZJ6npqbKXXfdJR06dDCv161bV+97e/XqJbGxsVJUVGRqwp122mkeaTMAAAAAAAAAAADgcyPerEE3NXHiRFvQzVldunQxjzt37nR52wAAAAAAAAAAAAC/CbytWbPGPHbq1EkOO+ywRr9fR8mp7Oxsl7cNAAAAAAAAAAAA8JvAW05OjsPItcaKjo42jyUlJS5tFwAAAAAAAAAAAOBXgbeysjLzGBER0aT3WwNu1gAcAAAAAAAAAAAA4EvCPfVFiYmJJk1kbm5uk96/a9cu2+f4Iw0cbtmyRdLT0820efNmycjIMMtatWolzz77rMtSet5///1OrXveeefJ+eef75LvBQAAAAAAAAAACHYeC7x16NDBBN42bdokFotFQkOdH2yXmZkp27ZtM8+7d+8u/mjatGm2OncAAAAAAAAAAAAIPB4LvB155JGyatUqycvLkyVLlsiwYcOcfu+7775rgnXWz/FHVVVVtufx8fEmgLhhwwa31qwbN25cvYHKpKQkt303AAAAAAAAAABAsPFY4G3o0KEyd+5cKSoqktdff106derk1Oi1Dz74QJYuXWqep6amynHHHSf+6IQTTpCRI0dKWlqatG3b1sybMGGCWwNvrVu3NtsZAAAAAAAAAAAAARR401FeF1xwgbzyyism+HbPPffI6NGjTUCqvLzctp4u0zpw69evl/nz55u6aFb/+te/JDzcY012KQ26AQAAAAAAAAAAIHB5NIp1yimnyJ49e+Srr76SiooK+eKLL8xk74orrqj1vf/4xz/k2GOP9VBLAQAAAAAAAAAAgMbx+PCxyy+/3KQ//O9//2tGtzUkNjbWjHTTVJUAAAAAAAAAAACAr/JK3sbhw4ebWm0LFy6UX3/9VTZu3OhQ60zTSWottKOPPtqkaNTgGxrvnXfekaysLJO6MyoqSlq1aiWHHXaYjBo1Stq3b9/kz9XPbEhycrKEhYWZ56GhoU3+LjjHfhuzveEO7GNwJ/YvuBv7GNyJfQp14brJu/jtdy+2r3uxfd2L7etebF/3Yvu6F9vXvUKDaJuGVFVVVYkP0MCbjoCLjo4OmkDbhAkTJCMjwwTEnn32WZd85po1a+T++++vd52QkBCTuvOf//yned5Y559/foPrzJkzR1q0aNHozwYAAACAQMB1EwAAABCcXD7i7a677jKjqg499FDp3bu3xMTEOPU+DbjphOZLSUmRY445xmz/Nm3amEhyZmamrFy5UpYsWSKVlZXywQcfmDp7F110kbebCwCAaD+g8vJyiYiIaFKnEAAAAABwFtcfAAC/GvF2wQUX2J5rwKdz5862QJxO8fHxrvw6v+aOEW86clBTdepUm/T0dHnooYfM6EI9sZg2bZp06dLFbSlTNMinfyPcS/+vtW7d2jzft2+fWCwWbzcJAYZ9DO6ix5Q//vhDtm7dai589fjVrVs3OfzwwxkBAJfhNwye2r/03NeaNhDgusm7+O13L7ave7F93YfrD/dj/3Uvtq97sX09t30DnVtrvOmOqQcynb744gsT6DnkkENMAM4ajEtKShJ/SgXSkPHjx8vQoUPFWxoaNai186688kp55plnTO+er7/+Wq677rpGfUdjT0T4gfIs3d5sc7gT+xhcRTuDLF682ByPrHQ0ttZ+3bRpkzme6nELcCV+wwB4CtdNvoPffvdi+7oX29d1uP7wPPZf92L7uhfbFz4VeDv11FNl/fr1sn379ho7ph7Y/vzzTzPNmzfPzGvfvr1DII7eJe53/PHHy0svvSTFxcWybt06bzcHABCkPU2rX/Ta0/m6XNMnc24AAAAAoDm4/gAA+HXg7fLLLzePGtTZsGGDCezotHnzZtOLpLpdu3aZ6dtvvzWvdaihNRCnkyeHHs6YMaPZn6EHaF+nqUw04Kn/JtnZ2d5uDgAgCK1atarOi14rXa7reXMkOQAAAAD/x/UHACAgUk3GxMTIkUceaSaleZN12LY1EKfDuEtLS2u8T3On6rRkyRLzOjU11SEQpwEjd+nQoYPbPhsAAPx9QatpqJ2h6w0ZMoSC5wAAAACahOsPAEBA1XizFxERYQueKU1DuWXLFlsgTkfHFRQU1Hifjsj6/vvvzaS0Jtzzzz/vqWYHJC3cvXv3br8ZoQcACCw6Ar62UfD1ravnEQAAAADQWFx/AAACNvBWXWhoqClYqtOZZ55p5mntN2sgTqfc3Nwa79u/f78XWhtYfvjhBykqKjLPrYFQAAA8JTw83EzOXPxa1wUAAACApuD6AwDgaT51JOnUqZOZRo8ebV5rasoPP/xQVq5c6e2m+QRNwXn99dfbAmb33Xefw3IdMbh9+3bp06dPnZ+Rnp4uL7/8snmuw+ZHjRrl5lYDAOBIjz9du3Y1x/mG6HqkeQEAAADQVFx/AACCOvCmI9zWrl1rG/G2Y8eOBguf+os9e/bI+vXrHeaVlJTYHhcvXuywTGvjJScnN+o7dBTb/fffL507d5aBAwdKt27dzGfo6MLMzEwTwFy6dKmth4+ONNR1AADwtH79+pnOIPUd5/WCV9cDAAAAgObg+gMAEDSBNx3BZZ9aUoNTdYmPj5eePXvKoYceKv5Ig26zZ8+udVl+fn6NZffee2+jA29WOupNp7poIO4f//iHnHfeeU36fAAAmqtFixYydOhQ0/GktotfvejV5boeAAAAADQH1x8AgIANvO3atcthRFtWVlad67Zs2VJ69eplAm29e/eWQw45xJNN9Uupqaly0003ycaNG00vnuzsbBPUKysrk9jYWGnfvr1JQzl8+HBp3bq1t5sLAAhyWuc1JSVFVq9eLVu3bpXy8nJTT0HTu2hPUy56AQAAALgK1x8AAE8JqXJjLsdt27Y5jGjLy8urc10NrGmAzTpp4A3+r7KyUvbu3evtZgQ8HcXYtm1b81xHjlosFm83CQGGfQzu3r/atGljLny1U06gpJmG7+A3DJ7av/TcNywszNtNgh/iusn1+O13L7ave7F93YvrD/di/3Uvtq97sX09t30DnctHvH366admVNuGDRtMzbFavzQ83NQWs45m05FtcXFxrm4KAADwE5raJTIy0jxy4QsAAADAnbj+AAD4VeDtzTffrDFP0xxqfTbraDYd2h0REeHqrwYAAAAAAAAAAAACs8abpos888wzTU0x7UUCAAAAAAAAAAAABCq3Bt4yMzPllVdekTfeeEO6d+9uSy2pU3R0tDu/GgAAAAAAAAAAAPDvwNuFF14o69evd6jxpsVKdZ5O1iJ6nTt3NgE4DcbplJiY6OqmAAAAAAAAAAAAAP4beDv77LPNoxYm3b59u6xdu1bWrVtngm55eXlmmcVika1bt5rpq6++MvPatWtnC8JpQK5169aubhoAAAAAAAAAAADgf6kmQ0JCpEuXLmY67bTTzLydO3eaIJwG4zQQl5WVZVt/9+7dZlq4cKF5nZqa6jAi7pBDDnFXUwEAAAAAAAAAAADfrvFWXYcOHcw0cuRI83rfvn0mAGcdFbdnzx7butnZ2fLDDz+YScXHx0uvXr1MEO7MM8/0ZLMBAAAAAAAAAAAA3wq8VafpJHU66aSTzOvc3FwTgLNOf/75p23dgoICWbFihZkIvAEAAAAAAAAAAMDXeDXwVl1ycrIMHjzYTGrTpk3y4YcfysqVK73dNAAAAAAAAAAAAMB/Am86ws2adlJTUOoIOAAAAAAAAAAAAMAfeC3wZrFYZMuWLba0khs2bDDpJBuSmJjokfYBAAAAAAAAAAAAPhl4q6iokI0bN9oCbZpGsqSkpMH3paamSu/eveWwww6TQw89VDp27OiR9gIAAAAAAAAAAAA+EXjToJqOYrMG2tLT003wrSGtWrWyBdn0sU2bNu5qIgAAAAAAAAAAAOC7gbfXX3/dBNq2bdtm0kk2pH379rYgmz62aNHC1U0CAAAAAAAAAAAA/C/w9sUXX9S7vFOnTg6BtqSkJFc3AQAAAAAAAAAAAAisGm+hoaHSpUsXW6BNa7XFx8e78ysBAAAAAAAAAAAArwipqqqqcuUH3n333Q6BtujoaFd+PPyM7l7OpBxF84WFhZnHyspKbzcFAYp9DO7E/gV3Yx+DJ/YvPfcNCQnxdnPgh7hucg9++92L7etebF/3Yvu6F9vXvdi+7sX29cz2DXQuD7wBAAAAAID6ZWVlSXJyctDcfAAAAACsAr3ToltTTQLwDO2BkZuba55z8Q53YB+DO7F/wd3Yx+Cp/Ss1NTWgLx7heuXl5bYyDew7rsVvv3uxfd2L7etebF/3Yvu6F9vXvdi+7t++VQcDbnr+G8gC+68DgoQeEMaNG2cm68EBcCX2MbgT+xfcjX0Mntq/srOzvd0c+JnLLrtMLrzwQvYdN+C3373Yvu7F9nUvtq97sX3di+3rXmxf98rNzZWLLrooKM5/CbwBAAAAAAAAAAAALkDgDQAAAAAAAAAAAHABAm8AAAAAAAAAAACACxB4AwAAAAAAAAAAAFyAwBsAAAAAAAAAAADgAgTeAAAAAAAAAAAAABcg8AYAAAAAAAAAAAC4QEhVVVWVKz4IAAAAAAAAAAAACGaMeAMAAAAAAAAAAABcgMAbAAAAAAAAAAAA4AIE3gAAAAAAAAAAAAAXIPAGAAAAAAAAAAAAuACBNwAAAAAAAAAAAMAFCLwBAAAAAAAAAAAALkDgDQAAAAAAAAAAAHABAm8AAAAAAAAAAACACxB4AwAAAAAAAAAAAFyAwBsAAAAAAAAAAADgAuGu+BAArrN582b59ddfZf369bJjxw7Jy8uTsLAwSU1NlV69esnw4cOld+/eTn+eftaCBQvM5+pnJSYmSvfu3WXkyJHSv39/t/4t8C9vvPGGfPrpp7bX9957r/Tp06fe97B/oSGZmZmycOFCWblypWRkZEhJSYnZT1q1amX2r8GDB0unTp3qfD/7GOpSUVEhS5YskWXLlsn27duloKDA4Xg5YsQI89iQ/2fvPsCkqs4/jr/sLgssdekgoFSpyloQbBQhVgwoorFrbFgSTTSJyd8WNRo1icYaSyyJXUGj0RgUULFgA6SIlKX33hbYZZf/8zvJnczOzuzM7k65M/v9PM88Ozv3zMzZe+/O3HPec94znXOsVtm6dastXLjQ3XTMddu+fbvbNnjwYLvqqquq9HrxOH9KS0vtgw8+sKlTp9rKlSvd56TO4379+tmJJ55oHTt2rNbfiuSfE+vWrbN33nnHZs2a5b7z9u3bZ/n5+XbQQQfZ8ccfH/OxnD9/vjuvvv/+e9u0aZM7Rxo1amT777+/HXHEETZkyBDLyclJ2nleE5m4f+PdXquJTNu/RUVFbt96f4uer/1bXFxsDRs2tA4dOrjPVu3jxo0bW6Jl2v6Nd1uwpjJx/44dOzam9+ndu7fdeuutlmiZuI/j2dasqUzbvzon586da1WRyM+KTNu/8W7H1lSm7t/i4mKbPHmyTZs2ze1fXVvoc+GAAw6wY4891o466ihLljr7tCcA+IK+sL777ruo5fRBccUVV1T6YVNWVmaPP/64uwiJRA2Wyy67zLKymPxa2y1ZssRuvPFG96UWywUU5xdi8e6779oLL7xge/bsiVjmpJNOsgsvvLDC45xjqIwu5u+++25bvnx5peVOOOEEu+iii6xOnToVtnGO1U6VdYhVpYEZr/NHHcp33XWXa+iGU7duXbv44otdAxz+PifUSfDXv/7VdaaEo+v2888/330uRaKm+dNPP23/+te/Kn0vdV7ouq1ly5YJ/ZviIdP2bzzba/GQafv322+/tTvuuCNqfRV0u+aaa6x///6WSJm2f+PVFoyXTNy/fgu8ZeI+jkdbM14ybf9WNfCmNtajjz7qAkaJkGn7N17t2HjJxP27atUqu+eee9zPSA4++GD7+c9/bvXr17dEY8Yb4COK5otGBWhkjkZK6sNEnTuK+r/99tuuzEcffeQuin/6059GfK2XXnop0BnUuXNnO/XUU61Nmza2du1aN5Jt8eLFbrui/meffXbS/kb4j86vv/zlL+6catq0qRv1Eg3nF6J5/fXX7eWXX3b327Vr5zqNu3XrZnl5eW4Ulc6RL7/8MuKFJOcYItEFfXBjRaPfTj75ZGvfvr0b5aoZCG+99ZZrhOvCXQ3BUaNGVXgdzjHoGmu//fazmTNnVvm58Th/9P173333BYJuAwYMcDPlNKpzwYIFNn78ePedrACfzmNmYPr3nPjkk0/ccRJ9z51yyinWt29fFzjVuaBzYs2aNa5DQefEkUceGfZ13njjjUCHQ4MGDdxnm9oD6hhQB4I+2/TZp5sCtupY0AjpRPxNiZAJ+zee7bV4y4T9Ky1atHABny5duri/qVmzZq5DbuPGjW52wBdffOGuJfX83/3ud24EezJkyv6NR1swETJt//7gBz9wt0iS0eGbyfu4pm3NRMiE/XvllVe69lRlNNP7/vvvd/eVnSFRQbdM3L/xascmQibs361bt9rtt9/urhdk4MCBboacrtk2b95sU6ZMcdcR+ht1Dv/qV7+yRCPwBviIPuR+9KMfuQ+H0NHRPXr0cCMnb7rpJlu9erX7cBsxYoQbKRXK+1ASpTu67bbbLDc31/2ui5HDDjvMjWRRR4/KaUR227Ztk/RXwm80Ukzngs6/ww8/3H3hVYbzC9EovYDXEIo04lsX6eqoDjcqinMMlfnqq68CjRV9N/72t78t952pdBY6R37zm9+4TqQ333zTRo4cWe7CnHOs9hozZow75rqpM1dpUa6++uoqvUa8zh81/tTAFnXOXXLJJYFteh0F2n75y1/arl27XGNV53YsnahI7jmhzpFnnnnG3VfngD6TgtNa6XXVyXDzzTfbsmXL3LE85JBDKnS66vvQS/Om70ydV8EBBX3eHXPMMe51FJjV56A6FdVuiPffFE+Ztn/j1V6Ll0zbv+qs0+yJSFQXBd40aEHv+dprr9n1119viZJp+zcebcF4yuT9qw7mRKY4rM37uKZtzXjKtP3bunXrqHXWwBKP9n8iZdr+jUc7Np4ybf++9tprgaCb/rbgGX0aKKn3fuWVV1w5padVEC6W78maIG8O4COKtutDKVJKIl28aXquRx8S4SivrpcmQlOTvc4gT7169dzjonIamYnaSTnRvYvWSy+9NKZ0OJxfiDZq9sknnwyM4Bo3blyl51W4bZxjqIzyvXs0AjDcd6ZGyR966KHu/s6dO926WcE4x2ovNcB0bqhxWV3xOn+84J1muJ133nkVtitYN3r0aHdfI0XV2Qz/nRNaj8qbIaKUVuE6WjUC2LuGV1kFXUPpc0qfV6KOgXCzeNTx4p0TohlWifib4inT9m+82mvxkmn7N5bUzpodrNkBEkvaz5rItP0bj7ZgPGX6/vWDTNvH8WhrxlOm7d9otP+1JrEoeKI1txIp0/ZvPNqx8ZRJ+7esrMw+/vhjd19rPCrwFo4e99JUJmOgCYE3IM0E51lXOqNQSsOhyL9o1JpGBoSjx70Gi0ZdsNxj7aSLVk1pV/7mWEbjcn4hGq3NoVHe8sMf/rDKo7M4xxBN8MhVpfaLJHhb8HM4x1AT8Tp/NGvOa0grXZ2CdeEoPYqHwJs/Ba/PV9l6U7qGV9qdSMGYmn62Zap03L/R2mt+ko7710tDJSUlJeZnft+/VW0L+o3f928m8Ns+rmlb02/8tn+jmT17diDlsmYKRbp+9Qu/7d9M+6zx0/5dvXq1FRUVBWa8RhrIo8c1s1AKCwvdLL9EIvAGpJngD5dwHyT60FDuWunVq1elr+VdXOuLUwt8onb59NNP3fTqSCPtw+H8QjSfffaZ+6l8+t5ILdmxY4e7GNLPynCOIRovmBGtQ9PbpnMxOM0f5xhqIl7nj5diMrhcOBqBqrVLQkfJwj+0loynshHD6hzUNZc3StebNenRcfbWoonlsy308zBTpeP+jdZe85N03L8auLBkyZLAAAg/8/P+rU5b0G/8vH8zhd/2cU3bmn7jt/0bzYcffpi0NJOZuH9r2o71Gz/t3+0x1kW0nqkn0TPn/X0VCKCCuXPnBu6Ha2hoodPKtgcL/qAKfh4yn6Zxe7mYzznnHJcWJxacX4hGObe96f0ajaxUFD//+c/t4osvtp/+9KeBn8rhHW6UMucYojnqqKMCI92V915pJUJpIWd1JnnlleLCwzmGmojX+VOV1/G2a82CaAveI/mC16nwRtqGo1mPWq/PC8wofWgwfU7p80r0+bV06dIKr6GOigkTJlQon8nScf9Ga6/5SbrsX60jo051pe695ZZbAp12Sm3lZ37dv9VtC/qNX/evN6vjuuuus3PPPdelWfvJT35iDz30kJsxlE78to9r2tb0G7/t38roGtTLvqD9Hzy726/8tn9r2o71Gz/t3/ox1iV0e6Lb+MlN4AygRvShHJyDVusLhPIWkpQWLVpU+npeXtvQ5yHz/f3vf7ctW7bYgQceaMOGDYv5eZxfiPYZ5aVOa9y4sVs8Vwu2h1LHic5BpWvTWikNGzYMbOMcQzTqHLrmmmvsgQcecDOAbrzxRtfxppFyahDqMXXM6aJeiygHr7UjnGOoiXidP16aHmnevHmlr+O9jxqtel5tGWWfLjp06FAu4KK1OcJRR0pw4FRrK4UGZfR5pe9RldUC8iNHjnRpS9WZoFk+//znP11nhFI7XX311e67NtOl2/6Npb3mJ37ev1oH5pFHHom4XevjHH300eZnft2/1W0L+o1f92+4zlx1NOv20Ucf2eGHH25XXXWVrzvU/biP49HW9Bs/7d9oFEzWIAg55phjAjOU/Mxv+7em7Vi/8dP+bdu2rZtZpwBdtFlswdtVl0Qi8AakEX3QLFy4MLCodLgPteAPs+CIfzjB+ZgZQV176Etm0qRJ7ktJi2hX5YKJ8wvRRg556xgtW7bM5fzOz893Iz0LCgosNzfXfYY9//zzbrSiLiwfffRRu/766wOvwTmGWBx22GF2991321tvvWWTJ0+2hx9+uEL6iDPPPNOOO+64CmsPcI6hJuJ1/nijPmv6Okg9rWnhNfTVWaLUS6GzR9RZ+NJLL0U8B4JT4/z2t7+1Dz74wI3qfeWVV8pt1zWbOsnVGeH3mVS1df/G0l7zk3Tbv3LAAQfYZZddZt26dTO/8+P+rUlb0G/8uH/1na0UiFpjSOX0Hb9t2zbXKT1x4kSXDk0BoXvuucf+7//+z3Jy/N0t66d9HI+2pt/4af9Go6BxOqWZ9Ov+rUk71m/8tH/r169vffv2tZkzZ7oAnWbDhhuco8f1+VFZXeKJVJNAmtCF2gsvvBD4INZFcjjFxcWB+9Eu4rzFLUOfh8ylkTOPP/64u2A9+eSTrVOnTlV6PucXKuONgBOl9tCFotIBaUSccnqrMaS1jPTY/vvv78opXYWXMkQ4xxDrZ5nWGPjqq68CDfBgW7dutY8//thmzZpVYRvnGGoiXudPcPojzsP0ppmNI0aMcPc1I/Gmm25ynarqINTx0loWd911l82YMaPcsY50LJWGTJ9f+hwLpc87fe5pJlDoovKZKp32b6ztNT/x8/7VrKD77rvP3X73u9+59HEKZmp9N80W+Prrr83v/LZ/a9oW9Bu/7V957LHH7Nprr3Wd5j179nSB4oMOOsjOOuss+8Mf/uBmsXifF//+97/N7/y0j+PR1vQbP+3fyihzw5w5c9z97t27p032BT/u35q0Y/3Gb/v3jDPOcIFAUUDz9ddfdzPaVF4/9bseD65LolPS+ntoBQBn+fLldu+997pRBOp8Ua7w4MUgg+liwxPtyzT4Ayb4echc48ePd9O39QU5ZsyYKj+f8wuxdg6LRiSFuyjX+fCjH/3IjfTyFnfXBby3zcM5hnA040cX8BqxnZWVZaeeeqoNHTrU2rRp4y7iNdL1tddes3nz5rnvzvPOO89OOeWUwPM5x1AT8Tp/gj8v9TqVnV+ch/6nzxkt+D59+nSX4kqfPaG6du3qbl5Hq7fGR7B33nnHnn32Wde50KtXLzv99NPdrB4dd6Uo08hozajSuiD6jPvNb34TdcZkJkiH/VuV9prf+HX/Kj1ccIo4vZbWdNGsC3WcacbQuHHjbMiQIeZnftq/NW0L+pGf9q9UltZQMzp+9rOfucCcPiv+9a9/+X6dQj/t43i0Nf3IL/u3MgqGeEGiwYMHWzrx0/6taTvWj/y0f3v06OEGPT3xxBPuM/bll192t2B6Pc2S/etf/+p+T/R1NDPeAJ9bt26d3XHHHW4BZH0w6yJNo3giCf7QiJaOKHjEUG1otNd2amR5a05o0eHqHHPOL1Qm9ALq4IMPjlhWaQC80UhKE+LhHEM0r776aiAv+xVXXOEunJVuQiPXtFaGRhVrpKsW/NaF+9/+9jc3Ot7DOYaaiNf5E/x5yXmY/tQZ+Mtf/tIuv/xyN7shOHWbgi+nnXaa3XbbbeVGNod2ziotjtfhoBRl+hzT55k+1/T5pnU01LmhFHuiFFqhaXgyld/3b1Xba37j9/0bSqmsBg4c6N7rqaeesh07dpif+WX/xqMt6Ed+2b+xUge7XlvUmRy85qtf+WUfx6Ot6Ud+2b+xpJlUXf2+dqmf929N27F+5Kf96wXk77zzTjdDPjhVpz4PlObz97//vQsCehK9BiQz3gAf00XY7bffbps3b3YfXhrRp5QblWnRokW56eCVCV5EMvh5yEwaHaJR9brYVyfeJ598Ena0bvA0by26LcpTr8YZ5xeiXXQpp7fWMYh23DXSSAvi6hzzyoc+h3MMoXQxrtFuokWoI41y14W1cuNrYWY9RykpLrzwQreNcww1Ea/zp3nz5uWu90LXQwjmvY+uBYOfB39RwEWpxXTTehFKk6PvOs1w0DavkzXcgvSizzavU2Ls2LGB54TrUNBoX40q1mebOiLSeY2mdN+/1Wmv+ZFf928k2sefffaZa9MohVW4dVz8xA/7Nx5tQb/yw/6tCr2/Zod4nyHp8N3uh30cj7amX/lh/0aiwOWKFSvc/UMOOcSl9Uw3fti/8WjH+pUf9m8wra+rtR01603XZ/ru0+eslzkkeL3Cjh07WiIReAN8ShcHGjmpKbty0UUXxTSlO/gDTKPaKrNq1aqwz0Nm8lJV6ZzSugjRKP+x56GHHnKNLc4vRKMLFy//uxbSrYy33RuNKJxjqIwu4r2R7d4aGZHogjvaucI5hqqK1/kT+joaIRqJ9z7qYPJzxyfKj8oPHZmv7zxv1LI6vkODrcHnU7TPN21Xp4M+D/W5qI6N2sQv+7e67TW/88v+rUzw+69fv97SSar2bzzagukgHc7fdB8skcp9XNO2Zjrw2zms9cg8fMdVf//Gox2bDvx0/mZnZ7vUyqEKCwsD95XOMpFINQn4kBai1NRYb1TJ2WefbSeccEJMz23durXl5+e7+94U5ki87Yr8t2rVqsb1Rubj/EI0ysft8TqiIn3Obd++3d0PHuXJOYbKBI9+0wi2ygRvD34e5xhqIl7nT8+ePQP3586dG/E1NFJbjUs58MADa1R3pJZmj3jfe4MGDaqwPbhjMFpnYvD6gunWoZgp+7cm7bV05LfzNzg9X7oEhNJp/2Yav+1f73ND0mG2m5/2cU3bmukqVeewymqNPFGwpKCgwDJRMvZvPNqx6Wq2jz6D9fpffPFFYFBjottX6X/0gAyjtA9abHPx4sXud+XDHTVqVJVGT3npTTRqYP78+WHL6XFvVIHy3Kb7qCtEd9VVV7k8yJXdghfZVl5l73F1NArnF6I54ogjAve9C5pwtM1LJxDcAc05hsootYk3gk7nQGWNluBghvcZJpxjqIl4nT/t27d3azqIly4tHKVR8WitAqQnfd9pXQ+vk2D48OEVygR/TlUW1FWHw4IFC9x9rX2Rjimf0n3/1rS9lm78eP7qc9PTqVMnS2fJ2r/xaAumI7+dv1oT8ttvvw3M/MiEoFAy93FN25rpKJXnsFL5eqk6ldI3E4P5ydq/8WjHpqN9PvsMnjRpUmA5gBEjRiQ8sEngDfARfYjcd999bqFIOemkk+yss86q8uvoed6Hx9NPP23FxcXltut3Pe598J188slxqT9qB84vVGb//fcPjITT2hGzZs0KO4Pj5Zdfdve1WO7QoUPLbeccQyQ6L7S2gChf+/jx48OWU+qJ559/PvC71iYJxjmGmojX+TNy5MjA+fr3v/+9wnathTBhwgR3v23btgTefEyjeL00buFG1j711FOB6/vRo0eH7UQJ/px64YUX3Gj9cNQJrs8/0fdtbRgU4Kf9G6/2mp/4af9qsEHoZ2qot99+O7A+luoSPAPGj/y0fzORn/bvV199VWlnutpAf/jDHwIzNo4//nhLB37ax/Foa/qNn/ZvZWkmjz32WEtHftm/8WrH+o1f9m+4GfHhZt4988wzgXX2TjnlFEs01ngDfOT++++3mTNnuvt9+/Z1C0cuW7YsYnldRGjEdCg9duqpp9obb7zhFkK96aab7Ic//KEbUaXp+FqM0huhqU4ffeAAseL8QjQXXHCBG8W1c+dOu/vuu12nsy6MtJjtwoUL3bmzceNGV1YLB4eO9OQcQ2U0GlsdG5pxoNFzytGu9QZ0fuiiX+feO++8ExjJ1q9fPzv44IPLvQbnWO01b968cot7e6N4RY8HzzCTcAufx+v80WtrMXE1Rt977z3XUaRFyTV6U5+VWl9HC5SrUam1ozJxlHGmnBNab0YdC0cddZT17t3brSeh4IGu499///3Auhb6LtTsqHD0OaXrf3UKLF261H7xi1+4oI7Wnqhbt66ri84XjT6XevXq2RlnnJGwvyleMm3/xqu9Fi+Ztn/1vf7cc8+5WS2apaLPVaWS3L17t6vPxx9/HOjA07697LLLEjpaPdP2r99k2v7VoJsnnnjCnb89evRwHcxq/+jv0gyWiRMnBtKt6fxORuAt0/ZxPNqa8ZSJ+zc4APTNN98E1tYLXncsWTJt/8ajHRtPmbZ/5ec//7kbkKMgp85bPV/7U7NgdQ2hGXhqa1133XXuMyPR6uzz5t4CSLmxY8dWqbzWC3n44Ycjjiz4y1/+4j6cIlFDMdGNFaQXjSB57bXXAulF+vTpE7Yc5xdiuYjTiE4teBuOOpI14inSKHHOMVRGKXoeeOCBQOdFJLqA/9nPfhY2DQXnWO2k66bg0buxfC+GE6/zRw1cpaxTAC8cNRYvvvhiF5CDf8+Jzz//3P74xz9GfI6+89RZcckll7hjWlknl7471YlRGa2z8pOf/MQOOuighJ7n8ZBp+zee7bV4yLT9q3SI69evj/p3aF2WcePGRfwfiJdM27/xagvGS209fxWYu+KKK6xhw4aWaJm2j+PV1oyXTN2/8u9//9uefPJJd//cc891g86SLRP3bzzasfGSifv3vPPOi5jCXxSMu+aaa+yAAw6wZGDGG5Ch1Mmjxogu6jTKQB06+mBv3Lixde3a1eWyzdSFUZF4nF+IRqM4dQH27rvv2pdffunWM1Balfz8fDcS6sQTT7TOnTtHfD7nGCqjC23NOlCOdo18W758uRv1qhlBzZo1c+eI1iGobG02zjHURLzOHzUe77jjDvvggw9s6tSpbl04zezQ6Gw1uDXaUw1E+P87T51S6izQMVRHoD579J2njmuluerevXvU11Hnys033+xGQ+t80HmlmZBKXaYOWp0L/fv3D8yMrC3Yv7Vn//7mN79xMyzUqa4ZxHq+OuM0Kl2fl+ooU0qqQYMGuRHv6cBP+zcT+Wn/KvCmmW2ataLzV9cFmrmuWZsKFmsWnDqg9TOd+Gkfx6ut6Sd+3L+i2UHeNa/aVenKb/s3Hu1YP/Hb/r3iiitcZgI9X2kp1a7S9YPS1A4cONCOOeYYN2M+WZjxBgAAAAAAAAAAAMQBeXMAAAAAAAAAAACAOCDwBgAAAAAAAAAAAMQBgTcAAAAAAAAAAAAgDgi8AQAAAAAAAAAAAHFA4A0AAAAAAAAAAACIAwJvAAAAAAAAAAAAQBwQeAMAAAAAAAAAAADigMAbAAAAAAAAAAAAEAcE3gAAAAAAAAAAAIA4IPAGAAAAAAAAAAAAxAGBNwAAAAAAAAAAACAOCLwBAAAAAAAAAAAAcUDgDQAAAAAAAAAAAIgDAm8AAAAAAAAAAABAHBB4AwAAAAAAAAAAAOKAwBsAAAAAAAAAAAAQBwTeAAAAAAAAAAAAgDjIiceLAAAQL1OmTLFHHnnE3R88eLBdddVVqa4SgP+aM2eO3Xbbbe5+79697dZbb011lQAAAFANametX7/e3X/ooYesdevWSXlf2nupkS7X8ZwfADIFgTcAqCZdqM6dOzfstrp161peXp41aNDAmjZtap07d7YuXbpY3759rWXLlkmvK1CbBTfePIcffrjdcMMNMb/G8uXL7ec//3m5x1q1amUPP/xw3OoJAACAzKZA15dffmkzZsywtWvX2pYtW2zv3r3WrFkza968uWsvHnroodatW7dUV7VWCw5ShZOdne3a+2oPdO/e3Y4++mg78MADk1pHAIC/EXgDgAQoKSmxrVu3utuaNWvs+++/d4/XqVPH+vfvbyeeeKL7CcBs3bp1dvXVVyc1mDV9+nTbvn27NW7cOKbyH374YcLrVBv2OwAAQG20bds2e/XVV+3999+30tLSsAE53dRufP311+3ggw+28847zzp16pSS+qJyOoZqS+hWWFho7733nmvfX3nllS6ICgAAgTcAiIOuXbuWG5W4b98+Kyoqsp07d9qKFSsCKTz0uDr8dRsyZIhddNFFblYcgOTSyOJPPvnETjjhhKhly8rK7OOPP05KvQAAAJBZ1B688847bePGjeVmTGmmlLKhKFvK5s2bXdBt165dbvvMmTNddpVrrrnGBg4cmMLaQ44//vgKA203bNhg8+bNs+LiYveYZjFqltwdd9xhDRs2TFFNAQB+QeANAOKgoKDAxo4dG3G7Uoh89NFH9u677wYaXEp/p/R1ujjPzc1NYm2B2qtt27YuEK5RqvqfjCXwNmvWLNcZIh06dHCdJwAAAEA0um686aab3IBML+A2cuRIdwvNvKBgzqeffmp/+9vf3Aw5/f6nP/3JZSg45phj4l63VGU70ABU3dLJj3/847CP6zg98cQTNm3aNPf7ypUr7cUXX7RLLrnE/KZPnz72yiuvpLoaAFBrZKW6AgBQGyjdxKmnnuoaTsEjFhctWkR6NyCJ1MGhQLksXLjQVq1aVaU0k8cee2xC6wcAAIDMoJlQav95Qbd69eq5INzZZ58dNt25Zr4NHjzY7r33XmvXrl0gY8rjjz8e0zUrkq9JkyZ27bXXutmLnkmTJgVmLgIAai8CbwCQRPXr17frrrvODjnkkMBjn332mUsjAiA5gkfYRlu7TY3mL7/80t3ff//97YADDkh4/QAAAJD+JkyY4DKceDRzrXfv3lGfl5+fb//3f/8XWJJgz5499pe//CWhdUX1aRbjD3/4w3Ip7b/77ruU1gkAkHqkmgSAJKtTp45rdF111VWBkXBqlMXSCFOqEqXHU+o75ZTfsWOH5eXlWZs2bdwC3CNGjLDmzZuHfe5f//pX+9e//uXuDx8+3C677LKY6jt16lT785//HEiz98c//jFiWS0urRSaym+vUZlKvaGRm2o8KrXF0KFD3Xp48aRRoJ9//rlL76EZhErr6c0y1Lp7RxxxhLtpv1fm1ltvDQRAb7nlFldf7WMtgP7111+7+2pEtWjRwi2crRSFSltYGaXyeO2119z9MWPGuHSkGvmqYI/WF9M+0j5r2rSp9e3b10aNGuX2cbDdu3e7farya9eudSNmdYx1vEePHu3qEyu9ls6fb775xpYtW+aOT1ZWlttXPXv2dLO5VI/KqC6PPPKIu68RuTqP5YsvvnCjO5cuXWpbt25156WCVHpNpcYJt/+DX8ujNJCR0rbGKzWKAt8aZax9r7XbzjrrrIjnh84tdXZ4f291qMNFf6v+b5VqVv/3en+NZNa5dNxxx4Ud9ZxO+3327Nnuf0WzCJWWUyO6O3bsaIMGDXKfNzk5XHICAIDaQ9eP7733XuD3ww8/3LVJYtWqVSs744wz7LnnnnO/K5Cj66zgdcUra8foemzy5MluAJnaMbruVyDvmWeeCTxP15PeWuQPPfSQtW7dutI6ffvtt+66U2vR6fW0jpnaQ0ceeaQb2KZBpuHaP7Fe1wabM2eOW5JB1E7W3+jna84DDzyw3O/r1q2L2HbVMdE1/IIFC1zbVW1MzZzr3LmzDRgwwF3DK5gXiV5b/QneeeJl0NF6c9q3+ql9ozbHSSedZBdeeGGl+7Qyatcr/amOuVdXtV1VV53TRx99dJX2eWFhof373/92x1F11Dmj805ZgdQmatSoUcyvBQB+Ry8IAKSALijVyPACYWrEKIgW6UJT+f2ffvpp19ApKysrt03BA93U+Hjrrbfs3HPPDbtulTrivffTLLuLL744potkBSY8la0toNd+6aWXrKioqELd9Zjy3U+cONE1yi699NK4NIpWr15t999/vy1evLjCNgWpdFPAqkuXLm6moQKUsfrqq69cAzT071GwTDc1+NSIUQMvVqrPfffd54IkwTZt2uQCYjouN9xwgwvGiI6pymt76OuowaJj85vf/MZ69OgR9b312jqHvMBksDVr1ribGmoKSv3kJz9xAZxYaP9oP2l/BVNjXOe1bgreXn/99b5Zy1Dnnhrn2ofqiFAjNFLAUcdFFKBUw3LJkiUxv4/WkXv22Wfd+4T+36qhqZs6Sd5880274IILqrTWhV/2uxrfTz31lH3wwQcV/u/VQaSbOn10nqpDAQAAoDbQtbfad55TTjmlyq+hdoYCWRo8J7qmDBd4C6XAjgJbXorLeFzvPfroo+XahaJ2hW4K9CjIqHZMbb3mVBAyWGgbUtQGVJAsXHtCg/N007X9G2+84a7hQwdkVrZvNMhW7dN40YA+Db7VwMFQaj/ppvNMA4jVdoxlcK36CvS3BbeLdPzUl6EBtOpPUJsdADIFgTcASBF1/HuBMI18U4PlsMMOq1BODa0777zTjTLzKICkYJIu8NWg0zZ14ms2lS66daF/2mmnlXsdNdI0w0bBKjXCNOtJI+oq43Xii2bORAq8aeTkO++8E/hds3cUDNJMKl1MKzCmWT/6O9UgUl1/9atfuWBGdWn2n0bpqY6eTp06BVIBqkGjWV3eyDqla9EIv/bt20d9bV34q2GgRoz+Fo0I1L7WiFAFShRQ0b7Wegv6G4YNGxb1NTXi8He/+53b/xptqtfU/lFjVSP+NCpW+0qBNt30HrfffntgdlSvXr3cTzVyVF7btU1rQDzwwAOVBsrefvttt0i79r/o/XV8NFtODR8dG+0jbdd5of2q99YI0sqoDn/4wx9cg0zBLI301LmpfaPzWXX1RkoqAKWAa7D99tvPjj/+ePd3eAEu1S0Z66gp8K3OC9F7hwu8ecdbNMNQxytW2q/aN8GBMQXWddz1Uw1rBfx0jun/UZ0j+r/VqNRo/LTflfZIMzj1+aC1LfT/pfNII3i9tUj0/69OhhtvvLHKrw8AAJCOdJ3n0TW3ruWrSrOB1D7UYKrQ14xE7cJXX33VXS8GtyEUSKnKALJgGuioGVqRrml1vaxBlnfddVfY9mw8+P2aMzTIGdo20z76/e9/H8h4oxltap9rxqDuq92h63i1B/X3qO16xx13xBR8U1vcC7qpPaz0+HpNtTujZX0JR+1TrUWowZ4etTW039X20LHWfhe9h9rYv/71r10GlUheeOEFF3TzqJ2pmZnKjOO1h3Uu6Rw6+eSTq1xnAPAjAm8AkCIKnClo4434mj9/ftiGypNPPhkIuilwphSRukgNptfQxbY62XWxrpGRCiSEzoRS4MxLG6cRi9ECb5otpkabqNHWsmXLCmU0C88Luqnz/vzzz3dBjdAZbbqY1gwdzd5SQECz84Jz4VeFghUKNnlBN6W7uOaaa+yggw4qV27mzJlupJ5G0amxqecoiBlttp0XdBs5cqRLQ6h0mR41CPSaXt5+zSJTwzNa2kkFeXRslEJD+8hbs8F7TTWs1IhR8OT11193wTAFXZViRiklg+usbQqMqZGiv0v7X6lcwlFwxgu66TWU7uXEE0+sEFRTQ1x/lwKauq/nXHLJJZX+TUrvqb+poKDALr/88nJpTnXeqIGl4yw6P3W8g1PYqPGmm9KleAEgNeB//OMfW6J5DXY1bPV36D1D94nq5AUrqxqU0t8dHHRTGlHt++DjqOOnzgGdp6J97u2TdNjvanCrE0EjXJXuRgE9j/bbu+++G0hnNH36dFc2lpS6AAAA6U5BFE+0a7vK6Lle4E3BGbWlIi0tIAq6qW145plnumvA4GtPXT9Wldp6wUE3zdz70Y9+VK59pPaIBpHpes8b2BZP6XDNGTxIVoKvvXXN/6c//SkQdFO74pxzznFBp2Aqp7a/9rcG5Cngec8991Q6WFXtSO1zBXc18yw0wFudY67ZjV7QTe2jK664wo466qgKA1VVP5VTm1XtbA0eDZ35J16GD4/SSqpPIzjbj/5eDWpVWsvx48dXuc4A4EfVn2oAAKgRXcQGr8+lBksoBXe8jnGNMlOwJTToJroY/8EPfhCY2aLGlpdbP1jwjDXNbAqXAiOY18iLFHhQ40HBAlGjTiPzFFgKF9hSIFDbvUbaP/7xj8DaWVWloKGXrlGj+TTCLjTo5s1S0ohHL0e+RkEqmBiNgm5aL++8884r16gUHTO9ptfg098Qbl+HUqNH+1+BkuCgm/eaetyj0ZyagXb66ae7wFvo/tQ6BqqbJ9LfpPNAjTcveHTttde6AFC4mWyaKXjzzTe7IKYojYsactH+JjXufvGLX1ToANA+V9pTL+2I6qCGlJ9457TO4+AOBY/3v6cRq1rDIFb6v1Lw1KMA7tlnn13hOGoGnfadt4+8oFk0ftnvqocGA2gtkeAOENHoWs3eU8PaE8v/HgAAQCbwMhB41+7VFfrcSGuHeXQ9qaCb2hGh156h7Zpo1JYIXutXqS81gDD0ddR+UJpJXX9WJ9CT7tec2k/BgSXt9+AA2Isvvhho62sApIKHoUE3r23ws5/9LJCJQ9lbtN50tPdW204z1MLNqqzqMddgWQUvPUr9GBp0Ex1rvac3s0/tRgVAw9Hf77VH+/Xr59qkoUts6HUUOFT7XW1xAMgEBN4AIIWCU1CEy8GvFIEeNXKi5avXGlFeY0SzaDTTK5iCd97Cz2rAVHYhrzW/vBQSumAPbsx4lDbSq7cCf9FGcypVhmbDieqmmW/VEZy/Xu+rxZ0jUQoPBQM9sYzCVGBMoxArS/sSvF1rOEQLYqoBFhwsC6XUHMEzCtWADU0XGkyLs3uNac3a8kZQBvv6669d+g9R4CjaDEc19rzUHmq06++KRmuTRVr8Ww3hoUOHBn7XmnV+C7x56Ve8IJtHM1C9fadzvyrrpClg7a3FoeOozo9I9L8VPNNMKYS8dDnpsN8VUNT/QyR+Pv4AAACJoHaBlzVEws0CilVogCJ43bhwFNCpblaRUGqreWtNK7hTWfsoWlsnU685lYFFs9m8drNoGQJvoKW2e2vjqa1V2T70BtQq44ondF29cJRCPpblFKrazlY2Hq3/HYlm9Skzi0fruXsBNo+yqQTPBrzooosizuDT49penfSYAOBHBN4AIIWCGw+hgRM11rz11XThfuihh8b0mt6MOF30hqa8CJ31VtmFfPA2vXe4NcSCR8MdffTRMdUveC2t4BQssdJ+UmqLcI2sSILXYNNzvaBIJJH+3mBqhHiBUAUxFaipjEYgRlsjLHhEq+pQWUpMBYIUSPWOtVLPJPv4eGsNVsZbc0/C1TGVFOj00tAoJafWHgyedejxgsVVGSnq0QjRaEE7BYe1HkO45/t5vytoGO1zKTgo7rfjDwAAkAihbY3KAkbRhD433GC7YBowFmlwVlUFrymntk+0AKKuq8MtTZAJ15xPPfVUuZvWnNMSBldeeaVLA+9RACw4cKb2vDeDS4MgYxnMp8GsXoaSWNrL4WakxeOYx9LOVhkvUKa2VOgAwuDXU/sl2pp12n81Sc0KAH7CGm8A4JNGWWj6QaVS9FIxKgCjtcRiERyUCk5x4hk0aJB7LQX2lG9daSGCU17GmmZSgoNNGh0XHKyIJDh9YbRUhuFov3jr4qkhqsWjo1EQQo0X7U89V6/hzfwLJ3RtvEgj8pRiwwtuKY1l//79I5aPJcVMcGM2lvKhefErOz5qEOp4RxP8OtGOTyx11GLusXYUpIKCamoQ6rxQsPnUU091jWMvPaNGcla2UHg4wQvXV3aeBVM5pZPxzqV02O9qGEdbLzH4HPXj8QcAAIi30GBZtEF/lQl9bmibMVS0wVnVvaaNNRiiAWXh2qDpfs353nvvRS2jpQ8UiAuuS3B7TNf6CtpVhbLL6ByIFLxVkDV4AF9NaHZj8PIXsbRjNBBVx0drlXvtmOB0oMHtmlja2F65aINaASAdEHgDgBQKDnKEphEJnn2jtIyxXOyHCpe+Uh3yBQUF9tVXX7mZUsqBr2BDMKXn8NLsqXy4gJIaAMGNGi28HY/6RaN0HR4FDGNJRaEgmUZfeg2C0BScoWIdqRlcLrhe4USbQSfBo1OrWj44nU24c6g663xFS2UTjzqmmkYFqwGsoKzSTep/Qf8b3rkZnI4yVsHnQqtWrWJ6TnC5aOenX/Z7LPUI7iTx4/EHAABIxDWSrsW8a59o19SVCX1uaJsxVLSlCWrS7opF6PrDmXrNqeOreukaXsFGZRcJN1gvuD2m2WvVyfiidkmkwJvOh3jNcAw+3pqZF+u5pH3gtbND28TBv1enjQ0A6YzAGwCkiAJXwTOKQtMQRlszLBaRGh0KJii4IN4sn2DB611phly4EYaJrF+soz6rkrbFS9cRyyjI4LLxes2qikdu+5oeI29mYSSZkH9f55DSvuj/QKNQNSoz+PyPNNsz1nM01nOpsrSzft3vfqkHAACA3yh4sHbtWnd/+fLl1X6d0OcqG0NlqrIucaKvaTPpmvOVV16p1vMS3WZO9fEOLRs6Q9PL4FOVulblvQHAzwi8AUCKFBYWlgtshKZeCL7gVDrFe++9N27v7a1hpoaA0i4q4OClqFCdPvvss6iBh9AL4r/+9a9RR2DGQ3BjrippW4Iv+qOlaAkuG6/XTAUdI6+x9/vf/77c2gcon27SW9PwrbfeCqQPVXqVtm3bVusc9fZ7rOdSZWlnAQAAkF50HekF3pRNpLoWLFhQbmZRImaUxdLuqk77COXbzOeff76dcsop5lfVOd6hZUMDr8F/f3FxcZVfDwDSWVaqKwAAtVVwcEuj+EJTUwTPgNuyZUvcF6hWij2PF3SQmTNnBnK7K+gQKRe71iPT6ySqjpEEp7xQHnqly4xGwcTgtQaC178KJ9Z1CYJnLEZ7zVRo2rRp0o9POurbt2+gE0NrG3qjShWQq+k5Guu5FLwIvB/PJQAAAFTt+jK4zRDLWsvhBmZ5WUqkT58+lkzB17Sxrs1dnTW8M1ki2/SJPN4KkkVbSiFcOyY0PWV12kXxXiMQAFKFwBsApIDWcPrwww8Dv2sNtdDc9QcccEAgsKVA2Jo1a+Jah2OOOSZwX+u8eQGs4CCcctVXRvnsPd9//70lg2b/ac02LyWfZutFo1l93sg5PVevEevI0sqCeYsWLUrIQubxErwIerKOTzqmj9E5EXqu639PaVarQ/+7Vd3vwQuIJ2tmYqr3OwAAQKbSIEcNVPS8/fbbVX6N999/v1xWhB/84AeWTMFtplhn7QW3j5Ca9nJ1aSBi8MDN4PZJJArOrVq1KmI7Jvj3WNrYVSkHAH5H4A0AkkwBrocffrhcI+r000+vUE450INHSr733ntxrUfv3r0Di2RrVNl3333n6vTll1/GvL7VIYccErj/73//O6bZZzWlNHxdu3YN/D5lypSoz5k0aVK5xk+0tQc0sjRaPv4ZM2YEZgYqSBNpZmAqBR+fyZMnx5zeI9mCZ07u3bs3JXUInd2mdKzBnSVVEfx/++mnn0bd7+qgUHA43PMzfb8DAABkIrU3jj/++HLtiy+++CLm52sWUfC6Yr169SoXxEmG4Bl233zzTdT20bx588rNfsJ/BthmZ2cHAllLliwxPws+5rG0s1XG6wPIz8+39u3bR3w9tXlWrlxZ6etpsHEsAT8ASAcE3gAgiRTYuv/++13DJTi4FSlo88Mf/jBw/1//+pd9++23Mb9XtFQWmu0SPOtNM90UdPNmhmm2VLT1rUaMGBEITixevNheffXVmOun0XHBa9xVxfDhw8sFJIODFuHW0tNo0eA6R6OZdC+++GKlx/Hvf/97uRGtoTMW/UD18o7h5s2b7cknn4w5OKq/sSpr6NWEziFv9pXOi1QEgTp27OjWwbvrrrvc7eKLL672a2n2nBfc1X5/7bXXIpbV36r1EYMbp6EN1kze7wAAAJlq9OjR1qFDh8DvDz74YEwpJ9WOu+OOOwLX4lon6/LLL7dUBI0UTBHV5YUXXohYVteRf/vb35JYu/SgWWRem9sbgBstgOlRWznWdI/xEtzOVqBYg00jUZB1woQJ5drZoRk1dP5rvUPPM888E7EPQI8//fTTSRnMCwDJQOANAJJAjad//OMfdt1115Vb200XoZU1ojQrzZuJo3Wn7r77bndxGykgopk1ukC+5557XBAhmuDA2+eff+5mRYXbFomCTRdccEHgdwUYHnrooYh52XURrZGQCgBdeeWV1Z6Bpbp5qU/UyLvzzjtt9uzZFcopUPm73/0usGaXUl0cddRRUV8/JyfHBfSef/75CsEIrSun47BixYrAzMQzzjjD/EgpFC+55JJAak6NSAyuezgahamg4rhx42zdunVJm3nVrl07d1/HKnjWZTLp/NBsSt2C12OoKv1fBM9ifeONN+yll16qcC7pc0H/q146FY2GPfvssy1Z/LLfAQAAMpECZtdee21ggJ4GON5+++1ugJ+WHgila0UtR3DDDTfY6tWr3WMKZFx22WVJG5gVTNemwe0cZThROyH0mlbBofvuu89d0wZnVMB/nHXWWYEApgaM/vrXv3brqle2Tp5Sk+rcUfaMZFLmjYKCgsDvf/zjH8v1XwQPbtW5vHPnTve7MumceOKJEf9+LyCnv/vPf/5z4HkeBSPVjzB9+nTXFgeATMCnGQDEgS4QgxtPCjDp4lE3BTnCBTCOO+44F7SK1jhRQ0sd9LpIVSNHDbXx48e7VCMtW7Z0z9eF69q1a2358uVWUlIS85pjmuWj9agUbNFreMErNbKOPPLImP72IUOGuPd+/fXX3e8fffSRTZ061b2uGoia+aNAoQJWep9YR/hVRhfjP/3pT+3WW291DT3tn9/+9rcuGOetr6X3Cp4Jp3z1ek4sF/JqHGg/v/nmmy5NpWYhaXaQAopz5swp19i88MILo84MTKWDDjrIBd8U7NQoQp2rGrmo0YedOnVyqTsVANXMLO2vZI+q9BxxxBGBEZNqjClIqP3qpWaR888/39LFyJEjXZD566+/dr/rf3bixImBc0kNap1L3v+rnHvuueXW5UuGTNvvAAAAfqLrbbVTlFFB138a7KRrLw3KVNYTtefUPlF7RmuABbeV1M67+uqrq73ucDyozapsLUqVKaq3BmtqgGijRo1cG09tSF3TtmnTxg477DD75z//6cp6g/9qO816UzBV54D6DLQmmgaO6nG16Zs0aeLal9qm9nyyBj9GogGYN910k2vjqx3/pz/9yQ0iVF11rqp/Q2v+eTPTFGBWOztSmn61f9Q20rkjCiaqjaQgnwY7avkGnUN6L73GSSedVKVMOgDgVwTeACAOlK88loWk1fhQyo6TTz7Z+vXrF9Nrq8F14403uotPjXzTSEnd1GkfiTrNY+3A1+yx0FzzqqMaALE688wzXRDv2WefdQEcBXg0Ck63SHThHty5X1UKHKkR+8ADD7g0l6LAUbi0k5rJpNmGsQbINOPpZz/7mRt1pwaQZgOGOy4KnAan4/Ar1VF/+xNPPOFGz6qRpEadbpHoeKoxnSxKq6rZmsr7rw4JBQhDpVMASP/r119/vfuf0Ohg/U9EOpc0CloBXAWxky3T9jsAAIAfg2/KOqE12zSoT9dcummN7UgOPvhgO++889xzU0kzldSOUopEb/aVrmmnTZtWrtx+++3ngkuasefRAD/8r+2rc+Cxxx6zWbNmuccUtKxs3T8NHE3FAE8FwzSbTYPyvIG5akN6szCDqX4/+clPoq4/qAGGah9pYKvaourP8AYoejQr8Oc//7kLTAJAJiDwBgAJoJFgamioQ10Xrgr8aAaagm1Kw1BVukhVcEvpG9SY0cW6Rpqp0aPRcXofjZZUw0wjyg455JCYA2daj0opFYNzrceSZjKUZsgdfvjh9sknn7jZeQpEavaURq5pFJxG9KlBpoXBlb4iHulS9BoaOahghhp/GnnnzdjS36/go9Y506ye0Hzz0ehvUcoUzVLSKE/NdtO+1vFTYPKEE04IpOlLBxpRqNGKatzp71EqGI2s1Xp2Oj5q2Gl/Kv2pjo83czBZdA7rWCrFp+qnQJBmYXppQtORAstaK07rHWhksP5vNdJZ+1xBTe1v7WuNJG7cuHFK6piJ+x0AAMBvdK196aWXukFPSu+tDBRr1qwJrLOrtovaGbpm16yxaIGMZNKAQ6U9HDp0qH3wwQeuHaFZSpqdpMCLUvlrAJkynezYsSPwvEgzoGqrVq1auZlk8+fPd+kbFXhV20D7TO0GtQe0PzUIVFlL1K6vyUDVmlAfxs033+zOUwVclclDbUe1EXSuqn9D7WX1G8SaGlIp9dU2V7tDAT29ns4Z7ZcBAwa4waJ6bQJvADJFnX2sWgkAgEtb6S12fsstt7iGDgAAAAAgNgosKWWmKJ1istOoAwDgFyRcBgAAAAAAAFBt69evd7PhRLOgtP42AAC1FYE3AAAAAAAAANWiZFpPP/10YPkCpQ7Mzc1NdbUAAEgZ1ngDAAAAAAAAUMHLL7/s1h/T2uDh1hFft26dPfPMM/bVV18F1icfOXJkCmoKAIB/EHgDAAAAAAAAUMGGDRvs9ddft7/97W/WqVMna9++veXl5dnu3btt1apVtnjx4sBMNznttNOsa9euKa0zAACpRuANAAAAAAAAQESlpaUuyKZbOEotOXbsWDv11FOTXjcAAPyGwBsAAAAAAACACi688ELr06ePzZ4921asWGHbtm2z7du3u1lujRo1cjPg+vbta8OGDbP8/PxUVxcAAF+os08roAIAAAAAAAAAAACokayaPR0AAAAAAAAAAACAEHgDAAAAAAAAAAAA4oDAGwAAAAAAAAAAABAHBN4AAAAAAAAAAACAOCDwBgAAAAAAAAAAAMQBgTcAAAAAAAAAAAAgDgi8AQAAAAAAAAAAAHFA4A0AAAAAAAAAAACIAwJvAAAAAAAAAAAAQBzkxONFEN2iRYts+vTpNm/ePFuxYoVt27bNsrOzrXnz5nbggQfasGHDrGfPnjV+n1deecVee+21mMrecsst1qdPnxq/JwAAAAAAAAAAAAi8JYUCXN99912Fx/fu3WurV692tylTptixxx5rV1xxheXkcFgAAAAAAAAAAADSDRGeJNi0aZP7mZ+fb4MGDXIz21q2bGllZWU2f/58e/vtt12Zjz76yEpLS+2nP/1pXN73vvvuq3R769at4/I+AAAAAAAAAAAAIPCWFPvtt5/96Ec/soEDB1pWVvll9Xr06OFmut10001u5tsnn3xiI0aMsN69e9f4fTt16lTj1wAAAAAAAAAAAEBsykeBkBC/+tWv7Mgjj6wQdPM0adLEzj///MDvn3/+eRJrBwAAAAAAAAAAgHgg8OYTffr0Cdxfu3ZtSusCAAAAAAAAAACAqiPw5hN79+4N3I80Mw4AAAAAAAAAAAD+xRpvPjF37txya8LFwx133GFLliyxnTt3WsOGDa1Dhw7Wv39/Gz58uDVq1Kjar7tx48aYyrVo0aLa7wEAAAAA6Yx2EwAAAFA7EXjzgbKyMnvjjTcCv2s9uHj49ttvA/e3bdvmgnu6vfnmm3bllVfa4YcfXq3XHTduXNQyzz33XLVeGwAAAAAyAe0mAAAAoHYi8OYD//znP23hwoXu/oABA6xLly41er1OnTq5oFq3bt0sPz/fSktLbdWqVTZ16lSbOXOmmwH3hz/8wX75y19aQUGBJULdunUT8roAAAAAkCloNwEAAACZp86+ffv2pboStZlmoN1+++0uONa0aVO777773M/q8tJKRjJx4kR74okn3H0F5R588EHLzc2Ne8qU5s2bW506dUynl2b0JVt2drb7qf0KJBvnH1KJ8w+pxPmH2n4Oaq1mXQMDfmk3pfp/AjXD8Ut/HMP0xvFLbxy/9Mbxy9zjl1VL2kzMeEuh5cuX27333utOQI10vO6662oUdJPKgm4yYsQIW7RokU2aNMk2b95s06ZNs2OOOaZK71GVNQjUeFy7dq0lk/5527Zt6+6vX78+JYE/1F6cf0glzj+kEucfUs0P52CbNm0CjUwg1e0mP/xPoPo4fumPY5jeOH7pjeOX3jh+mX382tSSNlNWqitQW61bt87uuOMON0NNJ+O1115rvXv3Tsp7Dx8+vNyMOwAAAAAAAAAAANQcgbcU2LRpk0svqRlnmlapRbe1JluydOjQoVxdAAAAAAAAAAAAkIGpJktKSuy9996zr776yrZu3WpNmjSxgoICO+mkk6q8Fpkfbdu2zc1089KIXHTRRTZ48OCk1qE25FAFAAAAAAAAAADI2MCbUivecsst7v6hhx5ql1xySYUyxcXF9tvf/tYWLFgQeGzVqlU2b948+/DDD+3WW2+t8RpoqVRUVGR33nmnrVixwv1+9tln2wknnJD0enjvL/n5+Ul/fwAAAAAAAAAAgEyUtFSTX3zxhUtrqNthhx0Wtswrr7xSLugWTAG4P//5z5au9uzZY3fddZctXrzY/X7aaafZqFGjUlKXiRMnBu4na105AAAAAAAAAACATJe0wNv8+fPdz3r16lnfvn0rbN+9e7dLMekZNmyY/eIXv7CLL77YGjdu7B6bPXu2u6WbvXv32n333Wfff/+9+11pM88666wqv86UKVNs7Nix7qYgZahly5bZmjVrKn2N999/3yZNmuTuN2vWzAYMGFDlegAAAAAAAAAAACCFqSZXrlzpfnbq1Mlyciq+rdZ0U6pJGTp0qF1++eWBbe3atXMpGuXTTz8NG7jzs/vvv99mzpzp7qvuCioqSBaJ9k/79u2r/D6FhYX22GOPWZ8+fdy6eNrXjRo1srKyMrf/p06dGqhHVlaWXXbZZVa/fv0a/GUAAAAAAAAAAABIeuBNKSalTZs2YbcHz2QLXffsoIMOstatW7t14hYtWmTpRmk2g//O66+/vtLyrVq1socffrha76Ug26xZs9wtEs0gvOKKKyKm/AQAAAAAAAAAAICPA29KJSkNGjQIu/27775zP5s3b24HHHBAhe3777+/C7ytX78+wTVNX5rlpoCa0nouWbLEtm7datu3b7d9+/a5mW/arwcffLANGTLE8vLyUl1dAAAAAAAAAACAjJK0wJtSG2o2ltY7C7Vt27bA2mS9evUK+/wmTZq4n7t27bJ0E249tupQwEy3SJo2berSWOoGAAAAAAAAAACA5MpK1htpxpWEm7EWnGayR48eYZ9fUlLifoZbHw4AAAAAAAAAAACoNYG3Dh06uJ9Kg1hUVFRu26effhq437t370rXiPNmvgEAAAAAAAAAAAC1MvDWv39/97O4uNj+8pe/2J49ewJBty+//NLdb926tXXq1Cns87VmmbRt2zZZVQYAAAAAAAAAAABilrS8jVqbbMKECbZz5077/PPP7euvv7Z69erZjh07AmWOP/74sM8tLCwMlOvSpUuyqgwAAAAAAAAAAAD4b8Zb48aNbdy4cZaVlRVYsy046Ka13U488cSwz/3kk08C93v16pWE2gIAAAAAAAAAAAA+nfEmhx9+uN1xxx02fvx4mzdvnu3atctatGhhgwYNstNPP92ys7MrPGf37t02adIkd79u3brWt2/fZFYZAAAAAAAAAAAA8F/gTbp27Wo33HBDzOVzcnLsnnvucfcVmMvNzU1g7QAAAAAAyHxFRUW2evVql41Gg1zbtWtneXl5qa4WAAAAkPaSHnirKgXeWrVqlepqALXKvn37bO/eve7/r06dOqmuDgAAAIA42bRpk02fPt0WL17srvs9uu7v3LmzFRQUWPPmzVNaRwAAACCd+T7wBiB5Nm7caLNmzXKNcC/wpsZ3v379XFpYAAAAAOlr+fLlNnHiRCsrKysXdBP9rnbA0qVLbcSIEdaxY8eU1RMAAABIZ1mprgAAf1i4cKFNmDDBFixY4IJuop/6XY9rOwAAAID0nemmoFtpaWmFoJtHj2u7yqk8AAAAgKoj8AbAzXSbMmVKpQ1wbVc5AAAAAOlH6SU10y0WKjdjxoyE1wkAAADIRHFNNXnmmWdaoinv/EsvvZTw9wFqE6WXjBR082i7yg0ZMiRp9QIAAABQc0VFRRXWdKuMyhUWFtqgQYOsQYMGCa8fAAAAkEnSbsZbrA0FALHx1nKIRVUa6wAAAAD8YdWqVVW+jld5PQ8AAABAhgfeAMSX1nHz1nSLZ1kAAAAA/lBSUpLU5wEAAAC1WVxTTb788svxfDkASZCTk+NusQTUvLIAAAAA0kfdunWT+jwAAACgNmPGG1DLad3Ezp07x1RW5VQeAAAAQPpo3759la/jVV7PAwAAAFA1BN4AWL9+/aI2xLVd5QAAAACkl7y8vCoNolO5Ll26WIMGDRJeNwAAACDTEHgDYC1atLAhQ4ZEbIjrcW1XOQAAAADpp6CgwLKyYusCULn+/fsnvE4AAABAJmKxJgBOt27dLD8/32bNmmWLFy92a75pPTeNjNVMN4JuAAAAQPpq3ry5jRgxwiZOnGhlZWW2b9++sAPuFHRTOZUHAAAAUHUE3gBUmPk2ePDgQOCNNd0AAACAzNCxY0cbNWqUzZgxwwoLC8sF37z0kprpRtANAAAASMPAmy70NbNmyZIltn37dtu1a1fYEXeh1Bh48MEHk1JHoLbS/1ndunVTXQ0AAAAAcaag2rBhw2zQoEG2atUqKykpcdf+7du3Z003AAAAIB0Db/Pnz7dHH33UXeADAAAAAIDkU5Cta9euqa4GAAAAkHGSGnj79ttv7e6777bS0tJkvi0AAAAAAAAAAACQOYG33bt32wMPPBAIummxZq0l9d5779lHH33kHnvooYdcyskNGzbY3Llz3eNbt261+vXr249//GPr1atXsqoLAAAAAAAAAAAAVEmWJcmkSZNsx44d7v7IkSPtkksusW7dupXLId+qVSvr1KmTHXLIIXbuuee6QNzw4cNd0O6xxx6zpUuXujIAAAAAAAAAAABArQ28zZw50/3Mzc21MWPGxPQclb300kvdws+aKffII4/Yli1bElxTAAAAAAAAAAAAwMeBt2XLlrmf3bt3d6kjw9m3b1/Yx88//3yrV6+e7dy50yZPnpzQegIAAAAAAAAAAAC+Drxt377d/WzdunX5CmT9rwrFxcVhn6t0lL1793b3v/zyy4TWEwAAAAAAAAAAAPB14M2bzZaTk1Pu8eA13jZv3hzx+fn5+e7nhg0bElZHAAAAAAAAAAAAwPeBt0aNGrmfu3fvLvd4s2bNAvdXrlwZ8fmbNm1yP5VuEgAAAAAAAAAAAKi1gbf27du7n+vXry/3+P777x+4//XXX4d9blFRkS1cuNDdb9iwYULrCQAAAAAAAAAAAPg68Na1a1f3c8WKFeUe7969uzVu3Njd//DDD23u3LkVUlQ+9dRTtmPHDvd7t27dklVlAAAAAAAAAAAAIGblF1xLoH79+tlbb73lAmiFhYXWpUsX93h2drYNHz7cJkyYYHv37rXbb7/d+vfvb506dbI9e/bY9OnTbc2aNYHXUVkAAAAAAAAAAACg1gbe+vbt69Z5U+Dto48+CgTe5LTTTrNvvvnGli5damVlZe6+bqEGDx5shxxySLKqDAAAAAAAAAAAAPgv8KaZbffcc4+bxZabm1tum36/5ZZb7Mknn7RPP/20wnO1feTIkTZmzJhkVRcAAAAAAKDWKyoqstWrV1tJSYnVrVvX2rVrZ3l5eamuFgAAgG8lLfAmLVq0iLitYcOG9tOf/tTOO+88mz17tm3evNnq1Kljbdq0cbPltB0AAADIZFrfWOnXc3Jy3LUwAACpsmnTJrf8x+LFi933k0ffT507d7aCggJr3rx5SusIAABgtT3wFgtdtB177LGprgYAAACQNBs3brRZs2a5zk0v8KZOTa2TXNngNQAAEmH58uU2ceJEtxxIcNBN9Lu+r7RcyIgRI6xjx44pqycAAIAfZaW6AgAAAEBttnDhQpswYYItWLDABd1EP/W7Htd2AACSOdNNQbfS0tIKQTePHtd2lVN5AAAA/A+BNwAAACCFM92mTJlSacemtqscAADJoPSSmukWC5WbMWNGwusEAACQTgi8AQAAACmi9JKRgm4ebVc5AAASraioqMKabpVRucLCQtu1a1fC6wYAAJAukrbG22uvvRa31xozZkzcXgsAAABIBW+NnFio3ODBg61OnToJrxcAoPZavXp1zEE3j8qvWrXKunbtmrB6AQAApJOkBd5effXVuL0WgTcAAACkO63j5q3pFmvZunXrJrxeAIDaq6SkJKnPAwAAyESkmgQAAABSICcnx93iXRYAgOqq7gAPBoYAAAD8T9Ja77HOUlOKAuUUX7Zsmc2bN89KS0vdBdwJJ5xg9erVS3g9AQAAgGRQ2sjOnTvbggULopZVOdJMAgASrV27du77pirpJlW+ffv2Ca0XAABAOkla4O2MM86o8nM2b95szzzzjH3++ec2c+ZM+/Wvf235+fmWjhYtWmTTp093wcQVK1bYtm3bLDs725o3b24HHnigDRs2zHr27BnX95w6dapNmTLFli5d6oKZTZs2de+hIGaPHj3i+l4AAACoun79+tnChQsr7eBUh6bKAQCQaHl5eW6wh9YWjSX4pu+oLl26WIMGDZJSPwAAgHTg63w1CrJdd9119tBDD9nHH39sf/zjH+22226zrKz0ypB5yy232HfffVfhca3ToYWLdVOA7Nhjj7UrrriixmmEiouL7Q9/+IML9AXbsGGDC8Z98sknbgZidYKhAAAAiJ8WLVrYkCFD3LVguA5OdWhqu8oBAJAMBQUFbgCvMhBFo/6Z/v37J6VeAAAA6cLXgTfPhRdeaNOmTbP58+fbRx995Dof0smmTZsCgcRBgwa5WWctW7a0srIy9ze9/fbbroz+Nl3Y/vSnP63R+z3yyCOBoFufPn3spJNOcu+t9J0TJkywtWvX2quvvuoeGz58eFz+RgAAAFRPt27d3HXZrFmz3AwDDc7SQCzNONBMN4JuAIBkUmaeESNG2MSJE12/RaSBIQq6qZzKAwAAIM0Cb40aNbLevXvbjBkz3My3dAu87bfffvajH/3IBg4cWGG2nlI+aqbbTTfd5Ga+aTaaLlz191bH7Nmz7dNPP3X3Dz30ULvhhhsC76lOncMOO8x+9atfudlvzz//vKuT9i8AAABSP/Nt8ODBgcAba7oBAFKlY8eONmrUKNcPU1hYWC745qWX1Ew3gm4AAABpGngTb6Sv1kdLNwp0VaZJkyZ2/vnn2+9//3v3u9a0q27g7a233nI/tX7cJZdcUiHQp/c655xz7IEHHrCdO3fapEmT7NRTT63WewEAACC+1JlZt27dVFcDAAAXVNN69Mrcs2rVKispKXHfUe3bt2dNNwAAgEqkzWJpRUVF7ueOHTssEyklpEepIKtj165dLkWRVJaW6IgjjghcJH/xxRfVei8AAAAAAJD51H/QtWtXt2yGfhJ0AwAAyIDAW3Fxsc2ZM8fdz9S0iEop5AmdpRarRYsWBV6nshlzSl2kFJehzwEAAAAAAKjKIGn1K8ybN8/99AZNAwAA1Ga+TzWpoNDjjz9u27Ztc793797dMtHcuXPLrQlXHcFpOJX6oTLaPnPmTCstLbU1a9ZYhw4dqvWeABBvWj+C9Y0AAAAA/9q0aZNNnz7dFi9eXGH9t86dO1tBQQHrvwEAgForJxWBpWjKysps+/bttmTJEvvkk09s/fr1gW3Dhw+3TKO/94033gj8fuSRR1brdTZu3Bi4HynNZLjtGzZsqFLgLfh9ImnWrJlbZ64mM/iqK/j9kv3eAOdf9emz5dtvv3WLt3uBNy3aftBBB0X9TMN/cP4hlTj/kGqcg/CbVLeb+J9Ib34+fsuXL7f33nvP9WUEB91EvysYt3TpUjv++OOtY8eOVlv5+RgiOo5feuP4pTeOX3rj+CU58HbbbbfV+DWOO+4469+/v2Waf/7zn7Zw4UJ3f8CAAa6jubprvHnq169fadng7bt3767S+4wbNy5qmUcffdR1lKsR2bZtW0uV1q1bp+y9Ac6/2Gl9Sg1AUOPdo+Db/Pnz3efjqFGj3NqViB3nH1KJ8w+pxjkIP/BTu4n/ifTmp+OnNen//e9/u+w5kSj4pu0qd8kll1ibNm2stvPTMUTVcfzSG8cvvXH80lvrWnz80iLkqCDROeecY5deeqllGs0EfOGFF9z9pk2b1uhvLCkpCdzXTJHKBG/XGnoAkCpKdxsadAs3K1jlAAAAAKTOxx9/XGnQLfQ6furUqQmvEwAAQK2d8darV6+Y1+rRaL8GDRpYq1at3Jpuhx56qOXm5lqmUXqGe++911201q1b16677joXfKsuvUbwTJHKBG+v6r7VqMxYUqaI/rbgVKHJoCmsXjR93bp1ETvzgUTg/Ku6yZMnR91P2q5yQ4cOTVq90hHnH1KJ8w+p5odzUO0XL20gkOp2kx/+J5BZx6+oqMgNHg5NLxmJ6jxnzhw75JBDXB9PbePHY4jYcfzSG8cvvXH8Mvv4taolbaakBd5uvfXWZL1VWtBJd8cdd9jOnTvdyXjttdda7969a/SawRey0dJHBm+PlpYyVFXXWkrlh6Pemw9npArnX3RqtGtNt1io3LHHHhvzII7ajvMPqcT5h1TjHIQf+KndxP9EevPL8Vu5cmXMQTePyq9YscK6du1qtZlfjiGqh+OX3jh+6Y3jl97KavHxS4tUk5lm06ZNdvvtt9vmzZtdB7Jy/x9++OFxbdhFW8g7eHvLli1r/N4AUB2afRtthm51ygIAAACIr+DlLZLxPAAAgHRF4C3Jtm3b5ma6aUFiueiii2zw4MFxee0OHToE7q9atarSst72RC/iDQDR1puMtiZldcoCAAAAiK/g5S2S8TwAAIB0ReAtyfnQ77zzTpdmQc4++2w74YQT4vb6St3gdUor73okmjEyf/78Cs8BgGTTrN/OnTvHVFblSDMJAAAApEa7du2qfD2u8u3bt09YnQAAAPyIwFuS7Nmzx+666y5bvHix+/20006zUaNGxfU9tMZbv3793P1Zs2ZFTDc5bdo027Vrl7s/YMCAuNYBAKpKn1vRGvDa7n2+AQAAAEi+vLy8Kg2GU7kuXbqUW48eAACgNojrVKcPP/zQkiFeqRmTRTPM7rvvPvv+++/d7yeddJKdddZZVX6dKVOm2COPPOLujxkzxsaOHVuhzMiRI2369OlWWlpqTz31lF1//fWWlZVVLtXl888/7+43bNjQhg0bVoO/DAAsLutTDhkyxH3GhVusXQ12bQ9exxIAAABA8hUUFNjSpUtdn0M06ovo379/UuoFAACQsYE3LyiUSOqATbfA2/33328zZ8509/v27euCXcuWLYtYXqkfq5uKQa9/5JFH2qeffmpfffWV3X777XbyySdbfn6+e8/x48fbhg0bXNlzzjnHGjVqVM2/CgDip1u3bu5zSrN1NTNYAxb0WagRtZrpRtANAAAASL3mzZvbiBEjbOLEiVZWVhZx4JyCbiqn8gAAALVN2i3uFe6izu+++OKLwP3Zs2e7WWiVadWqlT388MPVfr8rr7zSpZLUzLc5c+a4W+hF8Omnn27Dhw+v9nsAQKJmvmlwhRd4Y003AAAAwF86duzols6YMWOGFRYWluun8dJLaqYbQTcAAFBbxTXwFstMNHWmao0x/XQVyMlxF20tW7a0evXqubXQtDaZZmcFlxk4cKBlZ2fHs7oZKzc312688UabOnWqS92mNBA7d+60pk2bWq9eveyEE06wHj16pLqaABCWGut169ZNdTUAAAAARKCgmrL5DBo0yFatWmUlJSXuGl7Ze1jTDQAA1HZxDbxpplVltmzZ4tY6U0CtWbNmbo2yo446yurXr1+h7O7du126xFdeecU2b95sa9eudTPF9Lx0o78hHjQTRLdYHX300e4GAAAAAAAQbwqyde3aNdXVAAAA8JWsZL2Rcn//6U9/sgULFtgBBxxg9957rx133HFhg26ixzV6SuVUXs/T8/U6AAAAAAAAAAAAQK0NvCnt4bx589wCu9ddd501adIkpuc1btzYrr32Wvc8Pf/jjz9OeF0BAAAAAAAAAAAA3wbePvroI/ezZ8+e1rZt2yo9t127du55QuANAAAAAAAAAAAAtTrwtnLlSvezqkE3j/c873UAAAAAAAAAAACAWhl427Ztm/u5a9euaj1/9+7d5V4HAAAAAAAAAAAAqJWBN63VJt99953t27evSs8tKyuzuXPnuvuNGjVKSP0AAAAAAAAAAACAtAi8denSxf3csmWLvfnmm1V67ltvveWeJ127dk1I/QAAAAAAAAAAAIC0CLwNGTIkcP+ll16y119/3UpLS6POdBs/fry9+OKLYV8HAAAAAAAAAAAA8IucZL3RgAEDrH///jZjxgyXavKVV16xDz74wI488kjr0aOHtWzZ0nJzc624uNg2bNhg8+fPt88++8zd9+j5eh0AAAAAAAAAAACg1gbe5LrrrrO77rrL5s2b537fuHGjSyMZiwMPPNA9HwAAAAAAAAAAAKjVqSalfv36dvPNN9sZZ5zhZrfFQuVUXs/T8wEAAAAAAAAAAACr7TPeJDs728aMGWMnnXSSTZ061ebMmWNLliyxbdu22e7du11wrUmTJnbAAQdYnz597Oijj7a8vLxkVxMAAAAAAAAAAADwd+DNo2DaD37wA3cDAAAAAAAAAAAA0l1SU00CAAAAAAAAAAAAmYrAGwAAAAAAAAAAABAHBN4AAAAAAAAAAACAOCDwBgAAAAAAAAAAAMRBjsXRmWeeGbhfp04de+mll8Juq4nQ1wUAAAAAAAAAAAAyesbbvn370up1AQAAAAAAAAAAgJog1SQAAAAAAAAAAADgt1STL7/8crW2AQAAAAAAAAAAAOmOGW8AAAAAAAAAAABAHBB4AwAAAAAAAAAAAOKAwBsAAAAAAAAAAADgtzXe4mndunW2detWa9q0qbVu3TrV1QEAAAAAAAAAAAD8EXjbt2+fzZkzx91v0KCBde3aNWy5+fPn2+OPP27Lly8PPNa+fXu76KKL7KCDDkpWdQEAAAAAAAAAAAB/ppqcO3eu3X777e42bdq0sGWWLVvmtgcH3WTVqlV211132ddff52k2gIAAAAAAAAAAAA+DbzNmDEjcP/YY48NW+bZZ5+14uLiwO+NGjWynJz/TMorKyuzv/zlL7Z79+4k1BYAAAAAAAAAAADwaeBt0aJF7md+fr516NChwvbVq1fb7Nmz3f3GjRvbb3/7W3vqqadc2sn+/fu7x7Xm29SpU5NVZQAAAAAAAAAAAMB/gbe1a9e6n/vvv3/Y7V9++WXg/umnn24HHnigu9+wYUO7/PLLrU6dOu73b775Jin1BQAAAAAAAAAAAHwZeNu2bZv72axZs4hrwLkKZWXZ0UcfXW5b8+bNrUePHoF14AAAAAAAAAAAAIBaG3grKSlxP+vWrRt2+/z5893PAw44wKWaDNWyZctyATwAAAAAAAAAAACgVgbe6tWr534WFRVV2LZ8+XLbuXOnu++lmAxVv379cgE8AAAAAAAAAAAAoFYG3vLz8wNBtlDTp08P3O/Zs2fY53sBOy8ABwAAAAAAAAAAANTKwFuXLl0Ca7QtWrQo8HhZWZlNnjzZ3a9Tp4717t077PNXr14dWO8NAAAAAAAAAAAA8JucZL3RoEGD7JNPPnH37733XjvzzDPdWm4ffPCBrVq1yj3et29fa9KkSYXnFhcX24oVK9z9/fbbL1lVBgAAAAAAABCSlUoD5LUcTN26da1du3aWl5eX6moBAFD7Am+HH364de/e3RYsWGCbN2+2xx57rNx2zXY7/fTTwz73m2++sb1797r7eg0AABDevn37XANYPwEAAAAgXjZt2uSWi1m8eHG59ob69Dp37mwFBQVkqgIAIJmBN7nhhhvsrrvucl/QwfQFfe6551qvXr3CPm/KlCmB+/369Ut4PQEASDcbN2602bNnu+9YBd5ycnJc41ffmy1atEh19QAAAACkseXLl9vEiRPdkjGhg/z0u9ohS5cutREjRljHjh1TVk8AAGpd4K1p06b2u9/9zs1g++6772zXrl2uM3DgwIERU0hu377dpZrU2m/169e3Aw44IJlVBgDA9xYuXOgGqQQ3gDVTXLPMtW3IkCHWrVu3lNYRAAAAQPrOdFPQrbS0NGIZtUW0XeVGjRrFzDcAQK2W1MCbZGVl2WGHHeZusdA6cDfffHPC6wUAQLrOdAsNugXT49qen5/PzDcAAAAAVab0kprpFguVmzFjhg0bNizh9QIAwK+yUl0BAABQfbNmzYq6npu2qxwAAAAAVEVRUVGFNd0qo3KFhYUuyxUAALUVgTcAANKUt5ZCLKrSWAYAAAAAWb16dZXbESq/atWqhNUJAAC/S3qqSY/WbdPU83nz5rk0WTt37nTT0UPTSurLWmUlOzvbcnJSVmUAAHxF67jpVpWydevWTXi9AAAAAGSGkpKSpD4PAIBMkJIo1j/+8Q932759e9SyO3bssCuvvNIF37p372533HFHUuoIAIDfaTCKbrEE37yyAAAAABCr6g7cY8AfAKA2S2oPnDoG7733XjfTLVaNGze2wYMH28SJE23BggW2Zs0aa9u2raWbrVu32sKFC91t0aJF7uYFHvX3XXXVVXF5n1deecVee+21mMrecsst1qdPn7i8LwAg+erUqWOdO3d234/RqJzKAwAAAECs2rVr59oRVUk3qfLt27dPaL0AAPCzpAbennzyyUDQTSNfFHDq27evTZ061b766quIzzvmmGNc4E2++eYbO+mkkyzdXHrppamuAgAgA/Xr188N6qisIayGr8oBAAAAQFXk5eW5QXyxrhmttkeXLl2sQYMGSakfAAC1OvBWWFhokydPdvebN29u//d//2f77bef+/27776r9LkHHnig+6IvKipya8KlY+AtWMuWLd3fPnPmzIS+z3333Vfp9tatWyf0/QEAideiRQsbMmSITZkyJWxDWA1fbVc5AAAAAKiqgoICW7p0qZWWlkYtm5WVZf37909KvQAAsNoeePOCbnLNNdcEgm6xOuCAA2zu3Lm2cuVKS0djxoyxrl27uluzZs1s3bp1dvXVVyf0PTt16pTQ1wcA+EO3bt0sPz/fZs+e7UaiaiFzreemkama6UbQDQAAAEB1aQD9iBEjXDaqsrKyiAP+FHRTOZUHAKA2S1rgbc6cOYFgUO/evav8fO9Le9OmTZaOxo4dm+oqAAAymIJrQ4cOtbPOOssF3jZu3FildRgAAAAAIJKOHTvaqFGj3BIyymoV3Nbw0ktqphtBNwAAkhh427x5c2DmWnXUr1/f/dy9e3dc6wUAQCZRozc3N7fKC6ADAAAAQGUUVBs2bJgNGjTIVq1a5Qb81a1b19q3b8+abgAApCLwVlxc7H7qC7k6vICbF4ADAAAAAAAAkFwKsmkpFQAAkOLAW5MmTVyayC1btlTr+RpJ470OYnPHHXfYkiVLbOfOndawYUPr0KGDm/Y/fPhwa9SoUaqrBwAAAAAAAAAAkFGSFnjbb7/9XOBtwYIFbiFWLbgaqw0bNrgAkjCiJnbffvtt4P62bdts7ty57vbmm2/alVdeaYcffni1XlfrBkXTrFkzy87OdvercqzjIfj9kv3eAOcfUonzD6nE+YdU4xyE36S63cT/RHrj+KU/jmF64/ilN45feuP4pTeOX5IDb5ppNWvWLBcA+vDDD23o0KExP/fll192wTrvdVC5Tp06uaBat27dLD8/30pLS92MwalTp9rMmTPdDLg//OEP9stf/tIKCgqq/Prjxo2LWubRRx+1Fi1auEZk27ZtLVVat26dsvcGOP+QSpx/SCXOP6Qa5yD8wE/tJv4n0hvHL/1xDNMbxy+9cfzSG8cvvbWuxccvaYG3IUOG2Ouvv25FRUX23HPPueBQLLPXXnvtNfvoo48Ci7geeeSRSaht+jr55JNt7NixFR7v3r27DR482CZOnGhPPPGEC2Q+9thj9uCDD1pubm5K6goAAAAAAAAAAJBJkhZ405piZ555pj399NMu+HbzzTfb8ccfb0cffbSVlJQEymmb1oGbN2+eCxIVFhYGtl1wwQWWk5O0KqclreVWmREjRtiiRYts0qRJtnnzZps2bZodc8wxVXoPjcqMJWWKaLbd+vXrLZk0hdWLpq9bty4wWxJIBs4/pBLnH1KJ8w+p5odzsFWrVoG0gUCq201++J9A9XH80h/HML1x/NIbxy+9cfwy+/i1qiVtpqRGsU444QRbs2aNvfvuu7Z371775z//6W7BLrroorDPPf30023gwIFJqmlmGz58uAu8idZ8q2rgTalQqiKVH456bz6ckSqcf0glzj+kEucfUo1zEH7gp3YT/xPpjeOX/jiG6Y3jl944fumN45feymrx8Uv69LELL7zQpZn829/+5ma3RZOXl+dmuilVJeKjQ4cOgfubNm1KaV0AAAAAAAAAAAAyRUryNg4bNsyt1aZZV9OnT7f58+fb7t27/1epnBzr1q2bHXrooW52loJviJ86deqkugoAAAAAAAAAqkkTGlavXu2W8Klbt661a9eOPlQA8ImULZhWv359O+mkk9xNFHjTF4Ye50sisVasWBG4n5+fn9K6AADgJ/v27XPpsDUIiIEqAAAAAPxG2as0kWHx4sWu/eJR+6Vz585WUFBgzZs3T2kdAaC2S1ngLZQCbrpFozXJevfunZQ6ZaqJEycG7rMvAQAw27hxo82aNcs1Xr3Amxqt/fr1q/IaPQAAAACQCMuXL3f9elozKTjoJvpd7ZmlS5faiBEjrGPHjimrJwDUdlmWJr799lu75ZZb7LbbbrPaasqUKTZ27Fh3e+WVVypsX7Zsma1Zs6bS13j//fddik9p1qyZDRgwIGH1BQAgHSxcuNAmTJhgCxYscEE30U/9rse1HQAAAABSPdNNQbfS0tIKQTePHtd2lVN5AEAtn/EWiaZOv/76667zK53NmzevXFBs27Ztgft6XEG1YEOGDKnyexQWFtpjjz1mffr0cdPKO3XqZI0aNXKjYFauXGlTp061mTNnurJZWVl22WWXxTTLEACATJ7ppu/gyhqu2q7UzMx8AwAAAJDKPlL18cVC5WbMmGHDhg1LeL0AACkKvG3dutU2b95sxcXFbpZV69atoz7nq6++cgE3BZMywQcffGAffvhh2G3ff/+9u9U08OZ9sSpVlm6RNG7c2K644go77LDDqvUeAABkCn1fRgq6ebRd5ar73QwAAAAANVFUVFRhTbfKqJz6VAcNGmQNGjRIeP0AAEkKvClF07/+9S+X2nD16tXltjVp0sSGDx9uo0ePttzc3ApruD3//PNh0zp169bNTj/99ERVOe1plpsCavPnz7clS5a4gOf27dvdl61mvh1wwAF28MEHu47DvLy8VFcXAICU8tZAiIXKDR482C1YDgAAAADJpL7VWINuHpVftWqVde3aNWH1AgAkMfC2c+dOu/vuu10AKBylWRw/frx99913duONN1q9evWspKTEnn32WZeDOFT37t1tzJgx1r9/f0tXV111lbvVhAJmlY22b9q0qZtCzjRyAABiGyTkrekWa9m6desmvF4AAAAAEEz9psl8HgDAh4G3xx9/PGLQLZgCb88884z9+Mc/doG62bNnl9t+4IEHuoDbQQcdlIhqAgCAWiwnJ8fdYgm+eWUBAAAAINmqOwCQgYMAkBpx70FSisPPP/888HuLFi3cDCylOVRaSa31NnPmTPvss8/cemQfffSRZWdnlwu6de7c2c455xzr169fvKsHAADgKG2krjkWLFgQtazKkWYSAAAAQCq0a9fOtUeqkm5S5du3b5/QegEAkhR4UyDN06dPH/vFL35h9evXL1dGa6Rojbc777zTjTL30kvqC2Hs2LE2atQoy8rKinfVAAAAytEgH60rW1kDVtcnDAYCAAAAkCp5eXluMKDWno4l+KY2TJcuXaxBgwZJqR8AoLy4R7fUeSVKx3T11VdXCLp5evfubSNHjiz32Nlnn22nnXYaQTcAAJAUmpmv9VMjzWbT49qucgAAAACQKgUFBTH3mapc//79E14nAEB4cY9wrVmzxv3s0aOHNW/evNKyRx55ZOB+kyZN7MQTT4x3dQAAACrVrVs3Gz16tHXv3j2wjpt+6nc9ru0AAAAAkErqZx0xYoRbsqeygYParnLR+mUBAGmUarKoqMj9bNOmTdSybdu2Ddzv2rUrC34CAICUznxTOmylwVbgjTXdAAAAAPhJx44d3RI9M2bMsMLCwnJpJ730kprpRtANADIs8FZSUuJ+5ubmRi0bXIYvBAAAkGpqrDIQCAAAAIBfqQ912LBhNmjQIFu1apXri1Ubpn379qzpBgCZGnirLi+1EwAAAAAAAAAgMgXZlEEMAFAL1ngDAAAAAAAAAAAAaiMCbwAAAAAAAAAAAEAcJCy/45dffmnLly+Pe3mtvXLzzTfXsHYAAAAAAAAAAABAmgTeNm3a5G6JKg8AAAAAAAAAAAD4CakmAQAAAAAAAAAAAD/OeBszZky8XxIAAAAAAAAAAACofYG3M844I94vCQAAAAAAAAAAAPgeqSYBAAAAAAAAAACAOCDwBgAAAAAAAAAAAMQBgTcAAAAAAAAAAAAgDgi8AQAAAAAAAAAAAHFA4A0AAAAAAAAAAACIAwJvAAAAAAAAAAAAQBwQeAMAAAAAAAAAAADigMAbAAAAAAAAAAAAEAcE3gAAAAAAAAAAAIA4IPAGAAAAAAAAAAAAxAGBNwAAAAAAAAAAACAOCLwBAAAAAAAAAAAAcUDgDQAAAAAAAAAAAIiDnHi8CAAAAAAAQLopKiqy1atXW0lJidWtW9fatWtneXl5qa4WAAAA0hiBNwAAMsi+fftcx5F+AgAAILxNmzbZ9OnTbfHixeWum+rUqWOdO3e2goICa968eUrrCAAAgPQU18DbI488Yommi+Bx48Yl/H0AAEgnGzdutNmzZ7vOIwXecnJyXKdRv379rEWLFqmuHgAAgG8sX77cJk6caGVlZRUGK+l3XU8tXbrURowYYR07dkxZPQEAAJCe4hp4+/DDDy0ZCLwBAPA/CxcutClTppTrONq7d68tWLDAbRsyZIh169YtpXUEAADwy0w3Bd1KS0sjltE1lbar3KhRo5j5BgAAgCrJqlpxAADgt5luoUG3YHpc21UOAACgtlN6Sc10i4XKzZgxI+F1AgAAQGbJSfZMtA0bNtiECRPcSHzp0aOHde/e3Vq2bGn169e33bt3u87B+fPnu5urZE6OjR492pUBAAD/M2vWrKjruWm7ymnmGwAAQG1VVFRUYU23yqhcYWGhDRo0yBo0aJDw+gEAACAzxDXwFq1DTymvnnvuORd0O+igg+ziiy+2du3aRSy/Zs0ae/rpp90Is3fffdd+9atfuSAdAAD43xoksVC5wYMHu7VSAQAAaqPVq1fHHHTzqPyqVausa9euCasXAAAAMkvSUk3u2LHD/vjHP9rOnTvtqKOOsl//+teVBt2kbdu2Ltim8t7z9RMAAPxnHTdvBnk8ywIAAGSikpKSpD4PAMLNvF20aJHNmzfP/dTvAIDME9cZb5WZNGmSW8RY6SQvvfTSmEfcq5zKf/311+7577//vlvcGACA2k6pmHWLJaDmlQXgb5pZof9p/b8yQxUA4qtu3bpJfR4AeNSnqTUmQ9Pd6nqvc+fOVlBQYM2bN09pHQEA8ZO0HrjPP//c/ezTp0+Vc6OrvJ6n4Nu0adMIvAEAENRIUyrnaFSOTnzAv7TGsdZiVGeMF3jT/22/fv2sRYsWqa4eAGQEZd3R9VBV0k2qfPv27RNaLwCZbfny5TZx4kQrKyur8PnjLR+wdOlSGzFihHXs2DFl9QQApGGqyXXr1rmfzZo1q9bzveetX78+rvUCACCdqVM+WkBN21UOgD8tXLjQJkyY4ILo3gxW/dTvelzbAQA1l5eXV6XBSCrXpUuXKg8eBoDgmW4KupWWlkYM+utxbVc5lQcApL+kBd52797tfm7ZsqVaz/ee570OAAAwNxNmyJAhETuQ9Li2M2MG8O9MtylTplTaEaPtKgcAqDmlc8vKiq0rROX69++f8DoByFxKL6mZbrFQuRkzZiS8TgCADAq85efnu5+zZ8+u8sKhKq/nBb8OAAD4j27dutno0aOtR48egTVIlKaue/fu7nFtB+BPSi8ZLeWZtqscAKDmtIaS0rllZ2dXOnBJ21WONZcAVJf6M0PXdKuMyhUWFtquXbsSXjcAQIas8da3b1+bNGmS7dmzxx5//HH76U9/GnN6B5XX80RrvQEAgPI0o23o0KF21llnWUlJiZsdU5X1SwAkn7emRyxUbvDgwazVCABxoDWUtHa8Zpaokzv4mslLL6mZbgTdANTE6tWrq9wmU/lVq1ZZ165dE1YvAEAGBd5+8IMfuDQ5mjb92Wef2c6dO+2iiy6qdJFifdE888wzNnPmzECah+OPPz5ZVQYAIO2osyg3N9f9JPAG+JvWcfPWdIu1rDerFQBQMwqqDRs2zAYNGuT6HjRwSZ+x6qNgTTcA8aDPlWQ+DwBQCwNvWsD4hz/8oVsgXr799lu77rrr3EgypcZq2bKl1atXz81s27Bhg1tMftGiReVe49RTT3WvAwAAAKQ7pYTVLZbgm1cWABBfCrIxswRAIlR3wBQDrQAg/SW19a70V5rx9uabbwYeU1oH3aIZOXKk/ehHP7J0tXXrVlu4cKG7KaCo2/bt2902pQ266qqr4v6eU6dOdbMMly5d6vJKN23a1Hr27GknnHCCC3YCAAAgdTQzVYPKNOAsGpUjzSQAAED6aNeuXZUzkah8ZdnBAADpIenDZs8++2yXK/3FF1+0+fPnRy2vAJECbr1797Z0dumllybtvYqLi+0Pf/iDTZ8+vdzjmkmoYNwnn3xiY8aMsTPOOCNpdQIAAEBF/fr1cwOzKuuQUQeMygEAACB95OXlucFTWqs3luCbt8Yk6W4BIP2lJF+Ngmi33367rVy50ubMmeO+gLZt22a7d++2+vXrW5MmTdwXU58+fWy//fazTKO0mvq7vLXr4u2RRx4JBN20D0866STLz8+3ZcuWuVSfa9eutVdffdU9Nnz48ITUAQAAANG1aNHChgwZ4rIUhOuQUQeMtqscAAAA0ktBQYHLRFVaWhq1bFZWlpusAABIfyldKELBp0wMrIWjGWbKG69bs2bNbN26dXb11VfH/X1mz55tn376qbt/6KGH2g033OC+uKVbt2522GGH2a9+9Ss3++3555+3gQMHWqNGjeJeDwAAAMRG12gaEDVr1iw3IE1rvmk9Nw1E00w3gm4AAADpqXnz5jZixAibOHGiW34n0kAr9d2pnMoDANIfK7QnydixY5PyPm+99Zb7mZ2dbZdcckkg6ObRbMJzzjnHHnjgAdu5c6dNmjTJTj311KTUDQAAAJXPfNPav17gjTXdAAAA0l/Hjh1t1KhRNmPGDCssLCwXfPPSS2qmG0E3AMgcBN4yyK5du9xIaalsdPQRRxzh8kWr/BdffEHgDQAAwCfU+VK3bt1UVwMAAABxpKDasGHDbNCgQbZq1SorKSlx13zt27dnTTcAyEApDbwtWbLE5s2b59IeavaVplyPGzculVVKa4sWLXIjpL119CLRCOoePXq4Nea85+gxAAAAAAAAAImhIJuWoQEAZLaURFs+//xze/XVV23FihUVtoUG3rZs2WK//OUv3SKkPXv2tOuvvz6JNU0vwftTI2Yqo+0KvGm/rlmzxjp06JCEGgIAAAAAAAAAAGSupAfeHn/8cfvggw9iLt+sWTPr27evTZ061b766ivbtGkTOY8j2LhxY+B+pDST4bZrxmFVAm/B71PZcdM6cxK6zlyiBb9fst8b4PxDKnH+IZU4/5BqnIPwm1S3m/ifSG8cv/THMUxvHL/0xvFLbxy/9MbxS0Hg7aWXXioXdDv44INdUE2Li86ZMyfi87TIvAJvWnz0m2++seHDhyepxulFa7Z56tevX2nZ4O27d++u0vvEkg700UcfdcE9NSLbtm1rqdK6deuUvTfA+YdU4vxDKnH+IdU4B+EHfmo38T+R3jh+6Y9jmN44fumN45feOH7prXUtPn5JC7ytXr3a3nzzTXc/Ly/PpYzs06dPYMZVZYE3Befq1atne/bssblz5xJ4i0ALs3qirdkWvL24uDih9QIAAAAAAAAAAKgNkhZ4e//9962srMzdv/zyywNBt1hoSuL+++9v8+fPt+XLlyewlumtbt26gft79+6ttGzw9tzc3Cq9j0ZlxpIyRbSG3Pr16y2ZdL540fR169YFzjsgGTj/kEqcf0glzj+kmh/OwVatWgXSBgKpbjf54X8C1cfxS38cw/TG8UtvHL/0xvHL7OPXqpa0mZIWeJs9e7b7qfQZAwcOrPLzdUAUeNMabwivQYMGMaePDN4eLS1lqGjrx4VK5Yej3psPZ6QK5x9SifMPqcT5h1TjHIQf+KndxP9EeuP4pT+OYXrj+KU3jl964/ilt7JafPyStrqdN3qvW7duNQoqBa9jhsgNu2gLeQdvb9myZULrBQAAAAAAAAAAUBskLfCm9dmqM7sq9PnB6RRRXocOHQL3V61aVWlZb3uiF/EGAAAAAAAAAACoLZIWeGvUqJH7uW3btmo9f+3ate5nkyZN4lqvTNK1a1fLyflP9tC5c+dWur6b0naGPgcAAAAAAAAA8B9FRUW2aNEimzdvnvup3wEgmqRFXDSrasuWLbZw4cIqP3f79u1WWFjo7u+///4JqF1mUDrOfv362fTp023WrFkunWS4dQWmTZsWSNk5YMCAFNQUAABkon379llJSYn7CQAAAADpatOmTa6PdfHixeXaN3Xq1LHOnTtbQUGBNW/ePKV1BOBfSQu8HXTQQW5kgD60vvzySzv88MNjfu4bb7zhZml5r1NbTZkyxR555BF3f8yYMTZ27NgKZUaOHOm+FEpLS+2pp56y66+/3rKy/jexUTMOn3/+eXe/YcOGNmzYsCT+BQAAIBNpsM/s2bNdo1SBN82mV2NUA4LCDQICAAAAAL9avny5TZw40crKyioMKtTvavcsXbrURowYYR07dkxZPQH4V9ICb0OGDLEJEya4zpgnn3zSzVxr3bp1TMGmt99+O5Cu8thjj7V0pKDjmjVrAr8Hp9zU4/o7Q/dXdfTt29eOPPJI+/TTT+2rr76y22+/3U4++WTLz8+3ZcuW2fjx423Dhg2u7DnnnBNIAQoAAFAdymag65jgBqkGTC1YsMBt0zVNt27dUlpHAAAAAIiFJo0o6KZJDZGo7aPtKjdq1ChmvgFIXeBNo501G0uBH6WcvPHGG+2MM86wo446qkLZ4uJitwbZe++9Z1988UXgcZWvX7++paMPPvjAPvzww7Dbvv/+e3eLR+BNrrzySpdKUjPf5syZ427BNCX69NNPt+HDh1f7PQAAADTTLTToFkyPa7sGADHzDQAAAIDfqT9VM91ioXIzZswgoxiA1AXeRKkRV6xY4YJpO3bssKefftrdlI7Ic9FFF4VdpHLw4MF2wgknJLO6aSs3N9cFNqdOneo6uzT1eefOnda0aVPr1auX2489evRIdTUBAECa05qy0dZz03aVq8mgIgAAACDZ1He5ZMkSW79+veu7bNeuneXl5aW6Wkgg9UmHrulWGZUrLCy0QYMGWYMGDRJePwDpI6mBN820uu666+zVV19167Z5owe89dskNOim9clOO+00N9stnV111VXuVhPqsKpKp9XRRx/tbgCA2kMX/krrHGtDAagub22DWKicBlHpWhAAAADwe6pBzWLSNWzwzCddy2od44KCAlILZqjVq1dXuS2t8qtWrbKuXbsmrF4A0k9SA29eIO3MM890U3D/+c9/ui8yfaiFUjqiQw45xKWnbNOmTbKrCQBA2qX8mz17tmscKvCmEZlqFPbr148Uf0gIDZwKHjwVS9m6desmvF4AAABAdS1fvtyt26WAW2gAxht4psxSI0aMsI4dO6asnkgMtaWT+TwAmSvpgTdPq1at7MILLwxM3d68ebOb7VavXj1r1qyZuwEAgOgWLlxYYZ0tBTkWLFjgtmm2dLdu3VJaR2QeBXd1iyX45pUFAAAA/DzTTUG30tLSiGXU5tJ2lRs1ahQz3zJMdQcKMsAQQKgs84FGjRq5USIHHnigHXDAAQTdAACowky30KBbMD2u7SoHxJOXaicWKkeaSQAAAPjZ9OnTy6WWrIzKKYsXMovW8atqu0Xl27dvn7A6AUhPvgi8AQCA6pk1a1bUHPTarnJAvCmVabSGqbarHAAAAOBXysKlNJKxru+lcoWFhbZr166E1w3Jk5eXV6VBgyrXpUsXa9CgQcLrBiC9JC3w9tprrwVu1Rl1r1Ek3vMBAMD/1hiIRVUakUCstH6gUplGapjqcW1nnUEAAAD42erVq6vcXlL5VatWJaxOSI2CggLLyoqty1zl+vfvn/A6AUg/SVts49VXXw3cVx7kG264oUrrzXzzzTf23nvvuftjxoxJSB0BAEgnWlsrlvW1gsuSex7xpuu5/Px8mz17tgvwamFxreemkaKa6UbQDQAAAH6na9hkPg/+pXX7RowY4fqvlVI0XEBWAwwVdFM51vkDEE5KVrnfsmWL3XrrrTZu3Dg76qijUlEFAADSnoIbusUSfPPKAomg4NrQoUPtrLPOcp0Pym7ADEsAAACki+oOUGRgY2bq2LGjjRo1ymVgU0rR4LaNl15SM90IugGIJOk9cPpw0oeVOmX+/Oc/28qVK23s2LHJrgYAAGlP36maVbRgwYKoZauSpx6oLp1jubm5ges9AAAAIB20a9euytewKt++ffuE1gupo6DasGHDbNCgQS6lqPqyFWjVMWdNNwC+WePNo9HQRx99dOD3119/3f70pz9ZcXFxsqsCAEDaUyq/aAE1bVc5AAAAAEBFeXl5VRqs6M16IgCT+XSMu3btaj179nQ/OeYAfBl408iAa665xs4888zAY59//rndcsstLgUlAACoWoq/IUOGRGwg6nFtZ50tAAAAAIisoKDArdsVC5VTqkEAAHwRePOcdtpp9vOf/9zq1avnfle+3BtvvNH9BAAAsevWrZuNHj3aevToEVhjQOu5de/e3T2u7QBQGyg9lDJpkOoUAABUJ7XgiBEjLDs7O+rMt1atWiWtXgCA9JP0Nd6CDRgwwH7729/a73//e9u0aZO7aebbVVddZQMHDkxl1QAASCua0aZ0zmeddZbLPb9x40Y6ngHUGvrMmz17ti1evNh9BmrwgdJFKc0uM34BAECsOnbsaKNGjbJPP/3UVq9eHbHc2rVr7Y033nCBOj0HAABfzHjzHHDAAXbXXXe5HLmiEar333+/W/sNAABUjUZm5ubmxrw2AQCku4ULF9qECRNs/vz5Lugme/futQULFrjHtR0AAKAq1q1bV+l2DXIsLS21iRMnuokEAAD4KvAmzZo1s9tuu82OPPLIwJfXK6+8Yn/+858DjWcAAAAACJ3pNmXKlIgzfPW4tqscAABALKZPn25lZWUxlVW5GTNmJLxOAID04ovAm2hNmp/+9Kc2duzYwGOffPKJ3XrrrbZly5aU1g0AAACA/8yaNStqWl1tVzkAAIBoioqKXOrqWNP2q1xhYaHt2rUr4XUDAKQP3wTePKeffrpdd911Lk2WKDXMr3/9a1u5cmWqqwYAAADAJ9TRpY6xWFSlAw0AANReWtetqtcMKr9q1aqE1QkAkH5yzIcGDhxobdq0sXvuucflSVZqGNLDAAAAAPBoHTfdqlJWWTYAAAAiqe6SN/FeKkcz7xQE1Ovq+qVdu3aWl5cX1/cAANSywJt07tzZfve739m9995rixYtSnV1AAAAAPhITk6Ou8USfPPKAgAAVKa6g3TiNbhHExC0xlzobP06deq4vtKCggJr3rx5XN4LAJABqSZ79eplvXv3diM0YpWfn2+33XabDRo0KKF1AwAAAJBevA6oWKicygMAAFRG/ZZVvWZQ+fbt29f4vZcvX25vvPFG2BTZXoptbVc5AIC/JW3Y56233lrtESPXXnutnXvuuazLAAAAACCgX79+bk3oytoJ6gxTOQAAgGiUzlEDdmJdH1bXGV26dLEGDRrUeKbbxIkTrbS0NGIZ1UfbVW7UqFHMfAMAH0vajLeaatmypbVq1crdACROne3brfHvf29Nf/lLy5k3L9XVAQAAqFS0TjEG7wEAgKpQOsesrNi6TFWuf//+NX5PpZcsKyuLqazKzZgxo8bvCQBInLQJvAFIjvxrrrHGf/6zNfz7363FmWda1qZNqa4SAABAWLNmzYprOQAAAM0kO/744936sJHSTurx7OxsGzFiRI1nnhUVFcU8w05UrrCw0Hbt2lWj9wUAJA6BNwABdb/5xupPnBj4PXvDBmv41FMprRMAAEA43lonsahKZxYAAEDHjh3tkksusT59+lQIvnnpJZXuUeVqavXq1VW+TlH5VatW1fi9AQBpsMbbhx9+WO73wYMHR9xWE8GvCyB+Gj36aIXHGj79tO244grb17hxSuoEAAAQzt69e92tKmW1fjQAAEAs2rRpY6effrodcsghtmLFCispKXHXEu3bt6/xmm7B9LrJfB4AIM0Cb4888ki50R/BAbLgbTUR+roA4iN70SKr/+67FR7P2rrVGv7tb7bjyitTUi8AAIBwlP5Jt1iCb15ZAACAqlKQrWvXrgl7/eoODGJAEQDUwlSTiUrlQooYIDEa/eUvVifC/1fDxx83I3c4AADwEQ3I69y5c0xlVS7SGi0AAACp1K5duypfp6i8Zt4BAPwprsM+K5uJxiw1wL+y1q2zvNdei7g9e/16y3v5ZSu68MKk1gsAAKAy/fr1s4ULF1Y6OE8dUyoHAEAmKyoqcmuFeekQFczJy8tLdbUQAx0nDRKKdU1ab425eKa7BAD4OPB2ZSWp6CrbBiC1Gj71lNXZsyfw+77cXCvp3dtyZ8wIPNbokUes6JxzlMsgRbUEAAAor0WLFjZkyBCbMmVK2I4qdUxpu8oBAJCJNm3aZNOnT68QtPFmhhcUFFjz5s1TWkdEp+O0dOlSKy0tjVo2KyvL+vfvn5R6AQB8lmoSQHqos2OHNXzuuXKPFY0ZY9t+85tyj+WsXGkNJkxIcu0AAAAq161bNxs6dKg1adKk3OONGzd2j2s7AACZaPny5fbGG2+EnSml3/W4tqsc/E3B0REjRlh2dnbEtJN6XNtVjmAqAPgbgTeglsv7+98ta9u2wO/76tSxHZdfbsWDBlnxYYeVK9vooYfMYhh9BQAAkCxKNTl58mTbFnQ9I9u3b3ePazsAAJk4023ixIluhlSk9IR6XNtVTuXhbx07drRRo0a5NJKhwTcvvaS2qxwAoBalmgSQZoqLrdETT5R7aPfxx1vpf0eGb7/mGmtxwQWBbXUXLbL6775ru085JelVBQAACLVx48aIaSZFj2t7fn4+6SYBABlF6SXLyspiKqtyM2bMsGHDhiW8XqgZzWTTcRo0aJCtWrUqsGZf+/btWdMNANIIM96AWqzBG29Y9po15R7bEbQe457jjrOSXr3KbW/04IPqxUpaHQEAACKZNWtWxKCbR9tVDgCATFFUVBQ2vWQkKldYWGi7du1KeN0QHwqyde3a1Xr27Ol+EnSrnh07drjsB/PmzbNFixa5/x0ASLsZb3PnzrVk6N27d1LeB8hoZWXW6NFHyz2054gjrOTQQ//3QJ06btZb86BgXO7s2VZvyhTbM3RoMmsLAEgD6tTRqNxYO4GAmvDWromFyg0ePDjimikAAKST1atXV/l6S+U1g0pBHKA2ZEWYOnWqfffdd+VmhupasHPnzlZQUMA6eQDSJ/B22223WaLpA/Kll15K+PsAma7eBx9Y3fnzyz22Y9y4CuWUVnLvvfdaTlDHlma9EXgDAAQ3bGfPnu2CGwq85eTkuAZtv379SO+HhNm7d6+7VaWsUjUBAJDudL2VzOcB6WT58uVuXUMF3EID1N7AraVLl9qIESNYLw9AwqRdqklGUAPxETrbreTAA11qyQqys2371VeXe6jetGmWO21aoqsIAEgDSt0yYcIEmz9/fqAzRwGOBQsWuMe1HUgEBXh1i3dZAImlNF9K90XaL6D6qjuQhAEoyHSbNm1yQbfS0tJK1wDWdpVTeQBIhLi2Pnv16hVT+hZ1zASPTm3UqJG1bNnS6tWrZ3v27LENGza4HLyBSubkWI8ePeJZVaBWq/vVVy54FmzHFVeYZYWPxe867TRrct99lr16dblZb5uOOCLhdQUA+Hum25QpUypt1Gp7fn4+M98Qd16qIAV5o1E50kwCqaXOzenTp1dYl4q0X0DVtWvXzv3vVGVwusq3b98+ofUCUk3fM8GpJSujcjNmzLBhw4YlvF4Aap+4Bt5uvfXWSrfv3r3bHnnkERd0y83NtZNPPtmttaALhlBr1qxxHTXvvPOOC8Y1btzYrrzySqtfv348qwzUSqGz3UrbtbNdo0ZFfkJurktD2fTmmwMP1Z882erOmmUl/folsqoAAB+bNWtW1A4fbVe5IUOGJK1eqD2UzlSzKis7D9XRqHIAUoe0X0B85eXluYB1aCC7su/CLl26WIMGDZJSPyAVNIM61v8JUbnCwkIbNGgQ/xsA0jvV5MMPP2zTpk2zVq1a2T333GNnnXVW2KCbtG3b1m1XOc2G0/MeeuihZFYXyEg5Cxda/ffeK/fYjksvdcG1yhSdfbaVhsxW0Kw3AEDt5HWUxqIqDWCgKjSTUkHdSLPZ9Li2M+MSSB3SfgGJoVmiWRGy1oRSuf79+ye8TkAqrV69usptDpVftWpVwuoEoPZKWuDtyy+/tC+++MLdv+666yIG3MIF4H72s59VeA0A1dPwscesTtCFSFmTJlZ0zjlRn7evQQPbqQBdkPrvvOMCeQCA2kcZDIJTh8erLFBV3bp1s9GjR7vU9N7aNUpV3717d/e4tgNIr7RfAKJTalbNEs3Ozq50AIq2qxypXJHpvPWmk/U8AKhM0lYYnzx5svuphm/Xrl2r9FyV1/OURkbpJwcMGJCgWgKZLWvNGst7/fVyj+08/3zb16hRTM/fecEF1ujhhy1r+3b3uwJ4jR56yLbcf39C6gsA8C8FNmJdW0TlVB5IFM1oGzp0qMuYoc4TrT/ILEsg9Uj7BSSWUrOOGjXKBaz1vxO6fqLSS2qmG0E31AbeAKxkPQ8AKpO0HhDla5fq5mvX8xR4814HQNU1/OtfrU5xceD3ffXq2c4f/zjm5+9r0sR2XnihNQ5KMdlg/Hjb/vOfWylrMQAAgBRTJ6PWko41KAzAv2m/qjpgF6itFFQbNmyYC1jrf0cDUBRIaN++PQFs1CrKrlbVa0CV1/8KAKRtqsktW7bEZdqv9zoAqqbOtm3W8Lnnyj1WNGaMlbVuXaXXUbrJsvr1//e6paXW6LHH4lZPAEB6UOrIqsxgINUkANQ+pP0CkkdBNgWse/bs6X4SdENtk5eXZ507d46YejWUNyuU/xUAaR14a9iwofs5f/78aj3fe54+RAFUXd7zzwdSRMq+OnVsx+WXV/l1ylq0qLAmXN6LL1rWunVxqScAID0odWSs6SOrUhYAkDlI+wUASKaCggLLyoqtu1vllIoVANI68NapUyf3c926dW6dtqr48MMP3fNk//33T0j9gIy2Z481evLJcg/tPvFEK61m+hYF7PYFNYbr7NljDUNeHwCQ2TRCVCNKY1GVkacAgMxL+1UVpP0CANQk9eqIESMsOzs74vePHtd2lWP9QwCJkrShx0cffbTNmjXL3X/iiSfcqIJjjz026vOmTp3qyge/Trpbv369vfvuu/bNN9+4hd81Arxt27YuH/fxxx9v9erVq/ZrK6j5yCOPxFT2yiuvtCFDhlT7vZA+GkyYYNlr1pR7bMe4cdV+vbL99nNpKhu++GLgsYbPPms7rrzS9jVrVqO6AgDSR79+/dwavJWlnFTDVuUAALU37dfixYtjSk9M2i8AQE117NjRRo8ebfPmzbO5c+daWVlZhe8ZzXQj6AYgIwJvgwcPtokTJ7rOGa3x8fDDD9t7773ngm89evSwli1buoDTnj17bMOGDbZgwQL7+OOPy6WmVI5qvU46++qrr+zBBx+0Xbt2BR7T37xo0SJ3++CDD+zGG290gTggLsrKrNGjj5Z7aM+gQVZyyCE1elkF2fJeftnq/PcCJmvHDmv49NO247rravS6AID00aJFCzeIRwN/wnWoqmGr7SoHAKi9ab+WLl1qpaWlUcuS9gsAEA9qf5x++ul2wgkn2IwZM1zfq9IYa0Y1gzsAZFTgTR0vN9xwg9122222atUq95iCcLrFQh+Mv/jFL9I6TZFG+d1///1WXFxs9evXt1GjRlnfvn3d75988okLuq1evdruuusuu/vuu2v8RfCb3/zG8vPzI26nE6x2qPf++1Y35P9MQbOaKu3SxXafcoo1+Mc/Ao8pneXOyy6zff9d0xEAkPm6devmrjdmz57trnVKSkrcbH7NcNBMN643AKB289J+aSCuZh1EGqihoBtpvwAA8dSwYUM3kSN41hsAJENSV7lv1qyZ3Xnnnfbss89WaZ03zXK74IIL3IdlOnvmmWdckE15hP/v//7PzfTzKACn/Pd///vfXfDtrbfesrFjx9bo/fR6rVu3jkPNkc4aP/xwud9Leva0PUOHxuW1t19zTbnAW9aWLZb3/PMu+AYAqD0UXBs6dKidddZZLvCmVNqxpBQDANSetF8aeKpZB4WFheW+I0j7BQAAgEyT1MCbl+N93Lhx7qJ70qRJNmfOHJd2QuknA5XKybH999/f+vTpY8OGDXMBpHSnmX3fffedu6+OqeCgm+eUU06xyZMn28qVK90acKeddprbF0B15X75peV+9VXFtd3iNHN0b+/etnv4cKv//vuBxxr95S+284ILzGqwViEAID2p8zQ3N9f9JPAGAAimoJra91rbXFlwNFCDtF8AAADIRCmL6iiYds455wR+Lyoqst27d7sUjArOZZovvvgicF+Bt3CUWkOz+1544QXbuXOnC0oefPDBSawlMk3DRx4p9/ve9u1t1w9/GNf30Ky34MBb9po1lvfqq1Z07rlxfR8AAAAA6U9BNqX9AgAAADJVVrLeSOkldXvuuefKzW7zKNimEXCZGHST77//3v2sV6+eS6MRSe/evSs8B6iOnPnzrcG//13uMZcCsm7duL5PyWGH2Z5Bg8o91kgBvzD/5wAAAAAAAAAAZLKkzXh755133M+ePXvWyvSJK1ascD/btm3r1niLRGk2Qp9TXY8++qhL4bFt2zYX0NR79+vXz37wgx+QO78WaPTYY+V+L2vWzIrOPjsh77X9Jz+xep99Fvg9Z+lSa/DWW7Zr9OiEvB8AAAAA+IUy+Gitdi99pjL8ZOqgYgAAAESXk8x0Ert27cqI9dqqqri42LZv3+7ut2jRotKyjRo1crPi9uzZYxs3bqzR+ypVpUfvr9uCBQvsrbfesgsvvNBGjBhRrdeNpV7NmjULBBiVQjOZgt8v2e/tF1mrV1uD8ePLPVZ04YVWp3Fji8/qbuXtHTzYivv3t9wZMwKPNXroIdujwFstOwacf0glzj+kEudffGhtPGWH0EA1rZWH2HEOwm9S3W7ifyI5x3j69OlWWFhYbm1TfX4r001BQUHUPoBIOH7pL9ZjqMBt6LqHBG5Tj//B9MbxS28cv/TG8Uty4C0/P98F3sKlmcx0WrvOozXsolEZBd6Cn1cVbdq0sQEDBliPHj0CF/nr1q2zzz//3KZNm+Yu5p544gnXGBg+fHiVX3/cuHExzbbTe6sRqZl2qdK6dWurlf7wB7OSkv/9Xr++NbrxRmuUyP1xyy1mQTPc6s6bZ22//NIszmvKpZNae/7BFzj/kArqdNR1RqtWrQgaVdGaNWvctdrcuXMDHW9KQT5w4MCUXkulKz4D4Qd+ajfxPxF/CxcutDfeeMNKS0vLBd1Evy9evNiWLl1qZ555pnXr1q1G78XxS3/hjuHatWvt448/tu+++87KysrKdVL26tXLjjnmGNe/g9TjfzC9cfzSG8cvvbWuxccvaYG3Aw880I3g0YVnbZzx5oklzaZXJvh5sVLAbfDgwRU6u3Shf+SRR9rXX39t9913n2scaM29ww47zI2yRAbZssXsL38p/9hFF+mTLrHve+qpWqTQbO7c/z32u9/953E6XwEgoxE0qplZs2a5ztvgTjftx5kzZ7pto0aNcunCAQD+oIDJyy+/XOnAYn2m66Zyl1xyCQEUVAjc6twIF7jVeaNg3Pfffx+XwC0AAMjgwNuQIUNs8uTJtmzZMnfxoEBcbZGbmxu4H8uMP69M8PNiFS0dwaGHHmpjxoxxF3iaVTdp0iQ77bTTqvQeGpUZjRfM00Xk+vXrLZk0OsyLpmumX3AnVm3Q8KGHrPF/U5vKvqws23DeeVa6Zk3C37v+uHHW7Jpr/vfAF1/Yptdes+JjjrHaoraff0gtzj+kquNI13iRgkZDhw6lwyhKmrLQoFswPa7t+v+ubrqy2sIPn4Ga7VnZes6oXVLdbvLD/0Smev/9990xi4XKTZw4scrZZjh+6S/SMdR3/4QJEyo9h7zA7UsvvWSjR4/mGiAF+B9Mbxy/9Mbxy+zj16qWtJmSFnjr2bOnHXfccfbBBx/Yn//8Z7vppptqzQjo4PSSsaSP9MrEkpayOnTB/8orr7hRVRqZXtXAW1Uv+FL54ehdrNYau3db3hNPlH/opJOsZP/9tTMS/vZFp55qje6913KWLQs81vCBB2z3UUcl/L39qNadf/AVzj8kgzqONIgndKS2R+egtjdt2pQOowgUoIz2v6rtKqeBbIgNn4HwAz+1m/ifiB+txxW6pltlVE7ld+7caQ0aNKjWe3L80l/wMfzmm29iPp4qp3UEhw0bluAaojL8D6Y3jl964/ilt7JafPySurrdxRdfbD/4wQ9sw4YN9otf/MJeeOEFW7JkScbvfM1ca9y4cUwLbO/YscPNRJNEdVCp86tRo0bu/qZNmxLyHkiNvPHjLXvdunKP7bjyyuRVICenwvvV++QTq/v118mrA1CbFRWZjR/v1nmsP3681f32W6sTNAMWiDfNaIvW8ajtKoeKvDWAYqFysXbyAgASZ/Xq1VX+PFZ5Lb0BKHBble90L3C7a9euhNcNAACk4Yy3q6++utx0QwWX3nzzTXfTmmYNGzaMKbWi1i578MEHLd106NDB5ejWGihKJxBpOmXwxbiekyiha8AhA5SVWaOQdDZ7jjrKSg4+OKnVKDrjDGv8pz9Z9tq1gccaP/igbXrmmaTWA6g19u61elOnWoPx463+v/5ltnOnezh49c7SNm1sb5cuFW6lmg1bt27Kqo7aFTQKtwZtbaf04rGkIQ8uq/XzAACpo3TKyXweMktNArddu3ZNWL0AAECaBt4qy1evToStW7daJtOadgq8KeCo0Urdu3cPW06pH4Ofkwjbtm2z7f+dAZGfn5+Q90Dy1X/vPcspLEzdbLdARerbjssus6a33/6/hyZOtJy5c21v797Jrw+Qifbts7ozZliDCROswT/+YdlR1oRRIFy3ep99Vv5lsrOttFOn/wTiunYt97OsTRuN0kjwH4J0RtCo5jT4TLdY9qNXFgCQWtX9LuM7EELgFgCA2oHWe5IMGDDA3njjDXd/8uTJYQNvSrn54YcfuvuaAdinT5+ELQTtjbDqTSAkM+zbZ40efrjcQyW9e9uewYNTUp2i885zs9yytmwJPKb6bQmpI4CqyV60yPIUbJswwXKWLKnx69UpLbWcxYvdzT74oNy2soYN/zczLjgw16WL7ftv+mTUbgSNak4zADt37mwLFiyIWlblmDEIAKnXrl0793lclVlLKt++ffuE1gvpgcAtAAC1Q9J6QB566CGrzbp162a9evVys94UeBsyZIj16NGjXJm3337bVq5c6e6feOKJFTqo5syZY7fddpu7r3RNV111Vbnt69atcws2q2Mmkq+//tpee+01d1+pPYcOHRq3vxGpkzttmuVOn15xtluKOuj2NWxoOy65xJrcd1/gMc3K2X799VZayfkJoKKsdeuswZtvumBb7syZMTwhy+yww2yvZrktX251qrmOatbOnZY7a5a7hSpt3fp/KSuDAnKaPWcxpI1GZiBoFB/9+vWzhQsXVtqBq32ncgCA1MvLy3Pfa7Gu06XP8C5duliDBg2SUj/4G4FbAABqh6QF3lq1amW13YUXXmg33XSTFRcX2x133GGjR492s9r0+6effupmonkXYiNHjqxWOk8F5hTQO/TQQ23//fe3pk2bum1r1661zz//3KZNmxa4wDvvvPOsefPmcf4rkQqNHnmk3O97O3SwXdU4h+Jp54UXujXn1Hkv6vxXPbfee29K6wWkgzrbt1v9d95xs9tyP/kkpuBZ8cEH2+7Ro63JZZfpi8Q2rFljZbt2Wc7SpS4NrW6aMRe4v2FDteuXvW6du9X7/POKqSs7diwXjAukrmzbltSVGYigUc21aNHCDciaMmVK2P2o/aftKgcA8IeCggJbunSpW789Gq1x379//6TUC/5H4BYAgNqBnD9JpIura6+91h588EHbtWuXvfjiixXKKOh244031uiiav78+e4WSb169eyCCy6w4cOHV/s94B858+ZZ/ZAUcTsvv1x5vSyV9uXnW9H557vgmyfv1Vdt+3XXWRmj9YCK9uyx+pMnu5lt9d9/3+rs3h31KXsPOMB2jR5tRaNGWWm3bq5jp4kCXJ569Wxvjx7uFqrOli3/STOpQFxwQK6w0LJ27ap+6solS/6TBjM0dWVe3v/SVoamrmzSpFrvh9QjaBS/zAhad3fWrFmuI07pO5X5QNeOClqy/wDAXzSAdcSIETZx4kS3ZESk70Bdm6kcA14RjMAtAACZj8Bbkh122GF233332TvvvGPffPONbdq0yXWstG3b1gYOHGgnnHCCC4xVh0ZBXXPNNS7oVlhYaJs3b7bt27e7izmtGdexY0fr27evHXfccYGZcEh/wYEtKWvWzIrOOsv8YMdll1nDv/7V6uzZ436vU1Jijf7yF9v235SpQK1XVuZSxSrY1uCf/yy3LmIkpS1b2q4f/tAF3ErUCK/mLLJ9zZpZSUGBu4XWKWvNmnLBuEBQbtmy6qeuLCqy3NmzzXQL/ZtatSoXjAusKUfqyrQKGs2ePdsFjUpKSgga1SCIqXTiXuCN9JwA4F9qX48aNcpmzJjh2t/BwTdvlpICJgTdEIrALZB4RUVFrn2iLGO6r35XzTgFgGSps68qiaWBKlLQT2kuk0kXp/pClTVKtVbNTuJ0kLVypbU58kirs3dv4DHNKNNaan7R9Ne/tobPPhv4vaxBA1s3bZqVZWhHbG06/1BN+/ZZzty5Lo1kgzfesOzVq6M+paxhQ9t9wgm267TTbM/RR0ec0Zrw86+4OJC6Mjt0ptz69fHfVVlZbt24QNrK4NSV7dolJHWlLosIelSPzr82bdq4wNvGjRurtHYJkCnfwfofyM7OTvr7Iv0lot3kh/+J2kIZbVatWuW+A+vWrevW46ppakCOX/qLdgw1EJvArX/xP5ie9H81ffr0CulcvfWpNeOU/yv/4/8vs49fm1rSZmLGG5DGGj35ZLmgW1n9+rbzoovMT3aMG2d5f/+7S0EnSmHX8Mknbfsvf5nqqgFJlb1ixX9mtk2YYHW//z5q+X05ObZn6FArGj3a9vzgB7bPD+s65Oba3u7d3S1Una1b/5O6Mnim3KJFNUtdWVb2v9SVkyaV26Ygfri0lS51ZTVmdStQRJq/mlODNjc31/0k8AYAqC0UZOvatWuqq4E0o87/YcOG2aBBg+IeuAVqo+XLl0ecSarf1dZTmlfNJNWsZQDIyMCbRvWog2vJkiUuHaJGiMW6sKzWSANqO63PlPf88+Ue23XWWb6bSVbasaNLiZf32muBxxo+84wLyLGuEzJd1qZNVv+tt1ywrd6XX8b0nD1HHOH+Z3adfLLtS6OReAp2KfWlS39ZbsO+8qkrg2fJLV8eCMpXlYJ5WXPmWN05c8Km4/QCcuWCc0pdGSad88KFCyusUabg24IFC9w2pf9TOkUAAAAg3gjcAvGZ6aagW2VrJ6q9p+0qp1TBzHwDkFGBN60/9uijj7rRPACqr+Fzz1nWzp3lUrJpTTU/2nH11dbg9deV29b9nrVtm6u/HgcyTZ1du6zev/9teePHW70pU8rNSo2kpGfP/wTbRo2y0g4dLKPUqePSQhbrpjSZoakrly2rkLbSzZSrQerK7A0b3K3eF19ETl3ZubMLxm1q2dK+mTfP9jVqpHwIYRtnCsppDTNmvgEAAACA/yi9ZKzpCFVOE0I04xQAMiLw9u2339rdd99d6egDADHYvdsaPvVUuYd2jRxppfvvb36ktHS7TzzRGrzzTuCxho8/bjt//GN/pM8DamrvXqv38cfWYPx4q/+vf1lWUVH0p7Rv/59g2+jRtrdXL6uVlLqyWzd32xOyqc62beVTV/43baXux7J/o6au/K9mZnatYoB169qm5s1tY4sWtqFVK/uuZ09bq3Xk/ht80yx9zXwDAAAAAPhHUVFRhTXdKqNyWltRaV5J6wog7QNvu3fvtgceeCAQdFM+XXVgvffee/bRRx+5xx566CGXcnLDhg02d+5c9/jWrVutfv369uMf/9h61daOSSBE3quvutkcwXaOG5ey+sRixzXXlAu8ZW/caHkvvmg7L744pfUCqm3fPqv7zTf/WbftH/9w53Q0Zc2a2a5TTnHBtuIBA8LOsMJ/KBVtycEHu1vY1JVBs+MCqSuXLat26srckhJru3atu8ngDz+0Ob172+ShQ21jq1auITd48GCX8hoAAAAA4A+rV6+u8vrSKq9sbKR5BZD2gbdJkybZjh073P2RI0faueee6+57QTdp1aqV+9mpUyc75JBDbOzYsfbss8/a+++/b4899pj97Gc/s8MOOyxZVQb8qbTUGj32WLmH9hxzjJX062d+VnLQQbZ7yBCrP2VK4LGGjz5qO/VZkJub0roBVZG9cKHlKdj2xhvlZk5Fsq9+fds9YoQVnXaa7dGMKc73+KWuPOqo8tuKi13wLRCUCwrMZa9bV+W36jN3rvX67jub2b+/TRk82K37pgXvAQAAAAD+UFJSktTnAYCvAm8zZ850P3Nzc23MmDExPUdlL730Upd7V4G7Rx55xP74xz9as2ZKDAXUTkpjF9rZv/3KKy0daNZbcOAtZ9UqN1to15lnprReQDSaYdXgzTddsC3322+jltdaYgqIa2ab0qy69cOQeLm5Vtqtm7tVSF25fXu5gFz2fwNy+77/3uoVF0d8yax9+6xg+nTr9+23tnv7dtvxk59YWcuWCf9TAAAAAADRVXdwJIMqAWRE4G3ZsmXuZ/fu3V3qyEjTfMOlcDr//PPtk08+sZ07d9rkyZNt9OjRCa8v4Ev79lmjRx4p91Bx375WfMwxlg6KBw60PQMGWL0vvgg81lgpZhWMz85Oad0AC7PGWP1337W88eMt95NPrE4MqSuKCwps16hRtuvUU62sdeuk1BOx2de4cdjUlVMmT7bV33xjLTZutJYbN1qr9evtoJkzrcHu3eXK5Wi28VNPWd5LL9nOSy+1HZdf7tJhAgAAAABSp127dq4/uSrpJlW+ffv2Ca0XgNotaYG37du3u5+tQzois4LWtykuLrZ69epVeK4Wuuzdu7dNnz7dvvzySwJvqLVyP/vMcmfMKPfYDs12S6M1hzTrrd555wV+14yT+u+8Y7tHjkxpvQBnzx6rP2mSNRg/3up/8IHV2RM6b6qivZ07uzSSCriVdumSlGoifvoddJAtXLTIdjRpYks7d3aPTR4yxI769FM74vPP3dpvwbJ27rTG999vDZ95xrZfc43tvOACXaikqPYAACDdFBUVufWIlOJMsy3UYZyXl5fqagFA2tJnaOfOnd263LEE3xR069Kli+tvBoC0D7x5H3w5OeXfMvhDbvPmzda2bduwz8/Pz3c/N2zYkNB6An7W6NFHy/2+t1Mn233yyZZO9gwdaiV9+ljdOXMCjzX+859t9ymnpFUAERmkrMwFtZVGssE//2lZW7dGfUpp69ZuVptSSboZVJy7aatFixY2ZMgQmzJlSuBaZU+DBjbpuONs2oABduzHH9th33xjWXv3lnte1pYt1vT2263RE0/Y9uuusyKlzCVVCQAAiGDTpk1uMHFox7A6gNVhXFBQYM2bN09pHQEgXekzdOnSpVZaWhq1rCaB9O/fPyn1AlB7/W+6WYI1+u/6NrtDUjcFr9e2cuXKSi9SRekmgdooZ+5cNxMnmFKdWUgw2/fq1HGzRILVnTvX6oX8bUBC7dtnObNnW5Pbb7c2hx9uLceOtYYvvFBp0K2sUSMrOuMM2/jii7b2yy9t2223WYku1gm6pb1u3brZ0KFDrXHjxuUez2rf3vbcd5+t//hjKxozxvaFOdbZa9ZYs1/+0loPGWL133zTBXIBAACCLV++3N54442wszH0ux7XdpUDAFSdBi6MGDHCsrOzwy5jJHpc21WOgQ4AMibw5uXNXb9+fbnH999//8D9r7/+OmIqhoULF7r7DRs2TGg9gXSZ7VbavLnt0gyLNLT7pJOspGvXco9p1puCIUAiZS9bZo0eeMBaDR1qrY8/3ho99pgLnESyr25d23X88bbpscdszYwZtuX++23PscemX8AbldI1htaQ9dJie/S7Hv++uNi2PPCArf/gA9t14olhXyNnyRJrfuWV1ur4463eBx/weQYAAAKDiCdOnOhmYURKgabHtV3lvEHHAICq6dixo40aNcqlkQwNvnnpJbVd5QAg0ZLWc9i1a1ebO3eurVixotzj3bt3dyPM1bn14Ycf2tFHH+3Wcwu+AH3qqadsx44dgVHpQG2TvWKFNdBMiiA7L77Y9qVrPursbNtx1VWW/7OfBR7K/eory502zYoHDkxp1ZB5sjZtsvr/+IflTZjgzrNY7Bk0yK3Ztuvkk23ff1MdIzNt3LixXJrJUHpc25XyusWBB9rmJ5+0HdOnW5O777Z6U6dWKK8ZvC3OP9/2DBhg22+80YoHDEjCXwEAAPxK6SXLYpwRr3IzZsywYcOGJbxeAJCJNJNNn6FHHXWUm8ixZ88e27Vrl1vaiDXdAGRk4K1fv3721ltvuQBaYWGhG2UgmuI7fPhwmzBhgu3du9duv/12l2e3U6dO7sNRF6lrgmYjqCxQ2zR8/HGrE5Sn+v/Zuw/wqKq0geNveg9J6CBILwIKCio2utgFC6LYBRUU0F3XXVdd9XPVta0FARUsq+KiYu+CCCp2AQUVCFUgICUB0vv3vEfv7EwySWaSmblT/r/nmScz956ZOZl758695z3nPVVJSVJ4ySUSyorPOkvSHnxQYp1SzKY++qjkEniDD0QVFUnihx9K0muvScKnn0pUjfm53Cnv3dvsl0VnnilV7dsHpJ6w36pVqxqcgFvXazmdC06VDxgge196SeI/+8wE4OJXrqz1nIRvvpGEsWOlZPhwOfDXv0pF375++x8AAEBw0kZfd+kl66LltL1k8ODBZPsBgCbQIJvOn6m0XdnTDhAAEHKpJvv27euY5+3TTz91WXfWWWc5Uk7qgXD58uUmv/n777/vEnQbMmSIHH744YGqMhAUonJzJfnFF12WFZ1/vlSHej7quDgpmDzZZVHi0qUS98MPtlUJIa683KT4y5g6VVofdphkXnutmRexvqBbxUEHSf6118qujz+W3YsWScGUKQTdIog1p4on3DWalR1/vOx55x3JnTtXynv0cPs83Qc1rWnm5MkSs3GjT+oNAABCw44dOzwOulm0fE5Ojt/qBAAAgDAa8aYj2+677z4zii0+Pt5lnT6+7bbbZO7cufLFF1/Ueq6uP/300+Wcc84JVHWBoJHy3HMSXVzseFwdEyOFV14p4aBo/HhJe/hhidmzx7Es9bHHJG/OHFvrhRBSXS1x339v0kgmvv22xOzd2+BTqjIypPj0083otrKBA0WiA9YHBUFGR9rrzZuycXFxriuioqTk5JOl5MQTJenVV38fyVsjrbZKeustSXz3XXPcy7/uOqn6Y+5bAAAQvsrLywP6PAAAAERY4E01b968znWaRmH69Oly0UUXyerVqyUvL89MfNm6dWszWo40C4hIxcWS8vTTrovOOEMqw2UiWE2ZeeWVkn733f9b9N57kr9unVTUMXoEULHZ2SaNZNIbb0jsr782WL4qMVFKRo+W4rFjpXTIEO3REZB6IrjFxsaamyfBN6tsnWJipHjcOCk+80xJmTdPUh95xKVTgdKUwbouecECKbz0Uim49lqpCvXRywAAoE61Ouz4+XkAAACIwMCbp5NgnnDCCXZXAwgKyS+/XGsET830jKGu8OKLzSi36AMHHMtSZ86UfY88Ymu9EHyid+yQpDfflKTXX5f41asbLK+jQ0tPOMEE2zToVv1HumPAoh18NO9/dnZ2g2W1nJZvUEKCFF5+uRSdd56kzJ0rqY8/7nJ8M+9bWiqpTzwhyfPmScHVV0vhpEnsnwAAhKG2bdua8wdv0k1q+XaMjAcAAAhp5NcCglVlpWmYdVYydKhU9Okj4aQ6LU0KL7vMZZkGVmI8GMWE8Be1f78k//e/0vzcc6X1oEHS7M47Gwy6lQ0YIPvvvFN++/57yX3hBSk++2yCGqhTv379Ggyo6Xot543qlBQpmD5dfvviC8m/5hoz6rKm6IICSX/gAWk1eLCkaIrdkhKv6w8AAIJXcnKy5513/jjn6NKliyQlJfm9bgAAAPAfAm9AkNK5gGK3bAnr0W6WwokTpcrp4lLTsaXOnm1rnWCjkhJJfO89yZw0SdoMGCAZN9wgCV98IVH19BQu79pVDtxwg/y2bJnseecdM+KoqmXLgFYboUnTYA8dOrTOBjFdruvrS5ddn+rMTMn/+99l17JlZoRvtZt0lTG5udLs9tul1fHHS9L8+TqhXKPeC6ErqqDApM7V417LE06QZjfeKNG5uXZXCwDgAwMGDJBoD+cU1nL9+/f3e50AAAAQYakmAWhLbXWtwFPZYYdJ2bHHSjjSOY6KLrxQUnXExx+SX3pJ8q+7Tqpat7a1bgisuJUrJfPKKyV2+/YGy1a2bm3m09JUkuU6GsnDnsRATd26dZPMzExZtWqVbNq0ycz5pvO5aQ91HenW2KCbs6o2bWT/PfdIwVVXSdqDD5qRvTWDybE5OZL55z9L6qxZkv+Xv0jJqadqC1yT3xvBG2xLXLhQEt95RxKXLJEopxGPcRs2mHX7HnxQSocPt7WeAICmT6cxatQoWbhwoVRVVblNO6kdfTTopuW0PAAAAEKbTwNvCxYskEA455xzAvI+gF3ily2T+B9/rD3aLYwDC9oYnfLssxJVXv6/OZDmzJEDt9xid9UQINE5OZJ1ySUSs2dPnWWq0tKk5JRTpGjsWCk75hiRmJiA1hHhP/JtyJAhjsCbp2mhvFHZqZPsmzHDHNPT77vPBFdq0qBL1tVXS1m/fpL/t79J6ZAhYX38jyRR+fmuwbbS0jrLxuzaJc0vusiMlDxw661SnZwc0LoCAHynQ4cOMmbMGFm5cqVs3LjRJfhmpZfUkW4E3YDQUFRUJDt27JDy8nKJi4sz8zlqalkAAPwSeHvllVckEAi8IdzpaAdnFZ06mWBDOKtq21aKxo2TlHnzHMuSn3vOzI2kqdoQ5kpLJeuqq9wG3arj46VkxAgpHjPG/BXmvEAYqDjkEMl99lmJ+/ZbSb/3Xkn48staZeJXrZLmEyZI6eDBcuBvf5PygQNtqSsCF2xzJ+W55yThs88k79FHpfzww/1WTwCAf2lQbfjw4TJ48GDJyclxNNi3a9eOOd2AEJGbmysrVqwwWTJqBtA1W4amliWADgBQpJoEgkzs6tWSuHRprdFgkTCyR0eAJP/3vxJVVWUeRxcWSsozz0jBn/5kd9XgZ83uuEPily93WVbep48UXnqpFJ9yilRnZNhWN0SGvXv3+jXVZF3KBw2Sva+8IglLl0rav/5lgm01aVCu5ZlnSsmoUXLgr3+Vit69/VYf+EbUgQP/C7YtXepRsE3n/ys97jgzz6kG2pzFbtokLcaMkYJp0yR/+nSRuDg/1h4A4E8aZOvatavd1QDgpa1bt9aZMlYf63XEli1bTMpYHeUKAIhssYEeiabDsT/66CPTqKW0J4jOrdKiRQtJSEiQ0tJS0/iVnZ1tepKYSsbGyujRo+kFhoiQ+vjjLo8rmzeXonPPlUhQ2bmzFJ9xhiS/8YZjWepTT0nhlVdKdWqqrXWD/yS98oqk/Oc/LssqDj5Y9rz8MgE3BMT69etlyZIlLhfQep6i5yK6TlNQ6rmK30RFSenQoVJ6wgmS+O67knb//SbdZE0ayElYtMjMa5j/5z+btJUIsmDbRx9J0jvvmEBqVFmZZ8G244+X4tNOk5LRo38f4V1dLcnPPy/p//d/El1c/L/Xr6yUtIcekoTFi83ot0p/7pMAAABw0HZKDbpVVlbWWUavJXS9ltPUsox8A4DI5tPA27kNBAc0ncI999xjGrM6duwoF110kRx66KF1ltee588995z8+uuv8u2338pNN91k0jAA4Spm61ZJeustl2WFl18eUan1Cq691iXwFr1vnyS/8IIUXn21rfWC/0Z4Zvztby7LqhMTJXfOHIJuCNhFdM2gmzNdruszMzP9OvLNiI6WktNPl5KTT5akBQsk7cEHJTYnx6VIlAZlXnvN/FYUXXCB5F93nVS1bu3feqFOUfv3/y/Y9umnngfbTjjh92DbiSfWTqccFSVFF18spcceK5nTp0v8ihUuq+N/+EFajh5t5kAtuvRS5v8DAADwM00vqSPdPKHldD5HTS0LAIhc0YF6o7KyMnnwwQdl165d0rdvX7nrrrvqDbopTe909913m/L6PH2+jogDwlXKk0+aHu2WquRkKbzkEokkmkKt+MQTXZalPvmkSEmJbXWCf0Tl5UnWpEkSVWPb7rv3Xqno08e2eiGyaCefuoJuFl2v5QImNlaKx4+XXZ99Jvtvv10q3fSWjaqoMHN/tTrmGEm7+27zfULggm1JL78sWRdfLG0OO0wyr7tOEhctqjfoVh0XJyXDh0vev/8tO3/4QXKff16Kzzuv3jlMK7t2lT1vvCEHbrhBqmukm44uKZGMW26RrAkTJHrnTp/+fwAAAPifgoIC2bhxY4PXDBYtp+WLnTIXAAAiT8ACb9pbfNu2bSZt5NSpUyU+Pt6j5+lkw1pen6fP/+STT/xeV8AO0bm5kvziiy7LdDRDfY1y4TzqzVnMb79J8ssv21Yf+EFVlWTqsf3XX10WmzndPEhbDPiCNReDJ2pOoB4QiYlSOGmS7PrySxN8qXKTclcDMGkzZ0rrY46R1EcekajCwsDWMUJE7dsnSS+9JFkXXfR7sO366yXx448lqry8/mDbiBGS99BDsnPlyv8F27wZzRsbKwXXXy973npLyt3MB6Tzx7UaMUISa4yWBwAAgG9s3rzZ6+sALa9ZvwAAkStggbdly5aZv3369JEML9OHaXkd9aa+/PJLv9QPsFvys8+aBlTnVFQ6t1kkKj/iCJNiy1nqrFk66ZJtdYJvpf3735JYoyNF2cCBsv+222yrEyKPpr625pz1ZVlf0zkuNfiiAbiCq66S6oSEWmWiDxyQ9PvuMyPgUp5+WoQMAU2mowgdwbb+/SXzT3+SxMWL6w+2xcdLyciRkvfww7+PbHvuOSkeN67JqXPL+/eXPR9+KAWXXVZrnaZkzpo8WTKmTjWj8QAAAODbDF6NUV7POSMAIPwFLPC28480OC1atGjU8615VazXAcJJVHHx7w2lTorPPFMq27eXSJU/bZrL41id/+7NN22rD3wnYeFCSXvoIZdllS1bSu4TT4h4OBoa8AUdTa83X5f1l6qsLDnwj3/Ib59/LoUTJtRKP6hi9uyRZrfeKq1OOMGkQ5R6JoBHHcG2+fMl68ILvQu2jRoleY888nuw7T//keJzz5XqZs18WrfqpCQ58M9/yt4XX5TKNm1qrde5/3T0W/xnn/n0fQEAACKZpxm73GXwAgBEruhA5kRW+fn5jXq+9TzrdYBwoo18MTXm5ymYPFkiWdmxx0rZgAEuy1Ife8ykKEToitm0STJrBFU1eJA3e7ZUuWlIBvwpKipKOnfu7FFZLaflg0FVu3ay/777ZNcnn0jRmWe6LRO7bZtJh9hy5EhJfP99zXcT8HqGiihN9fzf/5r50kyw7c9/NiNydR69+oJtOh9p3qOP/h5se/ZZkya3Oj3d7/UtHTJEdi1aJMWnn15rXcyOHdJi/HhJ19HDzCsCAADQZJ06dfL6OkDLt2vXzm91AgAEv4AF3qz0kj/99JPXw621vD5PNfNx72HAdhUVkqojfZyUDB8uFb17S0SLiqo16i1u3TpJ/PBD26qEpo/szJo0yaTEc3bgllukbPBg2+qFyNavX78GL6R1vZYLNpVdu8q+WbNk14cfmt8Nd/S4mTVxorQ4/XRGQtUMtr34omRdcIEJtmXccIMkLllSf7AtIUGKR4+WvBkzZOePP0reM89I8dlnByTYVqsumZmmw0LeY49JlZv3T507V1qecorErl4d8LoBAACEk9TUVOnSpYvHwTctp+WTkpL8XjcAQPAKWOCtZ8+e5m9hYaHMmzfPq+dqeX2e8+sA4SLx3XdNGkVnBVOm2FafYFI6cqSU9+rlsix1xgxGboSi6mppduONEvfLLy6Li884QwonTbKtWoCmsh46dGidF9K6XNdbKa+DUUXfvpL7/POy57XXpHTQILdl4lesMCOhmp93nsStWCGRKFqDbfPmSdb55/8ebPvLXyRx6VKJqicdpwm2nXSSCXDpyLa8p5+W4rPOkuq0NLFdVJQUjx1rRr+VHnec26Bry1NPldRHHyXlKAAAQBMMGDBAoqM9a0LVcv379/d7nQAAwS1ggbfhTj2x33//fXn88ccbTBupwbYnnnjClLeMHDnSr/UEAqq6WtJmznRZpOkVy44+2rYqBZXoaCm49lqXRfE//CAJjNoIOSnPPGPmH3JW3rOn7HvgAdN4DNipW7duMnbsWOnevbtjHjf9q491ua4PBWVHHSV7X39d9j73nJQfcojbMgmffy4tTztNMidOlNh16yTcRe/dK8kvvCDNx4+X1hpsu/FGSfz00/qDbYmJUnzyyZI3c+bvI9ueesoEuIIi2OZGVfv2sve//5X9d9xhAoXOdARf+r33SouzzpKYzZttqyMAAEAo0054o0aNkpiYmHo77Ol6LZeVlRXwOgIAgsvvrUsB0LdvX9NjfMmSJebxJ598IsuWLTO9Rnr06CEtWrSQhIQEKS0tlT179kh2drasWLHCPLYMGTJE+vTpE6gqA36nAaS4P9KousztRiDCQeewSXvgAYl1ajDU3vulJ5xga73gufhvvpH0O+5wWVaVlia5c+ZIdUqKbfUC3I1803ONiooKE3gLljndvBIVJaUjRsjuYcMk8e23Jf2++1yOn5ak9983qXt19Fb+DTdIZYcOEk7BtsT33pOkd96R+C+/rDfI5hxs03SdxaedZj6/6tRUCSnR0VI4caL5bcyYOlXia6SYjP/uO2k5apQcuP12KbrgAs4zAAAAvNShQwcZM2aMrFy5UjZu3CjVTpl49LqhVatW0r59eykrK5OioiJJTk62tb4AgAgJvKmrrrrK/AB98cUX5rHe//rrr82tIYMHD5arr746ALUEAid11iyXxxWdO0vJSSfZVp+gFBtrUm/qKAVLwpdfSty330p5HSnVEDyif/tNMq+6qta8SfseecTMTwXAT6KjpeTMM6XklFMk+aWXJO2hhyRm506XIlFVVZK8YIEkvfmmFF54oRRMny5VLVtKKIres8c12FZV1eBzqhITpdQKto0cGRYdASp69JA9b79ttnfqY4+5fA7RRUW/j/j76CMz2jhUtzUAAIBddCSbZvTSNsqcnBzZt2+fbNu2TXbt2iW//fabuVmBuM6dO5vBBox+A4DIFNDAm+Y5nj59uvnhmT9/vuzdu9ejHujnnXee6YEOhJO4H3+slTKxQIPLMTG21SlYFZ1zjqT9+98ujcZpM2ZI7nPP2VovNKC8XDInT5aYXbtcFudPnSolo0fbVi3AHT0nWbVqlWzatMkx4k0vlvv16xfU87s1KC5Oii68UIrOPltS/vMfc+yM3rfPpUhUebmkajrY+fPNqCkdeV3drJkEu+jdu/8XbPvqK8+DbSNG/G9kWxgE22qJj5f8v/7VjODLnD5dYrdscVmduGiRtBwxQvbfdx+dfQAAABohKSlJ4uPj5YcffpAqN+egOhpOryu2bNliUk/qaDkAQGQJaODNcsIJJ8jxxx9vfqBWr14tmzdvlgMHDkhJSYkkJiZKenq6dOrUyaSnPPTQQz2ewBQIJamzZ7s8rmzZ0gSY4EZCghRcdZU0c0pXmPjxxxK7erVU9O1ra9VQt/Q775SEGiOaS044QfL/8hfb6gS4s379epMK2zldjAbfNO21rtMUlKEyz1udkpKk8OqrTZrB1CeekJQnnzQjoJxFFxebwFzK88+bkcaFl18u1UlJEkyid+36X7Dt6689C7YlJbkG2yIk7Y+OCt+9cKFJ9Zsyb57Lupi9eyXriiukcPx4k34yWOevAwAACEa5ubmycOFCqaxv3uDqarNey2mKSka+AUBksSXwZg277t+/v7kBkSZmyxZJfOcdl2WFV1whkphoW52CnY7Y0LndYvLyHMvSZs6UvBoBTASHpDfekNSnnnJZVtG+veybOZNRnQi6kW41g27OdLmuz8zMDO2Rb3+oTk83we/Cyy4zx1QNskWVlbmU0RFx6XffLSlPPSX506dL0fnnm1FUQRFs05FtdWyrWsG2kSN/D7YNHx4xwbaadESfGdk2apRk3HCDxOzZ47I+Zf58SVi2zKT/LTvqKNvqCQAAEEpWrFjhdqSbO1pO54XTFJUAgMjBUDLABjrawLmXflVKihRedJGtdQp22miqKdCcJb79tsRs2GBbneBe7C+/SLMbbnBZVp2QIHlz50oVvfwQZDS9ZF1BN4uu13LhpKpFCznwf/8nuz77zIx6qnaTXSDmt98k4+9/l1ZDh0rSa69pq0FA54dMfuYZaX722dL68MMl4+abzfye9QXdqpKTpfiMMyT3ySflt1WrJO/xx6XktNMiNujmrHTUKNm9eLEUu0ktGbt1q/mc0+6+W6S01Jb6AQAAhIqioiKTRrKhawiLltu4caMUFxf7vW4AgOBB4A0IsOi9eyX5pZdclhVNmCDVGRm21SlUFF56qVSlpjoeawNs6qxZttYJrqL275esiRNNyjpn++6+W8oPPdS2egHuWHMveMKbi+tQUnnQQbL/wQdl9yefSPGpp7oto3OEZU6dKi1PPFESPvpIPzi/1CV6505JefppaX7WWdL6iCMk45ZbJKGBEW4abCs680zJnTNHfvvxRzMKuuTUU4MuRWYwqGre3HSAyPv3v11+S5V+xjqKvOVpp0nsmjW21REAACDY7dixw+vrAi2fk5PjtzoBAIIPgTcgwFKeeUaiSkocj6tjY6Vg0iRb6xQqNDhZeMklLsuSFyyQmO3bbasTnFRVSeb06RK7ebPL4sIJE6R4/HjbqgXURedx05uvy4aiim7dJO/JJ2X3++9LyZAhbsvE/fKLNL/sMmlx5pkS/8UXPnnf6B07TErL5mPHSuuBA6XZrbeauSHrDbalpEjRmDGSO3eu7PzxR9k3a5aUnHIKwTZPREVJ8XnnmbnfSt2kloz7+WdpefLJkvL44wEd4QgAABAqysvLA/o8AEBosm2ON81xvH37dtm9e7cZpl3fhKQ1DamjQQgIdlFFRSbw5qx47FipatfOtjqFmsJJk8zcYVbwMqqiQlKeeMKkTIO9dL6oxIULXZaV9e8v+++807Y6AfWJjY01N08CalbZcKcjU3NffNEE1tLvuUfily+vVSb++++lxbnnmgBd/t/+5vVoVg22Jb37rpnrNP677zybsy0lRUpOPNGkjjSBQYJsTVLZsaPsfeUVk/o67b77JMqpIUjn/Gt2552SuGiR7Hv4YTMqEgAAAL+Li4sL6PMAAKEp4C1IGmh79dVX5csvv5QSp1E/noqKiiLwhpCV/N//SvS+fS7LCiZPtq0+oaiqZUspPP98SXUKYCbPmycF06aZOYtgj4QlSyTtgQdcllVmZZm5liQhwbZ6AQ2dU3Tu3Fmys7MbLKvltHykKDvmGNnz1luSsHChpN97r8S5ST+YuHSpuWmKyvwbb5SqHj3qfL3onBwTbEv6I9jmCU2H6BJsS0xs0v+EGmJipGDKFPPZZk6bVmsb65x6LUeONJ0nis85x4yWAwAAiHRt27Y11wXepJvU8u3ocA0AESWggbfly5fLww8/LKVNmLg9HOZX0eDj+++/bz6PvXv3mh70bdq0kcGDB8vo0aMlwUeN1CtWrJBFixbJhg0b5MCBA5Keni5du3aVkSNHyoABA3zyHvBCebkZmeWsZORIqejZ07YqharCq6+WlOefN6PdVHRJiaTMnWtGXiDwYrZulcxrrnEZtVIdHS15s2ZJVfv2ttYNaEi/fv1k/fr19Z5f6IWylos4UVFSeuKJsnvECEl64w0TXI/99ddaxczotfffNykM5V//EunY0SyP3r79f8G277/36C2r0tKkZNQoKT79dCk94QSCbQFQ0aeP7H73XUm//35znuJ8LI/Oz5fM666TxI8+kv333itVWVm21hUAAMBuycnJplOep3NA67VEly5dJImMDQAQUQIWeNuzZ4889NBDUlZW5liWkZEhBx98sKSmpkZE+ib13XffyYwZM6S4uNixTAORGhzT28cffyw33XSTCcQ1JY3nk08+KYsXL3ZZnpuba27ffvutDB8+XK688kqJjmaav0BJevttia0xF5n2NIf3NO1V8VlnSfLLLzuWpTz7rBk9WN2sma11izjFxZI5cWKtkZwaBC07/njbqgV4qnnz5jJ06FBZsmSJ2wtnvVDW9VouYsXESPHZZ5tgmI7cTnv4YYnZtculSFRVlVknr74qMmGCZK1a5fnINg22nXiiFJ92mpTqyDZGyQZeYqIcuPVWKRkxQjKuu67W+UrSe++Z7bnvwQeldPhw26oJAAAQDLQz+5YtWzyaNkfb3fr37x+QegEAgkfAol1vvfWWI+iWlZUlkyZNksMPP1wiifaG0RF/+jkkJibKmDFjpG/fvubxsmXLTNBtx44dcs8998i//vWvRveGmT9/viPopr1wzjjjDGndurX89ttvZjtoPXS9joC74IILfPxfwq3qaknCIwakAACrPUlEQVSdNctlUdkRR0jZkUfaVqVQl3/NNZL0yiuOnvnaKz/lP/8xKScRINXVkvH3v0v86tUui4tPOYWgMkJKt27dJDMzU1atWmV+I3XON+0QpL+hOtItooNuzuLjpeiSS6R43DhJefppSZ05U6L373cto+d6zzwj8Z4G26yRbQTbgibF6O5Fi6TZrbdK8oIFLus02Nr8oouk8KKL5MA//iHVycm21RMAAMBO2q45atQoWbhwoen8XlcHPg26aTktDwCILAELvGljloqJiZGbb75ZDorAidqfffZZE2TTz+CWW26RHk5zoWgATvNEv/DCCyb49vbbb8u4ceO8fo+cnBzzXKVpJe+44w6Jj493NCwOHDhQbr/9djO6TsvpyLemjK6DZxKWLpW4X35xWWYCE8yX0miV3bpJyamnmhRmlpQ5c6Rw0iSpJoVDQCS/8ILLqENV3q2b7Pv3v9m3EbIj33QeWSvwFklzunlDj7EF11wjhRdeKKmzZ5tUv9FOI/nrUpWe/r+RbQTbglZ1errse+QRs62a/fWvEpOX57JeUz0nfP655D36qJRHWCc6AAAAS4cOHUyH+pUrV8rGjRtdgm9Wekkd6RapQbeioiLTvlleXi5xcXGmzVPTdALBgP0TYZdqUvXp0ycig246f8wvfwRehg0b5hJ0s5x22mnyySefyPbt280ccGeddZbXKTjfe+89x1D3yy67zBF0s+j8cbpcA39a7p133pGJEyc26X9Dw3RUgLPyrl1NgxaaJn/qVJfAW0xuriS/+KIUXnGFrfWKBHHLl5sREc6qUlIkb+5cqU5Ls61eQFPpRbKeeKNhmtpX08oWXn65pD76qKS88IJElZe7lKlq1ux/wTZNP0uwrUHaaBMMwV/t3FI2cKBk3HCDJNZIXx67aZO0GDPGjDLPnz5dhO8MAACIQBpU0w7tgwcPNh3hrUb8du3aReycbjrFzYoVK2rNgafntZpRRNN0RmowEvZj/0RYBt608UBHe7Vs2VIi0TfffOO4r4E3d3QIuva0f1EDB4WF8tNPP8lhhx3m8XvoAUPnb1Pt27d3G9xTulxPAvSkQOecu+KKK+jV70dxK1dKwhdfuCwrnDxZN7htdQoXFX37Ssnw4S4Ngjr6QtNgaUo0+Ef0nj2SNWlSrQZ2nfunont32+oFwB5VrVrJpuuvl02HHSYd5s2TNlu3yq62bSVv5EhpMX68ZDGy3iN79+4NunSnVa1bS+5zz0ny889L+v/9n8vIxqjKSkl76CFJWLzYjH7TkegAAACRSINsmnUq0m3durXO9Jv6WM9zdW48Tb+pIwaBQO+fH330kdk/a2L/hD8ErOW/RYsW5m+xB6mIwtHatWsdI850uHldDjnkkFrP8dSuXbsk7490QL179663rPU+GunfvXu3V+8D72ggyFllq1ZSdNZZttUn3BRMneryOGbHDkl+9VXb6hP2Kiok8+qrJWbnTpfFBVdfLSWnn25btQDYO6r/9ddflxX79slbp54qT159tbxx5pmyNCVFXnvnHbMenn2G2dnZJuim9K8+1uW2foZRUVJ08cWy+6OPpGzAgFqr43/4QVqOHi3Jzzxj5v4EAABA5NH2RQ26aXYtd3PeKV2u67WclgcCRYNqH374odugm4X9EyEbeDviiCPM33Xr1kkk2rZtm/mr86npHG910ZFoNZ/j7XtYI97q05T3gediNm2SxPfec1lWqKk9SbXlM2VHHimlRx/tsiz1scdE/ki5Ct9K/9e/JOHLL12WlR5zjBy46Sbb6gTA3lFaS5YsqffiWtdrOYT2Z1jZpYvseeMNOXDDDVJd41w2uqREMm65RbImTJDoHTtsqyMAAADsoen76gtqONNyOjceEKiRbosWLarzeqsm9k+EXKrJE088UT744AMz19vnn38uxx13nEQKTbGZn59v7jeUKig1NdWMiistLfW6gcW5fEPvY41ArPk8b9+nLhkZGY4Ao6bQDCTn9wv0e9eU9uSTEuV04lGVmirFl1xie73CTeG0aZLw1VeOx7GbN0vye+9JyZlnBrwuwbT/+VrCO+/UHsHZtq3sf+IJiSa1Z1AI5/0PwWn16tUNXsDoei1XV6rtSBdSn2F8vBT9+c9SNmKEZFx7rcRu2OCyOnHpUmk1cqQcuPdeKTnjjIBXj2Mggo3d1018J0Ib2y/0sQ1DG9vPc0VFRbXmzKqPltu4caMce+yxfpsLj+0X2ny1/fRcTNNLeiMQ+2e44/sX4MCbTkw4ZcoUeeihh2TOnDmSnp4uhx56qESCkpISx/3ExMQGy2sZDbw5P8/X76PBPXfP88RknZ+sAbNnzzbBP72I1FF+dmnVqpVt7y2//Sby0ksui6InT5bWdcy9hyYYP17kgQdEli93LMqYNUvkyitNiqyI3P987ZdfRK6/3nVZXJzEvPaatOrb165aIVL2PwQlKw++J7Tc+PHjmVO2jos6T2i5oPkMTzpJ5McfRf72N5EZM1xWRe/bJxlXXSXy6aciOgI9I8OWKnIMRDAIpusmvhOhje0X+tiGoY3t1/SOZDVpeQ3Y6ZzG/sb2C21N2X46+MfTkZh27Z/hrlUEf/8CFnLUkW46t9mkSZPMnBV333233HffffLZZ5+ZiQt1njEt48ktFEe8WWJjG451WmWcn+fr94mLi3P7PPiQNkSVlv7vsX7m06fbWaPwpY2Qf/+76zJtEHz3XbtqFF4OHBAZO1akoMB1+aOPitRI8wkgcpSXl5ubr8tGEv1MrDndGqLlguozTE7+/Xfgww81h3nt9fPmifTrJ/Lxx3bUDgAAAAHS2HZFHXQA+EtBQYH8op3IG4n9EyEz4u2aa66ptez77783N29oL9/58+dLKIl3SsHmSeOKVcb5eb5+H+eGG2/fR3tlepIyRemklBpUDSQdwmpF03ft2tWong1NFVVYKC0fe8wlsl10zjlyQNPI7NwZ8PpEhMGDpUW3bhK7fr1jUdntt0uuzi8ZwNEBwbD/+VR1tWRMnCiJa9e6LC467zw5oKk82Z+DStjtfwhq2gtQO/p4cm6j5TTNR1CM1goi3n5HtQNa0KXqOPRQiVq0SNJvukmS3nzTdZ3OIzxypBROmiT5Oheon1O1BMMxsGXLlvXO54zIYvd1UzB8J9B4bL/QxzYMbWw/z+nIoMYoLi6WnX5qU2D7hTZfbL/169c3abv7c/+M9O3XMkKumQIWePMVb4cuBwPntI+epHW0yniSlrKx7+Mctff2fRqaP64mO3/c9L3teP+U55+X6P37XZYVXHUVP/R+ln/ttZJ53XWOx/Hffy+xy5ZJ2THHRNT+50ups2ZJ4nvvuSwr69tX9t11lwnKmRuCUjjsfwh+mnojOzvbo3J6DheK53H+5O0INi3vnLUgaDRrJnmzZknJiSdKs5tukmgdKe0kZc4ciV+6VPJmzJCKAKUn5hiIYBBM1018J0Ib2y/0sQ1DG9uvfpoqWTvYeXOur+X1eYH4XNl+oa2x268pGd4CuX+Gu6oI/v4FLPDWokULiVQ6oiwtLU3y8/MbnGBbh8FaQTFvL9Scyzf0Ps4pO719HzSgvFxSn3zSZVHxiSdKRffutlUpUhSPGSNpDzwgsdrD/g+pM2ZIrk2Bt1AX/9lnknbPPS7LqjIyJG/OHL+PWgAQGvr162d6EtZ3ka0XLVoO7kcCak8/HenSEC3nScpyu3+HSwcNksw//UkSPv/cZV3cunXS8tRTJf/Pf5aCKVP0n7etngAAAPCd5ORk09FO53X2JPim1wc6HVES7Qrwo6Z0WGT/hC8E7Ip35syZEskOOuggk1dWh6hq40pdwylzcnJcnuPte1i2b99eb9mmvA/qp2mWYnbscFlmGpjgf3FxUjB5smTcfLNjUeKnn0rcypVS3r+/rVULNTHbt0vmlCkS5dQrpToqSvJmzpTKjh1trRuA4KGdd4YOHSpLlixxe5GtF9W6nk4+9Tc6eDJqUMuFQqrOqvbtZe9//yspTz8t6ffcI1FOWRiiKiok/d57JfHjjyXvkUekslMnW+sKAAAA3xgwYIBs2bLFow5lmoauP2008LO2bdt6PRJTsX/CV4Jskojw1bNnT/NXR7Nt3LixznI///xzred4SnOnZmZmmvsNTR5prc/KyjJ5VeEj1dWSWmMuB+35XT5okG1VijQ691hljX1aR73BC6WlknnllRKTm+uyOP+GG6R06FDbqgUgOHXr1k3Gjh0rPXr0cPQq1JFZ3bt3N8t1PeqmowEbCqiF3KjB6GgpnDhRdr//vklPXFP8d99Jy1GjJHnePFIWAwAAhAFtXxw1apQZaFDXua0u1/VaTssDgRiJ6U3nRS174oknsn/CJwi8BciRRx7puP/JJ5+4LaP5TpcuXWrup6SkSJ8+fbx6Dz04DPojwKMj3tatW+e2nC63RsQNHDgwJHpPh4qExYslbs0al2WMdguwpCQzn57Log8+kNi1a22rUqhpduutEr9ypcuyklGjpGDaNNvqBCC46Yi2YcOGyU033WRul19+OSPdvBw1WF8DRah+lhU9esiet9+W/GnTpDra9bIjuqhIMm68UbIuvVSid++2rY4AAADwjQ4dOsiYMWPcZmqwMj3oei0HBGokpo5g89SIESPYP+EzBN4CRHt79+7d2xF4cxcUe+eddxwBsZNPPrnWPB4//fSTjBs3ztzqSt15yimnOA4ozzzzTK2JJPWxLlfay+TUU0/10X8IVXO0W3n37lI6cqRt9YlURRddJFXNmrksS33sMdvqE0qS5s+XFB2B4KSiUyeTEkxHMABAffSCWue2pVNP40YN6ihB6/wvbEYNxsdL/l//Kntee838ntSUuGiRtBw+XBI/+MCW6gEAAMB3dKTQ8OHDZcKECebv8ccf7/KYkUQItpGYStvSTzrpJDNCzheKiopkw4YNsmbNGvNXHyPyMKt5AF166aVy6623muDXP//5T9OQoqPa9PEXX3whixYtcuSgPf300xv1Hu3atZMzzjhD3njjDfPF1vc788wzpXXr1vLbb7/Jm2++aSY7Vfoe+l7wjbjlyyXhyy9dlul8YwQrAq86NVUKL79c0h56yGXuPU2VWHnwwbbWLZjF/fCDZPz97y7LqpKSJHfuXKmuEcgEAPhn5NuQIUOkoqLCBN7CKYCpabd3f/SRpN9xR60OHpraOOuKK6Rw/Hg5cPvtUp2W1uj30TkcysvLvZ7LAQAAAL6TlJQkXbt2tbsagGMk5sqVK830T87XCdZITJ3TzRdB4dzcXFmxYoVpe6/5PhrU0xF4BJ8jR1AE3jTqW1xc7PEFcosWLSQU6RfsuuuukxkzZpj/97///W+tMhoI0xRN+gPVWOPHj5f9+/ebkXX6RX/44YdrldFeJloO/hvtVtmmjRSPGWNbfSJdweWXS8oTT5hUViqqslJSZ82S/ffea3fVglJ0bq5kTpokUaWlLsv3P/CAVPwxWhcA4H96UWbNlRduqlNSZP9995n0xRk33CAxe/a4rE+ZP18Sli2TfY88ImVHHeXVa+/du1dWr15tzn018KaBSz331rnxQjFNJwAAAADfjsQcPHiw5OTkmOsFvebSASxNaYN3tnXrVlm4cKGZSqpmjEMf63XKli1bzAg80llGBlsCb7t37zY74qpVq+TXX381vXq9aYyYP3++hCqdU+2BBx6Q9957T5YvX24i4dow0KZNGzn66KPNsNaEhIQmvYcOj508ebIcddRRZhSdjnzLz8+XtLQ009tEv+AaYYfvxGzYIInvv++yrGDSJJEmbks0XnVWlhRdeKGkPvmkY1nyyy9L/vXXS1WbNrbWLehUVkrGNddI7B+pbi0FV1xB8BgA4HOlo0bJ7sWLpdmNN5p5WJ3Fbt0qzc8+28yRm//nP3t0LrV+/XpZsmSJywWuXl9kZ2ebdTqSMKTTdQIAwoZ2PN+xY4ej0Vc7XycnJ9tdLQCICP4aiant+xrrqKysrLOMXqvoei2nI/AY+Rb+Ah54e+utt+Sll17yKtjmLBzSxrRs2VIuueQSc/OGpqV8+eWXPS5/+OGHmxv8L/WJJyTKad+sSkuTogkTbK0TRAquukpSnn1Wov6Y61D/aiDuwD/+4df3DbU0V2n33y+Jn37qsqz0yCPlwK232lYnAEB4q2reXPLmzpWSl1+WZv/4h0QXFDjW6TlV2syZkvjJJ5I3Y4ZU9OpV70i3mkE3Z7pc12dmZjLyDQBgG/290s7XpB8DgPCj6SV1pJsntJymvdQReAhv0YEOus2bN88RdEtMTDQ35xSSqamptZ4XHx9v1lk3IJhE79olya+84rKs8OKLmzQ/CXxDR7YVjRvnsiz5+eclKjfXbxdTmuL1nnvuMbenn37aNPbp8mCV+OGHkjZjhsuyylatJO/xx0XCNNUZACBIREVJ8Xnnye6FC6XUTWrJuJ9/lpYnnywp+ptUx4WsZtBoqKOLrtdyAADYQUdfv/7667WCbs7px9544w2TpgwAEHojmd0d3+ui5XSuOZ2GCuEtYIG3PXv2OFJEarBN5zp75plnzATylpkzZ8pTTz0lzz77rPztb39zpEPUQJ2mR9T1egOCScpTTzlGVKnq+HgpvOIKW+uE/9FUVdXR/zvU6ZxvqU8/7beLqXXr1pnRbs5prnS5rg/GFKkZ06e7LKuOjZW8J5+UqtatbasXACCyVHbsKHtfeUUO3HyzVNfo9KHnWM3uvFOajxsnMdu2uW2s9IQ3F8MAAPjKb7/9ZrI+aXqx+kZnW+nHNF0ZACB0aPpgb68ztLzONYfwFrDAm841ZuU5vfzyy81khjoXWV35VjXopsG36dOnm6H3//3vf2XBggWBqi7gkaj8fEl57jmXZUXnnEPQIohUHnxwrXnKUp5+WqKcUlo1ladproJp5FtUYaFkTZok0fn5LssP3HablA0aZFu9AAARKibGdJbZ/e67Uu4mtWTCl19Ky5EjJUmzDPzxe6sdXDxNX+9NWQAAfOWzzz6rd84fd+nHAAChw+p8H6jnIXQELPD2008/mb/p6elywgknePy8Y445Ri6++GJz/9VXX5XNmzf7rY6At5LnzZPoAwccj6ujosy8YgguBdde6/I4ev9+k3LSV0IuzVV1tWTccIPErV3rsrho7FgpvOwy26oFAEBFnz4m+FZw9dXmvMqZdhbJvO46ybzySonOzZXY2Fhz84Q3ZQEA8FX6sV9++YX0YwAQxuIaOU1LY5+H0BGwwNvOnTvN327dupkRbO7U1Qto9OjRkpGRYXr/6PxJQFAoK5PUOXNcFpWcdJJUdutmW5XgXkXPnlJ80kkuy1KfeEKkpKTJrx2Kaa5S5syRpLfecllW3ru37L/vPjPfDgAAtkpMlAO33mrST1a0b19rddJ770nLESMk8ZNPpHPnzh69pJar6xoEAAB/0DRi2o7lDdKPIVKC0hs2bJA1a9aYv/oYCFVt27b1+jpDy7dr185vdUKEBd4KCwvN38zMTJflzj1PS0tL69wZe/fube6vXr3ar/UEPJX0+usS80dA2VIwebJt9YF3o95idu+W5D/mnWyKUEtzFf/VV5L+z3+6LKtKT5fcOXOkOjnZtnoBwUIbOzTlQzAEyYFIVzZ4sOxetEiKzj231rqYXbuk+UUXyeg33pD4BtK06LVEv379/FhTAABqI/0Y4ErnMPz444/lxRdflMWLF5tUrPpXH+ty5jhEKEpOTvaqk5+W69Kli5lqC+EtYPlWNMDmbkSb7pwWPcA6P3aWmJjoKAPYrqpKUh9/3GVR6dFHS/kRR9hWJdSvfMAAKT3+eEn47DPHstTZs6VowgQd393o17VSV3kSULM7zVX0zp2SefXVElXjWJz36KNS6eGIASBc6RyMmg5WR6bq91m/q3ryrI31zZs3t7t6QMSqTk+XfQ8/LCWjRkmzv/5VYvLyXNY3f+UVmX7QQfLfk0+WbW5Gx+mF7dChQ/keAwACjvRjwP9s3bpVFi5caEaB1uzkaGUS2rJli4waNUo6dOhgWz2BxhgwYIDZfz2Z0zM6Olr69+8fkHohQka8NWvWzPytOXy4ZcuWjvuay7ouv/32m/lbVlbmtzoCnkr4+GOJW7fOZRmj3YJf/rRpLo9jt22TpDfeaNJraoNeSKS5KiuTrCuvNCP9nOVfd52UjhplT52AILF+/Xp5/fXXJTs72xFE17/6WJfregD2Kjn1VNn98cdSMnx4rXXJ27bJ5U8/LWf9+KMkRP9+eaPB8+7du8vYsWNNqnsAAAJN04hpA6s3SD+GcKSDKDTopkGJujKL6HJdr+UYdIFQk5WVZYLGMTExdbb76XJdr+W0PMJfwAJv7f/ogWoF0CzODdbLli1z+1zNb7127Vpznx0TwSB11iyXx+U9e0qpm4YgBF/KqrIaoxJTH3vMjGBsCh0R01BAze40V83uuEPiv//eZVnJsGGS/6c/2VYnIFhGui1ZsqTeC0Bdr+UA2KuqdWvJfe452fevf0lVjdQsOpq732uvyV/fektuGjtWLr/8cka6AQBspRmddNoU0o8h0q1YscLj+Q613MqVK/1eJ8DXdKTmmDFjzHG85nHfOr7rekZ0Ro6ABd569erlGFrsnK+6Y8eOZhJCpQfW1157zeVgvGvXLnlU06D9MVSzT58+gaoy4Fbct99Kwjff1B7t5mVPNtggKkryp051WRS3fr0kfvBBk15WG/W0ca++Xi12Nv4lLVggKc8+67KsomNHyZsxQyQmxpY6AcFC00s2NJ+brtdyAIJAVJQUXXSR7P7oIykbMKD26u++k/ijjpKUZ57RL68tVQQAwHL88cebEQ6eIP0YwpFmPtM0kp7Ooa3lNCNacXGx3+sG+JoOGBo+fLhMmDDB/NXfAOfHDCiKLAGLFBx66KHmrwbdfvrpJ5d1Gu21vPTSSzJx4kS59dZb5cYbb5Tp06ebA7TSk5VTTz01UFUG3Ko5t1tl27ZSfOaZttUH3ikdOVLKe/d2WZb66KNNbpzTNFaazqpHjx6OnPzBkOYq9qefzJw4zqoTEyV3zhypzsy0pU5AsLDmEvCENxeLAPyvsksX2fPGG3Lghhukuub8qSUlkn7zzRJfo6MUAACB1rp1aznvvPNIP4aItWPHDq+vo7S8Zj8DQpWOXO7atasZiKR/GckcmWpcpfqPDqfUm6Zq+v7771168ehIkJ9//lmWLl1qHhcWFsq6GvNn6YmIpoxhOCbsFKujoz780GVZwaRJIvHxttUJjRv1ljVlimNR/KpVkrB0qZQOHdqkl9YRbcOGDZPx48ebTgZ6vLOzoT5q3z7JmjRJoktKXJbvu+ceqejb17Z6AcFC53Gz5nTztCyT3QNBJDZWCq6/3qT7zpg6VeI2bHCsKrrgAik76ihbqwcAgHMnTU23pyN5nK8RrfRj2kZG0C2wo7A0IKTX7Xp+r5m4NDUofM8561kgngcAERd4U/fcc0+d66ZMmWJGirz99tuyc+dOl3W6XHsI9aWhGDZLefxxiXI6Sa5q1kyKJkywtU7wXslpp0nFffdJ7ObNjmWpM2Y0OfDmfPEUHx9v/toWeKuqksypUyV2yxaXxYUXXyzF48ZJMNPPTAMcOmLQ0/kQgMbQfUxvngTfrLIAgk/5YYfJng8/lPR77pGUp57SSaQl/4477K4WAAAunTQ1zdjgwYPNSB4r4NOuXTtGQgRQbm6uCYDWzGah152dO3eWAQMGEAD1scZ2XKTDI4BQF1QtSCNHjjQ3HSWSl5dnfvhatWolaWlpdlcNkOidOyX51VdrBTGqU1NtqxMaKSZGCq69VjJuuMGxKOGrr0xKqrIjj5RwkPrww5K4eLHLsrLDD5f9QdwQqcd+nUdLL4KswJte/PTr18+2+fEQ3qwL7Ozs7AbLajkCwUDwqk5Kkvx//lNSzjtPJDX19/Mzp3mjAQAIpvRjCLytW7fKwoULpaqqqlYHWSsF/ZYtW0zKT7Jt+Y6OJvS2U7KW16A0AISygM3x5g1tYNWh+HoyQtANwUJ7UEeVlTkeVyckSOEVV9haJzRe0dlnm/n5nOmot3CQ8PHHkvbvf7ssq2zRQnKfeCJo06KuX79eXn/9dRMAsUYf6V99rMt1PeAPGthtKKCm67UcgBAwapTI4MF21wIAAATZSDcNulVWVtYZANLlul7LaXn4hqbw9KYTo5V+lZGgAEJdUAbegGATdeCApDz/vMuyonPPlaqWLW2rE5ooPl4Krr7aZZGOEItdvVpCWczmzSbFpHNK1OqYGMmbPVuqgrTHmI50W7JkSb0XQLpeywH+6Oyjc83WN9m9rmfUJQAAABCaNL2kjnTzhJZbuXKl3+sUSTSFZ3S0Z03QWk7nPASAUBewwJvO0aa3p59+ulHPf/75583zx48f7/O6AQ1JnjdPovPzHY+ro6Kk4KqrbK0Tmk7n56uskb89LYRHvUUVF0vWpEkSvX+/y/IDf/+7lB1zjAQrTS/ZUNoJXa/lAH9OeN+9e3fHPG76Vx/rcl0PAAAAIPQUFRXVmtOtPlpu48aNUlxc7Pe6RQqdN09TeMbExNTb4VHXaznm2QMQDoJqjjdPeJMTGPCJ0lJJnTPHZVHJySdLZZcutlUJvpsPpnDSJEm/917HssR335WY9eulMtQa2qurpdmNN0rczz+7LC4+/XQpDOIgsZVL3xNabsiQIcyzBb+OfNN9zJpjkH0NAAAACG07duzwui1Ry+fk5JgUifANnTdvzJgxZjShBjadt4mVXlJHuhF0AxAuQi7wBgRa0uuvS8xvv7ksK7jmGtvqA98qvOQSSZ01yzGiUVM0ps2aJftqzJEW7JL/8x9Jfu01l2Xl3bvLvgcf1LNYCVYa4LDmdPO0bFxcnN/rhcilF33sYwAAAEB4KC8vb9TzysrKfF6XSKdBteHDh8vgwYNNYFO3jV57tWvXjjndAISdkJnjTSc4VVYKKCAgqqokdfZsl0WlgwdLOfmmw0Z1s2Ym+OYs6dVXJWbbNgkVcd9+K81uu81lWVVqquTOnSvVKSkSzPSY7ulx3ZuyAAAAAAA0tlNdfHy8z+uC32mQrWvXrtKrVy/zl6AbgHAUMoG3nTt3mr/Jycl2VwURJHHhQolbv95lWcGUKbbVB/6h6SarEhMdj6MqKiTl8cclFETv2iVZV11l6uxs38MPh0S6TB1d5Gn6Di1H6j8AAAAAgKfatm3r9XWkltdRWEA4znm4YcMGWbNmjfmrjwH4R9APHaiqqpJvvvlGfvzxR/P4oIMOsrtKiCCagtBZee/eUjpsmG31gX9UtWghRRMmSOpTTzmWpfz3v1IwfbpUtWwpQau8XDInT66VCjX/2mvNPIShol+/frJ+/fp68+7rhY+WA4Bwp8dC5hkEAADwDe3Ar504dc5wT+Z6s+YbYxQWwklubq6sWLGi1vfA6gw9YMAA5tcDQiHwdu2119a57tNPP5Xly5d7nF7ywIEDLvP/6IEACIT4b76R+O++c1lWMHlyUM+XhcYruOoqSfnPfxwjx6JKSiRl7lzJv+kmCVbpd90lCV995bKs9PjjJf/GGyWUNG/eXIYOHSpLlixxeyGkJ4K6XssBQLjau3evrFq1ylwMW4E3vQjWTgcc/wAAABpP2xK3bNnimMamPtHR0dKf6UUQRrZu3SoLFy40g1tqtrnoY73+0O/HqFGjpEOHDrbVEwg3fgm87d69u851xcXF5tYY7du3l9GjRzehZkDjR7tVtG8vxWecYVt94F9V7dtL0TnnSMr8+Y5lKc8+a4Kt1RkZEmwS33xTUufMcVlW0a6d5M2cKRITI6GmW7dukpmZSaMzgIiko35rdj7Q42B2drZZp50P9DgJAAAA7+lIHg0q1BV8sDp8atBNyzHyB+E00k33+/qCzvp90PVabsyYMez/QKSkmtQfPs3HfNRRR8kZZ5whCQkJdlcJESB23Tozv5uzwiuv1Fl5basT/E/n70t++WWJqqoyj6MLCn4Pvl13nQST2DVrJOPPf3ZZVh0fL3lz5khVCAeorJFvQ4YMIc0agIga6VbXiF+ly3W9dk6gEwIAAEDj6EgeDSqsXLlSNm7cWCvdnqaX1JFuBB0QTjS9pAabPaHl9PsxfPhwv9cLiAR+Cbw99thjLo/1x2zq1KnmvjaonnvuuQ2+hv7oxcXFSUpKiml8BQIpdfZsl8dVGRlSdP75ttUHgVHZtauUnHaaJL31lmOZppvUoGt1crIEg6gDByRr4kSJrjFyeP9dd0l5mKTDsI7/ABAJdKRvQ/ON6Hotp50TAAAA0DgaVNOgwuDBgyUnJ0fKy8vNtWe7du2Y0w1hp6ioyOO5DZWW06C0fj/4PgBN55eIVsuWLetcl5iYWO96wG7ROTmS9PrrLssKL7lEqlNSbKsTAif/2mtdAm8xeXmSPG+eFE6aJLarqpKM666T2E2bXBYXXnCBFF1wgW3VAgA0jjWngie0nHZgYyQwAACI5EDCjh07HAEzzZCV3IhOshpU6Nq1q1/qCAQL/a54GnSzaHkNSvP9AJouYEPJJk+ebP4edNBBgXpLoFFSn3pKosrLHY+rExOl8PLLba0TAqeiTx8pGTFCEj/+2LEs9fHHpfDii0VsTnWb+thjkvThhy7Lyg47TPbfeaeEEz3RI9UkgEigxzq9eVOWEcEAACAS56nSlHk1R+/o9aLOCz5gwABSRAI1aIA6kM8DYFPgjdQ4CAVR+/dL8gsvuCwrGjdOqlq0sK1OCLz8qVNdAm8xO3dK8oIFUjRhgm11Sli6VNLuu89lWWVmpuQ9+aQOJZZwmedIU6npxZQVeNOLqH79+jGvEYCwpMc5vXkSfLPKAgAARJKtW7fKwoULzfxTNUfvWNkDtmzZIqNGjTLzuAH4XWM77NHRD/CNaB+9DhAWUp5/XqILChyPq6OjpeCqq2ytEwKvfNAgKR082GVZ6qxZOtzAlvrEbN0qmVOmSJTTRYbum3mzZkllmIwiXr9+vbz++uuSnZ3taIDWv/pYl+t6AAg3Vi9tT2g5RgEDAIBIG+mmQbfKyso6U+bpcl2v5bQ8gN9pKlZvrx+0vM55CKDpgqbbbF5enixatEjWrFlj7mt0XUc46HDxE044QRJsTvGGCFBSIilPPeW66NRTpbJTJ9uqBPsUTJsmCV9+6Xgcu3mzJL3zjhSPGRPYipSUSOaVV0r0vn0ui/P/+lcpO+EECZeRbkuWLKn3QkrXZ2ZmMvINQNjRUb3auaC++Rf0AljLAQAARBJNL6kj3Tyh5VauXCnDhw/3e72AUKDzH2rnvZopWuu75ujSpYuZAxFAkI54++qrr2Tx4sXmtq9GY7E72qA6bdo0WbBggaxevVq2b98umzdvlu+//17mzp0r119/vQnIAf6U/OqrErNrl8uygj/mJkTkKT3+eDN/mrPUGTP0bD5wlaiulmY33yzxP/7osrj4pJOk4JprJFxoesmGTgJ1vZYDgHCjHQo0JXtdvVF1ua6n4wEAAIgkRUVFHgcMlJbbuHGjFBcX+71uQKjQAS3R0Z41/2u5/v37+71OQKTweeCtoKBAHn74YXniiSdk3rx5kpKSUm/5L7/8UmbPni1lZWX1joa455575Ndff/V1dYHfVVZK6uOPuywqPfZYKa8ReEEEiYqSgqlTXRbFrVkjCYsWBawKyXoMnT/fZVlFly6y7+GHTf3CgZWT3xPeXHQBQCjp1q2bjB07Vrp37+6Yx03/6mNdrusBAAAiyY4dO7y+/tPyOTk5fqsTEGqysrLM/IcxMTH1dvTT9VpOywMI0lSTOmLN+mEcMmRIvRMyau8VHdHmLDU1VXr27Cnx8fFmclTrB7OkpETmzJkjd955p6+rDEjiRx9J7MaNLsvCaUQRGqdk9Ggp79FD4tatcyxLe/RRKR01yu+Br7gVK6TZrbe6LKtKTpbcuXOlOi1NwoXO42bN6eZpWSb6BRDOI9/0/FmPdRp4Y043AAAQqcrLywP6PCBcdejQQcaMGWNSseqoUOeAtpVeUke6EXQDgjzwlp2d7bh/9NFH11v2o48+MiPkLMcee6xcddVVLvO5ffrpp2ZEnOZqXrdunXl97f0L+Ex1taTOnOmyqLxPHykNk/mz0ATR0VJw7bWSOW2aY1H8ihUSv2yZlB13nP/edu9eM69bVI2RwPsefFAqevaUcKINy3rzJPhmlQWAcKYXv3QwAAAAka6x50OcRwG1aVBN5z8cPHiwGeSiAWr9rrRr14453YBQSTWpo9SsCRx79OhRb9nPPvvMcV+/6Ndcc41L0E2dcMIJcu655zoef/31176uMiJc/Ndfm2CKs4IpU8ImlR+apvjMM6WiQweXZWk615u/VFRI5uTJElsjPUbBlVdKyRlnSDg2MOtkv57Qcoz+AAAAAIDw17ZtW6+v/7S8ti8CcE+DbF27dpVevXqZvwTdgBAKvO3atcv87dSpU73l9u3bJ9u2bXM8PvXUU00+WXdOOeUUR48VHRIL+FLqrFkujysOOkiKTzvNtvogyMTG/h6IdZLw+ecSt3y5X94u7d57JWHZMpdlpYMHy4Gbb5Zw1a9fvwYvqHS9lgMAAAAAhD/t0O9N50srZR6BBABAWAbe9u/f75inoj5r1651eTxo0KA6yyYmJpoovDW5KuArsWvWSOLHH7ssK7zqKhNsASxF48ZJZevWLstS/TDqLfHddyWtRiC4sk0byZs9O6z3SWteo/om+tX1Df2uAAAAAADCx4ABAyQ62rOmSy2n81QBABCWgbeyP+Yk0mBZfTZs2OC436ZNG2nWrFm95Vv/0ehdVFTkk3oCKlUDGk4qMzOlaPx42+qDIJWYaFI9Okv66COJ/eUXn71F7Pr1knH99S7LquPiJPeJJ6SqZUsJd926dZOxY8eaOTytedz0rz7W5boeAAAAAAJN26G0DWvNmjXmL+1SgZ2XatSoUSZDVn0dNXW9ltPykYr9FACCi8+HUMTHx0tJSYkUFxd7HHjzZH4ffV3nwB7QVNHbt0vSG2+4LCu67DKpTk62rU4IXkUXXWTmdovet8+xLHXmTNn32GNNfu2oggLJvOIKiS4sdFm+//bbpXzgQIkU1sg3ndtTf0e0A4envRsBAFDV1dVmsnj9CwBAU+Tm5sqKFStk06ZNLr8r1jzVOhorkgM9gdKhQwcZM2aMrFy50kw/U3NbaHpJHekWqduC/RQAIiTwlpqaahpM60sJWVVVJevXr3c89mQkQ+EfDdIJCQk+qikiXeqcORJVUeF4XJWYKIWXXWZrnRC8qlNSpOCKKyT9wQcdy5LefFPyb7hBKhuY07L+F642I93inI6Jquicc6Tokkskkuzdu1dWrVplLhgqKirMiDe9UNC53UgzCQBo6Ddk9erV5jdEA2/8hgAAmmLr1q2ycOFC035VszOHPtbfmy1btphRVhoYgn9p4Gj48OEyePBgycnJMb/1cXFx0q5du4ie0439FACCl8+HEhx88MHmrx7c9zmNDHH2888/m+Cc5ZBDDvGoB4dKT0/3WV0RuaL27ZPkefNclhWdf75U0QsI9dDAbJXTiMioqipJrTEnm7dSnnhCkt57z2VZeZ8+su9f/9IuahIptDPG66+/LtnZ2SbopvSvPtblzp01AABw9xuybt060xCn+A0BADSWtj9pMKOysrLOEdS6XNdrOau9Cv6nQbauXbtKr169zN9IDrqxnwJAhAXe+vTpY/5qb4v58+e7LfPOO++49FrRYeH10dfSQJ5q27atT+uLyJTy3HMS7ZTvujo6WgprzOEF1FStcwBefLHLsuSXX5boekb41id+2TJJv+sul2VVGRmSO2eOXlFIJI1SWLJkSb0XC7peywEA4IzfEACAr2naPm2H8oSW0xSIQKCxnwJAhAXedG4eHe6tPvnkE3nyySdN2kntdarDwWfNmmV+HJzLN0R7r5aWlrqMqAMarbhYUp56ynXR6adLZceOtlUJoaPgyiul2inlbVR5uaQ+8USj5hjMnDzZjJqzVEdFSd6MGVIZYcc5TS/Z0Fw8ul7LAQDgjN8QAIAvFRUV1Zorqz5aTucdKy4u9nvdAAv7KQBEYOAtLS1NzjnnHMfjjz/+WK677jqZMGGCXH/99bJ06VLHupSUFDn99NMbfM1PP/3UcV+HkwNNkbxggcTs2eOyrGDKFNvqg9BS1bq1FJ13nsuy5BdekGhv0jaUlkrWVVdJTI3e9/l//rOUDh8ukcTKO+8Jby4sAADhj98QAICvacdxb38vtLx2NAcChf0UAIJfrD9e9MwzzzQHc+cgW603jo2VqVOnSmpqar2vVVBQIMuWLXM8x5P54IKZjtz74IMP5KuvvpKdO3eakYA64fvhhx8uJ598srRs2bJJr79r1y659tprPSo7ZMgQueaaaySiVFZK6uOPuywqOeEEqejb17YqIfQUTJ5s5giMqqw0j6N1FOXcuZJ/440ePb/ZbbdJvNPIX1UyYoQUTJ8ukUaPgdacbp6WtUZVAwAiG78hAABfs+YKDdTzgGDYT3UEnQbzdL2eK+k0P8lO89sDAIIk8BYVFSVTpkwx87299dZbsm3bNpf1vXv3NiPgunfv3uBr6XxwJSUl5n6/fv0kMTFRQpUG2u655x7zY+ZMg5R609GB06ZNkyOOOMK2Ooa7xPffl9jNm2sFUQBvaFrS4jFjJPnVVx3LUp555vd9qVmzep+b9NJLkvL88y7LKg4+WPIefVQk2ueDkIOedqjQmycNp1ZZNNyTUS+YGNkBINzxGwIA8LXGdtCgYwdCcT/Nzc010wHVzAyg7bqdO3eWAQMGSFZWVpPrCwCRyK9XnzqiSm96INdbdHS0tGrVqsFRbs5GjBjhmAfOm+cFG82j7Bx00//r2GOPlfj4eFm9erW88cYbpszDDz8sd955p3Tq1KnJ7zl+/HgZOHBgnetD+fNslOpqSZ0922VRWb9+Unb88bZVCaGrYOpUSXrtNYn64+Q0+sABSXnuOSmaOrXO58StWiUZN93ksqwqMVFy586V6owMiUTWCX12dnaDZbWclod7e/fuNb8netGkgTdtYNbPTDut6MhqAAg3/IYAAHxNR/ro74U3ndi0fLt27fxaL8DX++nWrVtl4cKFUlVVVet1rHTeW7ZskVGjRkmHDh18Wn8AiAQB6fapvSMa20OiqakXg4WO/LOCbhdeeKGcccYZjnU9evQwowNvv/12k4ry2WefNfebSj/zjh07Nvl1wkX8l19K/MqVLsvMCCUaYdAIFd27S8nJJ0vSe+85lqU8+aQUTZzotnxUbq5kTpwoUaWlLsv333+/VIR4Ct2m0sDQ+vXr671o0IsELQf39PNbsmSJy2eoI0C0MVrXDR06VLp162ZrHQHAH/gNAQD4kqbX084ans4Nqr8xXbp0kaSkpIDUD/DFfqqDIzToVvnH9Bnu6Ovqei03ZswYRr4BgJciL6+ZDbTx8/333zf327dvL6eddlqtMj179pRhw4aZ+z///LNpQIBvpc6a5fK4omNHKTn1VNvqg9BXUGM+xZg9eyR5/vzaBSsrJXPqVImtkXa34PLLpfissyTS6WgsDQzVNRJBl+t6Rm3VPdKtZtDNmS7X9VoOAMINvyEAAF/T9HqasckTWq5///5+rxPgy/1U00vqSDdPaLmVNTqxAwAaRuAtAH766SczUanS1Jt1/TBqo4Dlm2++CVj9IkHszz9L4iefuCwruOoqnfDDtjoh9JUfdpiUDBnisixl5kydsdhlWdqDD0rikiUuy8oGDpQDt94akHqGAh2NNXbsWDP3pzUHj/7Vx7qc0Vp1W7VqVYO9HHW9lgOAcP4N0SwS1twl/IYAABpLR/Zoer2YmJh6O3boei3HSCCE0n6q7ZOejpRTWm7jxo1mehwAgOeIOgTAmjVrHPcPqSelXNeuXSUhIcGkm1y7dm2AahcZas7tVpmVJcXnnWdbfRA+CqZNk8SlSx2PY7ZvF5k3T+TSS83jhI8+krRHHnF5TmWrVpL7xBMi8fEBr28ojFrQDgo6UlgbTZmPp35W7n1PaDn9bPlMAYTrb4hmj9A5jnWeSx3l6828JwAAONM5rTS9no700aCD82+KlbZPRxARdEOo7ac6DY6350haPicnx7RbAgA8Q+AtALY5pZfTVJN10V4obdq0MZOXbtfG+ybS9Javvvqqyd2sDdjaINGrVy8ZOXKk+fFtLE/SlWVkZJj/R3k69N1XnN9P70dv3SpJb77pUqboiiskKiVFaH5GU1UMHixlgwZJ/Lff/m/hv/4lctFFErd5s2ROm+ZSvjo2VvZp0K1dO4Yc18M6fqB+2risQUpPaDlNE2KNBgH8/fsLBJrud9rIFB8fb35HPE2hBPiL3ddNHJdDG9vPfi1atDDtJzrSR4MOZWVl5jemXbt2Hs3pxjYMbaGy/bzdTz29fnT3vGD+HEJ1+8E9tl9oY/v9jsBbAGjgS+lotpSUlHrLanBMA28HDhwwDapNaSB1HgWhr6UBQL0tWrTI/ChfdtlljXr9yZMnN1hm9uzZ5n+xgol2adWqlcjdd5s5thySkyXtr3+VNOb6gK/cfruI83yBOmL1hRek+QMPiOTnuxSNeuABaT5mTODriLCkPQ/1OK7H+IZouYMOOogRbwjc7y9gI/ZBBINgum7iOxHa2H7269y5c5OezzYMbaGy/TzZT/fs2dPoz8DO9r1I2H5wj+0X2lpF8PYj8BYAVh7kxMTEBstqcM5SUlLSqMCYBvcGDRokffr0kbZt25rXyMvLkx9//FEWL15sXleDb/p3Wo3ROGFHe5nOmeO6bOJEjXDaVSOEo5NPFjnsMJEffvjfsssv11mIXcuNHy8S7t85BJQG0TSF8Q/O+14dtBxBNwAAAACIXJ06dTIjULzJDKDl9XkAAM8ReAsAaySCpntsiHOgTYeHe0vzNj/++OMuATyr18vhhx8uo0ePljvvvNP0cPn888/lmGOOkYEDB3r1Htor05OUKaqyslJ2794tgaQnBFY0veD++yW1qMixrjomRvZceKFU7twZ0Doh/CVOmSIZV131vwU1TmLLe/WS3Lvukurffgt85RDWunfvLqtWrar3wkmPi1puJ8c+BOj3d9euXaT5Q0Tugy1btiRdMoLmuikYvhNoPLZf6GMbhrZw3n7aRlhzTri6aOdNLZ+fn29uoSKct18kYPuF9/ZrGSHXTATenIwbN67JrzFlyhQZOnSo22CaJ3mUndOFaU5mb2lwr74An46Amzp1qtx2222OeeC8DbxpKhRv2HZwLC6W5Bqj3YrPPFPKdZ49DtjwsaKTT5bULl0kduPGWuuq0tIkd84cqdRRr+x78LHMzEwZMmSILFmyxO2Fk14o6Xotx8kqAkX3NfY32Il9EMEgmK6b+E6ENrZf6GMbhrZw2379+/eXzZs3m04fnjSga/lQ/v/DbftFGrZfaKuK4O0XubPbBZA1mammdmxIaWmp474nqSkbo3fv3maeH7VmzZrw3fmfeUai/5hfz1Jw9dW2VQdhLiZG8q+91u2qvEcflcouXQJeJUSObt26ydixY6VHjx6Ozh7aCUNHuelyXQ8AAAAA8ExRUZGsXr1ali9fLuvXrzePw4Vmyxo1apQZcVLXdAS6XNdrOS0PAPAOI96cPPTQQ01+DR1RUJP1A6VBtcLCQjMHW1326pxkIpKent6o+d08pYG3bdu2mRF2BQUF5v3CSbWOHHzgAXE+fSgZOlQq+vSxsVYId8Vjx0r6Aw9ITE6OY1n+tGlSeuKJttYLkdOrftiwYTJ+/HhzbNffE09ShwAAAABAKNEg2I4dO8x1j7adaXan5ORkn7x2bm6urFixQjZt2uRyPWWlXBwwYEBYBKI6dOggY8aMkZUrV9ZKO6n/a5cuXcxIt3D4XwHADgTenLTXFIR+CnJ9/fXX5v727dvNiAR3dIi3Nf+Ov+oS7rShWXskJb71lozdtMllXcGUKbbVCxEiPl72P/qoZE2cKLJvnxSdf77k33CD3bVChNGLJE1VrH8JvAGINHrc00Y4jn8AAIQffwfFtm7dKgsXLjSZoWqeS+hjfd8tW7aYUWAauAp1+lkNHz5cBg8eLDk5OY5AZrt27RzZuwAAjUPgLQB69erluP/zzz/XGXjbsGGDI9Vkz549/VonDQAq/UFNTU2VcKBD/80cR1VVMmnpUpd129u1kw2tWgnJ1uBvZcceK7Jjh5lj8IB+n8M1lSsAAEHY+UobxLTRSNPtagNcv379vJ5nCwAABB9/B8U0qKevX9+8Z/o+ul7L6WixcBkNpkG2rl272l0NAAgrzPEWAH369HEMeV+6dGmdPXA1aGQ58sgj/VYfnddNT1isoKBOlBoOjS0m6FZdLZ03bZJ2Gvhw8sWxx8qSpUsdqTwBv9L5Gd2knQUAAP7pfPX666/LunXrTNBNVVRUSHZ2tlmu6wEAQOhyDorV1abmHBTT8t7SkXQa1POEltMUjQAA1CX0Iy4hQHvcnnzyyY6RZm+//XatMtpQ8Mknn5j7hxxyiHTr5n5s1rhx48ztmmuucbv+m2++qTe1jqayfPTRRx2PTwyTuadWrVrl+L+PWbbMZV1uZqb80ru3Wa/lAAAAEB6cO1+5o8t1PZ2vAAAIXf4OiumccTXTV9ZHy+m8aMXFxV69DwAgcvg01eS1114r/qZ5m2fMmCGh5owzzpAvvvjCTP76wgsvmADYMcccY+bh+emnn0xvXO2Zo48vvfTSRr/PAw88IG3atDEj5jR4p6l1NJ1kXl6e/PDDD7J48WIpKSkxZTWH81FHHSWhzkopoNrs2CHdNmxwWf/FMcdI9R+j+rTckCFDzH4EAACA8Ol8VRer89XQoUMDVi8AAOAbjQ2KaZuXp/OUaVudt/PDanmdF40UjQAAvwfedu/e7cuXCyv6Y3/TTTfJPffcY37QFy1aZG41y0ybNk06derUpPfSoN5bb71Vbxkd6XbJJZdIONBUQnpTHbdsET1VssJqBSkp8kP//rXKajASAAAA4dH5qiF0vgIAIDQFIihmpar2VmOfBwAIfz4NvKF+OhLt3nvvlQ8//FC++uorEyDTIJCOShswYICccsop0rJlyya9x4033mjSVupcFhoIzc/Pl9LSUhPUa926tZnTbdiwYdKxY0cJp1SeetPP8pujj5bs7t3lmC++kP4rV8o3Rx0lFU5BNqssAAAAwqfzladl6XwFAEBoCURQrLHnB5xXAADq4tMIxGOPPdZgme+//16ef/55c+HbokULOe6446RHjx7mfkJCggkS6RwMGjxatmyZ7Nq1ywRKLrroIjniiCMk1CUmJsqZZ55pbo3x8ssv17t+4MCB5hZJtOdy586dJTs72zzOa95c3j39dFkybJhU1AiyaTl6OgMAAIRX5ytPywIAgNASiKBY27ZtTVuRNyPrtHy7du0aVTcAQPjz6dVnQ6O1dH6xZ555xvw4nXfeeSb4FBMTU6vcwQcfLIcffriMGzfOpEycP3++eZ7OfzZ8+HBfVhlhol+/fmaUn/NJUmFqqksZ3e+0HAAAAMKv81V96HwFAEBoCkRQLDk52ZwreDqXnL5+ly5dPJ5DDgAQeaID9UaaW/mpp54y9y+44AI566yz3AbdnEVHR8uYMWNkwoQJ5vHTTz9tXgeoSdN1Dh06tM4GFV2u67UcAAAAwoN2qmoooEbnKwAAQpcVFPO0A01jg2I6BYy2Q3pCy/Xv39+r1wcARJaABd4WLlxo0sBkZmbKGWec4dVzTzvtNPM8zc/80Ucf+a2OCG3dunWTsWPHmtSlVkoBTSnUvXt3s1zXAwAAIHzQ+QoAgPAXiKBYVlaWjBo1ygwSqO+8QtdrOS0PAEBdAjbRwY8//mj+9u7d2+vn6g+bPu+LL76QVatW+aF2CBfaqDJs2DAZP368CdTqfIHepCMAAABAaNHOVdpJb/Xq1SZFlJ4Daucr7R2vI90IugEAENqsoJh26q+qqnLbzqNthxp0a0pQrEOHDibz1sqVK2Xjxo0u72ONpNOgHkE3AEDQBN727Nlj/iYmJjbq+dbzNJACNERPiHROQG/zgAMAACD00PkKAIDwFoigWFFRkeTl5Zn54fTWrFkz89rFxcXSpk0b5nTzEf2cd+zYYc7ZNGOVzuOnKUUBIJwELPBm0QNrU57HBTQAAADClfbiLikpMZ3OPE2phP+h8xUAAOFLg2rDhw+XwYMHS05OjiNwo0GypgTFcnNzZcWKFWbkvPP5g56LaQYuvRF0a7q6Pmc9b9NMBZpSlNGEAMJFwAJvrVq1kl9//VXWrl1rfhz1R9FTWn7NmjXmfsuWLf1YSwAAACDwNmzYIN9++63k5+c7lqWlpcmgQYOka9euttYNAAAgmGgQzFfnR1u3bq0zhaUu++WXX0ybpKaw1FF38P3nrI81GLdlyxY+ZwBhI2DdaA8//HDzVw+wDz/8sEujQn20nJa3DspHHHGEX+sJAAAABNKyZctk8eLFtc6P9bEu1/UAAADw/QgsDQZVVlbWOVJe2zF1vZbT8vDP56zL+ZwBhJOABd5OPvlkR75e7cFwww03mIOp5vV1R/MnL1q0yJTT8kqfr68DAAAAhMtIt59//rneMrpeywEAAMB3NO2hBtY8oeV0fjl4j88ZQCQKWKrJjIwMmTx5sjz00EPmILpv3z6ZO3euPPPMM9K+fXszIXpCQoKUlpaaydC3b99uejo451W++uqrzesAAAAA4UDTS3pajpSTAIBgpZ2qd+zY4Zhzq23bto7O10Cw7rM15xqrj5bbuHGjmV+O+d48x+cMIFIFLPCmjjzySPnLX/4is2fPlgMHDphlGlzTud/0Vhed30KDbgMHDgxgbQGgcfREUS84PT2xBABEJu2M5k36dS2vndEAAAgWmhJOR7PUbFiPioqSzp07y4ABAyQrK8vWOgLuaKDY22t2LZ+Tk0NnKC/wOQOIVAENvFlzvemot7fffluWLFliRr7VRUe3DRs2TE499VQTfAOAYKajdVevXm0uOjXwFhsbay42+/XrZ0b1AgDgrKSkxOvyjB4AAASLrVu3milEtGNIzYZ1fazXRTp1yKhRo6RDhw621RNwR6/ZA/m8SMXnDCBSBTzwplJTU+X88883t23btsnmzZvNCDhtTEhMTJT09HTp1KmTSUGpvaQAINitX7/edCZwvuCsqKiQ7Oxss27o0KHSrVs3W+sIAAguet7rz/IAAPhzpJsG3ZynCKlJr410vZYbM2YMI98QVDQlaiCfF6n4nAFEKlsCb84OOuggcwOAUB7pVjPo5kyX6/rMzExGvgEAHDRtpGZ18CTdpJYjzSQAIFhoekkd6eYJLbdy5UoZPny43+uF8Oer+QT1edrZ35s0iFq+Xbt2Xr9XJONzBhCpbA+8AUCoW7VqVYMnkbpey+nINwAALIMGDZLFixd7VA4AgGAJfNSc060+Wm7jxo0yePBgSUpK8nv9EJ58PZ+gBuv0eZ7uy/o+Xbp0YR/2Ep8zgEhFt1kAaAJr7gJPeHNxCgCIDDpp/CGHHFJvGV3P5PIAgGCho428va7R8jk5OX6rE8J/PsE33njD7TW1dU2u67WcNzRY52lGAS3Xv39/r14fv+NzBhCJYu3sqfLll1/KmjVrTJq2wsJCk35gxowZLuVKS0tl9+7djrnhMjIybKoxANSm87jpzZuy5CoHADg79thjpU2bNvLtt9+6pJ3U9JI60o2gGwAgmGiKv0A+D5HNn/MJarlRo0aZ52mbpLuAsgaCdBSWlmOewsbx5HPWz1g/az5nAOEi4IG3srIyef75501KHU8aq/VgfOutt5pUBh07dpT7778/IPUEAE/ExsZKTExMvRcBFi2n5QEAqEmDa3rTxoiSkhJJTExkTjcAQFBqbEdCOiAiGOcT7NChgwnW6fM0JapzUEjPxTTzQK9evcyc7Wi8+j5nK72kjnQj6AYgXAS0BViDZ3fccYds3rzZ4+doo8OIESPk7bffll9//VW2bNkiBx98sF/rCQCe0hNEzVnuPEKhLlpOywMAUBdt4NHfCwAAglXbtm3NdY036Sa1fLt27fxaL4SfQM0nqMEeDdbp8zQlqo7OTEhIMIGglJQU2blzp8fBP3j3OWtAXo8NzOkGINwENPCmaSStoFuzZs3klFNOkb59+8oHH3wgn332WZ3PO+6440zgzerpQuANQLDQE3u9GPCEltPyBN8AAAAAhCrtINK5c2ePAyLWaBYa1hHI+QQbk6pb91HredoZSoNu8D3nzxkAwlXAAm+rV6+W5cuXm/sHHXSQSR9pzdfWUK/eTp06SXp6uhw4cEDWrVsXkPoCgCc0Za4naSaVlmOONwAAAAChbsCAASYjkSfXQhrA0JFDgLeYTxAAEKoCNnGENaJNezpNmzbNEXTzlDXKbfv27X6pHwA0hs7Z5um8bd6UBQAAAIBgThk3atQoM491XRk9dLmu13LM24TGYD5BAECoCljgbc2aNeavDiVuTKpIK1C3f/9+n9cNABpLLyY1zYontBxpJgEAAACEgw4dOsiYMWNMGsma1zlWekldr+WApswn6A3mEwQABIOADb3Yt2+fI81kY+ikpqq0tNSn9QKApurXr5+sX7++3tzzevKv5QAAAAAgXOhItuHDh8vgwYPNvFqa4k9HG2nggznd0FTMJwgACFUBC7xVVVU5cns3RnFxsUfzwQFAoDVv3lyGDh0qS5YscXsxoCf/ul7LAQAAAEC40UCHZjgCGquoqEh27NjhCN7qaDdtA2Q+QQBAKApY4C09PV327Nkjubm5jXq+/sgqb+eGA+A9DR5VVFSY+chIjeiZbt26SWZmpqxevdr0xtOLBf38tHeejnQj6AYAAAAAgCttJ1yxYkWtUW3WtA4aeNN5AhcuXGg69dfV2VWDbswnGHqBVQAIVwELvHXs2NEE3tatWydlZWUSHx/v8XO3b98u27ZtM/e7d+/ux1oCkW3v3r2yatUqc8JrBd4IHHlOP6Nhw4bJ+PHjzcmkfp6epMMAfEn3Od3/2PcAAAAABLOtW7fWGVDTx9o2oR3xNaCm8wWuXLlSNm7cWCtAp+kldaQbQbfQDKyy3QCEo4AF3vRAunz5ctPD4YMPPpAzzjjD4+c+99xzjvuHH364n2oIRDado6xmqkQNvmVnZ5t1mipRR3WhYXoCqZ0L9C/BDwSKBnoZcQkAAAAgVAIyGnSrL4WkXk/rei2ngTfmEwzfwGqHDh1sqycA+EPjJlxrhCFDhjjSRL700kvy3XffNfgcbfR//PHHTY8WpcOQBw0a5Pe6ApHYYF/X/GRKl+t6LQcg+Ghw/PXXXzejyvUC1Dlwrst1PQAAAAAECx0FpQEZT2g5q23Qmk+wV69e5i9Bt+APrNbX1mQFVhs7NREASKQH3hISEuTSSy91NAbef//98uCDD8pXX30lBw4ccJTTng76Y6rBuWuvvVY++eST3ysaHS1XXnkl800BfqDpJRsamaXrtRyA4ELgHAAAAEAo0WxYNVMP1kfLaYrJ4uJiv9cN9gZWASBcBCzVpNLh4Nrw98ILL5gfzW+++cbcnN144421nqdBt4kTJ8ohhxwSwNoCkcEa3u8JLaejVwmAA6EZONeUsQAAAABgpx07dng9LYOW1xSTOsoN4RlY1XZjRjACCBcBG/FmOe200+Tmm2+WNm3aeFRey/3973+XESNG+L1uQCTSEah683VZAMEXOGfOQQAAAAB2s9LjB+p5CJ3AKgCEi4COeLP069dPHn74Yfn+++9l+fLlZg4azeWrPSISExOlWbNm0q1bNzniiCPkqKOOMiPeAPhHbGysuXkSULPKAgjdwLlOQA4AAAAAdmnsNQnXMqGBwCoA2BR4U5qqbuDAgeYGwD76XezcubMJgDdEy5FmEggeBM4BAAAAhJq2bduatgVvRkVp+Xbt2vm1XvANAqvhQQfI6OhFDYjqttHvbXJyst3VAkIGLXAAzCjU9evX13vSqye5Wg5A8CBwDgCu9FxGGwdIrQsAQPDSxnu9PvE0Hb5ex3Tp0oX5v0IEgdXQplnpVqxYUev7abU/DBgwQLKysmytIxAKAhZ4W7p0qfnbvn17k0bSWzrJ5tatW839IUOG+Lx+QCRr3ry5DB06VJYsWeL2xEh/XHW9lgMQXAicA4DI3r17ZfXq1aaBQANvOsJXGwb02Mf5CwAAwUcb77ds2SKVlZUNltUpaPr37x+QeqHpCKyGLm17X7hwoVRVVdXadtYc8/q9HTVqlHTo0MG2egKhIGCBt1mzZpm/o0ePblTgbdmyZfLOO++YgzGBN8D39HuZmZkpq1atMj+kmrqORisg+BE4BxDptPNBzWOgnsfoaGBdp8fAxlx/AAAA/9ERM9p4X1cjv3Uto0E3LccIm9BCYDU0R7rp97G+babfU12v5caMGcP3EginVJOkjQH834CvwW0r8EZqOiB0AueM9gAQiSPd6up4oHS5rtdjJMdCAACCi46Y0cb7lStXmkxXNdPa6SgoDcjQuB96CKyGHk0vqdvKE1pOv7fDhw/3e72AUBVygTcA/qcnP0xqC4QWbVAeNmyYjB8/3gTetDGazioAwp2O1G/oWKfrtZx2LgIAAMFFAy7aeD948GDJyckx1zLaHqHzfZF6MLQRWA0dRUVFHqcGVVpOt6l+b/meAiEeeCsuLjZ/ExIS7K4KAABBSy9g4uPjvZ7MGgBCjTXPhCe0nI7oZyQ/AADBSRvvu3btKpEc+NixY4cj8Ni2bVszV1qoI7AaGnTf87b9QMvrNo3k7y0QFoG3devWmb/NmjWzuyoAAACo4+JLL6YJ+iIQNC223rwpy4h+AAAQbPNqaYq/mqONtLOQTh2gc6WFw4iwSA+sBju9hgvk84BI4JfA288//1zvD0p9653pZI1a/quvvpKtW7eaZToMGQAAAMFDU5syxyACTfczvXkSfLPKAgAABAtt66xrDjRrZP+WLVvMHGiathHwl8Z2TqNTG1A3v1x93nHHHXWu+/bbb82tsXT+GgAAAASH9evXy5IlS1waCzQQkp2dbdbpvFrdunWztY4IT1ZPcN3XGqLlSDMJAACChQ400KCbDjqoi55f63otp3OlhcPINwQnTW3q7XQVWl5ThgJwL1pCiP7I6KSbAAAACI6RbjWDbs50ua7XcoA/6KjKhgJqul7LAQAABAtNL6kj3Tyh5VauXOn3OiFy6XyC3nRU03KalY55+oAAj3jr3bt3rS+qlV4yMzPTRNE9ER8fL6mpqWY49VFHHeXx84JRSUmJbNy40fT81tuGDRtk9+7dZl3Lli1l5syZPn/PtWvXyocffihr1qyR/fv3m4Nop06dzMTyxx13nM/fDwAARJZVq1Y12CtS12s5HfkG+JqmMtV9q64AsF6T6HpSngIAgGBRVFRUa063+mg5bVMcPHgwgQ74jc4nqKlN6xuFaYmOjmZwDGBH4O3222+vtey8884zf4888ki5/PLLJdLce++98tNPPwXs/V5++WV59dVXXX7ENfj2ww8/mNvnn38uf/rTn0xwEwAAwFvWvBOe0HLa8YdUf/AHTWWqnfuYZxAAAISCHTt2eJXST2n5nJwc6dq1q9/qhcimqUx1PsG65h1Uej2nQTctR+pToH7MMB4gzgcrHcWnP5Q6Ik1HwvmaHiAXLFhg7rdu3VrGjh0rHTt2lLy8PHnvvfdMAHD58uUye/ZsmT59us/fHwAAhD+dx01v3pRl8m34iwbXdC7o8ePHm8Cbpjf1tkELAAAgEPRcJZDPAzylWed0qidNbaqjLJ3Pp630kjrSjaAbEESBt5deekkimaZ2HDlypOmR26ZNG7Psmmuu8XngraCgQObNm2fut2jRQu666y5JT093rD/iiCPk/vvvl++//16WLVtm6tSnTx+f1gEAAIQ/HVGkN0+Cb1ZZwN+0QUAzOng7OTwAAECgNLYzGp3YEAgaVBs+fLhJbaqjLDXgq/teu3btSHUKeIEWkADRAFcgfPzxxyZXtJowYYJL0E3pcOCJEyc6JnF96623CLwBAACvaWBDU/llZ2c3WNabiboBAACAcNa2bVuvOwlpeQ18AIGiQTZSmwKNF92E5yIIffvtt46D41FHHVVnKh6d70LpXBjFxcUBrSMAAAgPej7RUEBN11vnHQAAAECkS05O9qpjmpXij9FGABA6bB3xpmkWd+/ebQI/ns4Rog455BC/1itU6We4fv16c79Hjx71pnTSz/CHH34ww4U3bNggffv2DWBNAQBAONDOPEOHDpUlS5bUOfm2rtdyAAAAAH43YMAA2bJli1RWVjZYVrNX6bxaAIDQEfDAmwbZ3nvvPTO/mOaJ9XbuBW3AmT9/vt/qF8r089T0kap9+/b1lnVev337dq8CbzpZfUMyMjIkJibGcYIQSM7vF+j3Btj/YCf2P9hBO/toYG3VqlVmAm7t1KOdf7RX7qGHHkrQDQHDMRDBxu7rJr4ToY3tF/rYhqHN39uvRYsWMnr0aPnwww9NW15dndj0vbWclofn+P6FNrZfaGP72RB408aY++67T/Ly8hr9GkySXrfc3FyXiTDr49wI5skFobPJkyc3WGb27NnmPfQisk2bNmKXVq1a2fbeAPsf7MT+h0DS33qdM1bP06zJt5nTDXbiGIhgEEzXTXwnQhvbL/SxDUObv7afHvc7duwon3/+ufz888+OzvRWY7VmqzruuOOkdevWfnn/SMH3L7Sx/UJbqwjefgELvOXn58tdd90lBQUFLj8i+iOTmppab1pEeMZ5rrbExMR6yyYkJLik/AQAAGgqDbbFx8fbXQ0AAAAgJGhQ7eyzz5aTTjpJNm/eLKWlpabNrlOnTpKSkmJ39QAAjRSwaNfbb7/tCLrpZKDnn3++DBkypMEAETynPcwtDQUytSe6payszKv30V6ZnqRMUZqrWufxCyQN6FrR9F27drn0GAL8jf0PdmL/g53Y/2C3YNgHW7Zs6UgbCNh93RQM3wk0Htsv9LENQ5sd2885O5UOYNAbGofvX2hj+4X39msZIddMAQu8rVixwtET+m9/+5v06tVLgs24ceOa/BpTpkyRoUOHih2cg2kVFRUeB+m87Znu7Vwtdh4c9b05OMMu7H+wE/sf7MT+B7uxDyIYBNN1E9+J0Mb2C31sw9DG9gttbL/QxvYLbVURvP0CNrudRjdVz549gzLoFg50JKGn6SN16LqFUYcAAAAAAAAAAAAhNOKturra/G3fvr0Eq4ceeqjJr5GZmSl2ycrKctzPzc2tt+zevXsb3RMTAAAAAAAAAAAANgbeNLiTk5Pj9XxigRTMQUFPtGvXzuRQ1eGb27dvr7es8/pQ/78BAAAAAAAAAAAiKtXkYYcdZv5u2LAhUG8ZcWJjY6Vbt27m/rp16+qd5+3nn392zAvXtWvXgNURAAAAAAAAAAAgXAUs8HbiiSeawJCOevvxxx8D9bYRZ9CgQeZvcXGxfP3113WmmVy1apW537dvX5e54QAAAAAAAAAAABDkgTdNg3jJJZeY+zNmzJCtW7cG6q3Dxq5du2TcuHHmdvvtt7stM2LECElOTjb3X3zxRcnPz3dZr2ko586da/6qM844IwA1BwAAAAAAAAAACH8Bm+PNGvUWHx8vc+bMkZtuuklGjhwpRx99tHTs2NERLApXO3fulDVr1rgsKykpcfxdsmSJy7r+/ftLRkaG1++TmpoqEyZMMJ/x7t275e9//7ucddZZ5jPOy8uTd999V3766SdT9thjj5U+ffo06f8CAAAAAAAAAACAHwJv5513nlfl33//fXPzRlRUlMyfP19CjQbdZs2a5Xadjkqrue62225rVOBNjRo1ygTZXn31Vfntt99k9uzZtcoMGDBAJk+e3KjXBwAAAAAAAAAAgM0j3nyhurra7iqEBE1Hedhhh8mHH34ov/zyi+zfv19SUlLk4IMPlqFDh8pxxx1ndxUBAAAAAAAAAADCSsgF3kKVBrv01hStWrWSl19+2ePyPXv2NDcAAAAAAAAAAACEWODtpZde8uXLAQAAAAAAAAAAACEj2u4KAAAAAAAAAAAAAOGAwBsAAAAAAAAAAADgAwTeAAAAAAAAAAAAAB8g8AYAAAAAAAAAAAD4AIE3AAAAAAAAAAAAwAdiJUDOO++8Jj0/KipKkpKSJCUlRdq3by9du3aV4447Ttq1a+ezOgIAAAAAAAAAAABBH3hrqurqaikqKjK33bt3y8qVK+XVV1+VQYMGycSJEyUjI8PuKgIAAAAAAAAAACCChXyqyW+//VZuuukm2bt3r91VAQAAAAAAAAAAQAQL2Ii3l156yfz98MMP5bnnnpOKigrp06ePHH/88dK9e3fJysqSxMREKS0tNUG09evXy2effSarV6+WuLg4ufjii2XEiBFSUFAgW7ZskS+++EI+/fRTqayslNzcXPn3v/8td911V6D+HQAAAAAAAAAAAMC+VJMLFiyQV155RRISEmT69Oly5JFH1iqj87gddNBB5jZ06FD57rvv5NFHH5WnnnpK8vPz5eyzz5ZDDz3U3DQQd/fdd5v0kxqoW758uRx++OGB/JcAAAAAAAAAAACAwKaa3LBhgwm8qSlTprgNurkzcOBAU17p8zdu3OhYpyPlLrvsMsfjr7/+2uf1BgAAAAAAAAAAAIIq8LZw4UKprq6Wtm3bytFHH+3Vc7W8Pq+qqsq8jrPjjjtO0tPTzf1169b5tM4AAAAAAAAAAABA0AXe1qxZY/5269atUc+3nvfLL7+4LI+OjjYj39T+/fubXE8AAAAAAAAAAAAgqANvubm55m9sbOOmlbOeZ72Os4yMDPO3pKSkSXUEAAAAAAAAAAAAgj7wFhMTY/5u3bq1Uc/ftm2by+s40xSUKiUlpUl1BAAAAAAAAAAAAII+8NamTRvzd8OGDbJx40avnqvls7Ozzf3WrVvXWp+Xl2f+pqWl+aSuAAAAAAAAAAAAQNAG3gYOHGj+VldXy0MPPSS7du3y6Hm7d+825S2DBg2qVcYK5DVv3txn9QUAAAAAAAAAAACCMvB20kknSbNmzcx9DbrdcMMN8tJLL0lOTo7b8rr85ZdfNuWsIF16erp5HWdr1qyRAwcOmPvdu3f3+/8BAAAAAAAAAAAAuBMrAaLzr02bNk3uvfdeKSsrk9LSUnnttdfMLTk5WbKysiQhIcEsz83NlaKiIpfnx8fHy/Tp02vN4/bee+857h9xxBGB+ncAAAAAAAAAAAAAewJvqm/fvnLrrbfKzJkzZefOnY7lGmSrGWirOT/clClTpGfPnrXWXXzxxXLRRReZ+y1btvRTzQEAAAAAAAAAAIAgCrypHj16yAMPPCCffPKJuW3atMnM+1ZTVFSUdO7cWYYNGyZDhw41I97cadGiRQBqDQAAAAAAAAAA/EEH5uzYsUMqKipkz5490qlTJ7urBIRO4E3FxcXJiSeeaG4lJSWyZcsWM0+b3k9MTJS0tDQ5+OCDJSkpyY7qAQAAoBG0M1V5ebnbTlUAAAAAANSk006tWLGi1gCd6OhoMzCnf//+ZpoqIJTYEnhzpoE2dykkAQAAEBr27t0rq1evNhdKGniLjY01F0j9+vWT5s2b2109AAAAAEAQ2rp1qyxcuFCqqqpqdeDUZRs3bpTNmzfLqFGjpEOHDrbVE/BWtNfPAAAAAP6wfv16ef3112XdunUm6KY0NUh2drZZrusBAAAAAKg50k2DbpWVlXVmTdHlul7LaXkgVBB4AwAAQKNHui1ZsqTeiyRdr+UAAAAAALBoekkd1eYJLbdy5Uq/1wnwFQJvAAAAaJRVq1Y1OJ+brtdyAAAAAACooqKiWnO61UfLadrJ4uJiv9cNCLo53mbNmuW4HxUVJZMnT3a7rilqvi4AAAACTy989ELJE1puyJAh5jwOAAAAABDZduzY4XHQzaLlc3JypGvXrn6rFxCUgbelS5e6PHYOkNVc1xQE3gAAAOyl87jpzZuycXFxfq8XAAAAACC4WfODB+p5QKCRahIAAABei42NNTdflwUAAAAAhLfGdsqkMydChU9bQOobicYoNQAAgPChaSM7d+4s2dnZDZbVcqSZBAAAAACotm3bmmtEb9JNavl27dr5tV5AUAbehg4d2qh1AAAACD39+vWT9evX13uxpBdHWg4AAAAAAJWcnGw6aOp84J4E3/S6skuXLpKUlBSQ+gFNRapJAAAANErz5s1N56q6RrPpcl2v5QAAAAAAsAwYMECioz0LT2i5/v37+71OgK8w2QYAAAAarVu3bpKZmSmrV682vRV1smudz017L+pIN4JuAAAAAICasrKyZNSoUbJw4UKpqqpyO/JNO3Nq0E3LaXkgVBB4AwAAQJNocG3YsGEyfvx4E3jbu3evV7n6AQAAAACRp0OHDjJmzBhZuXKlbNy40eU6UgNu2qFTR7oRdEOosS3wVlZWZr5Qa9asMY0zhYWFJrL9j3/8w6Wcftm0rIqJiTE9qAEAABB8tDdifHy815NkAwAAAAAikwbVhg8fLoMHD5acnBypqKiQVq1aSadOnSQ/P9/EDIBQY0sU66233jI3/eI0pKCgQKZMmWKCb927d5d//vOfAakjAAAAAAAAAADwv6SkJOnatasZ6damTRuzzJP4ARCMPJu90Ec0Wn3PPffIvHnzPP7SpKWlyZAhQ8z97Oxs2blzp59rCQAAAAAAAAAAAAR54G3u3LkmvaSKi4uTkSNHynXXXScDBw6s93nHH3+84/7y5cv9Xk8AAAAAAAAAAAAgaFNN6uSIn3zyiSNv6y233CLt27c3j3/55Zd6n9uzZ09JTk6WoqIiMyfcKaecEpA6AwAAAAAAAAAAAEE34s0KuqmpU6c6gm6e0skU1fbt231eNwAAAAAAAAAAACBkAm8//fST+duxY0c55JBDvH6+jpJTubm5Pq8bAAAAAAAAAAAAEDKBt7y8PJeRa95KTEw0f0tKSnxaLwAAAAAAAAAAACCkAm9lZWXmb1xcXKOebwXcrAAcAAAAAAAAAAAAEExiA/VG6enpJk3kvn37GvX8nJwcx+uEIg0cbty4UdavX29uGzZskN27d5t1LVu2lJkzZ/ospecdd9zhUdlzzjlHxo0b55P3BQAAAAAAAAAAiHQBC7y1b9/eBN6ys7OlqqpKoqM9H2y3Z88e2bx5s7nftWtXCUX33nuvY547AAAAAAAAAAAAhJ+ABd769+8vq1atkgMHDsjSpUtl2LBhHj/3pZdeMsE663VCUXV1teN+amqqCSCuXbvWr3PWTZ48ud5AZbNmzfz23gAAAAAAAAAAAJEmYIG3oUOHyquvvipFRUXy3HPPSceOHT0avbZgwQL59NNPzf2srCw55phjJBQdd9xxMnLkSOnWrZu0adPGLLvmmmv8Gnhr1aqV+ZwBAAAAAAAAAAAQRoE3HeV13nnnyTPPPGOCb//4xz9k9OjRJiBVXl7uKKfrdB64NWvWyMKFC828aJZLLrlEYmMDVmWf0qAbAAAAAAAAAAAAwldAo1gnnXSS7Ny5U95//32pqKiQd99919ycXXbZZW6fe/bZZ8vRRx8doJoCAAAAAAAAAAAA3gn48LFLL73UpD98/vnnzei2hiQnJ5uRbpqqEgAAAAAAAAAAAAhWtuRtHD58uJmrbfHixbJixQpZt26dy1xnmk5S50I74ogjTIpGDb7Be/Pnz5e9e/ea1J0JCQnSsmVLOeSQQ+TEE0+Udu3aNfp19TUbkpGRITExMeZ+dHS0BJLz+wX6vQH2P9iJ/Q92Yv+D3dgHEWzsvm7iOxHa2H6hj20Y2th+oY3tF9rYfqGN7fe7qOrq6moJAhp40xFwiYmJERNou+aaa2T37t0mIDZz5kyfvOZPP/0kd9xxR71loqKiTOrOc88919z31rhx4xosM3v2bGnevLnXrw0AAAAA4YDrJgAAAASTgoIC2bx5s5SVlUl8fLx06tRJUlNT7a5WWPL5iLdbbrnFjKrq3bu39OrVS5KSkjx6ngbc9Iamy8zMlCOPPNJ8/q1btzaR5T179sjy5ctl6dKlUllZKQsWLDDz7F1wwQV2VxcAAADwCe1TWF5eLnFxcY3qYAYAAAAA4ea3336Tzz77TH755RepqqpyLNe4gcZxjj/+eBNHQBCPeDvvvPNcNtzBBx/sCMTpjQiqf0e86chBTdWpN3fWr18v//znP83oQm2MuPfee01k218pUzTIp/9jIOl+16pVK3N/165dLgcTwN/Y/2An9j/Yif0PdtLz0x9//FE2bdpkAm96LtylSxc59NBDAzqaSM/rrbSBgN3XTRyXQxvbL/SxDUMb2y+0sf1CG9vPt7Zu3Soffvih+RzdhYI0RqCf+ejRo6VDhw5+334tI+Saya9zvOmHqhe/env33XfNRtSNpwE4KxjXrFkzCaVUIA2ZMmWKDB06VOzS0KhBnTvv8ssvl8cee8x80T744AO5+uqrvXoPbxsv7Dw46ntzcIZd2P9gJ/Y/2In9D4GkHcuWLFnichGpmR10Huns7Gxzbq7nwECgBdN1E8fl0Mb2C31sw9DG9gttbL/QxvZrmtzcXBN0005eddHrKF2v5caMGSNZWVk+e/+qCN5+Pg+8nXzyybJmzRrZsmVLrQ9VN+Kvv/5qbrohVbt27VwCceS3979jjz1WnnrqKSkuLjbDSwEAAIBQHVFUM+jmTJfrek3FznUGAAAAgEiyYsUKjwNfWm7lypUyfPhwv9crEvg88HbppZeavxrUWbt2rQns6G3Dhg2m52lNOTk55vbxxx+bxzoM0QrE6c0alhgIDz30UJNfQy/qg50O5dSAp24TjXoDAAAAoWjVqlV1Bt0sul7L2ZmVAgAAAAACSaea0kyEns40puU2btwogwcPlqSkJL/XL9z5LdWkbpz+/fubm9K5FjTVixWI09QvpaWltZ6neT/1tnTpUvNYhzY6B+I0YOQv7du399trAwAAAPAdvTDUC0lPaLkhQ4aY1PcAAAAAEO527NjhcdDNouV1kFTXrl39Vq9I4dc53pzFxcU5gmfW0EWNoFqBOB0dV1BQUOt5OiJr2bJl5qZ0Trgnn3wyUNUOS5qzVb94oTJCDwAAAKhJs2m4y6hRX1m9JgEAAACAcKcDoQL5PNgUeKspOjraTHKut9NPP90s07nfrECc3vbt21frefv377ehtuHliy++MENNlRUIBQAAAEJJbGysuXkSfLPKAgAAAEAkaGynQzor+kZQXX127NjR3EaPHm0ea2rK1157TZYvX2531YKCpuC89tprHQGz22+/3WW9jhjcsmWL9OnTp87XWL9+vTz99NPmvqbaOfHEE/1cawAAAMD39Fy2c+fO5pqhIVqONJMAAAAAIkXbtm3NNZA36Sa1vD+n+ookQRV40xFuP//8s2PE27Zt27zOQxqsdu7cKWvWrHFZVlJS4vi7ZMkSl3U6N15GRoZX76Gj2O644w45+OCDZdCgQdKlSxfzGjq6cM+ePSaA+emnnzp6BetIQy0DAAAAhKJ+/fqZjmX1XTPoxaOWAwAAAIBIkZycbDog6nzXnsRY9LpJYwVJSUkBqV+4i7V7BJdzakkNTtUlNTVVevToIb1795ZQpEG3WbNmuV2Xn59fa91tt93mdeDNoqPe9FYXDcSdffbZcs455zTq9QEAAIBg0Lx5cxk6dKjpxObuYlIvHnW9lgMAAACASDJgwAATJ6isrGywrMYMdDAQQjDwlpOT4zKibe/evXWWbdGihfTs2dME2nr16iUdOnQIZFVDUlZWlvzpT3+SdevWmZ6/ubm5JqhXVlZmItw6TFTTUA4fPlxatWpld3UBAACAJtM5ozMzM2X16tWmN6dOBq7zuWnvTh3pRtANAAAAQKTGC0aNGiULFy6UqqqqOjsratBNy2l5hEDgbfPmzS4j2g4cOFBnWQ2saYDNumngLZxoT1u9NYUGy15++eU612sDw9FHH21uAAAAQKTQ4NqwYcNk/PjxJvCmHfzCJWU9AAAAADSWxl3GjBkjK1eulI0bN7pcJ1npJXWkG0G3IA+8vfXWW2ZU29q1a82cY27fNDbWbFBrNJuObEtJSfF1VQAAAABEEL1wjI+P93oScQAAAAAIVxpU0yx4gwcPNlkJtbNiXFycyZDHnG4hEnibN29erWWa5lDnZ7NGs2k6GN2wAAAAAAAAAAAA8C8NsnXt2tXuakQEv6aa1HSRp59+uommas9TAAAAAAAAAAAAIFz5NfC2Z88eeeaZZ+SFF14wkVQrtaTeEhMT/fnWAAAAAAAAAAAAQGgH3s4//3xZs2aNyxxvmjNUl+lNRUdHy8EHH2wCcBqM01t6erqvqwIAAAAAAAAAAACEbuBtzJgx5q9OZr5lyxb5+eef5ZdffjFBtwMHDph1VVVVsmnTJnN7//33zbK2bds6gnAakGvVqpWvqwYAAAAAAAAAAACEXqrJqKgo6dSpk7mdcsopZtn27dtNEE6DcRqI27t3r6P8jh07zG3x4sXmcVZWlsuIuA4dOvirqgAAAAAAAAAAAEBwz/FWU/v27c1t5MiR5vGuXbtMAM4aFbdz505H2dzcXPniiy/MTaWmpkrPnj1NEO70008PZLUBAAAAAAAAAACA4Aq81aTpJPV2wgknmMf79u0zATjr9uuvvzrKFhQUyPfff29uBN4AAAAAAAAAAAAQbGwNvNWUkZEhgwcPNjeVnZ0tr732mixfvtzuqgEAAAAAAAAAAAChE3jTEW5W2klNQakj4AAAAAAAAAAAAIBQYFvgraqqSjZu3OhIK7l27VqTTrIh6enpAakfAAAAAAAAAAAAEJSBt4qKClm3bp0j0KZpJEtKShp8XlZWlvTq1UsOOeQQ6d27txx00EEBqS8AAAAAAAAAAAAQFIE3DarpKDYr0LZ+/XoTfGtIy5YtHUE2/du6dWt/VREAAAAAAAAAAAAI3sDbc889ZwJtmzdvNukkG9KuXTtHkE3/Nm/e3NdVAgAAAAAAAAAAAEIv8Pbuu+/Wu75jx44ugbZmzZr5ugoAAAAAAAAAAABAeM3xFh0dLZ06dXIE2nSuttTUVH++JQAAAAAAAAAAAGCLqOrq6mpfvuCtt97qEmhLTEz05csjxOju5UnKUV+LiYkxfysrKwP+3gD7H+zE/gc7sf8h0vdB7XgYFRVly3sjtPnrusnu7wSahu0X+tiGoY3tF9rYfqGN7Re+2y86Qq6ZfB54AwAAAAAAAAAAACKRX1NNAnbQSPq+ffvM/YyMDEeEHQgE9j/Yif0PdmL/g93YBwFXfCdCG9sv9LENQxvbL7Sx/UIb2y+0sf1+F/3HXyBs6Bd78uTJ5mZ9yYFAYf+Dndj/YCf2P9iNfRBwxXcitLH9Qh/bMLSx/UIb2y+0sf1CG9vvdwTeAAAAAAAAAAAAAB8g8AYAAAAAAAAAAAD4AIE3AAAAAAAAAAAAwAcIvAEAAAAAAAAAAAA+QOANAAAAAAAAAAAA8AECbwAAAAAAAAAAAIAPEHgDAAAAAAAAAAAAfCCqurq62hcvBAAAAAAAAAAAAEQyRrwBAAAAAAAAAAAAPkDgDQAAAAAAAAAAAPABAm8AAAAAAAAAAACADxB4AwAAAAAAAAAAAHyAwBsAAAAAAAAAAADgAwTeAAAAAAAAAAAAAB8g8AYAAAAAAAAAAAD4AIE3AAAAAAAAAAAAwAcIvAEAAAAAAAAAAAA+QOANAAAAAAAAAAAA8IFYX7wI4M7+/ftl/fr15rZhwwZzy8/PN+uGDBki11xzjcevtWvXLnnvvfdk1apVsnv3bqmurpbMzEw59NBDZfTo0dKhQwePXmfdunWyaNEiWbt2reTm5kplZaWkpqbKwQcfLEcddZQMHTpUYmNjA/I/wb/Cbf8rKiqSFStWOP4Xff6BAwekrKxMUlJS5KCDDpIBAwbI8OHDJS0tzeP/Df4RbvufGjdunEfvc8ghh8jtt9/u8f8H3wu3/U/3p59//lm8cdttt0mfPn28eg58I9z2P4v+3n7yySfy9ddfy5YtW8zvcnp6unTq1ElOOOEEOfbYYz3+v4BA0O/M+++/L8uXL5e9e/eafbxNmzYyePBg8/1JSEiwu4ohw5fnQHo+r8cjPTbqubweR7p27SojR4405/Ke0GPYxx9/LJ9//rls375dSkpKJCsrS/r16ycnn3yyx8dGfX/dR7799luzv6iWLVvKoEGD5JRTTgmJawpfX5+H4/b59ddf5YMPPjC/pfobmJiYKO3bt5fjjjtORowYITExMRLK22/JkiUya9Ysj95vypQp5je/PqWlpebz+uqrr2Tnzp1SUVEhzZs3l8MPP9xsP90GgTwG67nLhx9+KGvWrDGfV3Jysjn30M9Ht6GddHvpd0brtm3bNrPP6v6k+3vPnj1N20SvXr08fj2+f6G3/fj+2cPX7YO++j/1e6f7hHWt1KxZM7MPnXTSSdKjRw+PXiPY9oGmiqrWK1ggwBco3pwE6w/v008/bb5s7uiX5+KLLzZf5Lrobv7MM8+YL2999Ef4pptukhYtWvj1f4L/hdv+9+OPP8o///nPBuurP6pTp06V/v37N1gW/hNu+58i8BY6wm3/8zbwFhUVJbNnzzYXjQi8cNv/VE5Ojtx3333mb10OO+ww+fOf/2waVAC7fffddzJjxgwpLi52u75t27Zmn9cGCDTMF+dAVVVV8uSTT8rixYvrfL42kF155ZUSHV13YiJtWLvnnntMQ5s7cXFxcvnll5sG3fpkZ2fL/fffL/v27XO7Xjs5/OUvf5Fu3bpJJPzmhOv2aei3VJ//t7/9zQQ4QnX7+bLhXxt5dfvt2LHD7fqkpCSZNm2aHHHEEQE5Br/88svy6quvmvMZd7Qh+k9/+pPEx8dLoGknt19++aXBcto56eqrr663gxPfv/SQ3X58/+z5/vmyfdAX/6cG/B588EETDKzr+vycc86Rc889t976Bts+4AuMeENAaEOG9ur44YcfvHresmXLzA+w0oj7aaedJn379jU/mJs2bZK33nrLfDG1UUV/rI455hi3r/PGG284Gl30i3rqqaeaqLs2jmgjyttvvy1bt241N/2Sa+NKQz1PGvs/IfDCZf/TXh46gqNLly7mf8rIyDA/jtp7Q3uDfPPNN6aHoD7/7rvvNj1UYL9w2f8sJ554ornVhUbn4BIO+59epGlv1fpoL82HH37Y3NcerQTdgkM47H/a6/POO+80v7Xq6KOPNo0G2uiSl5dnGhz0N1j/R90HtQEFsJN+R3Rf1EYQ3dfHjBljvj/6WL9bOhJAGzR0n//Xv/5lvhvwTFPOgebPn+9oVO7cubOcccYZ0rp1a/ntt9/MMU23m67XY9oFF1xQZ+P0Aw884GhUPvLII81IEB3Bqw3Fr732mjlm6fFTfwfrGiGyZ88euffeex2jG/TYaDViff/99/Luu++a45uW0X1Er0FCQVOuz8Nx+2gv/zlz5pjrRR11cNZZZ0n37t2loKDABAT02lFHmmmdNWBcX0AjEHzRvnLzzTeb3+e61LcvawOtc4OvBmd0NLs2Nq9evdqcU2gZPb7qeUFd19q+OgYvXLhQFixYYO7rvjh27Fjp2LGj2faaDeCnn34y21g7m02fPl0CTUfYKP28dQSJnl/pNtTvgWYaeOedd0yZTz/91IxCq6+OfP8C//3z5faz8P0LLF+0D/rq/9TgqxV00zrpqFDdF3799Vd5/fXXzXf5lVdeMcv0exkK+4CvEHiD32g0W4eF600PAJou6Nprr/X4+Tq89NlnnzX39cvyf//3f+YAYNHX1YaWf/zjH+bLrI0vGomvecGjvUv0x1ppL4077rjD5Quqw12PP/548zr6g6yNLzqcXBtWfP0/IXDCbf/THwr9sauL1kV/WPXETd9TfzxvuOEGj/9f+Fa47X/O9ILHuS4IPuG2/7Vq1arBOutFoXPPTNgn3PY//T21gm76vzn3ztfGIX1v7Smq5fTCVC906zuGAv6m3x9tXNAGw1tuucUltY+eT2ov3xdeeME0Omjw2dPRXGj8OZAV6LeOYXo8snqO64iHgQMHmoZXbTDWcjqyw10vbA30axoopQHAiRMnOtbp62hD8l//+lfTMKXHRk3L664zlTZya6Oy0p7j2uhq6d27t2nE00YrbaTWssGc1cUX1+fhuH30N1DfQxthtVFRGymd66yjH+bOnSsfffSRqbOeRzWUAs4ffN2+osc3T84b3dFzBqvB98ILLzTBH4seR7UxWfcD6zylrtGtvjgGa3Bm3rx55r42qN91110uo6I0EKQjsjQQpA3J2pAd6BTrGiQ9//zzzTlPzaCR/s96Pn7rrbea/1PrOGrUKDMquCa+f/Z8/3y1/Zzx/QscX7QP+ur/1KDYF1984XiOjga19qluf3yHtWOiBrX1/XSf04B4MO8DvmRvlxaENd159UunJ1CNodFy/TFTGi13d5GjvaA1zZDSsvpjW5PmdS4sLDT3tXHEXVRcv5Aa2bdoDw9//E8InHDb/zzpAaW9utq1a2fue5I2AP4TbvsfQkuk7X/aM1PzySsNvuicXbBPOO1/um999tln5r7OJ6ANhO7ocitNpfbGBOyiveetc8Bhw4a5nU9DR5Bqg5vSuS/qSoEF39Fe4zpiQF122WW10jXpPCO6XGk5HWngjtU4rQ1WF110Ua312rBrHdN0VLA2utWkqdOs45qmyHVuVHZusNN1ShuE60q3Fgx8cX0ejttHX1tHGCh9T3eBCq2jzgWkrI4qgRYs7St6HNTjodLjox4na9I5r/S4qjQFuh5v/XUM1hEZOj+SmjBhQq1UhNo2oIElq43Aju2nDem6L9bVTqF1ts7VlHZMcofvX2hvP1/g++c9X7QP+ur/tL57el3lXN6Snp5uXl/ptZm7lLLBtg/4EoE3BC3nvMz15aPVqLemHqrrx8D5S6RDZ+vivI4LUITq/mcNky4vL2/0a8B+obr/ITyE2v6nveysdCnagy5QEyUj/Pc/7QlpXZBqCtO6LnJ1ufacVhs3bjQ99gE7ODckWo0T7vZXnTvJagDRNELwHx3xoKNplTb0uGsEUrrcaiDTuUlqzrWio0K0Q4HSxuC6fuucR024a1h2fu269hHn19Gy+pxwFa7bx/qfar6nM62jFVjQlN31zWMa7vQ4aP3e6/Gxrt/7hrafr47B1vbTa/u6OpRpmjk9N7HOheuay8hOzqNjrECUM75/wf39a2j7+QrfP/+pr33QF/+nPl61apW5r+XqSid61FFHOeribtsF2z7gSwTeELQ0F62lvh5QGlW3hqlqT2Wrt4xFh5HqRI4N/Vg4r7N+1BG5QnH/05O1zZs3m/tWDw6EplDc/xA+Qm3/W7p0qeM+aSZDXzDtf57WRen8HRZGncMua9eudTToaTqsujini7KeA//QQLzOlWKlKauPtV20M8nu3btd1lkp1JzLuaPHKj3+1bVtPX0d53XOzwk34bp9rGX6u1bf7xfHAu8+d02FaAV13H1evjgGaycgaySHBpw0XXZDr6ON6s4dl4KFc4cmdw3pfP+C+/vX0PbzFb5//lFf+6Cv/k99bO0n9W272NhYR2Dd+TnBuA/4GnO8IWg5z9VhRb7d0V4mVtRdv7w6bNz5oKLpiHRCRk1DpXNvbNmyRQ4++GCX19DGGp3w0bk8Iluo7H+a31hPPjXv8ptvvuloeNT0XAhdwbz/6ciSL7/80lzw6Am4XkzoSZT2PtKc2Qh9wbz/1VRSUuLo2aapAAOdXx/hvf95Wpea67XnMmAHa9/TtFbu5q5xF2Rmf/VcY86BnD/fhjrG1dwuznPlePM6ul5H7Or8lPo76Xwss15Hj3n1NQhnZmaa3ul6nLVGkoSjcNw++prW3KQNdWhyrms4bGed80gbm3WOLv0M9VioozB0zq+srKw6n+fp9tPjqr6mnlO4+7x8cQzW+muq64bqUnO91ifYrsU0HZzF3f/C9y+4v38Nbb+a+P7Z//3ztH3QV/+n8+fX0P7erl07+eGHH0yd9LrtoIMOCsp9wNcIvCFoOX8J9YBfV7R606ZN5sfNohM21vyiam5i/VJq2X/84x9y+umnm4sk/ZHVA867775rvrgaFdfJfNPS0vz4nyEUBPP+p3PZzJo1q871Y8aMkeOOO86L/xbBJpj3v5onJnrSpDfNcT9o0CAzwbSeaCN0BfP+564RVC8w1PHHH+8Y4YTQFUz7n3XRpheIDY1ic16vdQECTSeSt0Zp1pXqx6KjRXW/1+On1UCIhjXmHMj5821ou1hzRdZ8nrJSKqv6GjCd30c7KOjznBuYrNdtqC5WfbZu3RrW+0g4bh9v/ifn9eHw2+WcMkyPh3rLzs42cxBdeumlMmrUKLfPs7afHhetebfq+8z03EGDCzoCxEp77atjcGP2JRVs31Nt1Hee91bnE6uJ71/wfv882X418f2zR2PaB331fzZlfz/I6ZovmPYBXyPwhqCl83pYjR06gaqmj6o52aP+GMyfP99lmbvcutpb5f/+7//M5JHas/nll192Wa8NdcOHDzcNMqToQ6juf506dZIrr7xSunXr1ujXQHAIxv1PT0x08nPttabltOFaT3a0YXzhwoXmJEfzhN93331yyy231JuuAMEtGPe/umhjp4U0k+EhmPY/Pc5pr07tnakXeDp6zl3HFl3+66+/1lsXwN+cA9HOPfjromW0wcH5efD9OZA328V5XqKa28X5uNKU17Eee7KPWK8TzvtIOG4fb+rivD6Ut7PO13rkkUeazjVWg6umMdQOWl9//bVpnJ0zZ4753R85cmSt51ufmTefu/WZWY2+vjoG+2pfspt2brJS2em2cdeRiu9fYkhvPwvfv+Dbfg21D/rq//TV/l4cRPuAr9EqhqClPUi0R8QHH3xgot+33nqrXHjhhSaNlF7MaK7aV155xTSG6GMrR6xGud3RiSA/++wz2b9/f6111qSo2tP5vPPOo8EYQb3/aY/aBx54wPF+Oj+Npr3RdGuPPPKI6U2kjQMIXcG4/z3++ONuex8deuihctJJJ8k999xjRpVoI9RHH31EutMQFoz7nzvaO83qWdm9e3fmJwwTwbb/nXvuueY1NBA4c+ZM85urE3JrUG/fvn1mjsEFCxa41MXdBOaAvzl/Bzw5llpl6vruwDfnQN5sF6vxqObzah5XmvI61mNP9hHnXuThKhy3jzd1cV4fqr9d2uCvv8s1sx5oY7OO0tGUa3rtrL/j//nPf2TgwIG10gha/7s3n3vNz95Xx2Bf7Ut20mPhiy++6JgDd9KkSW7L8f0Lzu+fp9tP8f2r/f6B1pj2QV/9n43d38vqeJ1g2Ad8jegCgtpFF11kDhorVqwweZjvv/9+t5Mr6k0vcpTmWq7pvffeMwd5bWDRSVvPPvts80MQHx9v0oN88sknpkeH5sDVSR1vvvlmjyLkCG/Buv/phb/zxb++ls5LoyM/tFFQe9tOnjzZzDeB0BVs+199Q/715PlPf/qTXHfddeakWhvMCbyFtmDb/9zRYIq+rtILPoSPYNr/tPeuNjhoT109vr300kvm5kxfT4ODTz/9tHnMOSTsoPuhpeak9e5YZZyfB/eacg7kzXZxbsCquV2cG5r0derbbvW9jj7WHt6e7CPW64TzPhKO26dmXerjvN75eaGkoRT32uB8zjnnmN9u/WwXL14sZ511lksZ63/35nOv+dn76hjszfarb1+yi6Zf1PM2PR7q/3L99deb4I07fP+C7/vnzfZTfP9qv3+gNaZ90Ff/Z2P39/g6XicY9gFfi/brqwNNpF++v/71r3LVVVeZYbLOvSj04K8H7DvuuMPR8ObuwkhTA1mNLpoe5LbbbjO9E/UHQiPcmldWG3h0CK5au3ZtrVREiEyhtv9pOq6jjz7avNdTTz0lBQUFjf7fYb9Q2/80xYS+ttIGbee84Qg9obD/WWkmta6ezDuA0BFs+5+mo7zrrrtMr17n9CaaElN77t57770mCFhXXYBA8DZllTcptdD4cyBvtos1Z2nN59XsXNCU17Eee7KPWK8TzvtIOG4fb+ribWquUKXp7axzCR3NU5P1mXnzudf8zHx1DPbVvmQHTS/4z3/+UwoLCyU6Otp0SDjkkEPqLM/3rySkt5+n+P7Zo772QV/9n77a35OCaB/wNUa8IejpAX/EiBHmpnlfNVWQRqS1d6Gusy5wLM4TNCrtzWw1zIwbN87xHHeNKtrjWXtW6+SU2hhTc7g0Ik+o7X86zFyHleuP0cqVK93ORYPQEWr7n76/jlBR2ujU0ES9CG7BvP9t2LBBtm3bZu4ffvjhZoJkhJdg2/90bosbbrjB9ADOy8szvST1GGf1knSeb7BDhw4++hQAz+m+qGlTdb6xhiaK18YXq+GioQno0bRzIOfPt6HtsmfPHsf9mtvF+ZxKX7/m3JfOrPfRY1nNczF9XT2eNlQX5/qE8z4SjtvH+TUbeh3n9ZrqOVxppx09V9Tjo7vOgdZnpsdFDTrU14HG+sx0GzuP9vDVMbjmvlQf5/ex+3uqdb3zzjvNOZLu2zrCRtsm6sP3L3i+f43Zfp7i+2efutoHffV/1vwOO3dE9GZ/zwqifcDXGPGGkKJR8DZt2pgvpdWAUlVVZeb7sHob1vyR3b59u+N+586d6319a71+Cd3NBYLIFgr7n/P77969u1GvgeAUCvsfnRXCV7DtfzqvloU0k+EvmPY/HeWmF4taH+fUJBs3bnTcdzeJORAIVgBag9IaJK5LTk5Oreegaeo6B3L+fJ2PS95uF29ex1qvjUk1e3Jbr1NUVGTmqayLNr5qpwfVvn17CVfhuH30N9NqSHSuc311cfc64aa+6xRPt58eV61OP+4+L18cg3XOYutcx9N9qa76BMqBAwfMSClNE64uu+wyj87P+f6F9vbzBt8/e9TVPuir/9P582tof8/5Y71eS+l1VLDuA75G4A0hTye814i2Gjx4cK31+qW2aCNNfZzzwDo/DwiV/a+u1DYIT8G2/1kjkBSj3cKfXfuflv3iiy8cFxMDBgzwuu4IfcF0/NPX1wnMlTa29OzZ0+vXAHzB2ve0F69zMLgm51RP7K++Udc5UKtWrSQzM9Pc/+WXX+p9DWu9Pr9ly5Yu63r16uW47y5Vl0Ubi3UEb13b1tPXcV7n/JxwE67bx1qmjYv1BRAi5ViggQXrnMHa3o353DXjgjVKwt3n5YtjsKbDtjrwrFu3rt65iqzX0VEf9Y008ScNUmk6busYeMEFF8hJJ53k0XP5/tn//WvK9vMU3z/71NU+6Kv/Ux/razmXc6eiosK8T83nBOM+4GsE3hDSNIXQK6+84mgo0dzB7n7MLfX9mOuBIDs729zX+T9IW4VQ3P90GLmlY8eOjXoNhIZg2/80J/yPP/7oGH1C4C282bn/aZoMvYBTmi6DjjKRJ9iOfzpRvJVyaNSoUXWmtQT8TechdE63Wleg2Bo1rKl8+vTpE7D6hav6zoG0l7+Vrkt7cVsNTzXpcquXt84dWXN0gPZOt3p3W2mj3NGUue72B4vza9e1jzi/jpbV54SrcN0+zininN/TmdbRunbUHv/6P4SrRYsWOdJPu5uzSo+Deg6g9PjoPIesN9vPV8dga/vpqKqvv/7a7etoKrVVq1aZ+3379nWZaylQdB+65557ZNOmTeaxzsE7ZswYj5/P98/e719Tt5+n+P7Zp772QV/8n/pY59JWWq6uFI9ff/21Y5Sou20XbPuAL3FViKCmvSLKy8vr/LLoBJFr1641j8eOHevSyGI54ogjHPdffPFF06PDnZdfftkMGVfae56UaQim/U9/YMrKyuqt7zvvvOOYW0Lr0rt37wb/RwSvYNr/vvvuu3qH6mtPvgcffNDRU2r06NEe/Y8IXsG0/9WXZlInjUb4Cbb9r765D3Tk3bPPPmvut23bVk477bQG/z/AX7T3snX+pw0O7hox9XzRasA8+eSTa/U6hvj8HOiUU05xBOSfeeaZWuf0+liXW50JTj31VLfvdfrppzvS4r7wwgu11mtqpddff93c1zRO7hqldJ7M448/3tz/4Ycf5KuvvnLbUKfrrN9ZfU44C8fto6+tQWCl7+k8J6rl+eefN3PpqDPOOENCNehtBQ3q8v3338uCBQvMfU0RPWzYsFpl9Diox0Olx8e33367Vhk9nloNuRo8cJdW2lfHYJ3f1mqE1nMYa7SQ87nQ3LlzHSP67dh+esx74IEHHOdj+j0aP36816/D9y90tx/fP/u+f75oH/TV/2l99/RcSa/RamYaOXDggMybN88R6NL5tYN9H/AlzrLhN2vWrHH5gbF6pytdXrPnx9ChQ2u9xk8//WS+uMcee6z5YumcGnpw+fXXX02vCWtuD20o0d4Z7hx22GEmMq8NI1u2bJEbb7zR/KjoF1KHympd9AupPehVQkKCnHvuuX77nxAY4bb/ac/+5557To466igzDFtP5HSoeElJianPZ5995jhp0h+OK6+8kh73Ngq3/U8vdubMmWP2vx49epgTNz1x1v9Lh+kvXLjQcaKm+yeBN3uF2/7nTC+mly9fbu536NBBunTp4tVnA/8Lx/3vz3/+s7mIO/zww81+p8/XEW6aXlJ/f7VXpo6Uu/76613mfQPscOmll8qtt95qvjM6Z4sGp7U3rz7WNL36HbICxVZjCermi3MgHcmgDVZvvPGGSZOk2+fMM8805/M6p86bb77paLzUbaLbxh09XupxS8/5P/zwQxP004YzPf6sX79eXn31VdOjXDsQ6Bw9dY0I18ZVa/T4I488YupkdVbQRlJtlLLSOTemIT3UfnPCcfvo9aC+x7333mveU/+ns88+2/wG6rnUxx9/7BjhoPutXR2Zmrr9dM6iO+64w3w39TM6+OCDpVmzZmadbjsNnOj/aY2euOiii+rMyqH7gB4jNRWhBm70/Y855hjzfdfzEg2gaMOyPtbjrD+PwbrPTJgwwRx79H/8+9//bs53dMSKdhZ69913TZ2UnivZMXL54YcfdgSg9HxLG9P1PK0uuk+6G9XF98+e758vth/fP/u+f75oH/TV/6n7j24r/Xy1s9Kdd95pAuSaVvTXX3+V1157zZEZRN+vruwiwbQP+FJUdV3j94Ammjlzpkuv9IZoj+Oa9ED973//u87n6I+m/sBOnDjRNILURX/ctCeiddCoi/54Tps2TQ499FC//U8IjHDb/6655hqXyVDronPLTJ48uc59GIERqfufnvhdffXVpicT7BNu+5+zjz76yPS8UxdeeGHI9tAOZ+G4/2lDQV1pi5QG46ZOnSqdOnWq932AQNGGjxkzZjjS+tSkjQ033XRTrcntIX47B9Ie4E888US96cu04bOhznPaGKypwbQx2B09Jl5++eWmwbk+mmL3/vvvr3P+IR3F8Ze//EW6d+8uwcxX1+fhun20gfHpp5+uc/4eDQT87W9/M7+Dobj99PddG/4bop1rLrnkErepqZ1pQ69uP2sesJo0rZqeLziPqvfnMVj/Xw0Y1dVsqx2QtHOQHZ1+xo0b51V5nZdNt7c7fP/SQ3L78f2z7/vny/ZBX/yfGtTSay5rhJ27a7ezzz67wf0u2PYBXyDwhqA+CdYfuk8//dQc0HUo6P79+80XViPnGrHWYcqeXgzorq5fvs8//9z8EOtra7RcL460waR///6OHjH+/J8QGOG2/+nEvDrKQ3sFau8hfb42KOqPn56oaWOf/vgMHjzYnNjAXuG2/2mPbr3pUH3d/7Rnt57EaK8qPZnTXm7aCK5/Yb9w2/+cae817b2nF92zZs1iLsEgFI7737Jly0yvYH2+9gDV3qT626s9e48++miTloh0fQg22iDz3nvvmfNHTZeq+6g2MOg+e9JJJ3G+6CFfnwPp9tDGWD2e6GulpaVJ165dzfyQ2rjlCT2G6YgJPa7pMVKPSfp7qL3OdWSvHts8oY3Uuo98++23jgY8HdGncxZpb3WtW7Dz9fV5OG4fHXHw/vvvmxHgeizQfVfnw9J5cvX3z865cpu6/fS7qL/x+v3cuHGj+Y3W7eb8O6+fu/6f1kichuj20hFT2glIG4E1aKLfdd3+uv00ABHIY7A1gkvnq9XzIf2/9PxDjzu6De3iy8Cbhe9faG0/vn/2ff983T7oq/9Tv3c6Ulmzjfx/e3cCpVVZx3H82ubSQkq4UikCFoqQC+aCCaKGqFhSoHVS0gzB45phncw90hNZsoWYmhSaUphoYrlQAYqouSGZKJaKmlZmWmm2nO9zznPPM5d3m+EO8w7z/ZwzxxmYeee+770c7//9/Z//89prr4XzztQQXvNG75Oa7RpYWwZvkiRJkiRJkiRJUgncAEiSJEmSJEmSJEkqgcGbJEmSJEmSJEmSVAKDN0mSJEmSJEmSJKkEBm+SJEmSJEmSJElSCQzeJEmSJEmSJEmSpBIYvEmSJEmSJEmSJEklMHiTJEmSJEmSJEmSSmDwJkmSJEmSJEmSJJXA4E2SJEmSJEmSJEkqgcGbJEmSJEmSJEmSVAKDN0mSJEmSJEmSJKkEBm+SJEmSJEmSJElSCQzeJEmSJEmSJEmSpBIYvEmSJEmSJEmSJEklMHiTJEmSJEmSJEmSSmDwJkmSJEmSJEmSJJXA4E2SJEmSJEmSJEkqwdvKeBBJksq2fPny7Nxzzw2f9+vXLzvnnHOyruS6667L5s6dGz4fNWpU9ulPf7qjD0mSJEnSOpbWAdQIXdmf/vSn7MQTTwyf9+jRI5s2bVq2vqMOfvTRR8PnZ599drbjjjt29CFJkhpg8CZJXcjVV1+d3XTTTXmhMnXq1GyDDTZo9eO8+uqr2fHHH5+9+eab4evx48dn++23X+nHq65nwoQJ2Ysvvljx797xjndkm2yySbbxxhtnm222WbbddttlvXr1yvr3759169ZtnR+rJEmS1Gho0hoGLO2nWMuOGzcuGzp0aJsea/bs2dn8+fPD55tvvnk2ZcqUNtXXkqT1j8GbJHUhhGMxeCPcoAhsS0G3ePHivFDZcMMNs49+9KOlH+v6xNVr5XjjjTfCx8svv5w999xzYVUk3va2t2WDBg3KRowYkfXp06fDA0MCbQpvSZIkqVlXRXXVlVTvete7sl122SW75557wte//vWv2xS8/fe//80WLVqUf73vvvsaukmScgZvktSFfOADHwirhFatWhW+/tWvftWmAoviJNpjjz2yjTbaqNTjlMBKtq233rpFcfvaa6+Fjz/+8Y/ZX//61/DnhMBLlizJ7rrrruywww7LRo8eHcI4SZIkqVlsv/32We/evRv6XqY7qH0bUmPwtmLFitBAx0SY1njooYfyeoTA7WMf+1i7HKskqXPyXSlJ6mIoCGLwtnTp0uy4444LI/watXr16uzxxx/Pv3bEZPtgVVxXXxk3ePDgmtcXezzccccd2S9/+cvs73//e/a///0v+9nPfpY988wz2RlnnJG95S1vWafHK0mSJFXzkY98pE339119X7f2MHDgwOw973lP9sorr4Qa4je/+U32yU9+slWPQRNr9KEPfSjbYost2uFIJUmdle9ISVIXs88++2Rvfetbw+f//Oc/806/tqx2e9/73tdlRpKo+TDOccyYMdnkyZNbXIf33XdfNmfOnA49NkmSJEnNiekY1MWVatxGUEcvW7Ys/9rVbpKkIoM3Sepi6Oyj27ItRUbsBoycY69m8N73vjf76le/GsaoRuxl+MILL3TocUmSJElqTmlYVpzqUg8j7tl7GkyPcc9zSVKRoyYlqYsWGffee28+m/7ll18O4UU9bL7N/Ps0eEv94x//yO6///7wfU899VQIPvgzihECP/Y1GDRoUChMyhgDuHz58uzcc88Nn/fr1y9sEF5POt6l1tgWnudvf/vb8Fyefvrp7KWXXgrF1cYbb5xtuummYZwIr2Pfvn0b2rA8mjt3bvgo4rEmTJjQ4tji940aNaruWBr2OSMUpfOS1/5vf/tb6OTkvHKse++9d7bzzjtn9XAM8RxPnTo1rCr785//HMY5spKMv/vPf/6Tde/ePTzeoYce2ur9ENrD29/+9uzkk0/OTj311BAQsx8cYyePP/74it/P3z/22GPh+qfIfvbZZ8O4Sv6cDde32WabsMfcsGHDwrVbbdTliSeeuMafV/qzepvW87sXLlyYPfDAA6HwZ+wNz4lrjZ8ZMmRI+PcjSZKkrqVW/VKpRoj1UdH48ePDGPe2/Ewl//rXv0ITJ/Uf+y9z/0qNF+sPasWddtopaxT7pS1YsCCvORBrjgMPPLDF3s9loGmPPdA5dvBc+vTp09DPps2r1LebbLJJi79/8sknswcffDDUG4zBpzajXqPOYCQl9/cHHHBAmCBThrTurFVztLXWxMMPPxwCx9/97nfhXL3++uvZu9/97vAa7rrrrtnQoUMb2sKCuvrOO+/MHnnkkVD3sH839Rt1Nue7Z8+e2Yc//OHwujbyHoUkNSuDN0nqgrgx5qb/1VdfDUHDokWLskMOOaRVc+wJnNLih/3iLr300uzf//53xVEcfBDELVmyJPvgBz8Y9uAi1GlGs2fPDiumKACKeM34IIwjjNprr72yE044Idtwww2zjkJwxGtfXOHFueB1f+6550JxQ9F60kknVQ2SKmEU6fTp00OAmqJI4oM91k477bRsl112yToa1yPHQbEOCkP2MCyGvBS9hGN/+ctfKj4OQTQfBLvz5s3LvvCFL6wRMpeJNxiuvfbaNV5jzh9/RijItcabHhwLgaokSZLUUbjPvvLKK8M9c9Hzzz8fPmgq496c+qMYTFWqOWbMmBFCmBShFR/cC3/+858PjXFlovmR2g/UqUcffXTde21CwRUrVrR4jNRXvvKV7Iknnqj4swRwfPz+97/PbrzxxjA2f+TIkVkzIyibNm1aqI2KCOD4IGSkbjrllFNCaFbNbbfdll111VX5asFKdfYf/vCHbPHixaGp9Pzzzy/9+UjSuuI7N5LUBVFMsALq1ltvzQO1esEbN8eEa9UKDAqIGLrFTrVu3bqFQIpuSMKDVatWhTCLm2k68S6++OLQJddsWOHFcTJGkzBnq622CsfJ3ngUAzyPGHJRoBFunXnmmWuM3aRL7/3vf3+2cuXKvPhi1VLv3r3X+J2NdlcW0dk4adKk0HEIjoHHZ8UWAROhXDxWVnedddZZoYBpJHyjq3HWrFkhnKUbk7CVTkRWevF7WfnGdXHJJZeEfdaaIUjdc8898+CNwp2AlKA3xfOJodtGG20UzhHHznPjOfF3FMOcV15XVv7xb4aQNcUbCAcddFDe9cr3g5COxyrabLPN1vgzCs+f//zn+ddcZ7zOdHfy74lrjefA9Uh4SmHLtVbGilFJkiR1bvFelOCK+0TsvvvuFe87qQ/a+jMpGhQJq2KTIve93L9SA3Kfzb0rK774e1bDsRqL+qNaoyLfQz3BfXisZ1gxRw1GHUnIxXHOnDkzGzt2bFamwYMHZz/60Y/CcTOBgmOhhquF+/743HnNimEgQRWYXkFNvOWWW4a6gZ8hqKQ+43fxfPndaNbwjdCTcxevE84NKwV5Xqxuo27i/FAH8T0XXHBBCB4rrXTkervsssvyr9PrhtqGhkMaRrl+qGMlqbMzeJOkLorgLAZvBGGM2GBMRDXcKMdggSKiGEJQdBx11FFhjCTFRSUENgQ5dMQRblFojBs3Lms2vXr1ygYOHBg6NKsFVBQYdGXSzclISjryiquiDj744HyURwze2F+vkVEejSAEZKVbDN0oThm3yPGnODYKVUIyihmOe+LEiXUf/4orrgjnmlVWFKVpsEhBdOGFF4Zii9/PqBJG0XS0YqhJYVsM3ijsWD3Gv4EddtihYlcrodctt9ySXXPNNaEo5rrleiCoi1g1euyxx4bPKdLjvw/ObyMhJKsFY+hG4fm5z30uHFPxeBjDQvjHa80oyvnz5zdtcS5JkqR1J96Lcm8ewxFqkFqjBtvyM2ljXgzduGflvnf48OFrhGqMvqdOIbjhc36GSRRFBFDUJjF0ox5l1RTBTkQoxv3vnDlz8tVpZaHZbcCAAaGei6FaI8FbRI1UbIjbY489Qt1A+FRp9CLPh8f4/ve/H+ooJl/QPNgMTYwpQk+aK+M1Qh1L8Fms9QnMODe/+MUvQg01ZcqUEKQWVzmm2y18/OMfzz7zmc9UDGP5vZwPwltJ6sxsl5akLiquiqo0RrKS9O9322237J3vfGeLv+fPDj/88KqhGygmCHxiEEIgRHjUbA477LAQzNRaFcYIja997WshmIrjAtc1Qpu4covzwWq2YugWC0JGvESsCCvuPVcJnYann356CBSLq/lYJZbun3b33XfnBXNHInxMj7XS+BveJCAk5M2FaqNkOK9cB6NHj85Xz6VF9toipItvHHAMXEv7779/xeOhaE+vNcbSxLBVkiRJnQNhAmFLvY9q49A7GoHR5Zdfnq/2IiCj/qsUnmy77bbZ17/+9TABBbfffntovKy0eo7JKeB7qWfS0A0EWzSdcV/eHiuh0kkuNNPVqk+ZikEjY6WfjQgYCd6q7XcWmwDZrgDUUIRWzYZzw9QaEEZSx1eq9QnYeM7xtSCoKz4fwjQCWLDCjQCv2gpIGh0JIgnmJKkzM3iTpC4sLRTY541iqhJunulurPRzrUWwsM8++4TP6Yhjc+bOiiAxjtFgRVtxj672RMHLjPzoiCOOqLk5N8USXYpRI8UdBSMr/6rh8eKG13GcaEcjdEvHPBb3iWitIUOG5J8zqrMsjI2Mx8Zm8fVGjfIGRPx3R2cwK98kSZLUeVAvMHGk3scrr7ySNSOa92LoxGjKeivDqBNGjBiRh0vsC5eKo9SjUaNG5UFdJTTF9ejRIytb2lRKsMdWAtWkjXhsIVAMCVuDSTFxmkZaazcDXoc4HSdOQKk36v7II4/MGyB5byGV1smM1i82dUrS+shRk5LUhbGSiVF6FD2EawQLlYIWVqbFUI4CqlYYAwIFRvwxvoSQgFAmdkZi9erV+ed0vlHsNCtm9LNHG8dMwcC4xvS5MD4Tce+6WptJl4mQK67moghqJAwdOnRoPkalkRVvdBrWQsHE6sV4HLwWtcaVrisUsLG4i+Mfq+G6ZowJ1yHdxfxctZV7nN+yxPOAGETXQ8gbw1YCa8bYSJIkSetCW+9fI+5f033F03qGvbTrPWbcp/yGG27IysTKNOqeeJ/NpBca44qKoVwj9Rf1A3s2v/jii6EuiXuiRzGAYtsH6pJm2ceZ+iiuROQc1gpE060n2B+d88r7ANRVcdwkk2QI8Hj+/B3XAvv4SdL6zOBNkrowbo533nnnsOda7OCrFKqlnX0URNUKgrhv29KlS9coKqohmGtGjBHhuVAUpEFbszwXCriIAofOwXrYzyyiyCVoqrSJetRIiJb+3noh17qSHkdxb4GIcI093G6++eaKY28qKbP7mOsrosivN+oV6XE2esySJElqDqzoKmuv546Q3r9S7zXSyJeudCrevxbrmeJWBpX07ds3aw+MfozBGw2k7ONdHKvIir84hjKd4lLJwoULs3nz5rUYS1kLtQmvFXtIN9u5pmZkBGoj4vmmfuZ8x1qM14tVkgSXPNfzzjsv7BnPqj8aVxs595LU2Ri8SVIXR6deDN6WLVsWVqfFkRexIKIDLy1KKuH7uIFu7Wi/ZglrUnfccUc2c+bMhgO3jnguaQjU6MgVVivGTsMYFNYK3qqFVim6U6Nm2OONTlGu4ahS8crzv/jii/PrvlHp464NHie9VrjeWmttR2hKkiRJrcGElKjWOMZqinunpfVMrZH5qUa/r7UI9NgrOgZlNMXFvZ6jtFGOkfyV6gzqxxkzZoTgrS01QrMEb+k+g6zaa8vkj2K9cswxx4T3DHiNWT1Icy8frPpj/3BWwNEUzHYGcW9rSerMDN4kqYtjNj97YhEEvP7669ndd9/dIlxLC4ztttuu4ioogozJkyfnN9eMkhg2bFjWv3//0ClIAcEIjzhKg0Jk+vTp4fPWhlvt7ZlnnslmzZqVHxdFwP777x+KMQIuXqt0o+xp06blr9G6fC5pCFRtY+pKCFVj8NaMoefaopBLz0Pcgy51/fXX56Eb1ySjZRjbyLW96aabhvNLV2YUO5PLOr9l7AXYDCGnJEmSuo61vYct7ifelnombRBtj4bUa6+9Nt9qgRog1q+EhOmozWrNqLfffnuL0I1pMozHpI7u3r17eJ5pnTFhwoQwhhLV9lvvCO1Rr1CXTZo0KbvxxhvD6xRHWVJj0ejLB/uQs/pt5MiRYU+/Zhm9KUltYfAmSV1cnGkfV93QdRYLCW6WFy9eXHeOPaNG4l5nrKDihpoAo5qOCnwaKWYYPRiLhAEDBmQTJ05sURw1y3NJi04C00alBS4h4vqG0TCpPn36tPia0HHBggX51+PHj6+5P0N7nN/iGwtXXHFF03S3SpIkSdXuYWMgc9FFF4UwaV3XM2VNoKi2//mPf/zjEARR27LlQNy/m5o41og0mVbb83z+/Pn55wR3jBetpaNqyXoNhem5GT58eDZ27NhSfi8TVcaMGRNemyeeeCJbsWJF9thjj4XXOm7bQDPvnDlzwrjLM844Iw8/JamzMXiTJIXgIQZvy5cvz1566aUwxoNVQbETrdaG1w8//HD++cEHH1wzdEPs6ltbrR1z2Ejn3iOPPJJ/TlFQK3QDr1VHoOBr7TFwLtO99xrZF66zYcVm+vx69uzZ4u9XrlyZF+ysZqy3KXpZ12qKLs505Cf77Rm8SZIkqZl169Ytr6e4f+2IeqY99zmm/t1xxx3zepCpJjF4K+55XqlG5DnEUZXc7x9++OE1fx+vZVnj48uuiznXURnnuoiVbDRIxiZJGmQJ2lgNd++994Y/4780+LIPnCR1Rq7ZlSSFeepbbLFF3v3GaI3imElmrafFUbV5/5VGURbR2VaGdA+y4p4BlaR71TUyz77ec6FgaWTefXt06aUdps8++2xDz59uwnTUR6393TojXod0BAwrOYuvfXqtErytq2u1qHfv3hXPiyRJktRabak3Wvsz6SSJMu5f03pm9erVDTVJEs60p7Qpj4a+N954I2xFwOqsSt9Trc7Yeuut6zZwssqrrFH26SSTMuri9Fzzmrf3lgoEcbwnwQo39nmLYggnSZ2RwZskKRRdjNaI6Oij8ElvdGutDEqLNoqTWp588skWhcvadiXG3/3888/XHT1y11131X3MdI58vZEnzKZvpKMw3Ry6rL25ttlmm3z/MjoE0y7MauKqRtDNuT5h9dill16aF4V0fVbqMm3NtcrrettttzX0+9N9/xo5x2zIHrGXQbPtdShJkqTOoy31Rmt/Jr1/vfPOO+veS9dDOBXrGX7/okWLan5/cRuE9sC+z3HMYqyH0zqLxsxqIzZbU2fEGqAsm2++ef75U089VbfRlNCvlh122CGs2ourDO+7775sXeA13HXXXfOv4/QdSeqMDN4kSXmwFosFVg798Ic/zEfhMQYvvQEuiqvl6nWlEWTNnDmztGNmxRsFWyzE4kq9SlatWhWCstYULbWeC2NE5s6d29BxpiMd0xV1a4NzNWzYsPzrn/zkJzUfm+dy//33518fcMAB2fqCguwb3/hGOMcRoRvBbK1r9dFHH63ZWcuok0ZWNCIdFdnIOeb1j8Usx3399ddnjWJz92bafF2SJEkdq7X3om35GUb+bbnllvnqrssvv7zh5jEaJItNkjQ8DhkyJP+a2or73GrYPy3uK95eCN0I3yImwKQ1Zq1mVOrIWE+zouyFF16o+r1LlixpUZuVOU2DcDLdXqDoBz/4Qd2glVCWLSQiznVr6tjieEr2snvzzTdbPU602sQdSeoMDN4kSXmhwHiHKF3ps/fee9cclZGGchQnFEXFYIAVaRdccEEIGdiYuyzpvnNswlype4/xg/zuRsappM/l6quvzh544IGKe9qdc845oYBo5LmkIw0feuihhsaoNIJiKI6LZDPq8847r2KHI8XXd7/73RbPsV+/fllnR+HNBuinnXZa2JswfVOADbsr2XbbbfPXjPPw7W9/e40ikkKVx+V6avRaTc9xIysrCY2PPvroFm80TJ06ter+FrypwbVN0Tt+/Pi17jCWJEnS+iMdkc+IxEYCsdb+DEHZcccdl08IWbhwYfbNb34zjGKshtqEhs4TTjihYmg2YsSIvEmRsOb8888PTaAp6krqy2uuuabu+MYypOEadWQMgnjegwcPrvpzhERxRCOvJXUGIzSLz2XBggXZlClTwuOlqw7XBvVdHDfJHtXf+9731qgXGEFJvUGt0sjvPfTQQ/Mah3rpzDPPDD9brQGQ0JT3ECZOnBgaGItTbyZMmJBdd911Va8XHpdA8pZbbmmx3YUkdVbt/38sSVKnQZFRaU+rWp19GDBgQNh4mp+lyJg9e3Z26623hjEcBAyEbuwDwM00oQeBEQVYGYYPHx7GdNB1yebUZ599dhiNwUo4AhRu8mPxRmAxffr0mo9H8cdIRgoHihNWUvE8evbsGYI7gsOnn346f95sPF1vzCMdiN27dw9FG8d5yimnhNn1aQcf37PXXnu16rnTpXrSSSdlkyZNCqsJKewodHgsjpeuwscffzy8/tFWW20VCt/OgO7SdCwp10/chJyVaOk+CqB4ZaXbpz71qaohK98zevTobMaMGXkQevLJJ4drhhVynHNCvLjR+Re/+MUwwrIewr4YVnM9cp1w3aQjKA888MC8Sxj77bdf6IRltSK4jhixQzjI9UvHLZ3BFLq8aVFWYCtJkqT1y6BBg0IwRS3GSqovfelL4f42jk2MzZTbb7/9Wv0MNQzhG81g3JsTTNGoSO1BkEf4Q+DDfTr367VWsIF6iNrkW9/6Vng8foamOhpCqVu4F6bGjPf9n/3sZ7Orrroqa0+M5O/Ro0cIsFLUfnE0ZjXUGTR88ppSD5x++unhudDkynOhkS4+lzFjxoSJLMXf0xY0Cx5xxBF5jU0dRZ3Dc+GcUIfyOlIzEqbxXG666aaaj8l18OUvfzmEoYSmBKOXXHJJCEoJGONrQf1EmMZEmBjeVtrWgOdNsyEf/Cw1D/+lPmOCCXV7Wt/x/kJr62NJaiYGb5Kk3J577pldeeWVLfY2Yy+xdHRFNaeeemoIgOK4P27Oi12NFGQUUitXriztmAn2CJsuvPDCsOorrgxKV77RGcnqIoKOesEbQRoFxkUXXRQeDzyndIwhdt9999C1x+tVT+wOnTx5cgjDKFqKYR3hZlsKC1aunXXWWaFrkhCH50/YxkdR//79Q8jUWUZ2sLKQj3ro2OR80JWZvjFQDSNtCCPnzZsXvuZ6pzAtPuYxxxwTVlQ2ErzxJgRvTMR9JyqdAzpR0+AtFucUv4x8odDkDQeKTj6q4d8je9hJkiRJoGlr5MiR2Q033BC+plEwNgtGBGPpvXJbfgaMu+eedtasWXnYUulnU9zvpqMtU7vttltoTGSVFo1mPB4hUdoQyr352LFjwz13ewdvNPCxsu2nP/1pq5pRY7117LHHhhqRcY580NSXTufg8QnJPvGJTzS0FUKjDjnkkNCIGff1JsxiBVmKwIwwsNF9rBnTz6rGyy67LFu6dGk4N9TItcZkMk4/XU0JmhGpX+KIS+rhSpNl0qZGAtl0/3VJ6mwM3iRJObrhCDDSja0bKTBAtxrdfRQP3OBTeBFoEGRR1BHqUcDQjVdm8IZevXpl3/nOd0LXHhs/E/hRFLC6juLsoIMOCqFfo/r27RtGg9x8883548XnyO/ieVAgtgahC0ULo0VY/cdIQboeG90Xod7x0n1ImLds2bKwOoruUoobjpkuS0IhOhs7MwpuglY+OLesKON8FFcPNuLII48Mo0s4H4S0vF5c/zzuwIEDs6FDh4Yu29Zg9SHnmX8/scO31v4KEYEr/+4I7R588MGwyo+f5frg3wvHRABO1yfHHPc1lCRJkqKjjjoq3PczApImLoKXtKGyrJ/BTjvtFOqPe+65J4QwNJwRpsRR/LEGZAUd96+sbqqFoIWahntz6i9WgRFQcR9MmMXkCOq59t7jLaJhMw3eCJMarf84Vl5TalMCN5rrCJ54LrxuNAFSx5SNkGrcuHFhJSPBGjU3IRkr1KglqGH33XffVo/rJDCleZZ966hX2Ceb88Bjc454bQhieU6cK2qzdOpHDPwIammqpPaiXqURktVyNB5ShxHy8X0cYyONv5LU7Db4Xxnv+EmSJEmSJEmSJEldnGt2JUmSJEmSJEmSpBIYvEmSJEmSJEmSJEklMHiTJEmSJEmSJEmSSmDwJkmSJEmSJEmSJJXA4E2SJEmSJEmSJEkqgcGbJEmSJEmSJEmSVAKDN0mSJEmSJEmSJKkEBm+SJEmSJEmSJElSCQzeJEmSJEmSJEmSpBIYvEmSJEmSJEmSJEklMHiTJEmSJEmSJEmSSmDwJkmSJEmSJEmSJJXA4E2SJEmSJEmSJEkqgcGbJEmSJEmSJEmSVAKDN0mSJEmSJEmSJKkEBm+SJEmSJEmSJElSCQzeJEmSJEmSJEmSpBIYvEmSJEmSJEmSJEklMHiTJEmSJEmSJEmSSmDwJkmSJEmSJEmSJJXA4E2SJEmSJEmSJEkqgcGbJEmSJEmSJEmSVAKDN0mSJEmSJEmSJKkEBm+SJEmSJEmSJElSCQzeJEmSJEmSJEmSpGzt/R9Zes2C26n5pwAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": {}, + "metadata": { + "image/png": { + "height": 761, + "width": 879 + } + }, "output_type": "display_data" } ], @@ -3627,10 +4625,54 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "id": "determined-preserve", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12-2424-3636-4848-6060-7272-8484-9696-108108-120
(All)2.66251.54471.29751.17191.11341.04681.02941.03311.0092
" + ], + "text/plain": [ + " 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120\n", + "(All) 2.662527 1.544686 1.297522 1.171947 1.113358 1.046817 1.029409 1.033088 1.009217" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "triangle = cl.load_sample('raa')\n", "dev = cl.Development(drop=('1982', 12), drop_valuation='1988')\n", @@ -3640,10 +4682,203 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "id": "improving-adjustment", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 12-2424-3636-4848-6060-7272-8484-9696-108108-120
19811.64981.31901.08231.14691.19511.11301.03331.0092
19821.25931.97661.29211.13180.99341.0331
19832.63701.54281.16351.16071.18571.0264
19842.04331.36441.34891.10151.0377
19858.75921.65561.39991.0087
19864.25971.81571.2255
19877.21721.1250
19881.8874
19891.7220
\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "transformed_triangle.link_ratio.heatmap()" ] @@ -3662,10 +4897,58 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "id": "unlikely-lucas", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Triangle Summary
Valuation:1997-12
Grain:OYDY
Shape:(132, 1, 10, 10)
Index:[GRNAME, LOB]
Columns:[CumPaidLoss]
" + ], + "text/plain": [ + " Triangle Summary\n", + "Valuation: 1997-12\n", + "Grain: OYDY\n", + "Shape: (132, 1, 10, 10)\n", + "Index: [GRNAME, LOB]\n", + "Columns: [CumPaidLoss]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "clrd = cl.load_sample('clrd')\n", "clrd = clrd[clrd['LOB']=='wkcomp']['CumPaidLoss']\n", @@ -3694,7 +4977,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 16, "id": "e9c272a2-7c88-434f-aa19-9b5b3ab9636b", "metadata": {}, "outputs": [ @@ -3704,7 +4987,7 @@ "((775, 1, 10, 10), (6, 1, 1, 9))" ] }, - "execution_count": 39, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -3733,7 +5016,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 17, "id": "fd102233-1e8c-4fcf-a534-b842d1922743", "metadata": {}, "outputs": [ @@ -3743,7 +5026,7 @@ "((775, 1, 10, 10), (6, 1, 1, 9))" ] }, - "execution_count": 44, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -3784,10 +5067,48 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "id": "personalized-explorer", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12-2424-3636-4848-6060-7272-84
(All)2.00001.25001.10001.08001.05001.0200
" + ], + "text/plain": [ + " 12-24 24-36 36-48 48-60 60-72 72-84\n", + "(All) 2.0 1.25 1.1 1.08 1.05 1.02" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "triangle = cl.load_sample('ukmotor')\n", "patterns={12: 2, 24: 1.25, 36: 1.1, 48: 1.08, 60: 1.05, 72: 1.02}\n", @@ -3846,10 +5167,98 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "id": "collect-zimbabwe", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
122436486072
20001,001.00854.00568.00565.00347.00148.00
20011,113.00990.00671.00648.00422.00164.00
20021,265.001,168.00800.00744.00482.00195.00
20031,490.001,383.001,007.00849.00543.00220.00
20041,725.001,536.001,068.00984.00629.00255.00
20051,889.001,811.001,256.001,157.00740.00300.00
" + ], + "text/plain": [ + " 12 24 36 48 60 72\n", + "2000 1001.0 854.0 568.0 565.0 347.0 148.0\n", + "2001 1113.0 990.0 671.0 648.0 422.0 164.0\n", + "2002 1265.0 1168.0 800.0 744.0 482.0 195.0\n", + "2003 1490.0 1383.0 1007.0 849.0 543.0 220.0\n", + "2004 1725.0 1536.0 1068.0 984.0 629.0 255.0\n", + "2005 1889.0 1811.0 1256.0 1157.0 740.0 300.0" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "tri = cl.load_sample(\"ia_sample\")\n", "ia = cl.IncrementalAdditive().fit(\n", @@ -3871,10 +5280,91 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "id": "leading-relevance", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12-2424-3636-4848-6060-72
20001.85311.30621.23321.11611.0444
20011.88951.31911.23361.12331.0426
20021.92331.32881.23011.12121.0438
20031.92821.35051.21881.11481.0418
20041.89041.32761.22741.11841.0429
20051.95861.33951.23351.12101.0438
" + ], + "text/plain": [ + " 12-24 24-36 36-48 48-60 60-72\n", + "2000 1.853147 1.306199 1.233182 1.116131 1.044378\n", + "2001 1.889488 1.319068 1.233598 1.123320 1.042624\n", + "2002 1.923320 1.328812 1.230127 1.121179 1.043830\n", + "2003 1.928188 1.350505 1.218848 1.114772 1.041751\n", + "2004 1.890435 1.327647 1.227353 1.118406 1.042933\n", + "2005 1.958577 1.339524 1.233506 1.121004 1.043773" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "ia.ldf_" ] @@ -3897,10 +5387,48 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "id": "gentle-checkout", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
122436486072
20000.24320.22200.15400.14190.09070.0368
" + ], + "text/plain": [ + " 12 24 36 48 60 72\n", + "2000 0.243212 0.22196 0.153978 0.141853 0.090673 0.03677" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "zeta_ = tri['loss'].cum_to_incr().sum('origin') / tri['exposure'].sum('origin')\n", "zeta_" @@ -3919,10 +5447,63 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "id": "above-finland", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
72
2000148.00
2001163.85
2002195.43
2003220.11
2004255.15
2005299.97
" + ], + "text/plain": [ + " 72\n", + "2000 148.000000\n", + "2001 163.847950\n", + "2002 195.433540\n", + "2003 220.106335\n", + "2004 255.148323\n", + "2005 299.971180" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "zeta_.loc[..., 72] * tri['exposure'].latest_diagonal" ] @@ -3938,10 +5519,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "id": "located-nothing", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "np.True_" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "zeta_.loc[..., 72]*tri['exposure'].latest_diagonal == ia.incremental_.loc[..., 72]" ] @@ -3966,10 +5558,98 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "id": "viral-paraguay", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
122436486072
20001,001.00854.00568.00565.00347.00148.00
20011,113.00990.00671.00648.00422.00172.00
20021,265.001,168.00800.00744.00511.00215.00
20031,490.001,383.001,007.00908.00604.00255.00
20041,725.001,536.001,151.001,105.00735.00310.00
20051,889.001,967.001,420.001,364.00907.00383.00
" + ], + "text/plain": [ + " 12 24 36 48 60 72\n", + "2000 1001.0 854.0 568.0 565.0 347.0 148.0\n", + "2001 1113.0 990.0 671.0 648.0 422.0 172.0\n", + "2002 1265.0 1168.0 800.0 744.0 511.0 215.0\n", + "2003 1490.0 1383.0 1007.0 908.0 604.0 255.0\n", + "2004 1725.0 1536.0 1151.0 1105.0 735.0 310.0\n", + "2005 1889.0 1967.0 1420.0 1364.0 907.0 383.0" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "cl.IncrementalAdditive(trend=0.02, future_trend=0.05).fit(\n", " X=tri['loss'], \n", @@ -4110,10 +5790,83 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "id": "african-combat", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CumPaidLoss
LOB
comauto0.928924
medmal1.569652
othliab1.330076
ppauto0.831529
prodliab1.456180
wkcomp0.898278
\n", + "
" + ], + "text/plain": [ + " CumPaidLoss\n", + "LOB \n", + "comauto 0.928924\n", + "medmal 1.569652\n", + "othliab 1.330076\n", + "ppauto 0.831529\n", + "prodliab 1.456180\n", + "wkcomp 0.898278" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "clrd = cl.load_sample('clrd').groupby('LOB').sum()\n", "dev = cl.ClarkLDF(growth='weibull').fit(clrd['CumPaidLoss'])\n", @@ -4132,10 +5885,28 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "id": "congressional-virtue", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "LOB\n", + "comauto 1.270910\n", + "medmal 1.707217\n", + "othliab 1.619190\n", + "ppauto 1.118796\n", + "prodliab 2.126124\n", + "wkcomp 1.311590\n", + "dtype: float64" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "1/dev.G_(37.5).to_frame()" ] @@ -4152,10 +5923,83 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "id": "clean-massage", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CumPaidLoss
LOB
comauto0.680323
medmal0.701447
othliab0.623803
ppauto0.825928
prodliab0.671059
wkcomp0.697935
\n", + "
" + ], + "text/plain": [ + " CumPaidLoss\n", + "LOB \n", + "comauto 0.680323\n", + "medmal 0.701447\n", + "othliab 0.623803\n", + "ppauto 0.825928\n", + "prodliab 0.671059\n", + "wkcomp 0.697935" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "cl.ClarkLDF().fit(\n", " X=clrd['CumPaidLoss'], \n", @@ -4242,10 +6086,54 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "id": "rising-vancouver", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
24-3636-4848-6060-7272-8484-9696-108108-120120-132
(All)0.84280.71000.70840.69680.63760.62200.55340.43740.5243
" + ], + "text/plain": [ + " 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 120-132\n", + "(All) 0.842814 0.709981 0.70835 0.696826 0.637589 0.622016 0.553385 0.437373 0.524347" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "tri = cl.load_sample('usauto')\n", "model = cl.CaseOutstanding(paid_to_incurred=('paid', 'incurred')).fit(tri)\n", @@ -4269,7 +6157,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 29, "id": "listed-advocate", "metadata": {}, "outputs": [ @@ -4429,7 +6317,7 @@ "2007 1.669287 1.180366 1.085961 1.041239 1.017758 1.008747 1.004248 1.002112 1.001702" ] }, - "execution_count": 24, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -4456,7 +6344,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 30, "id": "sized-adoption", "metadata": {}, "outputs": [ @@ -4616,7 +6504,7 @@ "2007 NaN NaN NaN NaN NaN NaN NaN NaN NaN" ] }, - "execution_count": 25, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -4627,7 +6515,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 31, "id": "meaningful-stage", "metadata": {}, "outputs": [ @@ -4670,7 +6558,7 @@ "(All) 0.534019 0.56385 0.529593 0.490031 0.513853 0.55064 0.631726 0.673788 0.579812" ] }, - "execution_count": 26, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -4715,7 +6603,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 32, "id": "bulgarian-bookmark", "metadata": {}, "outputs": [ @@ -4838,7 +6726,7 @@ "4 40.0 410.0 359.0 51.0 " ] }, - "execution_count": 27, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -4877,7 +6765,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 33, "id": "broad-stephen", "metadata": {}, "outputs": [ @@ -4929,7 +6817,7 @@ "origin 0.033863" ] }, - "execution_count": 28, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -4957,7 +6845,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 34, "id": "signed-realtor", "metadata": {}, "outputs": [], @@ -4987,7 +6875,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 35, "id": "improved-corps", "metadata": {}, "outputs": [ @@ -5018,31 +6906,31 @@ " \n", " \n", " Intercept\n", - " 12.549945\n", + " 12.549956\n", " \n", " \n", " LOB[T.ppauto]\n", - " 3.202703\n", + " 3.202689\n", " \n", " \n", " LOB[comauto]:C(np.minimum(development, 36))[T.24]\n", - " 0.578694\n", + " 0.578649\n", " \n", " \n", " LOB[ppauto]:C(np.minimum(development, 36))[T.24]\n", - " 0.449832\n", + " 0.449841\n", " \n", " \n", " LOB[comauto]:C(np.minimum(development, 36))[T.36]\n", - " 0.790516\n", + " 0.790407\n", " \n", " \n", " LOB[ppauto]:C(np.minimum(development, 36))[T.36]\n", - " 0.321206\n", + " 0.321221\n", " \n", " \n", " LOB[comauto]:development\n", - " -0.044627\n", + " -0.044625\n", " \n", " \n", " LOB[ppauto]:development\n", @@ -5050,7 +6938,7 @@ " \n", " \n", " LOB[comauto]:origin\n", - " 0.054581\n", + " 0.054577\n", " \n", " \n", " LOB[ppauto]:origin\n", @@ -5062,19 +6950,19 @@ ], "text/plain": [ " coef_\n", - "Intercept 12.549945\n", - "LOB[T.ppauto] 3.202703\n", - "LOB[comauto]:C(np.minimum(development, 36))[T.24] 0.578694\n", - "LOB[ppauto]:C(np.minimum(development, 36))[T.24] 0.449832\n", - "LOB[comauto]:C(np.minimum(development, 36))[T.36] 0.790516\n", - "LOB[ppauto]:C(np.minimum(development, 36))[T.36] 0.321206\n", - "LOB[comauto]:development -0.044627\n", + "Intercept 12.549956\n", + "LOB[T.ppauto] 3.202689\n", + "LOB[comauto]:C(np.minimum(development, 36))[T.24] 0.578649\n", + "LOB[ppauto]:C(np.minimum(development, 36))[T.24] 0.449841\n", + "LOB[comauto]:C(np.minimum(development, 36))[T.36] 0.790407\n", + "LOB[ppauto]:C(np.minimum(development, 36))[T.36] 0.321221\n", + "LOB[comauto]:development -0.044625\n", "LOB[ppauto]:development -0.054814\n", - "LOB[comauto]:origin 0.054581\n", + "LOB[comauto]:origin 0.054577\n", "LOB[ppauto]:origin 0.057790" ] }, - "execution_count": 30, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -5103,7 +6991,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 36, "id": "secure-committee", "metadata": {}, "outputs": [ @@ -5192,7 +7080,7 @@ "ppauto 0.001 " ] }, - "execution_count": 31, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -5272,7 +7160,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 37, "id": "middle-machinery", "metadata": {}, "outputs": [ @@ -5319,7 +7207,7 @@ "Columns: [CumPaidLoss]" ] }, - "execution_count": 32, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -5376,7 +7264,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 38, "id": "civil-state", "metadata": {}, "outputs": [ @@ -5401,10 +7289,10 @@ " \n", " \n", " (All)\n", - " 2.6500\n", - " 1.4100\n", + " 2.4000\n", + " 1.4000\n", " 1.1900\n", - " 1.1000\n", + " 1.0900\n", " 1.0400\n", " 1.0200\n", " 1.0100\n", @@ -5416,10 +7304,10 @@ ], "text/plain": [ " 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120\n", - "(All) 2.65 1.41 1.19 1.1 1.04 1.02 1.01 1.01 1.01" + "(All) 2.4 1.4 1.19 1.09 1.04 1.02 1.01 1.01 1.01" ] }, - "execution_count": 33, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -5474,27 +7362,28 @@ "\n", "### Formulation\n", "\n", - "The PTF framework is an ordinary least squares (OLS) model with the response, `y`\n", + "The PTF framework is an ordinary least squares (OLS) model with the response, `y`\n", "being the log of the incremental amounts of a Triangle. These are assumed to be\n", - "normally distributed which implies the incrementals themselves are log-normal\n", - "distributed.\n", + "normally distributed with fixed variance, which implies the incrementals \n", + "themselves are log-normal distributed.\n", "\n", "The framework includes coefficients for origin periods (alpha), development periods (gamma)\n", "and calendar period (iota). Note that chainladder uses a formulation that is different from\n", - "but equivalent to the authors' formulation. Here, the first alpha denotes a baseline origin trend (corresponding\n", - "to the top-left cell). Subsequent alphas are incremental, in the same way gammas and iotas\n", - "are.\n", + "but equivalent to the authors' formulation. Here, the first alpha denotes a baseline origin \n", + "trend (corresponding to the top-left cell). Subsequent alphas are incremental, in the same \n", + "way gammas and iotas are.\n", "\n", "\n", "$y(i, j) = \\alpha _{0} + \\sum_{k=1}^i \\alpha_k + \\sum_{m=1}^{j}\\gamma _{m}+ \\sum_{n =1}^{i+j}\\iota _{n}+ \\varepsilon _{i,j}$\n", "\n", - "These coefficients can be categorical or continuous, and to support a wide range of\n", - "model forms, patsy formulas are used.\n" + "$\\varepsilon_{i,j} \\sim \\mathcal{N}(0,\\sigma^2)$\n", + "\n", + "To support a wider range of model forms, patsy formulas are used.\n" ] }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 39, "id": "innovative-attachment", "metadata": {}, "outputs": [ @@ -5594,7 +7483,7 @@ "[1 rows x 21 columns]" ] }, - "execution_count": 34, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -5602,13 +7491,60 @@ "source": [ "abc = cl.load_sample('abc')\n", "\n", - "# Discrete origin, development, valuation\n", + "# Discrete origin and development, akin to an ODP model\n", "cl.BarnettZehnwirth(formula='C(origin)+C(development)').fit(abc).coef_.T" ] }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "pending-breakdown", + "metadata": {}, + "source": [ + "The PTF framework is particularly useful when there is calendar period inflation\n", + "influences on loss development.\n", + "\n", + "::::{grid}\n", + ":gutter: 2\n", + "\n", + ":::{grid-item-card} \n", + ":columns: 4\n", + ":link: ../gallery/plot_ptf_resid\n", + ":link-type: doc\n", + "**PTF Residuals**\n", + "```{image} ../images/plot_ptf_resid.png\n", + "---\n", + "alt: PTF Residuals\n", + "---\n", + "```\n", + "+++\n", + "{bdg-warning}`medium`\n", + ":::\n", + "::::\n", + "\n", + "{cite}`barnett2000`" + ] + }, + { + "cell_type": "markdown", + "id": "1feda665-060d-4756-96d3-1645bd106a5f", + "metadata": {}, + "source": [ + "The general form of the PTF family includes a great number of parameters. The number of parameters \n", + "should be reduced, where reasonable, to improve parameter estimates. Origin coefficients can be set to \n", + "0, corresponding to periods of unchanging origin levels. Adjacent development and valuation coefficients\n", + "can be set equal, indicating periods of constant trend. \n", + "\n", + "Grouping parameters like this requires complex patsy formulas, so a convenience function, \n", + "`utils.utilityfunctions.PTF_formula`, is provided. This function takes lists for alpha, gamma and iota.\n", + "Alpha is passed as a list of cutoffs delimiting groups of origin periods. Gamma and iota are passed as tuples\n", + "denoting the bounds of linear segments. \n", + "A model from {cite}`barnett2008` (pp. 48-49) is fit below." + ] + }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 43, "id": "nominated-zimbabwe", "metadata": {}, "outputs": [ @@ -5633,67 +7569,99 @@ " \n", " \n", " \n", - " Intercept\n", - " origin\n", - " development\n", - " valuation\n", + " coef_\n", " \n", " \n", " \n", " \n", - " coef_\n", - " 8.359157\n", - " 4.215981\n", - " 0.319288\n", - " -4.116569\n", + " Intercept\n", + " 11.1579\n", + " \n", + " \n", + " I(2 <= origin)[T.True]\n", + " 0.1989\n", + " \n", + " \n", + " I(3 <= origin)[T.True]\n", + " 0.0703\n", + " \n", + " \n", + " I(5 <= origin)[T.True]\n", + " 0.0919\n", + " \n", + " \n", + " I((np.minimum(24, development) - np.minimum(12, development)) / 12)\n", + " 0.1871\n", + " \n", + " \n", + " I((np.minimum(36, development) - np.minimum(24, development)) / 12)\n", + " -0.3771\n", + " \n", + " \n", + " I((np.minimum(72, development) - np.minimum(36, development)) / 12)\n", + " -0.4465\n", + " \n", + " \n", + " I((np.minimum(96, development) - np.minimum(72, development)) / 12)\n", + " -0.3727\n", + " \n", + " \n", + " I((np.minimum(132, development) - np.minimum(96, development)) / 12)\n", + " -0.3154\n", + " \n", + " \n", + " I(np.minimum(7, valuation) - np.minimum(0, valuation))\n", + " 0.0432\n", + " \n", + " \n", + " I(np.minimum(8, valuation) - np.minimum(7, valuation))\n", + " 0.0858\n", + " \n", + " \n", + " I(np.minimum(11, valuation) - np.minimum(8, valuation))\n", + " 0.1464\n", " \n", " \n", "\n", "" ], "text/plain": [ - " Intercept origin development valuation\n", - "coef_ 8.359157 4.215981 0.319288 -4.116569" + " coef_\n", + "Intercept 11.1579\n", + "I(2 <= origin)[T.True] 0.1989\n", + "I(3 <= origin)[T.True] 0.0703\n", + "I(5 <= origin)[T.True] 0.0919\n", + "I((np.minimum(24, development) - np.minimum(12,... 0.1871\n", + "I((np.minimum(36, development) - np.minimum(24,... -0.3771\n", + "I((np.minimum(72, development) - np.minimum(36,... -0.4465\n", + "I((np.minimum(96, development) - np.minimum(72,... -0.3727\n", + "I((np.minimum(132, development) - np.minimum(96... -0.3154\n", + "I(np.minimum(7, valuation) - np.minimum(0, valu... 0.0432\n", + "I(np.minimum(8, valuation) - np.minimum(7, valu... 0.0858\n", + "I(np.minimum(11, valuation) - np.minimum(8, val... 0.1464" ] }, - "execution_count": 35, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# Linear coefficients for origin, development, and valuation\n", - "cl.BarnettZehnwirth(formula='origin+development+valuation').fit(abc).coef_.T" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "pending-breakdown", - "metadata": {}, - "source": [ - "The PTF framework is particularly useful when there is calendar period inflation\n", - "influences on loss development.\n", - "\n", - "::::{grid}\n", - ":gutter: 2\n", - "\n", - ":::{grid-item-card} \n", - ":columns: 4\n", - ":link: ../gallery/plot_ptf_resid\n", - ":link-type: doc\n", - "**PTF Residuals**\n", - "```{image} ../images/plot_ptf_resid.png\n", - "---\n", - "alt: PTF Residuals\n", - "---\n", - "```\n", - "+++\n", - "{bdg-warning}`medium`\n", - ":::\n", - "::::\n", - "\n", - "{cite}`barnett2000`" + "# A reasonable model. Incrementals are adjusted for exposure (see Barnett and Zehnwirth, 2000) \n", + "# and one cell is dropped \n", + "import numpy as np\n", + "from chainladder.utils.utility_functions import PTF_formula\n", + "exposure=np.array([[2.2], [2.4], [2.2], [2.0], [1.9], [1.6], [1.6], [1.8], [2.2], [2.5], [2.6]])\n", + "abc_adj = abc/exposure\n", + "\n", + "origin_buckets = [(0,1),(2,2),(3,4),(5,10)]\n", + "dev_buckets = [(24,36),(36,48),(48,84),(84,108),(108,144)]\n", + "val_buckets = [(1,8),(8,9),(9,12)]\n", + " \n", + "abc_formula = PTF_formula(abc_adj,alpha=origin_buckets,gamma=dev_buckets,iota=val_buckets)\n", + " \n", + "model=cl.BarnettZehnwirth(formula=abc_formula, drop=('1982',72)).fit(abc_adj)\n", + "model.coef_.round(4)" ] }, { @@ -5707,7 +7675,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.7.11 ('cl_dev')", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -5721,7 +7689,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.11" + "version": "3.12.0" }, "toc-showtags": true, "vscode": { From c96adb6ffc38b63c6cd16c527bf69bc2b0ea6684 Mon Sep 17 00:00:00 2001 From: danielfong-act Date: Mon, 19 Jan 2026 16:24:42 -0800 Subject: [PATCH 3/9] changes how development and valuation bounds are given to PTF_formula. More changes to BZ documentation. --- .../development/tests/test_barnzehn.py | 4 +- chainladder/utils/utility_functions.py | 4 +- docs/user_guide/development.ipynb | 228 +++++++++--------- 3 files changed, 119 insertions(+), 117 deletions(-) diff --git a/chainladder/development/tests/test_barnzehn.py b/chainladder/development/tests/test_barnzehn.py index a1c4bba8..593e26be 100644 --- a/chainladder/development/tests/test_barnzehn.py +++ b/chainladder/development/tests/test_barnzehn.py @@ -41,8 +41,8 @@ def test_bz_2008(): abc_adj = abc/exposure origin_buckets = [(0,1),(2,2),(3,4),(5,10)] - dev_buckets = [(24,36),(36,48),(48,84),(84,108),(108,144)] - val_buckets = [(1,8),(8,9),(9,12)] + dev_buckets = [(12,24),(24,36),(36,72),(72,96),(96,132)] + val_buckets = [(0,7),(7,8),(8,11)] abc_formula = PTF_formula(abc_adj,alpha=origin_buckets,gamma=dev_buckets,iota=val_buckets) diff --git a/chainladder/utils/utility_functions.py b/chainladder/utils/utility_functions.py index fea2a552..b641d883 100644 --- a/chainladder/utils/utility_functions.py +++ b/chainladder/utils/utility_functions.py @@ -787,9 +787,9 @@ def PTF_formula(tri: Triangle, alpha: ArrayLike = None, gamma: ArrayLike = None, formula_parts += ['+'.join([f'I({x[0]} <= origin)' for x in alpha])] if(gamma): dgrain = min(tri.development) - formula_parts += ['+'.join([f'I((np.minimum({x[1]-dgrain},development) - np.minimum({x[0]-dgrain},development))/{dgrain})' for x in gamma])] + formula_parts += ['+'.join([f'I((np.minimum({x[1]},development) - np.minimum({x[0]},development))/{dgrain})' for x in gamma])] if(iota): - formula_parts += ['+'.join([f'I(np.minimum({x[1]-1},valuation) - np.minimum({x[0]-1},valuation))' for x in iota])] + formula_parts += ['+'.join([f'I(np.minimum({x[1]},valuation) - np.minimum({x[0]},valuation))' for x in iota])] if(formula_parts): return '+'.join(formula_parts) return '' diff --git a/docs/user_guide/development.ipynb b/docs/user_guide/development.ipynb index c6669702..6f90e232 100644 --- a/docs/user_guide/development.ipynb +++ b/docs/user_guide/development.ipynb @@ -4690,141 +4690,141 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4832,10 +4832,10 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4844,9 +4844,9 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4856,8 +4856,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7289,10 +7289,10 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7304,7 +7304,7 @@ ], "text/plain": [ " 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120\n", - "(All) 2.4 1.4 1.19 1.09 1.04 1.02 1.01 1.01 1.01" + "(All) 2.61 1.43 1.19 1.1 1.04 1.02 1.01 1.01 1.01" ] }, "execution_count": 38, @@ -7374,11 +7374,14 @@ "way gammas and iotas are.\n", "\n", "\n", - "$y(i, j) = \\alpha _{0} + \\sum_{k=1}^i \\alpha_k + \\sum_{m=1}^{j}\\gamma _{m}+ \\sum_{n =1}^{i+j}\\iota _{n}+ \\varepsilon _{i,j}$\n", + "$y(i, j) = \\alpha _{0} + \\sum_{k=1}^i \\alpha_k + \\sum_{m=1}^{j}\\gamma _{m}+ \\sum_{t =1}^{i+j}\\iota _{t}+ \\varepsilon _{i,j}$\n", "\n", "$\\varepsilon_{i,j} \\sim \\mathcal{N}(0,\\sigma^2)$\n", - "\n", - "To support a wider range of model forms, patsy formulas are used.\n" + " \n", + "To support a wider range of model forms, patsy formulas are used. The PTF framework is \n", + "particularly useful when there is calendar period inflation influences on loss development,\n", + "which other models might not account for. For example, a simple model is fit below with all \n", + "alphas and gammas independent, and no iotas.\n" ] }, { @@ -7501,8 +7504,7 @@ "id": "pending-breakdown", "metadata": {}, "source": [ - "The PTF framework is particularly useful when there is calendar period inflation\n", - "influences on loss development.\n", + "\n", "\n", "::::{grid}\n", ":gutter: 2\n", @@ -7537,14 +7539,14 @@ "\n", "Grouping parameters like this requires complex patsy formulas, so a convenience function, \n", "`utils.utilityfunctions.PTF_formula`, is provided. This function takes lists for alpha, gamma and iota.\n", - "Alpha is passed as a list of cutoffs delimiting groups of origin periods. Gamma and iota are passed as tuples\n", - "denoting the bounds of linear segments. \n", + "Alpha is passed as a list of ranges delimiting groups of origin periods. Gamma and iota are passed as tuples\n", + "denoting the bounds of linear segments. \n", "A model from {cite}`barnett2008` (pp. 48-49) is fit below." ] }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 40, "id": "nominated-zimbabwe", "metadata": {}, "outputs": [ @@ -7575,51 +7577,51 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "
 12-2424-3636-4848-6060-7272-8484-9696-108108-12012-2424-3636-4848-6060-7272-8484-9696-108108-120
19811.64981.31901.08231.14691.19511.11301.033319811.64981.31901.08231.14691.19511.11301.03331.00921.0092
198219821.25931.97661.29211.13180.99341.25931.97661.29211.13180.99341.03311.0331
19832.63701.54281.16351.16071.185719832.63701.54281.16351.16071.18571.02641.0264
19842.04331.36441.34891.101519842.04331.36441.34891.10151.03771.0377
19858.75921.65561.399919858.75921.65561.39991.00871.0087
19864.25971.815719864.25971.81571.22551.2255
19877.217219877.21721.12501.1250
198819881.88741.8874
19891.722019891.7220
(All)2.40001.40002.61001.43001.19001.09001.10001.04001.02001.0100
Intercept11.157911.2665
I(2 <= origin)[T.True]0.19890.1784
I(3 <= origin)[T.True]0.07030.0480
I(5 <= origin)[T.True]0.09190.0450
I((np.minimum(24, development) - np.minimum(12, development)) / 12)0.1871I((np.minimum(36, development) - np.minimum(24, development)) / 12)-0.2898
I((np.minimum(36, development) - np.minimum(24, development)) / 12)-0.3771I((np.minimum(48, development) - np.minimum(36, development)) / 12)-0.4830
I((np.minimum(72, development) - np.minimum(36, development)) / 12)-0.4465I((np.minimum(84, development) - np.minimum(48, development)) / 12)-0.4408
I((np.minimum(96, development) - np.minimum(72, development)) / 12)-0.3727I((np.minimum(108, development) - np.minimum(84, development)) / 12)-0.3447
I((np.minimum(132, development) - np.minimum(96, development)) / 12)-0.3154I((np.minimum(144, development) - np.minimum(108, development)) / 12)-0.3220
I(np.minimum(7, valuation) - np.minimum(0, valuation))0.0432I(np.minimum(8, valuation) - np.minimum(1, valuation))0.0643
I(np.minimum(8, valuation) - np.minimum(7, valuation))0.0858I(np.minimum(9, valuation) - np.minimum(8, valuation))0.1841
I(np.minimum(11, valuation) - np.minimum(8, valuation))0.1464I(np.minimum(12, valuation) - np.minimum(9, valuation))0.1408
\n", @@ -7627,21 +7629,21 @@ ], "text/plain": [ " coef_\n", - "Intercept 11.1579\n", - "I(2 <= origin)[T.True] 0.1989\n", - "I(3 <= origin)[T.True] 0.0703\n", - "I(5 <= origin)[T.True] 0.0919\n", - "I((np.minimum(24, development) - np.minimum(12,... 0.1871\n", - "I((np.minimum(36, development) - np.minimum(24,... -0.3771\n", - "I((np.minimum(72, development) - np.minimum(36,... -0.4465\n", - "I((np.minimum(96, development) - np.minimum(72,... -0.3727\n", - "I((np.minimum(132, development) - np.minimum(96... -0.3154\n", - "I(np.minimum(7, valuation) - np.minimum(0, valu... 0.0432\n", - "I(np.minimum(8, valuation) - np.minimum(7, valu... 0.0858\n", - "I(np.minimum(11, valuation) - np.minimum(8, val... 0.1464" + "Intercept 11.2665\n", + "I(2 <= origin)[T.True] 0.1784\n", + "I(3 <= origin)[T.True] 0.0480\n", + "I(5 <= origin)[T.True] 0.0450\n", + "I((np.minimum(36, development) - np.minimum(24,... -0.2898\n", + "I((np.minimum(48, development) - np.minimum(36,... -0.4830\n", + "I((np.minimum(84, development) - np.minimum(48,... -0.4408\n", + "I((np.minimum(108, development) - np.minimum(84... -0.3447\n", + "I((np.minimum(144, development) - np.minimum(10... -0.3220\n", + "I(np.minimum(8, valuation) - np.minimum(1, valu... 0.0643\n", + "I(np.minimum(9, valuation) - np.minimum(8, valu... 0.1841\n", + "I(np.minimum(12, valuation) - np.minimum(9, val... 0.1408" ] }, - "execution_count": 43, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } From a65f3c47edd315eb78c98edb1c96374112694b61 Mon Sep 17 00:00:00 2001 From: danielfong-act Date: Wed, 21 Jan 2026 14:05:26 -0800 Subject: [PATCH 4/9] reworked pathological BZ example (no valuation coefficients). Added graphs from 2008 paper for 'reasonable model' --- docs/images/plot_ptf_coefficients.png | Bin 0 -> 129610 bytes docs/user_guide/development.ipynb | 177 ++++++++++++++------------ 2 files changed, 98 insertions(+), 79 deletions(-) create mode 100644 docs/images/plot_ptf_coefficients.png diff --git a/docs/images/plot_ptf_coefficients.png b/docs/images/plot_ptf_coefficients.png new file mode 100644 index 0000000000000000000000000000000000000000..b2f81afc29567c10714e91af8bcca6970d291124 GIT binary patch literal 129610 zcmeFZcTiN{wl#_g5fns3k~C_Q5s)mmjJexKS`vN-lNb{X4egGo$V*u? zH1zvuXxC5}SHTsMtRxcf=ZcjqTmUV%^Widhab2HZf*%d70D*O)c>}z@^-e_D3Jndr z{^I|YCi4s(G_>lZ<&(GGj2HQZ_g!Q!=Qs zI;f?fvj2Kq%R)_Ty@a6sb#Nu& zW*rp#$+y8kTzp{X#pTsf>}g!^>OJK0>i5CNu!|daU%R|I%;gTh_^jij%d4thNDT1m z1Q*7~HBuZD%R!KcSZM%}sfPwffOge5Sy-wx`#&F)v9u7I9|2;Fu z?6_|#>$G41>w$yL*<}sv_cr|Y*V!?raWNIX2-shLjXsTgVRUKgS*&SXB|0$Q@Z&cUfPi7qj)ISK+e-&hE30$KXm^{O_BPxa))?;W8`jzw)vLffvRg^4rTy3|%Rw`sZYOv%G( zTn{8hf&tjX?&PI9sOVsnEdwjJRwcn6KbBe4g9N276vrYM2n?`=LU%59%+DQuNVqsE zXnP(hZiiG4f{BwVt4*?HZr5+-En&v0#~vgG@~l5Nv^{Rvq2sKB0ta}}13V!C9^?U^ z;r0_uIlV4SeUGX4?4w$TPrB7o>%Q-e{~V&o3vOFN8LJ@fPCheU#(3^zzu3EVu*-se zJuFRwp&%C1>%C0Nc{O4dLEa@REFWSM@NmT|-c>@;VE3qh?g+bBb#8y8H2cZ7z}m^l z`p4%K_DQel$nI+>{ty6h;{F}57RUPv_MvvV!f##k1p1wqILOcMh7tuMgL7SL-{m88 zRAb5iEI4BZ10gSZW~asP-vdmg+P5Y3*U`i zv!H}m@oH}PJyL$ijOW0rSzsGqAf8|%EF~o}G^wgnMh39?Ts{QGO*`$3@2T&7em)Er zu$O-b&euAy5_{%BJ@l*Mq8^)FYAj|Yu_l$ZEp7QL6zej#!%*|rku^V+O$;X|S4Zup z6Jh^^llSFrzS$(+|2|gIEyQGst0HeL9!19Um7%pN<06uI#F%D`N?yf&oO&1M;C~F* z$~=u*`J?3Uhh&P}kNq>P{g8cB7F$cmPfZ0KHE6`bcAinYByw*iJ8iB>XN?w{S2}d+ z(GwUgHV8y3AaHjli_|4AZe4Re=*5ak7`OXsK2?o3r9v3Pck?dvc8tS(bqsrS!&lyW zb;&dDkr*Z*A>_-1VwdIS}Umtv1thcwk za&uEcI^R~p}gy|+08W%ixqm(6r4)Oc3|** zEg=if0==q^MQ(zNpku|yzGd}@3qZL)RR%ucR=D^KL~W@>3| z&5Nq6{VZ42k87T1gf6zbrCPq>D6v|Ye%xxSV57SwCE(TfMBd=7*p#a^<>0`+S$zVw zhU6o#cj$awvK`}W?GEKKZtV_-O8iwy2S+oT^NJ1U-Yw~Rc#@Gu7L>aUD==K zkmzGWAuha+n2i)~zo$*TURfp*g^CwG8 zVw&|AJ>U74qn}MN?(;yg2Ih1rx|ZZ4v1eX44Lfj<6wH(>E`G)3|T(@X~?5|rtX z`Glx}6a7~3BHtFiwI@H+H|4f8oxK&^Uddl^8@K8lmJL>ooFSnE!{w%Im$t zE;nD(Gubj>JlXSfM?+T!gM5uMy;nXECZkoI$uq7B*|Xz$r`?fcr~VKb@^eyRS(z7; zxV7^8^f=pj$mjMf!&Gkf~4UMTK1d110 zVd7t{KYwC+s@4*uwH@60iGZMFcJd6(AO zcx!${#V^W|wu+u?Pc`c7Zu1CKecP+ijL*+|;k5SlI=>p|N8mF?1h+tbxO;&qo)SW; z+c=r4o{o5La+3!!r2KR*~aA5dpWdV%tnMYnvrz5BSpl9vIrKgQ*#OX-$z(v4!UgoP-WB! zP@fW49?l8&HtBrsR;=P;)zVi#B_HadusmWiw}4eh5RpG7ypx%GlKR!LO9VC5IcdEX z=`=gd6mc%M!@M2$W|FHai2JbMAg;QU!2Tn^gl~62URl!IKvHk6w0r7Unt0(v=+SDl zt5e*e7d&Fde(YzSrB2yk_qrtY3K|r7__jTb#jUN$yw>5J^|Jmz^V5Eq>oRYpt|C_m zJM%TkoghpIM0DBNLVPc%eC%&>rxy2wJ4B=pb-5AKBNn?ISky#dJjk%@E_o;Wx+#@h zRB(Fj`LMh5=93Jhns00QWK18Paj;YG8(!tS`GUMW>^qcw^tWgOVMgK8Bf(9_wV5w! zk+=h~q2>C|9Lz9hrQJ}X^xA=8N0iR-jJA=^u2-?)wWS z_B^P0;@NTCZM=%m=E{O+U;G>N-h4`rA3W%lIH7hGu^G+lT_e&ZJM!HT^$5_TbMc{r zcKU9tMb^eyY<{awNbUruZ~)-J1h2??XzH1mmyOXjqux1hjnNrboZ32B7u|lg`opuR zH%TLY_D#*J=1W>0RsI>+J7SB&MmHSZMvIa}-n@AvLg@kL(ijhRA;-200=K+#fpuGh zr-Kgm>fXwn3B!&NL){*-!L=N&Vl{=h@{pi3E1mAuVq6_}+^KCp9$J>Gb82yukNCp1 zVt4~vWoxPV5UU!r=e-7svtDwPx7!B9P|scOF5liFbb>dXNZy<6H&_`ND*k{eH08dz zJ@7b30<$#*DbkchaCGTo#!YurP~3YD)gt*jais{KZ)aNKP;U0J64Q3&h6y%8Rvk(^vR}Ct-o&k7wN7t*;5?eL+783ZN2J| zz)S%R$0BL&@Cxy*$} z>t@Ooo#fDbIGRV-?mU5cIdFA1)r%gc-cvpGR>xe)3$E$RQ-hUm)t+BD8d`G&4|1n&=z5cK+M0 zo@9#e{3Y_bLSwwNBLRwOz`rSCD{6K{SAG33#(I*q(`6$yGT^?{Bh9sOTGqpzEFbYw zN{zEs3C-h#Ke(#iA0#}tF~{H^FFvB``-;^!e&V>Ec~cTGkimn*E1z3gVEEv;2Q0qf zC?wJD71q=1;SIhu9h6H@W{@FK|S4XL@Xw{k>Nrn(_w*B=L7t{IV zH55>G)>ItJ>Vz`LI#m>1x^q6$?66TP=jIaCO3Ma zNc*7k>_hzRv*pEW5oc@#9KL^@oB)8I+|?IFH?*H6QCe-w#mC^yW_`wv5M1mSC7a0u z=%&5%2`U2bUEzisFbq)5!;V~9W1(Yq0ziqKsnRSriFjwn!C==ZBDpmeCd@dV(q zM@CE5>V@bCxx`G-bTft7YT{RE%bTwV&0FQ5H+ktvXy;`S;Sg!VXe;$jqlD1)e*Du9EBg&w}5VKF2z08}o|CTp_ zCC$rk57@Xukp?cH;tIKM|%Q}%?lHm@;sEs>Kg zl}HJ0FMoh1?Tr*!HfHO1DedFjDYDK36+j*Rh#YQ?_p~;9{q?$ona@=y^@Of=+D2}~ z>%U(1W?E))KzR=L6jr0yan~_E#8!f?4HCbxKk$QK(=srCa{C#9!CVjxNo1^zJ3M?1 zYEkLu4sa#L1&)7!g&;pa>-E@sd~h~JPV4sL$DT!VAN=+X!)?b9_K$1Lxf}Nlab7r6 zJt22n5q16QY9Z9?P#B2JKvE^#oer8Y6Ha>>UtLjq&?zQMH;z-z zX+p(jGw-yp=t7H%0+G!i@Jaq#;FFz}=>%u58T!)xqc0SZ@#=``P+!dn<$tU3aFz`R zi|GaRV*hoN{4GO*M^etlnx91~H25RU?`iZi;@YimekIb8? zCGYar9j`EV5g0RQKIF*`l=65_nHZ0)ZpFDjK_bV_%(04rcsdH7vHmwF!GlzPW33fB zGa2lSlkRrjz3Jx7^1$syZh(KrkAAF*xTeQ7MOCIWo0e?EtmjL9srn_Q!8qgi=$%#8 zrmif(qzVwLZ10VOvftbAY`UkiDjMsf!BEE9uTP*1Q{W_U&4k}n&f4?;iNNl9*q>us z^xjg}@g!;WN^M^0{v%Sp-KIri-~+$uiS~Pt7P6i$?i1q_li;6XtEOkEMX_Hk1SBr?9v1vlBF7~GIKa$c#?Yng@$+)f(r#?U^)4>GS z=w`zVhWEsZ2Q%^#rlV_zocCBpc1dasO!^g1JMB&$#_#zhtkJf4e-sWhigT+j$zmHR zSB`x3mSS2aQR+n^D1BzKcS&3DjEH1PepukJaSbwdc48(@Cp&g6O|+d}a}kLjPwWY` zQfacTea>7+d)PX3_K70W5ho0=kpH-wCsG7eyI$Q4Jt8_@@Y}J*zmGEOHLo2O*J}uZ zL)O>fbyRT)Yx=4iM(Vm&WQ(BJ z>*C(mdB9E5R}sn*Evh;iRYvZJ0R-3;KA@!zC`W!YpR6D%Ws_R9K?@I*unWO zIIsLxg&!*vjT^T4jBT&t1e4yu;`rB^B)%?G+bEEmGP;biD>NWG6`?bTYzA4n)AnD` zZEZTJfUsuh=JeNd12RVPu>Hl(D+8er?Y3bjh1{WHhiy=UL?ler77$i4PjF2343&I7 zDcO=6!B?+{SioH&ec%pP!C$z3pB<*N<46Q2$?Ig@?nWBVlB_beVb zW|t~+KVW&6ef4Mf$dt`_zPgY(LC|~i#ia!WhJ?fPPj$)n%z1`*-ibzP8Htri_P80F zd_sya%1ORgu7lESou3Ue=^Lc$4LDD%-MH$cIAzqq zX||h}9$TBkw^6KN4S|~+@vR?noDk~et97-M5bHlDR;C##!b`z+jC-COU$mp1H6RkV zcJgXZ;)`02sD5*=B2f#U)KQ_!Y-Wuaw(ZqKE795&{@9why|xy(V;UDjw=f1`rx0)k z#{U9Q%yRbE-{SqPTZkyz(eq`2Wo<7|C16m$+y5~$ptav$ko5omJO9`ql?YN$Vl(;r zK4z-2)y)otW9r#n`n#NT%QpCL9%D(ECsgZGN2&`!gtZ5QDh{W&^AW{Z)Yz5c4 z1&!_9fo$>sV2%sqBK#O8kccVw=UrfOpoDPkxNT-6QWPb}bgIz^# zX>OcogEs)jkxQRdR$O47yw`Q1*eF%g?v9ojll}do>T|Qi(GoNd0mDJN#3>3YiatIP zwABkPPUU3dz&qcYMnjT6QCfJgw?!Neo3fklF`6-uv%V+9_HZxWj!(9g0fJ9T+MTGq z?X`G0Ik{!B+wTW}&43E_zaX4}QU3SUy8jo02FdjH_9i7KLxIZpz4zX|drR{p&UYb^ zGM1L8F23_uT@S#`?lbPuwyXOsD_p!qG#?_xI}JXLcC);)vZ=ALm##SS5saCjv`nSO z*}*Xryz~9u$?0iGaPU&e$Sd#-A@X}YA>cAvIJ*N%$I*iw&mF#i+V0}(3%S^a@FJ5D zW=GSDtHQV#*XORYnvSv(f;XOic;lzccY?fDEf9UH4r--bVua5l3WM-m$fMG4me{^D zsaDxDRkL5bo7`NVTvY`djR3cNKg0I!*9%KdVf&xTD5Up#Z7=jf^=wGBSsk1c@JBW? zUn-nR59^>Cmm=p|5Z9mHz7R~`H#~;T@PgU{4efzD$f0WBqO}k^W$-(Otz0{W~>{E>CAP;bc!1g}}i~U?^WxMG61cH#k zLCD&5tSL>#@l*lM(IcuPGlKrH%iz=5H`V(|<*cKPkN*4E$#r5rYGt*o z61Oe%?fs3buZZtcE;5RZGUe&pz#)ju35&@OClsE)#|1Zf;CZ3zexJDu!5642^~NPN z4*P6taIm*W3`NK$-Bc`_-Fj)`WiFBGmvS#+m%3wd>&RZb@10fbZqmM?1Kwn>>> zN~aHp%a&nhnKsSdA_*AN9*;HtcgryU2%(Z!=qk{S|5gjhMMzY2@vvs|OOkyIH z86t|9Z;J@AlK(18;dmW5cS89iSm86v9p#ack)4?LnN0|?JhjTbSp;8cQBm^Ew$B?A zmFK%d8rDwW&VUDx^h!ihYdX@wEfXAIUcRL1jf9*lB4Vz|717ZoJRiY_q~Bavlk@1Q zJKX5(a4|mK?d+TBSSgD881rXe9}6WVy5MKDNdhooKVRR`D{m}ObE0F1iub3390)NG zvSkQknM9Qw6@}A@?Q~Jgr$a{8{rt@HGDb!#U@FUu@t%Mka6LcWpL_VNqN1=m&ENmF z|0p^d8Z|p`ZU2WZAllDt)}9CY`|G$dO0@a+Tdxk@0YjFXBY*waK|FY__v7P@9dcz* zXf0^&#K1)>AGi&4f9jgus^*Qtr3*lW)2p%z<+X%Rg;>q4tW+2c(Au^vbVM&FUL3e5 zp5UxB_vnw<+wUy(B!|%{dU|@I4o##A(H=g0xa79{YkIoCX7%-L{;R(VQS)tmwMxIf zu$zu{hv=+dSZ@nY5A5^t=ohcr{fPnBMdl*@g?iAp!pr#d*}FR51`|C)-kcaBOVsG`^x95TN0K4;|Kq znF^F%?NdN;5R|XJd_UXtz#>=~$byF(csv$Cd+3hz1}LD}--H(?HikFY9@L}_8|@s1 zr!}U@min7KQj?iU9_cL@M*kaf8XoiVx*nqD{p9IYOP?|@1cH6R_ksf}sg=Le>`Rka zMi>b343D~5*_-+Gm?#VdJ#(nUpc65X-0fyRYB6I7{ z(}>UR&6G=*#3AEN$+_}9=`O?~2RJGK@Pj`FrdW4A^S%tTKxRu9*>?D<2lh5;KkHPe z>=@;rA+P@%ndB(Uv9Y$o_dZ=`NX;6|R4;WGaU>+AwT+HA|E{bp%F(LNHr=y6R<_s~ zJC?60c=U-VN5BKqq!zie+;@W*FNF@KH9t4^DxO!3`hGBalvw!F!#2j+w;1;>lavYw z!l1?GC2B)g+tF3Jt=2tR`jPe1WevKNF>ep1Th=*De`nH14#&w^|2}(5tPInSH?)@A zu&Juch>HbQV|P5V)z}1|TPm8|M=pW$T%^}w)SYnU)WQGtSJ~8Cc$6_bPJ_jF;ZpW5 z-&EPloL3(0^hs@%KR{~}u>T2~SagI-@gevWf3p_37lG?a$0C#Zy1ZplXwD%EpYMuu z8Cw_wv-d-nK__BJYI=It7p7#hiHe=3XDVT|3Y3yD_Gc%D0@x=^gpdMDOUq%7ufP+0 z?oj|>!gT%CciE?RA@ea@g_duJ^yXd0*VkjkL$gSj-wDs{Mi6)SXIJqtn4F)Db>7K5 z{KoC`GFM%9rEGn#FZ>j-&8o7J5#i&~D%wE$ER=XoI4- zwWTGJ(~8pb(Uo@+1)lI=tYdVs_>+{dF)zNfMI)1>yxf%AjQZ)34`rOsd4t@<``Kl3 z*0h;i+FFXJ29QgQiFq*HZ-@uN?rIHx1%>WVt{S)e`a~tcCEB_H zoR}XKY?gXpf>YZkusiaoPpdu(!vR+LUQ>1Ho*+1}7VNNK5pn`X_1ic&c{0i9E_uSh z(tG`1WlE_}TrezVXwt)^rJQ4>Y`NcO(L7K0l($;{23NihF54G3xkZDtHK)~j z)hvG%*;@!yus%m2)UUdB^h-{0Vh}}5ZH8Z&W#MnzKMV>FFMa#tBhBcmI9Oy1IF!J3 z8gQnAZr#%_v02!V}bzHI0#41^LVCnq?Fy)4&TCMI0!J?{{Hyem{}?WHzBW|)%W$bSZ>84 z?>ZHRE>2oC;Dt%-C~VB%nA*iW&DWeSoU}=gsijwqvoQYfG*N5(sL8m+7GsV(-f}ROlwQR)GGBfS$l53fk8rgd1R5Ub(ZQ=CM*4{ooqLPx7@c7+> ztywGrhAPKh-#8-d=Wb_JpFUl4aTCtas6ES8E;1W`%NKc{tPemFfC&PK*`7oj4q@<*}y1HggAddl*c5-omEMBV`3dpC~rJM!9*O*c@!k6>48Za$)h&&$$0RI*5 zx_#51lsmkN=k)5eYm4oXR;z>b70O$*ufWOa=!oTUDiukw5>~OZ+uvOs(#E*=B8avI zxwL+CC5|->caY3Vbc?lkmD`E42S3RZ*N*vq^!;q+qWFj0r3*!lJL>FlR^2#?#jlc5 zFc5@^=IQf2SgI}Pv@~_e?X^j~34I1wVkK*RTc3z0Hv;#}YQh9~NglXt;GA9yB0tY1 zl4f`7$JN%@tVf4fqum3l9mrf{3zwA$s0b(%tRN0Hf!%D2GO?Rl!{@5S2DrC;td&bm zh&YdK*MH_dQOr}90PDL=#Oz+hlS9m51~Z?m;AKG+O-oISU zB4;&>tI7(ycX-o_j5m^w7k@;B1y&KsD!-n_azl7-iVc*y1O5G1NTR{P}m$B%Ej{`G6;q`c10xwsr-v7^~d z#a_K42abrGuAg!}UI*}Xr~Tdcks|%&Xt~~E!#;p_^z`(4g~Rp2k=|j^(O{)-cmzL> zkB<)*c>)w7lsF7xZPx5nU8`75>o+N^Wj#4~vu%CjUKY!Es@+aMMQHA5%xtZl2ol7V ze@>tD>|fvB=H7`Z-kHJMo9eCHBp(IeFFx#;vnw_HF&suzyjk_KK*~XvS7HU;$i|dp zgy&it7u$bxItYN5a-h!wG<^{jg?fW?C!HZvm8)6xxbcd*MdB0iu)bjDyVsSwP?pY?uJ2f5YHh=9h}W3AFigrgIU!`P zbNfFM(j4+*p!#i4o@#EKu~vA8RoLjbzzxmMq9tgogZKgTC?|r%!W@FDsuL0(Rd{Oy zoxZ@I=wq?%x(bK{&!FNSaK`&tX7Oi;Kf8V_0qF}wQ@$?{+BUT{ z)vk8gacNtY`7v46w@fZ|Ci4}=--=9}KWE6i^qg!e!+#2^IA*U=6&>kLRtcHG&zf9| zAN>rA5703CRnb%!kNscFC66J>O@LS$FBYRA2zv2$b3-v}o*-n1cB)bDHYk=c5U=E{ zr*SRTM@!NqqJty4GeL!Wk-9`cgs67H8yJesy^9`LnS{!4g)0xreSz<`tuB1{P{=*B zmU(KgzREJBqtK0{E-i|F3d`i!{p{>8+0e7giu0a*Z++o3*^UylcIg3H2Gr7^NLRY3 z{-N-AP@%92kwOYkDAa?eN(pWly@0y9C?P26YLL{74wBlVo|_{)XC=-Kt>cu1^EL5Q zMx6pV)f*}1rxk8xI8j4+zZ5HG2h+u}$n}SuU!h;wvQMHE-;A=DlWAP{_)s_)sK%}l zn%631FOTsbFlMCa=AQ$5$rfA~0MJN3Y_~=}y-*j=0u}Cfb(`zb)%REFN^ccSRae@W zSQBxT1%2O-e#ymDdN8^3I#7qEtGcO>3OybnOgFoi^n#h24Y4`Mc~pGz<8Y>Z+4K!6 zLi{Gg#j5bT6-1Yp=Q(+?MF(-1bJc{nwKvz-FP7XKhPHS|QT}q<&BwkV*J~nW*jMGva6&q_#uG%4sYHj33@etph%BPzZJzA~ZGd;+R!XxeZxldNU z!3VWuXm_{>8xMn`qPVmhZxa)I#l*p(TEw`p?~5%#(9|0o5~8i8#r{<*BEPMrM<2vU z2@6m7OGih?ckiA#$mCo&e}XRy%#n(hw685%kB0coM=JFJW-$?c`=72Se7ka{%2CN4 zs@>&9sOVYiu)(oGasr$?^i=)T`uyKIxygvxH~{d`2G;wZ!2!OPLe}dZ^A7nOrGk%_ ztV-W~H<0$*+CVA|ihC@=z`$VAL;y;7fB9@623H0z9xs$_74|jjJ~ZALb&y(ZA9Sos zuH3YgS|gF`5@ZR~I+!F2e0AL9?F=7^f#-z`y2!LBtGeoFOwTG1Ec4i*gZOh9v;HRW z2F(Uvd{ze862P1OK6TnbATwLcdY(NN$x$h3ZEpuP>x(iiY(z?!-QIpio)fy_j!hW> z=eMx0q~mTYzI0t9d`bb~y}cw5(bdLJ8jJ3`W)FUCE|A~j3fsAZu?{oT9_Kqs=L(Lf zxmA=mCHjSZqe#!DHSFDkt@VfFt%F!Z&s`c)sVXKj!$A!Fk7$qYm6DR8;d-bWn<){^ zPC-c-oZJOILyYAK&#tPf^7h66=`|)cRxw9~;(^~XI$A=&jXG%PB=`(airRr9@H+wi z@l@>*ur!Blz3qjLma%SHR#sLh^iwH1+8uBZfqKynDztAv)Br^51>q_DJ6xCFy^IFo zPnBnusGSDOz&R}b@l*s2)XX#g)XfV(LiodRUb1p&(<1gS$EzGz$jRNS$Z}3jPSk6h zMOCl8zg-8-#s9BWp$Dj>E|w+f0e@PcR0T>ruq>mYT$kC#JEO#CsQ<@-RKP$LHd%nC znhP+rw6Yp2(#J8yL<1{Q{2x~Ybf2GETYx!fcIu;j`t&IWM?@)lK1dt?SV4xrp{WUQ zlRNlcM`DWkHtR1nl6+NE zTpS=M22e9d{6{4uV<93b8R+9PlH#jY$3XQvWRK$@cu#laP}o9Ga1U|VY;A2p@lY>! z@+15o<0bENz{LKt?mOqY!FG9sLzTJ{D0PNC+p9r-iiZ_BHDB%$MGGhzhm|_LO8ERx zlg)WE*Du77?g%znQz2`qOfU0wwi5quSD8#k8UVgZAyfYG zdCoErCET`VZcLzmZv%MrHL+>{$eN=7K)vH%~ z`}&sk&`QB$CqtOiK}6MF(=uXfDD&v!;12?s(=v6LjI^N%fW#X7!cU;?KZxZMS|(ge^Blv4}USP1XAIURFz^TIcM zpd#G5@0L&V@D6y0gH)L_-?#|HyRo;|NzpoRhv+#JbtE33C#)zrSQ?hhYxcUKZGwMp zZCSC*w2P=RM8k-+Pk|BdI5fmHWswQOvsbI2A>R7N6pYeyd>@k9;5zk^>zB7h?p-eH z=_+3Q8?@6hM(z9bZ4Q-{UT4;yL7_0hnu30;N@2pTNv4+c#Be$ta$BnZ-S`G;#n1bH zIiG({cNExrt%+K4`I;}ySaWnn==DC)xDeG(Y@9W8oX%EC6}@`frF{T>I!L)%W4dQ<&qj402jMFb zK4~fZZeQV%WC|F6tUEtdQp4Q!>Lm4a-i*)+eqms zjZaHfHdY*}aj6t$xVEAQfA);Z2o+^|=YE+QSs-%SxM1-9<$uDZ3k<_MLQuN~a zwTgiqb;Wn+#r)#?$3Hw&i~HVCCL5r_Mr+TxaL$h*UUqvdRAh|kzlBwYyn3h>h~AQt zk|_bi+}zxIjCfL8H?#B`L4)_`fu~L!=m_g+GW(jtR*1^=$GShi>E2{z#%eIt;l~Ks zP#%}zDirYD9N^ms9;I|#?F@^&@`P)&si0@6gd_fqi~USfU=3@-^s%*{Q)a18QsHI} zj=7px+(AC;#X^DzK;$kwLQ-=sc;UcC_^>Nc@$`HzBfg4^JbO}JRi^5*66@Mb)=M5{ z`;4o~3Ln1r9*b@_p#LYcYmF{;2D+ok-?*j4| zl;*+VQAUH=Ev}6T5?8XZ%RrA^LBnGm0$2^a%q35^Z9908H7)Yq)c*EQlT?YF@aNl2 zcew(6ww7x5N=zIkck>%}YzU_w*Xq!j25Xdowq5}Zgy|1E3%k^5gzS=bF8j)bERg*i z##QWUf~Bz+;b)OK>7HSI%7-FEZ!CVQQjNL$Nrrc4YPlZxl+w<^mT);P0+ zo>4HaPPd&&jFcTLcLzbm!=FBW9K-;WR?5ZZfdLz!Jgo)aAz|5SV_Fd%Fw zw+U3}vM`H}pGsUzNhOHa5j$5*;vr;~BiX%xfrAe~B&Xky>x-P;x*jJ{!=%?N(>v3t zZer#2%jdYCIDLaqA^vpsuKbau8uPJZOA8Q9$CB#71Jq%QFvs1M0U$q4RyhdbP=Kwv z&*Tno_~6W!=EJk}J0CUDf>?Qc{LFGrq%e_ELt_d6p)mFv_U9I~uvQ)p*!%JM2G{ZR z!nto+1M4h!bZvvfc2l-$H9nISE(~wjPuaU_+QR946}}x)4t}n-@v{-HT86S`Wo-4GMJ^K zNQpde6@h9NXbmzJN|m%T^qHYhOH40&HE}49?((w&@f=C3bm@W7OpIJu2ysmSU|hH#2kw^oJOciYcbal@V}LKB1?aDuGi zSMw5jR_{nelK+)9=EWzgt#uaD6vV!HU%z_O?)-hYOWn}s&^eFN=mrxCL68~hB#z#5 z0S8)F>Y;;0`dt-vo07IkUxfpR0kN4Xab;4ffkU$t7xbk6*pZIPMP5)O!Oa}Cktoxz zAEmy;ZoSq0Y~q$Q7?e(aaV%?hljDDuNPNjr0dg~89rO~C{|7%kdJ3T8Ukuw&-KN8?e*Rs(>tuluKM^v)=w{>gh zQ%~@?=?Ku$K-dFR`F)I~gqv)got?m^lfiTaK^U2=_E}k#RK&Q}q$cAaUkg38t9^u6 zal;!Evi+8i6%&*J=oJ0JH>=4<3ct<$)8$Xrcu_wUWAOTw9F6dh&SWLdU) zc`&)Izv}EOf*NI{yJhdMxQH>E=GX7>yPzEgg;0L&GhSX^9rGw)Igj*%dM97iX&H4? zOk?q#sUoKn<3m*FHwm3K7e1->aC#1ThoO4nz7LuHixI2pZ4v2G22WHsxaT53ZYjQB zmkhcC{xDmgfrR~^3L%u_Im$kXYsz$hH-U?uJ^R+!vF&dpiTh7h`wE!Zu&{wD2dhFs zi8b2NE2fypGwK>-b4JA_ozgD#>saDRETO8ixg*_P-RDa>#dmDvwnArT558_$W!T}9 zAW8pN3v=DOq|HCe_q@Mll*dXKKZenQE`mRt>xiR$XmPn8D>v%ITJwpTKuUw8fnL|_ ztyO1&WHuf#m4mN0>+#qgmW`EDxi7u^T|Ai3UrMz85T2+txex>b=hz99R8>^ZA3!EL zcn>9PMh?i+(XY*zsW~1RY!-I%vdYXj?M-Aw?&_RXr`>Rx_$=#IIMxxO8MXuvBRX_w z+|hBpr{!zxsbSJj#sS^UkXNaDqkz%@XXwwSHaFHM_tV#>Na;Laza zq^;NfWqR#tG=oqW2srs~uYiEFiOb>%U!d7q{-Qovp@(jJE6$!xQ5(-?x<_rRUbkAz zIGz&G^!!GbRI7qfb~R{J05NwQmyE0yaM08WBb`)Lv9p9_~a2bW5= zCrwKl4^tUoT0^{iECm6G7cOr8E&=>m8-_kftpAu8_v_cMKzEBulDOD4 z>lKp77Y~R5B>{v!85I>`7q{;`06sdNoj7#G@hqPkXS~iC1-WYJ+x1`1usz|ut=z{> z{X;yT=#DDJ{9?vi`>{9pY#PEAD>fMW$RMJ0o0}6dv)tDew{7k20-`2oqGGIn-KQ%c zhWplU7r`}Y(%u;V2Dl+M&}sL#f>*^sqYOXQv=x4nuTIOx8fRl4#d$j%IUJZ6V>#mllaj zhs`*MVJn~{KY8-Rnx|o^rNwY{FlWx>>bnQ@I5=2KORF?vv_Sjj0<7=` z0mB=E?gakRqh0O~^WfYZ^(4c0LebEg-_8ZGKBn#CE_?w+So`6ee+RuLV$RHb%gsR! z+Y3F6ZPssbxHylTdENHbM%IE;#UpxI>hFl*>D|n9DSn}x2{d?7Nz7XaZ;;IghK3@Z z4zX(e#4y7)z4quYK>@Ymx7Wb}Vyk#3v(g~wQ(C6Eg7&$<2WeocF#q zRB^$VqP8=D#&7K-6AX0{Cqq631*67j5I)`O&!0siGBT)-JngH1RU*~y;o%7a(*U~Q zt>GPjo5*-i0AgyUmEh;+-`|`{m$>pAwC7${^?*(waEF&BfHt$ar=N6fHpV04?xCR( zk$|p1ZO?&H(2mECH@khV@z}xi-1jP^>q5@DI23;o-d4=noGy>^$WWpAR$t=D@t(G} zw%zJo0)li{a`);`9vRI35n$CKr_lkG`cw^MDJm-c@p22D97=QZ&Ct;Mqxav7{}+4A zP50PM?Q*|+%ai$Kb_9^iHERIn$u8{^9}GXkR-)7yujk*h)Ou4s{?0h0{DUrO?l8JGC&0y6z(FInx}7&Rucj#tbY7dj9+?XFld()Oe1Q_L@d!S zH01(Xof>TP+mG9Z87w1PyHe}Jt}CDuN0WlaX8iKop75u8*F-y_iX+n))GA;uN1^OD zeu0L;e^{>zF=6B?co>Tw==KR-AV0x_hj4Nq#}bWk>+}-`lTmEOOjU-n)PvTiSAGNK zO!QOJ_|Qp zY^v{B#}(fY7);A%r5{~)%hJY%GW{BO3hE!nK${NI1wSQo@q0W=%|Snx3i#uCMT5W- z?w10PEIH33?68Wi2q8F4&!?gZq}@3V__g=2pCndSN_kL{)_x&~K)p%o7goPOz2ucW@ZonSC9nWf1+o2O z8CqyPH2mcg3Kv4!S599KL#-XG$ev{ zw96kMIt;dDfb@Jb43lMe^5OgBMBeK*M#?;eiU0|5`=4TyMOtt29$YyCO}2pTgO70K z@ZzYFrgI7ft6xHSL&lbQIjfIVtieQ$Ust-z@pq>ikt;PhK40f zgKcOU3kDPLBft6bbc2TvQdUnh!nS}=b#h?A$H!OblcrhkS?zKh4(hhgApG}CiTwHk z8pHZ7yAvg7m4u;h)2;ol1jcg|XJ< zO1wf!P~L(9D^dCu+#kp z%T9bzx&W<$K8G+j{VWA7ttY0K(rX}w1d?(uJ$XOlf%Jv~8aW*->MxC~%*5ga=S&aG zemGpB>_BGc<*0xA~JBvtBFE z|1e5an3I`3TJ;L54F};M81Cm5fYB2F*0)J}oErfBLZ8Hn?Wy^JqGNP>1An|=FE*(p zRqoH#+b*8uZz9a?wbgl|Xl|``R3@G>=c$yLKgF_4?+MCZ$jFf@ZjaD8I5h}2oW?D1 z+BYlhl3*W_FVd5MHIO~M3Z7uS=q^{Papt^W!(*NYUGxRLZoha8S$Qp{JNW8+-U5pA z#*R-La~d@LHFyrs!^3fFV87}4_1kJ8sk#OZnsvz^Yr>1wWBw0kZy8nf-mQPD*a1>X z$U>z-T0mN*1O!C7M7lw`!34=AEg&J?NH-`*OP90=NG(`^bpGc8-0u56=Zt5J=iMHA z@1g5g-&xo7nNdU1tC0_0;)d=~YLBvK=Ghq&K#vswU;k_Qo*+vc?n62$^Q3irX?Png z8OB&;?JBJiF}_&gNjV}v@byvZh-RI=wQb074D|&Qwterd&(XK=IJ_Gg-dSwhSr}Zk zx>uOay&5+r;CY83&d2mqAnnrz%S=scVmCq6G!}>{{QUgauRn)!u)=8-Q)oxN>;MT3 zy+T?ywAW?6P%aylkZ_tpKB)?Q^gU~QHCqB*xvHl^mN)O)c>_oRTU zT}()dSsVy5k7EE_-ZhecLQ6hGf!j-o z-wjs=B4x4!_?C3UGzZ8hp{2<_#7$|t{cHK@z!$v@H;t*$CRvlG)h2oZ>Vtu6ew$f- z9wHw~-6!Xp<*Kq#kM3R3^oo!wH~JA?)rpZa0rZU?+oUfm(J~+nQkH{RVYj3e^psG! z%;!}%@3NkySu61;>yA#)BFSaBZER)UBTGr)1n%dD=B+6cpM9h%Tn||BwNC8{pEid6* zmrbi&aw(7+a=Y*GnVt7Q4HWnw?)*Tkk+c5$Muk_$4^B}lCFXd2c6T7zWqRa7!zbL^ zVTCUF>D5H-#9+Taajf6|<>Yp9#f@h61>xIq8lrUtQ)@o-k<%$dq;hH{T|^J$t)Dgp zJuEm)UC}$=OuDr?+n%rG*E!-R78Qn*hDWY)S@_HxJ5^~dDXSjMpD*Zvq@)iLIhsii zT4jyH*T-p+s^wy^tH#fEdQ~Iy_z(D+N*|RJqSaz(HE#HXHVq3_8F-4T;RMWhQu0(s za4AjMWIw1{mi@9=q3X+@72eO%lEAMIe@W|D!-HaUj{4eQSCDnhlYq#D| zk9WAwoAfW2&uRJTjrpSAY37D-c0Bnh7g^daw#62gHcDQVH1gRuyH?Q-^_nEV-c)Hm zQciRz71L1p8^}_X7WSU?UuEX=L>BTXWi;`#XL#@_&Q|V(xCEUDUHC-(yJ|dMNFuFX ztlB#&&Z5CWw@affZYv~iFm$?nnt5EGRyQ5I#=Qk5eGMb|5u9cuN$s4VU(ZPvo!9+% zO93UQGLZls5egXVfwQLYGv8Rp;3`(bbIZctikNQhyz1X>F0E+6Tz1hJCx=c}wB2el znIc~~sweFUlPOUqC*gRh*38E2OQ7kL2RC$w1u=OCKxiA*n}xXdAe0qxLuma8_d3sZQ^h#@c2DrI(E_6UXW>G28f9`{K{7wqy*J0j{E92op8zXN z8P7`>ydD>Yc&Us@IE-Jbc&^@c`1%D7j8hQ2L4nkNBJZ`Bqf-5;PTq0{Y_h9#EoL@z zUmdoT2@vC*G;1C%_!YKOv)_*O@1b}_8Ctl4^9)=FNxE3fqjXl+wnnaztA~_xQe<#V zKKG~NZCO&4&~+-~B#P7@och z;eIk#+c@a{#O3!gYI0aeNY`3$iC-wkMdOz6)z#0V9=nt@Z!`Mkn#~2H(q<5HQIg$psNjhl_%# zpl$W*a}(Df!`1#(VmANpzH*?eaZ{#lII_1OLDS`YlP_P|l_(a#^J{sYi_hf+jJEYCD6SS8S}cg3iq}^#|eBg3_jTkJD|nM`=Rgwk>*O z7wUw3Is!2V8-}@t6&IC z8l~`2ad3~K=tEVkLxPXhEjU9n zb?M@>Sf9-W{vwTbw^4_+q-@s*40YC@x44W=E)m*SW6Dddec2zsjjl>cy*hmf<7FD? z{zYi!Kw08qEd4G_)T!o<0vUPIs?M$sRHJZ9TEetmH0fz9(RZz!{-^!QB$d>Uy==u-v|vP(LwEJ(>~Iw6SwJ+xboMquid#!OkDDiuuS)`zjhg6l*=hCDyf<@<4r@xDZJZbasJu9lt}%8MBaRp+q|i<1iX~sFN|jQEABZu#gi~4|hTGq0=8nIlEWJzZxDF!@wO&T_q_zdk-| za{)PYHU;!+vo&i`!Bmu#Pg^O}o<<)EEuFZ>ob8bAjGEDGMP8;Q=qax)(POFdn1OQc zi7=dNCpk)DFc1T#Rt$L9;IY)+Of&5Hc zsDOeh)jT2ZyG)0;D{>3k6S&6+P5}J!6DY2>GQ;WDVh?7P2^Ew|t=}vb;+Gr)Ei?EG zrz}*_Lrl63Uwa2hB~SNQb_A-h`igaZIg@K6uyA`FDVwV{C>&#YyPdoJ7Ia=SAW2rp zQV%bWBXM@#Zi(dTvg6D+3x?va;VZPSkR1jx%*j>cRa%6 z;hk?#{^$Wi<*%vRN+XqgtJ_W3gu3q9ar*ccB#vcz<^#*U<`aG_FCT04k;|6gOIbOY zIr9j|)Z62nQ*+&nSwUT;kruX1W!k2?Du3-+cM2Wp!mp7Jy`?9I!#|_PSBox=8iF17 zJg9=W6Hp(9OXA+{irwSq<00V4kQJXvHV~DMGc8apNZTr#a=%!}K*(k%bixdymB&1k z>ETSB_?c_Ld@s;kUN+jMOBFMj*BT#3J0tZX;`?kBVL+10&3a0&@O# zzMQGjre~L^?}sKSjozk^%HWiy6oPndmDggA9)S*PsKvFhipuyvrIny0_Fp0` zbStg`Suu6^Ep}+{F|x=x*l=x6aP{bo`rP3lx@m90@=Ax#`{`30k;qVQGb0dm4q7rFNy$KU&vi%W*##i)t_Z^oigqYGH1)>bQR_u_GS68tx-yDkpT!0Ogi(|tG>ruT~yRZ72u%1eO@{f6gC@g9^ z3WrppGTMSz(F=ifFVU^Bje}$w>I=*(_AvCyw(Fk!Enn+5?H?~pt)|jGx&-5bN(+_N z!D0TD@g>N3G}kJNH~gqRE@&#j80!rFRlRzDMvIX^C(8 zpM5o2isr{-xB>6qE5`|+TRz0^w21RTQJpdZ zP8B;1^Qz>|7R6R;E}9B6k}7qnt$pcie#Cactc<}UfpreHn#&Cv+!WuP@@O6k>=veU z{Jgj;Q`*>|j1aCL`z>iVYBlhlwD-Yb!l;{@|Gja3u5f`IK^W;W0kiDA*|7j~ai6jW zo*s7!qAlMub%1JykwwRWGP69dO3Zbby*MtrtfHYY^WprDJvk+H$LQ1%-_SicgdE+` z{v@L}iX)23UbUwtSj_hhCz;E*WbO03&$G5UC zZvX2`*qL!5zc`z?muv}DPK@``NVI)@vNa1e@AA|%`-y$*AZb2MKGNzk`G~xBJk&jLRjNo4>KYacwFq;4rgFE;(s4RpqV$I*n%Z75KkKp$% z>@6Ns5uRA=xRS_QXw`Nx{RT1wJhT{p7gZ&PIHwdR)uQ>1&a5L=ymPe3Duc*)3|`dL zU4`dbVlzrgZ$d+N@A6fyPw`$V@6G$3mH5E!E9ig(bap;b01qEipt0e^gXZl$xxk|C ze)W8ld*RMy4gF*PYxDi1?=6@xW`Io#mqPTNeO#(ey+6!U)GH42FbM7|iUN zlT8ix2=2d}7-H5?pOM^L7f4{GDcU}1PwA|3 z;l#mS)yVxq4iUY*io__Jlh1==w_YprBYjo+MgmUqygZNPPqO;Ry|6P|xR5b^#pGtj zkPcdCH;-&MgfF5mx;5i#Hj9<>J$LZjVor^3HE$QE+qZHUUHaW|iIQh4uGZ0;E9>kt z`n`SoJ{xOLCW=Mt!~wtnCbDn+{iS7Ol0ES5O%vuf5T1hn13`*Fp0sqZwgJ~js zKv~Mt@JQiRRj15DQIW5()zi@Hwp`W&ie}BZhIG^ve}TSn$fku2>DI+N_rhhxF7XFT zK?CRTt$;@NvVT9n$%FmEO)9K2*}h8Qvxco7xaC$3EFukHk*)J3M&T9ymcXG>zVN?3 z2oP$34l!L{YAdVzdw+kXN}fky-eb6g3Q6R=Bzo}Yxx*@5(Dk&+4e}o5Y}6{2o_$t- z55n?EJ$v61)I92*>QY4|k1oqG?K!(TX0m1mKW@B@H(A9t8u8)!8pDHPZqDl2LfJjN zB=Bk;JOd#xi5=AT7F#U5Bi9BkJa>0`rZCcjMd4#ZTI^NQ~-@Jt4O`6 zaFIWfPRQdjYb&|g9c+nDh=~OZxVnb)v#(YhxT4Bj73#sd_aC06+9o->u-woZPFSVtmk7T`q?1iVk7(M9rhGmKj+p*mm1%1AuTif+I;s4 zK2;1%@!{dHbE}aMiV#g%H=;$BdyGY)srv_DU`m5*Kj$TeBL6 zg8BSTgYgEJ05XE#?Fa-_#&%)l3OTWC$(o$DjkJgES?X_v{~l!4-k_$|-&&cu%^DaE zZj;_jwLi}bW4eIW==nDhLdFTk-6@t}79MEzCeUzLVRE)mwv9lrN*|{f_vdqU+?vQO z+{@KV+}hg_c9oaLB!b_&R+(JK&1o~68kBn<+EtN`6W_k`YiH(acAMq^XDn-lh_7qN z=gmIC_4-u#gR+_ZsBG?;Q=MJRT`|i&sdu`T)PbeSN{?n`?FJTdgX%Pji__}yKX0iT z2%q$ya?Hf{@ZEQNE1uN+@CCFr|Mf10i!A@@xTLXBn&cTQAtfcHSj(gpc2IX=P6z1p z`Xl&fCnrTl5+VYrB$E;n+UTIHmsgU>(KF>If$?QT4M zo%~XQzva0I;(gVUipS!J7GueElRiVcz`c&UfmK&*Y^eNfb*?$16w;MmqA;p_f)aU+E?lAHJl}K=wrPngluFB1P#pwVDdH_aU7U}Fh|DJlmd$3WL=taG!VC_!) zIJb%EUSHbZqkfsXLLY3ph!MkkIue(*9YynA? z3XUcj?j4Bw1TYVVhgSO7PR=7{l?bN z`?_3W_f_cn+Uw^t-q_B_;N=V4A>+@=0aDWKab=Ts?}uc_;>YRhH~F;ro!2rT+)iW~ zZ!MIeGxX2T$6Z1u{GU~xm(;V5c7?O#@&uQ)tb(N7xX9 zH{Na%wx`wzE%f-JsF`>$h1;6uo9de<%h*-Os+q_i^$9V9wd4PaQ;m3qBEHkg>91Gt zu}4P`6v%In!jbE%w~}#JF8iu=)y_oNPfur8FR<|HsEjt*Eid8o02y_OgG_=}fPU^g z@+%Fe9aHLWe2#H~^6TRJ$@Y)YAU*&`-vv;up%vx8M83C;793b{Ra_avP5XS9Sp5$v z1GR+DZl#yaXWVi18#dF`j;{H9YF}wVr!azs-iVQ+kX6{Zs_N+|ZetU_3`}ETMfTBu z%<20L?dy{FNhUpgNVD$GFaD~)s!`jf3#173U!)y(TM-*+3V#Rxh+Zx}o$HnGpHutQ zIOdzQgUkwTyXLu0$Z87h@jAboxUM##5ipTWN>1*wLxa5K8svMJzyy-V07ly7MPTy= zgkY6%GN8xJEzs(5>cj6|u;0wC>NeE3nbb8?2lj>N|S$yDuH37;@pL*O zgRh`&V0LxS$Zy^#S)Pio>6eK9 z$vnc!^><$*B_gMp=S!hd%n197g-Tml0@etyzsI6)-e!WfvLT`_7^>~z*XgBRm z3Zcr``H@zpgz=|J*0UmW5b5pFx#)6)>n=Xxh_LL>;oY$4@ZO(>^C_F>;j*5N!+H(66lcly`O27xPG zMc2q~WFw%KT?t9{*O0{MNqj)!f(;quWlV*8m(%Rsr`~)?Z z?XlT9n>rBYDb{wB<^gmT86qNs3 z#n*Y;OonjYwg)gkIZw(RIua$XF8|_i{oTR^z?1wLXK;U>If}Xm{1J$x1ZLGWHH`;X z1xNzNzB(>S4XOjfP-EED6pUdg_|h-Sf7^vPmyV65yI&j3d^{>)KU~7bewQU9N7<0=~UfcflUe6*XDj9!eFp51{Mu{e9wm7&Ku&No=oamj8Y<^{A@qTREHp-nr zEb|4FO$TBdc;@jKX0Kd8re2thYgX|wvQ;1HFI&F-d zDXIk%2ymw<_sup+wfB_u>MFk=%hp^e=G>cN#G~L`-(ivFU1+U(#qoc?kgGH+oNduD7 zgH}LPF(~Q+Sjsvmy)%dV#QvDk3NIgq6r;k`Rx#yG0~7Piq1_;?X?wqy%e!6EukK;y z>4C$ZzXq(gMM9*O8PHX)`SZ$dFFva3m!jfxs*Fo!P`P#SiB0!3TB?U(y{=nvVZ~OM z<4h7?qr6Eh*!~Z+T)$!|_`JQm!XZ9fBm-1np7oS8eB`h>4w!53FK_X)55=RshH7v_qf!dk`KdQqIU9HL;<{4cPep^KyT}Da7zvMJQvNWOUbi zyQ`Z34A5sVi!1sXF6hyYrX@!1nP@hLPHEtnJk<1DB3t&Ui@g!D-Aq*JQ^qh)Nbf0D zlI)>K_wt5!Ff9piqD*?;wxT9(8`u-+e)ZjQfN7%27#f{lCV z!{z9ciK=Te8}}|**o!%HjY`~zx#T0T?iqj;5KXh5F3elKBT-Yx*Jl`8aFoE<(7QMg zkdg7*&dLYk8-ch0lUmPYIhJp1Y=pBLtA4S@3xNBh0t%Sz?#Mj$GNR$cGz`OW&q z&Ms!QCFlhEoCx-D}fo7;^xhfFuHu) z|C|}e0&8P(;X_K#${Fv6Qy8?(fII#MlFxXel|Ap~E4^*}LeL_%lM;NA_7-*K*yXXs+vLnVZ;()R2 z@(gM|?FyI8TrnhKqQ2v{Vf%IS)>BEKR{nDc18zt6!o*lW4D0Yi4DmtM-j>c@n2d+% zam3(suh-IwB{gbf>nn*P^85erc}=Ss4Dr;b*`KxeEuM`fCTDI@s*~P|80(eyw~ttMlZ@Rngvfbg<^? zcExD~${0k^lDDqNgtNWb5snbp`0>hpZ_|@=lK$_haF`y&!E%$K#bcXF-Ws8_!!;Pb zR8ua;+HjFZm_=NXdCY|{sj8Mdbnc|Lw!%WC7smv}=%AT1)u^x<$iS_BUa>i!p*h?( z*i&G&{gJc_Z{H zH`f~+Z=m&Z1#j%d4 zIqTV`y3t_hKL|LlM6Hx8TXK&G;aN0=lHP)sl!C9+Oxqzi&*Y)V01h7K)?S2mlBk`+ zx5ZqTE=<%vTrDB&X$Es%FMQa5UuZxk)z#MOfg>%SZ2iB^rWde^Y#Gar@W6SdNpQs8 zAvRYli?bOVNIq3;CRG4jxQb>NbH6S8bxu&(3Zz1*-^AurJ1xXd>4_pZmTBT3d>+1K zXOS1*h}FqM9fFdj&f)bG46;+Hcy__X!(^f=6i-tX8%03_ja3tc`VE@HTehs{;K@3ex8IvI+L zzq!Yd7tH2!qWo`^#0afC`|v!s0;)LsyPqzzS+-fA&7TMq3jHP#h;F^!@Sk$9_^eOwz7U!KT8estJO^nmVTr#oXS>r${y5jEv1$>yUIc{!rL|_;BcVCa;=vPpHiN z^?DWrx$kC6@k!#tE{(LfxcEop)c|oRDF9Gi@TTQ+TBlB9t_bp>xp>W9WKwo_B~|y7 zll*?n-I@l;Jk0xm;%-55wR@1t@u zEc9xb3p-=HjGS9{7z&m2`qxWliQL{;#Kn*_xnNpo7_k;F!0VC>F(BQqUigPevNxDm zF=hU5-f@ZN9R>&fu#Omp8It9>>#O3% z7k&>C?MOWSqqIHJ(it5!G~%&7-%&*5|K`d>-hh5acrM%koxd}8JcFZ|JHdMH3|%@7 z@-3(yA<++rk-xN^^Fl*%(DHc>01-}4Pg1pBBnV9Ku*_n2(i{l7nk;k6d{WXqohW9{ zBs$G3uIhY2P2@WEMT_}lJTLmahYtsT=lN-d1r*>1-)2f&Ak1~OR zCO$Wh7IQ;viOfYz@{@_!-8VpX+TQ1VBQo#s^v4{vNdE(euRI{D-4rh%;k7fBmc}+S zmaQd5(D5^SXu3IkBh6LcF%f>7Av80hwT%HphNbeB|D$%lcq?!}{C)lu9Ew6SyT-n* zc_re@uh(bRWL)_r6|htAmt~XnrY^c$0q_6tWs8r;&|!pnpe@}mC-hIHF^mctl}}cp zik5qI+_H$N!X@8c#em$2Z2VtV$NAG~g8lQq8b3+cxcdsd3NSI}uUMO&=x*K1XKw(f zWA>Nri~>J+b@xA}W=u7%8?w06Wckv}WbY3Yjinpg&{H5r-G7ws=fj3B{K~bP=;!Eu zoqf`R0*|ASTgshJF^v7vIP-fA-ynVfQ}@6k0)wK#a|f<0O2G`p8#itMAv!;Gl0XMA zz$L}F^ZLu6k(c8WdNkAj@{|+p$5h^L!(2H@H@SY6m6Udlr3yiGZ zO;-x6xu_T-GvgbzME@~{Ci34io}yvOkEg>_>Ds|%FaD!Se@q^0&>3xAh`c4kg(r{L ziQMz-o`$~A-=0u4C`L3If4lx3bTE<@oKcSNYjqw-9_zyYXKox@DR?+H&KH&?Ni=DV z?-QS^OcAbILQHv%lJ6EWRXfT-9_)=x(0ydZ{Sz$Ytq0W`g{<5+=xX3quoR zfs1c(w~7#M8(++Feho)a&#NpuxSi>D6V6Q1+}3G)on_k;mT&)TDP<^sxVRu^pJ#B3@&5$m^YrR<+^-8VZ=>}GEc5%YKV)2Klc!qY# z47uzFPBjkqjv{NydpL_aJzJVSNq(RF=jDVRPZ+ai7R-k?`#FHnFgeqeoNu($NsO38 zZC29H*UTjAlrs4}c8m4JRLJLE9aPA6q~Rb(k6)_`ZG;#0k08B7q~PHt{m$qR#N(R0 zba{aA?^<~0Fbo=P)rNVmIl=G1%rg#>dT&0y`!ffQw|~zo`%S^HwuVw!Ul?vgW~WMo z&;xfjLCQyV2>_DYHCVbOJ~d)$0Fayn5u#9ZkB#P@L?yI>y08m?EjrJ=zVmh+eqCr(Gi> z<1!l%j=XZ!=g&mf1Ss>}WF*)~-@&|2tbqhnQ{j_$PN>a627Baddpa4K)ThG7yF&CI zbt?Qz8T;SXEf`oFKhv-8AiT3Rmt9#|xpLQ#2og3(kd3yq0n= zz7aD`!z?@VlJgGWd|U8xN8VgT|V0Gu>_254p1}pEEn`L&&c_ zO&`{Fld#zqp7KBP^ncB94s2pzpU!}mLQYK0oV5ZFK^l+iI+NPq)TwyH4xuA;jK zr3t(SN%NcYb@!gwkc|&GW-nVC)aCr^TO1eazDwf%! z^#vcidzIm#^*&WD86zsrH-yvOW@_t0Y5t`u5HHUxPtI7+HHJFlh?mo;nSc70CuBAj zAntr6M!8=?nBt~vm)<%7&W8IsPa2X}2R@SJow!w?w9}uZg{*NY1DP|X%avRnz%VrZbq@Z)%+EyIc?hYb5yY~mnQte_=vzS z@uX#FbKm0azJdrZoZ^L_*|qXE2PYy7NTe1>oGgj8x(D?PbY^id**Zx7-$HKyF0=FN z1BD}pddB;zDnah%rz*hQqv8kR2^$!q#P8p)c2j@}tp4GcPM74h*xhod^fjy8CLWp4 zD`gGAF=HfW%>bQr4UB;IcA(b(D&P%5QNf&8`N~3yV1G*jSy~7z8q4SRLAT9aC)N6T zM-f%w;#}t*mMh&tdilp)cB*9kX0~8a%9$haQZWT^czZKc*yUTo***C=4mI86E{n&x zn*r}b_2oW9G>5V3Q%2sikMoK}qk9tdL>lh|>W zg_;SeMIs?}bfh2G`bLvz%U9!PdG3SzY9YX_YAAy2QWOVjDDc-okFlK!V5cbtP%Y$!PFR- z=knw8@lpV86(0x3-BTP4-i}c*)R29)^MLhu&O( zR+YAz{I>H;K=)!0UR};|Y*f``8b>R01wiF_4>fo>3*2l9My^pPwd$Bp2L+F?yp`pFC_>fDEED>DQy7v4H%Ao!#vZOZ-^ro25K& zuStZa_LlBX&nsm;=#K1w^*G|`PvIv2E|u`dV0I z+fD@ZQg5+;%>Vw0+Egg4J@w2qo*evU{!tZ*=2tKY=m?^mX_%hBxagT27 zB{4&B)znF0RUgh%$Bs3Fkl~1L2mP{Xdx)5Tp$L$RodNHh%gQvaneo3mN(r6XG)38i zrS1;$rnxJMd3!L+%9L91I52YOwEUmU4qUhnhJp_dOgfTay9M_@))LHH_iCilmDgta zk=2#kAxs)uut+CARs65pr8AbF@3EG;L+};B)DkT2Qoa{H7KtPU#`23+-`rE;KG`&X zlJd%r0$XNAh^ll#!Jl{O4?+{RvjxEZ1u`|{q0q1l-9{>BtJK*H(ro(X!e2P5nT5tIJ$z4}E z9F9p6aa&P3Z$4$d3E1FxpF1VO@gq$ukvp&wZNh&^`Fzz#k!4nPJzV}aL8(u+I&Pm7Ai3A zdAJd#ib*}7nE+O}&PQ-b0TfGPqxumIG$Y{5+rer87{%{S$0H@en56ckkH@my7ZREoCHnX80^3a& z#o24)Q&VCxc=Zn`12=z9{odUCZD#n)%4z_Jr)I_-_a`mD{5lxy1YL_5ePJphdZ z=!-DiMTcsA{Ix_fnCoy}^0qmPq4HuRSO3f=gwCPa4{z90Blx&xW@Z4QzB7{?QwkY= zfw6*zRs%WpvGol zl2Cp-)OQ%Jwnp2}CX;5m%O-otWsc3w6(drTw^9>5Cv z9k4VGLRJ8COSkDzalqlhODpxBU*4=vJy>M6Kd*Vh_Zg@vp*i^G_3L-`>8VCtNzihp zF-r^Mgt5cbUC~)kS;M_j^~56M%r1AM=(27+OE##BSaM z9)^O(UyPv!8+P10yzQ@G!Okk;jabHq4kI5O zR^15>WkLnm8uOVu(`$sH0kYAb>G+Z!%dZKvk1C8uk6#g11(ZA+tA^M2yI>aZ*uv=K zJa)Xoqsq#hpFMl_^yyR3;Pt!fC>>L-hWmZ`B2jyScn}b(yF@&$=rUihv&l~$OT zpYGqY&Fr%1VCrO}vg=uV_qcO9#irhImLkyRZ#=qxV`6d=ewPX8M=`8aUAeid9Zt+pk{NFRl7n=W zFoIwhNS~>28fT8w1HCFb`Uy~VmRmV&r`yNe_qWN-(jb=r?8o69o>-)%a(c$GMv-b| zPpdWDkQBX1E+<0O+;cWXc0`CWN=FGp^Qf>n{UH8tnEPS~sya9pyu7@ie$d``HR(+ z*=f`?hKJRcp%Tx%0$WLrZY{=ye-z%jZU#k0Izw&&Yarn7H3Qb#H4bC>BJ<&h+eVK| zZH!3W3HZ0Ct`HF1)@^vF*BqLdn7F%*u3C9_{P{fmZ4%$Fu*T_R;&qO7yEr??ivpt1 zgF}n7^tCkq-LUunB!fRyF;i#DpI^`MTZ`t#u=G&p0K41)mTUfmw*icrCW)c=MvMdb z&%n5~4K^CWIO1?9@~}ka;b_{P54e0aVQ9PakIewrDbPa`*KG zjfYAnk6E2X`X?OFZd;%Kq21O!+;yP*2WV?PPVLz3b$A{rU*~J$w$+{doYm5_T|79* z8%C?drTfFTVGa-*#A^0?_FA4b}y$wb4hKk(!D}=1%BCzatmMP$A4mE2ScD9t^UcS{@3H z3LZCmLoARC@{nFcnYJOpus+~VL?86PL;mlZIXuh9bdJUP_qd6^>r(2g7aiUyT%36WQ9DO zZwgtlK~lP-V-^7r^gpCtUrjsAs-;B!g$^~PHm0q1nL+-?)wv&W4VWam2h}+FBm}uK zvnV$EGx_Z{JETGXk~AY^zos9Sq>orHm1Tl$01lhNc-+?h5Jv2#)jhH zVPKe>XbeK3Pj3_JqrT_Boj8B~JiS_>DK7uLZ#)i;j&D3X{I79a!PU|nti9sqk3Duw z^sYlfQ!z+r-5y(?u^MtXadlLJ!?-8q$K?BcJ&!-B8t(G?4a};8T9N~7#&mMJbJ4o<+0M zh9J2Qutqt=^2N<%X6*R60j#MQWo3tCrYI)|;aB zP}9>0t-MVmM`N{_l%dEj)v#EsxRY+=*;TfZnJ;?T?9x%A*ssr|`@YK!heJ3Z0GEj9 zfg7z9Ao8^ZXW#9^N*OkwF2MVF=Ozb-EojIgJW`Qg@?LCcqV0@Z;(KCi71+Obd$2!t z-$(_r4)qc%@CNRq^4ef!pP>B$#(a?SvZ70+ZlXLq0wCEYp&W-h}Ha!U}QwrA5nYPV`*1 zDhx`2TC8#O@sF8|N6<-$zWwy*pOgHf>t;W)+>)aiA=1NcJ(u0pzKN;MiTQb{Jy7{K z9=!(s7+I%!N#O3qj9bv7I$-qzu*QSSzkd65efnMLY(2o6V50V^Q;=1d08|V$6$b+y z*xbU#zyPXkWM#+t3zyqAz;>ItdF&YbJ%@y}XMb|sT=EP_7q*yT0k8$SsU#h&NbE2$ z8z~2X8acU4+eM<}jYCMW4eHYWy6}lwVJ-C|hc2-~!6#+Ml!P*jdu&2P=(^VD^|B`* zp->eyOSGyYttl?y?b1@@gpoIdZu@8NhCiiAL3lTkqlET_INT$IQZ4AlUG+tAXIXfel+fo6F7OT88|+1~1sDQELV zPuWC8RC|au22?Zyn_VmK+;*q`w%zNRgD+9)rK)k**J9gy!-Xb64| z!mh$>fTEMBoZV`Dva-M)ouc(M>S8VRsaxV}wZ1ymXZqrubv|HCX_RF4ic0d2vSr}y zp1LYO8@8h!5AU=&gNVb|?;$g{=NGH5^E5S4!!Q-TUSRJC!!Y%G7K_>WQ?UN{))8w9 z8^#?#)i>#gJ5@u_Xl8^m-`&~4sAynYDC7=#QS-2Wa3AEYkdY?$Pzr~S~qv5{`?A_EACO~=9a35g=)GjyB8K&5{WEA_?j zpQswYK5%%#!3JaP&~I;t#i7_B1>Y5*b7kX2b9QGTn)#^5hA!B?|6Te`N zK^wa831!y}y_xIU&Y6_h7bc4b=+Xag@emEir?FEX{`abk3> z9is@|#kx%E722T1|(JiOua)dCdt-*FJz#swo{ph`OLh9=4GpQGUf?8)H znD99}Qpu~{q-NZ2VyT)CIiI|JN(l5_cRS#SXlmd_VrNe?l9^N&_s$d!vb0Jp>X9_m6?=mV4hlO zSnN`OM&h|-o7Qkf$J^Nz>_+wA?<$kUS>>`#-+>i&qofCjx~xeN_NXs0}_#k6T)=Cp?2p|1dg zK7*sNNQCx994SqcDZ9jFUr+0?&~_LY(1_{2c1~+R`-RE~3Dix4U|J zXX(2N0|~3+Puy`@F`R4)Y5dr3{Q3EDqL&z|Ip(yqhsbFF|DjnyL{!w{&6@yVJEo+F zQwBoco`R1LR%gymyeG|u$r3at%A8i|hr@6W8&of$cYEsz1PdTR(qo$5)_yyr;| zPs@m(7m*`gGW9FVp{ICfF^jNTV9N(6{1z6{V)McHJ3L7lJYxTFngdQB zaGIlgx0_c$(mgUBFPPLF8y|}j;@S&4JXS)0JQ4mA z+6b5xKJ~)s%vC$fRr`DKnPw2A4$3vp#gwQ;b0Wb~egL=F%G+1Gb2CGaDDz9r82r~*TtGRwLYkJO{*~*GRj<7QOC9_8%$&3nKOlr)w z0$^^hT)YQMTWnlh_{_|LjuP_!N7q$GRk?LtTSNg7kp=}31wlX%X#+TffJjM;l(ck% zNq0)4bRCq2Lns~6-O>$*Zur&#z45;9_v4On$3W$I_OtieYt1>=T(I*eX#IpGqWKyq zJHUXz|D=8qG>*qAo$Ckd(&tru9fO0FvG&DyC1Ky5ZO9jdSumO; zQEl;cXnfz!6HUb~)`4@_@OSXQ061`sRf8tK%9|n;hW3>>?7Y%f`jbR}JOJ=lII9^- zdB{7U5P$v@s6osSaqSyBTLr>@JtK?5bDarRX4n|Kjdb0e3%45qGLqY$52@Qv|_-{-J;!iWQ4#}k}vYQ5G z&-CRj9_(-M_x9d{#29lGIFRG{bixSO!Ke-xkKuhZdvouchv)CWA9u4n_Q)3&%NDCD zeR{-vPnzjf@Gb5@9@PU2t%e@NEfj0Ck)7}7TsK86o!hgi*=KF6Wj1*O{^JuK`4d-J zLp23m_-hv)f^oZ-hX-tH=!ieu*40bsB%^`CvH9Yz?(@>Z!ZqN6xj0lR>GbtW;_t0- zs|;GtFqW|9%EXggu^aKcHYVE@BXT9HoE4su2kep^_gd5v=FpuzwH;IU?DKr7ItQ&y z=Z9uzb?jwCgSXN3_Bs2Z+j7glePij*`Q7HBAB!RchB6JtA^aIE1_%$#tnu6cylj^0 zU3;P=6&cAp7*BH;E8t6FU$}7Hc+sJP`3c}$P%B3T1qnJuy^Q+Kp4}gnaDdPsDk-;rq2R29IVN zokHZB7RY{mW@&bFMkFjM0A>D`5Vrc?EFE}oOTG2ICT!0)pYdvWY01sYD?U9P6P^AA z>Hzc%5)tuezR05D4J^Ag-JVQ{&kR&B1I6ir*waH43)}g!!l8o9&vho`X6Ob?Pp%<0JBq-vSmUuN*^^^1LeIH8!$?PWjTP%O)kB}Ow&Sb#s&&>`Eo zLOtv^ZPy8O=l|G`?*JkMAZcbSUw5sNNR0>P=H%wWth_@+Q9x0#x9sEj#8-E9Td$jX z!z5L=%8{>MzrtP!;HY(gI@W1#jmTl+$`R~%`2sk(OjW%-POC{{rYDXvN0iKfaf$Mj zm&$K@RA^VT{A4xilEC)-Qv1G%6Y{0(M0w2w+wSnW6JW;leZKt=bb_aLjT z%g9dK<7pw!p**Eb!qkO+#pXB8{5%-9PFsSAB2Y+T?J42$@BYfYudl7&fv#EQ)rWNN z@IrblDvG`1_9`m{^5s9{(J&+f+}CCI!9X8)fSTj&GvLj90G=4S`V7B=)8U;BGZ^b- z{@mFW<7n5>KwEKuo28*`#zy4s$>|0q9v8V5QEB|~h|NOxIcMfPKB=t$NiwN~d1kv= zW+yKCT4a?kfw5M7WogEKjT`dU(p+D|j{KKwLZyP8$&EQ?-PzA{TlKW0|J)peXLG9` zm$FOen2wA7P2+%{k1v!j0JA zD!bgg|EcUcVewnpW#ZBm07Fp1S=MvT{N!Gl+O99fohK%mN^Up4^iiVpj@+PVaW;7U z_ud6d@1snlKIBd!7|sG!_j~l?Z>#kmmiJ*Km56toT(rY_C_BzWh_w!D!f18f|%&} z`?vn@8~Z3Q{Tv6_ZqDU7jA$$>F1DKQ6;vvnJi2D-(*nE4hwg3AO241NcJ|bbB|GFh zG}qkca&!LbunDmGv~}Om+6*rz&}At}HpkO|VaNOYf%K4QJTxV0|MeJ$f+eu*(Qrdg z$#wco#}?j88X28=u{foG6zY3BYN^JtJ0>w8n@>@)tM#g2*Z!>u)z<^(ZAF{$1SXt# zyo}dV1$EtGc0cmq9#REa2~sxo3TK?6!+MVnkOg>#doU*xvuH^d|7v<3B^(-5-ASU> z=p}x0i0Ud7f59|0%RAR4c;y~ib7a&>OwS@pC+TZG^nC0a4o8Jw!O@lK8Uj16UkaS) zmE_cnJ-!qsoLJ(fx3fXoMV-&M%4l>6O`9-g6bvA``z>=4|4XG`TjJ!a5s`xH#T}H` z+5L%r4!5mIJatyMl>&x>L~^G-(!>*B=i_130!^#-1~7qc1avc0@3NsKuy=d!=w|S% zZGBm4OucuZ=Ds`@Md54JX!jEhFKRyBI|KPFOlg4E!H{L!dG$H@pCU$9h>+ z8b~GicOMPlw&+NeUk&`Ek5S3(F6ft6Wb4Gt@bqUnqbe;Y(sgzdH=M3pX>k zxZ@J;b0}ov={yv&C8{WFtg}e62641tGOpehPKw@~BqfyTtql4-|Dl@T(n0pzLIbsu zV%(y@ye`#V@Y9(4&&2Ci8scDh0 z%yRA!om0(Vau%YkK5NX6+TzmRNNK98FKo25xUqQmKBHeQx`yY!J|2uzuB%b*7Y-~v zPkHE^hE|MM&pS<;p+ACa1|CWxG<55tRe)L7pP|=1=X2dj&~Z3}^aKh1$s@p|@)z7q z!^6YdE?2?v1p__d+=n6Y7<2iRn*!G6o9JOLvYwOiD(2?drq-))Q|+$z8G|C=v&$vV zyD-e&^nwBn0`~!-84hvtd-B~4R%q>6Vx9ME(6ir%@U5hVgqby z@kX4Iy)}h|-Wy@@Yq{)M|NXhD4pWHC+Srdd2`bM*yM6e4(_Y*?9hU$2AKt z+?wU)*vp>Jqz@ap$J)4fwjUY^$!UHC|Am#(_r*Q?1?FClzxz~oIZF3_!tBAz7)QNt z2S&RfwzGA8CIW19}tj?UBBL{wLDe}?^RfsIUr|Q3pMl9=ToCV z>l+kr{7aT6N~Nv#w^!m9@F|1&Zi=V-)E%{UtsF(HqqUFkBXJ*n_6Sj%Z)PIsn%`%T zPY-Qu^&4&|#?O zBqSmwY|>eOSJR2KH$ z$-!hJQi{b_S1B2CK93g%$G1S2G&iSN%0bG*%iH6l8bR^9P64Ad;H$9+w26S_#du&T z{m#Y-T`-eC@`XDfr9RT3cvb#0FB!qjaY5Yi!8=z|O6&bCm6>Ne)7;Y^|L~Ur0&yN1 zbnGF0uUYC!0jLcl`c5x^F~5f=7<{*3f-`0sioxfjaz%z5D2#hX{lxMAh90!B!QCnH zmK{&xB@ALbR%`hwB*{EPLEo%DS38(O4?3W$C6FNp%2Lj1OW{)oHPR9|RSyyjm;tOwegnbG_pdMYI*FcnY2Fl#96*~ro5w6 z^_Kcq&#)RYFhbwjc???Wg!K%jVclo{gG;PnRzr}Iay)`7)AU7`_P9g;{CuQXU@95w zYoW2V5YmPxNg<^d7(<3Qo`EoR9*bAfCye`gwz?pm{8>MbJf~tG+lFqx%?SIm2`E*a z{Y-OB)C9X&(CbUs6eaD?QH3au+R`Dgks#-O6 z3R}qqiJ3>;>jKsywHUBrBwrS$4GZpVl1WZPGuri-=lR=)v zCI3}>@%jhEcg_!pPOyy_G9aZ4>K9Y!$#UOKAk*V1tBxDI#bEkVPri}SsA|6=o|00f zph)Mb1IL!BtfzjBSp6M7IV7^hXwQ!`-cTzYhj!M+xx{viV8F`NDI!b9oPr}gh&V6o zj$yrH+L9(O&amHI7-jJ5J5+(R`m$>vE?5-(RbukejUP$%=7Aec~T z_6CatU^b#r4R^{0LwL(17K4u@>Wi|YmaJLj@|&*Aj9bAWeQC?@6o;igE3o+5=uhim z`B;zl8JEIHoYN?TIVsFAg+L=3-2f#f<{fvTs4%^E!AG=&ljWOpiD(&WXGi`?K~I4# z%JQ!IYhJA&Xow!z-f6GN9494~YVZqpx+Uj8(d+J{%2A_+Fs*o5q?lf8uA)J>tY)Pr z%4~H{&z(vi;Nw0B*{qp;0 zfwut?4vFh}nU=9w2{xRV^q;mRB>&z*fu+= z`T`|yJ-B~zKMV&zPxMV&xw7|p~;B{cAMiwEKR3x1aH zqeEwwwkm$UuAjQn9gp8O=Ph;H5@q(jWCPcX{qC`Cf=K39GMzM)%U^ao=BM;VEK^Q4 ziJyyGbp5HsY{CGE4Z-W|vYMO-8r`8JV9K~4P#-7*KnvLi6;MlxK1GX26XHw#K0+u}h zirznj((VJd#}A#XIT+#5%*f~{2#*@&WTltr$O@YSJesYh&W&q67A#=sYc&@nzE8gs zT1P*gQg4fDx(JID3Jl&xA?Ih7S||-FM_cVXZ934xT7*)OZd62pym5toK?p;;BxOO#$JS#P zaE9^kGefm@U3@>r#bBLx1J^7d&RoH!dyo#!e|5>Q-<%McPM0|{Ax---@rG>%e^hs*NK1?@gOiA&u5cvKB>G)02!)nik21@_K{`x$dv%MV57 zrynzkYul%@+DO-C)NeO8T+07YYJ)7YiTuaM?HIdJ)YTy=+(?n5HW=|RB*^FY2B)B` z?e*g4Q`%}o%i)}0C=lsSX*X!L>rbPxHEvf_wZ5)@qxkT}Z!o}#&ou}gz9zi1w6so+ z$wV-pnJ(_xGysl3l^B5$%+YI;$%@lj1+U3z-t<=$lSxP}3Fas!rC_;^9k%6Hw;8ic zN=C`zuUAYn>U66pS$4jE*G3FMihnM(Br4U^%I`~?KKD(>K#iiRxSPhpkCc9NWhrKI zywd0olk77e&PYAIA(2=*^iZxcK@m}F&s3aN&fY?UP8-q)D-Bg%Ew zc%nAX)_wnZ=+kI6Udxm!j$N*@{vg?#;OY&!MsR+#f8axd@CIe=w_?d%fQ6xt(0+UM z*1+8tz=;EGV^bF^)*hzQyRTQ;d+4yK*aFJy}dx_`8;VaF$eujJd7^gP`-s z75sG8ycWFZQfVcVbD>?IF7NT1=;oAVOyW`PSAAZY950QZ-b|iT7-V?puAI_>s;wK! zb9YkQFCs!k_^u9Yv7?mZRSL3;ja{kdpH;f1m@D}wu@A(Fo|<^JIM5VyK*-_L+u7l< zUvZ-}wni;arn9x>AK#i#b1rItu~{&foSnRYDSqx<4hRKWsp?lK8KRnU7uQBoYa^!PkRzl=W1uPrMwqE zmOi$dC}o(E#3Si!a*l-1LDuG4xTswq_q|WrFHUTHRYx^CZcPpMtRNE2Wt7wCXr}YW zCry#{W}fJzUyZ}vd8$(vXBJ0qEUl)t%oPla1(?=HE{Ztq3^z{G8sq4aD5m>|r=rwe z$4=g86xrU->}*@jsqbmi`^sHyRc6$|vP`?N@=VUl_M1h+8&M=uwInCpDl(gGePqw{ z1mBwF-b{k`;GBfztkYa_Rcs;I(G{`U%PF^H=X`?TzB`}Xjg2YyVJ}U7F09n-F!Jz( zdmSxM4t4tqM+4LIE#vlO?Aqyw+dYLA447^60b#F?xxgT#qn$)){?4 zj$l5z@Wx;j0`OfgquHy&^NFL&6JNY|m3y$DV}Z!#st1!?T}@3lD19t>L1YjR8d_Vz zx&*YgpX~nrj`2VCl)%T29~tD*e1$LH_0)rqan0p+-yw_|0nC&WB>FnBDalh`>a_Gv zrkVAG*|x#Z%36-rn$8l^wZdk)+dNP45yI5#QSvqvtw@Kg>||~-EG&n@pF8N0X!)pt zgP}x|$D|CbSkZ%G$Pn>90j1iZbAFKyY(sS%Y()t#L-jL?5A=}nE%dh5GRqr{Ztg9r zVKDQHY}qrv%|j2hw&6BhcTI(qcyXN!8EDovtiz#E)oCVmL!b_wG`2V(EfcK&I+^p= zYa5p6G(xAs*wVV2_rM7YG6y>G0p^5nbey-{c6-G;h)p$5dZh4w&VWp5DqA<)QDIWn-r2oXisRntDyAKJJz%Gtqiuz9mZJEt@QQu6QiBu77aI zzWLLQ7hkv*9X~VVS}*I$ttJtL$*!0X*lnJ+B4uaTGHv~$&9-}S8;3uhH6*vOO2Jwt zFsq2YkG6~}%bW0KNO-4_vho!sb#5OM7H|-P{ zSR8np60#(O7x^}qS8$3?Ow&0h-!pRQHC$}(&7qPk?m;;#K8nNgaop5XKe=7_Xpw1g zzQ}fCS#4-hb=zLHGV3Ed-Fyk8bG`EuO-oH@lg?;?FArS44EkNOjG9ELBJXw>MQc8v zZ}@SPl>QD;uV6dD#S2wJZC{@qjOvr4`d5^alWhx_*Kp`2y5g$TP>^Jq>c~}B-LABj z$^p7jOO!uXu!J7lx|{f3CaTV1bsgSi zy~a0q)I*4zib_1FKQB)^jUjvKmn}z!7IV{y$re)CHG%2-SUr?3DNSY4SD?i`4rU@a zQ(T@KW;^>u@ylUh>6?uS>h4cH0TzZXa2`(X8~1z%6dUsD?amdLhlU=dCqscywSz(z(?P-4NBYk+lb(mZPNhc<|Kw(IU_yjh;Z0*%?#kuw zQa$51KU;>tT||ZzSKW(+b4G3RJYVGHM^xszS=0y%xyTdK`HHL8OhRy?Z-$V)qF*{I ztx>%z(~|DE0Rtcs)9=8m(DUI~dtak-~Y*v7A@z zegFM#E`#THTu+ii;9mdVp(bmom*1W>^~PQ%BX&fXI9(OfzKO`4ae+tWFSCu_8r!!K zQu6X-np$rd8IrZ9O3|)*y*KX{ou03bmM}^Z#yX)kkZwZ69CS+HSIhkSSuKr^NQb?W zk(V4*c0WyW3W}*5*{rOGEDgg?b)hr%gpjNg`ODLDh316n-yy!1K79TW*C#59bOND4 z8gj+sZoO$9LJ490t^TxsqaR0hf=6o`GAbR`K6ClT zLOnW|Z+Es*K>p}((Qs&g8hNSA3!cMG97Farmq`aHzI%bFwk`4$VJ9T;Fb4&(k;HVT z2>njh8N(s`bwdqQ?l+ZuN^vzfMaf7PxBq&0*tlBb%q?eQti38qezh+Jo$36R=F$R> zR5he=Jn32qDG9Y04U?bPDK_$MwG`{fFWBd!;kViCEc7n{qI%iFK(~%?`|-5@K_$+vPzrps{Jm|F^M$`$%RZ+g?D zjiZT_1(`zaf}lq|aKuApKAG(KJpC{mA(%sFFB79&`GSFypi8O6VTL2cE_lOzBtfvO z_pZ+?BSuI%M`8wzwf9YnHybkt-5Xw($Bsk?-F?l%uF9XpdTFK#Pd^AH^@~><#rj&t zkoI69^b&PxB>8CX@?HgjG$8>MEDOLsoDl6{E212B?roLTDuHTO+lpoD(IXY-6ent=wWT{{sU~N5Ud(2pq>$Ho zrD`X;TS~E4v{n+NvuQ`=lt}0`{c8P!Ps$7hS6Y?boVRI4Za^McNbpC7!UlF~RV|~~ zcVkwMbcdJ+-#_yddoJo>8l3a2!po?5M0VmH{ieNW(nuJ~B1<1TM+SN z%%E2v5h?1yVzFI(@?;gRx6t(v_$KFIMWP$oTv zKI7`ch{c(5{N$Ohs7>fJF~@%(XtuRH4h&mXv}R-!$hfJTcK!JJ%%Mfx3~&-^etswT zxre!%r>Euy$o{f=n0ctxMi-->w^gg{oS9zm5+dJ`n&jXGGEo#W6l!YxM zQ!t8JDxEHNoSEr3NfSmt(Johs<JrS;P(2qZhMI2!*v+b}j%RVJ`7pYDl7ri&X<5H?a9@!>p(i70I%%F8<&_Eun5Kzpo_ zj6yktUzWtQz#pCw=mh{Qusf0I+O^{$=?aY#!}wu8s`}7LQ>_tly&=nPN@*o25!KsO zf=#J1P^X2ZENeOdF{F`;iP7K>Qebd`fWiisOuJEv8lGY zhUMk(o0{emr3NEzXsibyq_D#jMtdDkD5lL154blV%=bTmXBkic&?)?l%D`~UZoq}g z@m1>|eDV;x!_aj_k<5KC!eZjiHwr?Vz&NY^&`i##C<@!+GhVt+J~5*=UG=r?~C>iW<#BQ6OQwxrRbhhw@@R*b08C5}?tbRj`Q)NYSb!>bpSo8tZH zTv;6fW?70^R%b4EeEPKRHBt&-!y7QkSpVvM)C# zWOf|2;+116WzC3uX#)ubyRl4S-oU1#*4@IWugja+40Yr3a_sWA@vIql!s_U`!fp+> zteKrBY`b?ZRia)hQe&12as{w)A0hsGQTl-8=C+uraICSQP7GDbGiuS91-%Idz`)eF zu%LNfdBc8E>A$+uF4~?8Nt&24;9^;Cpwi$j%qq9}BwBu{kqlQ(M(GD#hI2EC>j(D4 zg+u}kqJulRM8$6@N89cUGbK~CcecJNEQ_tDN}mIPPu7jKlx>$1{~dv)v1+$0GWx+g zuPc&W+{ZIPnEL%DG;&oPX1G#tt+>d`$YeY2*_J={1x1&;hsQLw;y<#u!_PJc1!6Ce z*=*~Fk0$z@X4QBHD*N*uNe>^opL0*ar+4y~@%m&!omP%!XIKgm>o}PO0l9koEGcA|3t!-6Rl^))oTNhJu!sqUjYblRyZB^Q6YFv~Sk0bfX zjPz0+*w*-56`<7sW~`{}v5_A3$W&bw=BoTIyS46v?AV+02|A6jWO)S6ALxTa)IT^< zsMYVzC(JMq8$f#1{`Xevh!Y_w^m(gu<^u5pt4q&2psBggeEN}{LP!*^o!%jB{HOXo ze3Yef8U==J8r>c4J#Ka^G!$zx=L}lyUbXwp?bsskFwpV%=a4zs=PpMMr<0zlTS!)m z*M2`Zs!dT~-BME!uqye#y;1pobED*isVuExO5@M1>3Ra978TYq&x zdhul2tW1QcIfm}h0o#BLYy&22dwH}oKL7e=00GqiJQgUw|HAp_uJQ6>dY1ov_f+J; zAK6E$l@7vw&h4|n#=?4W0On$tf6=hutai@&B{{d}Vh8Dg;n}(qG3%dYi?37rg-brQ z_F?fuNs3OtFBAzFG!k5lOn*qstofM9;fff25VVLae<<|yyZ{5^f!gT@yr8iesM3?b zh~RBIKBkFm{Bz<*;A*UJgR>4|FNlj3&}_-9a{PMV7m7K2av!*n6CwNHTQW{)fv>;_3QHZf*M;5k-o*MOSq#d3p0(>H4=R9pjd% zwdU&@`r{Y9XS&lYweH9h<%wcYGSa(F4U?sNF>6l-{y~-Xl!MvOE5Ll=?m5~6z!R3R z!@(?sC|W_0r!U3LIDE?SDoOp38y8(uHp0lFuc`T) znXlD*@shk{ju~=ib6ApEXk4-oJW=J;yiHzMaRHMbw*exfT2~h(o4qi?gvO!@u$^?S z3h>gsQu-^%%p<%YD>c;x0f_Uue_~YO^aY=&u>}&PCNcR_^eLStONb$2Gb;f7|Na!u zlG$i!$CC;{a2_!JugC9)rkTM^Ee}AsL7JagRlIxL074GKEP9&+Up+{R#^VDLsYv6) z+J%F45u5m+M2}Ny@N+2R!08hrZ5+7cZGtm#x6Jzdx|U~1EZmt`U`y3Q4okl^QBgsf ziRaBUI51TDvX`-y(dmai2f>*xX;p?~N=n`aVky~!?=&jIE#p3uA4JXZq5|;GtoE$X za2o2S#rFUYg%51Xqb#S`VjsBUAvN{}tQvE@-ox`r;}cMhCsb8wZwnu=?;5U_sj?$8 zNJz6-vuqscDOcjaPMMpgU&6*R0yp1;{sZ0)dqo9?&7m>dZ9S1^irnHWL%AePT)c_tO1w7&;(+@G!l>SR_e@%S zg4pxcKpP6>(?prdy>7v3;mPSl;l3$bP+4+AmTssWCGiSkO&J zLFx5}>fc>Gb?6ypbZJYG3zM{JZ_`Hlw2e$Vqa~5No18W~-GxXtsY}j3d0xiYs)tj+ zeH?Np%lLQ%7;%sfFdXwf@mFa=4>`3Q6*aQcoo{eEB5x#wGq#*&w2OXovpMceP`2Z? z#s@wXBDw*_7Tc1vfx@hu*w20wfVgShQJ-Q^R1xvCxvJQhwFR z*y>w%L!!|0JU_F%__3Br;^VMt23Md+$@|K;bLoUsb9gJm-0}#SpNeu%{E6scrG=FA zm-(SP@BU^ATZI{U3avHs>2~tt+RA1t=~HKo^7eVrJSuPTtrV>apKmpnZ{B*i8mUZL zysu>wn>u%q($7pkRZi=@+8YMYFbN6@nr9rlkNx)zYd}n?;NY6Ch_bOmNS0=5R@b0w zrgB6Z6N*UFj8EOCN#SH)d54@niPV1b%*KWh1A2pTS0<|b%^4ihxVShF(KK5eGXO)y zEA!}^R-?@+kB*OWzmA;vDVRCiS}`_jwz&#ZA+dFP-!&Q;EMg0&zO^9x$euE~$iyG$ zk-G5-CFyWEz!4J$Qqf790XQmC_o+TFHWT;|)_a)B=f>mvGQXC|#n-TZb$8?R`6dbD zCscHmr$*;TMfA^fpp%%jR3GQszTCYr$7Gd%kyCm=l$fd|OUpy(VTXPBm8fFX^{2I= z>BUo)tWXk1(aX0Cz?$G!R#t*Zz#7S~#safRU-Gw)VdOWT? zY?2VS5V&z?SlrRj{7SvCY;ccte>Q`Xe`^Bum`01>Tb<3CiUq?~WlS2V`y8eC%)d*Z{3pxrWB=OaI zq`YT}`*Tz+sN^{o-#DvKPgFk-Hu(KVYnq9y%%UtS)|SE`o{3F047xzEb_JwxcVb@;s|A9pVKm`v=x z1!EFbk&>_n{kOJbGfhSlfL7jJ{q^HLcmsVOP+8Y%eIu`GGoBdj_+|FkbG$MdMy|5h zO5WOYLYJ58aMRHMN>kx2KSfU&n!m+g#x3p;T_;-XU}Ww1Q~-QC&{xA!wUJuIggGv8 zUH)oy%OUzUZK*9~4=%H<&}bOz8n2(v9LA?f?&N0O4=D?`8sTaQkviuSHSU>=R80$1 zugGz^jf&af+vDmDXiB6%%Oz4+~m8&f!b7{UHe07>~Ew-g}nJ_A})3-A(NcP4Z=5$D>vcL%OqrHm`@ir<`!pO+z z{FU4JP6vD{XTJl8tJ}i4EF65XgPcUCwT5P|l^RtTus9o}rW|0lZEkA1T;)X;yN0o; z1})l)GK6F@;sOtbOpsOy;Ty(uEUe( zx8IjAR3v3q)p+K~YZAWq?xR{072mGcGC3CAs2ju4cEtSyoX*1(tHT2uV`Uh*i*6n007X6?8MZz zXO%g@$x@%tp6#L3_PN;x3D#{yqf)8yqNuSxbxNv75aL6^F=C$nWE`0{ILTZ= z!*PwbSg#{R@C@`kWbV{dSL^g-YH8NOis{O~GcmYKNf>1(eJ`jmqVJd2Mm=SrqopHn zB@OZp#lC8R`>=LAQ9B9c9(uf&k3y*(2N%7X+@&!%_`!oe(rFj{Gh|6a@s?xfOXWvH zJIi6)V!AnWoJwjJo=Vg+ULd!g%TNkyY602Lv6x4Y%)u8T=~h#TRNapADUpI zpiClkiS0U5R)0^X2zd2egYX)`V*|&gYOb-B?)L55yu1`8Rom?N(a)xPnk!5f=jgyE#bldM}bI!rn8;0lu314z`$lPB^aV-Rbk) z4l*!>22y7~T4hxsZm@p(f2l3J#rHrscicK#@{ zR~AHCMA)eUbKC8o)V^X`=RZQSO<7|V4(j0Q6dJJ_)8CQwXie(-(hp2k&jk@_dB*)H zYATTrCHfAH(ld%2$TU45E@AouOpN}>>6j#93w33^65A1d zm5o=@7`oNBtgI|QKmW~}W0oP{W+xfFGTGE-aqQ~5@a&Q+b0QUgno)O13DZ95wJ{Vh9CH8E}mIcvv@{}Rmabk^$|6P#bcpHsS@`nEH}x8Xj;K1*UURf zP%QLYtY&$Tz-IzoOBq~XKsn7|$_X_O{l1onq~P30uU%+e!?TR>V$~qIQwg5Vxvl5J zu7ILyfE|gwWAIk2n=H&Hb6!NE|4m9=YR4(huT^ifLZV*rii1|?&%%IjBvg0ch~aev zLu5)?Yi?a!YHh8LE>TjW&Tvtl@u^2ydE90LMXUy6&`t%uXHw^z(_48=e8mUT(`!v# za=WcJbvc!^sOjFPPmPKX5Z;w@*K6F4i|D;PEOmMfoDjW9?m7=xZ9|PIASlRdzv+uS z`2wyXMe~n{L^CT%qwC=$+%fe^+}*o3H@d_8)T2O0H=lK1a6`O}HP15;=ZZQ#y8|tk zA4OJRNak7tldM*Y)S7EY7>z&1OO%uBBO+ch*JtfB-XS-64=PSP2869v}qu+9$qw>rUAJ>NqS-x44t4j^Q)*Y zwaikDove(X+T2R>WSce|f1_xTIovSh)$V*m7aDs9!WQUhl zSjy}^y0uWaB%Mx|1T`LEFBITCIr{RJcr((mLSEpVMnp*1VsXq9jD$SEq!$K3ZT3*? zX`a>ljL2#JD)d8k%tbA)@J_mv0K#S|fXuheSC2C=M_=2He=Aw!8Ew9lb!>0RvKocJ zK84PFXYzbj6j7B4cG-+m|I{<6#rE#!p| z6Jv^S%=<>2@87}u@MMUJjL|2PKZ_=zV-P)<;GPzvemzK^9qW85)fmlz>g=?*PbjnX2(pwgLr&s?=AdGHo}<_76A#Yi zj~c(64`e7EUdKff?YLB07e!bL7WBWi3%e)7V)y>0!NahsSg5C@1m&MSGu_=>YHogN z$v@LpWU~?xL0*Xazy=eX2`KS7tMC0JZs*HR2@$w%x|WRJsj*rXNgwhJOle*F#~96o z%+KSc%rRXNDYDmRpJ&%w$d#GD<-dxNSDL|y*qc4v40@3G?_+Nqd$cIT~s#^|vb<8OQMO1RLaW-B?(O(kGi z6;&mq?DcAPf?iRD#>ahGE>9;Tm+sC;+i*ip^dQf{=2B0VoeRmS3X>zNnx4j4w=~) zC|%o$QYE!=?x?cH6}C+&4E6>*`WQVM9UkNhgY)?0zed|u-kTQ+Tr(ch_YyeqHov@x zz}zh?!s4Vo$=kTKi0c@)K98et%u2_@nxbIlnjZ;JW?6^ole^S;a;bM1GSX4o(*`|H zAM}_us7vSVi#et1^i_Gy$el+g_dD$nX?;{tZ*;d@l^3XrHS2F0zW~i_W7dEZvVdQZ zW!}u=5<}$kZzD^i)#en(z(V@ys}loM%v9j?Qk?1_b1ROppUmt2`ly8$U48fubWH?N z`>X8jdv(mkh0|xXric0Yy1oly zF+SAXjegzKu?l74!#7WQX3GxcQE9}-URLN8foedr^(h|lnDpTv5uK3N4%ESjBAvT0 z)5G}}=aM7Xeir|D(?I30yy&FUI7fN~NzAs;LNk+4=X$->9a+>BWmNcJs&Bc0*NtOQ z)n<3cjW>YQx;f<18S(x#V;dV1U~SfVbfUp)^X)*vc6*Af{=xnpl%Me0r~jzKaeOq> zr&618B}oQvU2m?I9T`^15=k_XQeqk`jo)JH^-L0ZV)xK10h)ty5FG1MBfR73^=T*XCY)|NE>`IJ?kvSl&Ms#ZC=`}>2y^23J@Us2Da!O+WowFLn$ zh>^cP+;~7M^+zZx0B@N;E}D30m!n+`cKH#pg*$r2 zMa|s1UZV#L?EvY3l9{~_nTXu2$!R>V)TBQyUI@vU%f{+-8zA@Fn>P~zyEMS+NtTa0_9cUFh}}>oubEU2BW!Hc*LHdKP?b!_=1@45j%u z5PS<5uaEk*tCNcr6#}^%ZjyXk*O{0WppPNm?hN_IhH@G<0{B3Qrtrspyg!>|r%Xjf z6%C8V=dc}!JShRyv6FCoYXF^O)YA|@zqg!6+{;m*NyPH8^v3y8e)aOF?^3JZSPKyH z7mUX$u}+oIr{Abf2(=>00e9j|vKO^Rtv7g!p`U77Bb0KsGhHJOaq}{hLgt6tZr!oW8RpiIR&wS#;n4*x;7!=K=;l-;MD6A|l}HkM#E| zgV0e5VlbfiV-Y~tf#0$knC4n8&bEDi?9#-y=?NCV{=&wUaCfXM>dRl?Zt z%^=#fMtqP}M<5R!Q@8LEGW9&UHr3b(BQaT&ce?#5m{M`VID3ph_`zc-sTL^6pl7tv zk$Lspg$q0;Bd1i(l0$bPw9%Y8cI^ALpEiFmgx?R+LCr*Nk{mM*g2CL_f^I@mo0ip@cf+5J0xUf^4z~A+QOnl1>z}PU< zsCog|nq$X~tph#zo80?N>^wz6G0nfxZ#Fk6K*i6`zifEL#mEI3wCMhm&pQEg9w0Zt zP_*AUF8E_7!LR^_AurD6}i-tQ~K~PFO;0oE- zO8^5Ji{JHiLwW4GyNMcfxYJKjVLqv;I^(~zRc`JBVlha7BF;IXrw6?z!Nt3s=K z{D>%!m% z;hhuvNl8g3&*J{cra>LK5T7=uAQ;D5`{`%*6h<^$$qW?ALm8IKZsWDefiBA#M>B? z29>k)02qUi1xALvd5q;Vcm2+tJ4z}>MobF7xyrxjE9&)*9BV7515r??IfpCUd5%$4 z|4>xG^;nuIxt8(NjPQI}tbf+6j5A`Z_BJ{K?1|c{H(Qqr2(1qL(_Q`%ymD zcB{EYq}BT6;D8dTIH3;Rexi(`?%mxlcAWJ=Q(@B1NZ~xc_Vjs&d7g`^}fC~w6~f$K_F@zvWqei zrro-G>V(Kf5|syg^b1YQlVK2inA`+CykDv49h`9~Z0CE~;mM#$@P9rT?*Q))AMZAN z3}4Yx)ILN-HvF0Rd)rZ?6tR(Z@vk=N^4%#}Lng*6I#+H{*=AdOAVMi$ohG-5EsB|R zTwt)6K6XQWVEXK$KJVM?cRn}T<#-YY=dQ0H*Dx5$^8rA)z)tY`n=H|1^5y^WS<~q@gtBZE%Jf$#6-y9{U#RY|RRVC9BUS>mp zS?Cv#5Gv+fBzkNnloiaizQRc%gP8=6V2o^!WC-8j;2_)#j>}``RL)wT9LCRpl*-;h z^BjhG`R4|Vzu@EC8Kds5KB!^E(^1Ert<)0FnLcHqej?BHRZz04#@ zzaMm#Kdf+)E>AG}=-r#ennTtvWT8`GGOt^1c z>M-n#@wc^N9ho_)ahDQ0D=@%+cwJ+oQD+*-4oMr`{rj8W-<~`yU49*hll{$XvJrxr z;0(-0cw~u#f@VVqb=^>S{KZ{k`(QT}lSt@LU&_ZBOfrq^`d4caW;>#{3xq4l`%ZNI zID03USH}9KBTd--bBBrrWkHlf$TD{Es#o%^^6ny+3x%KM-s}e1%|S7as`yU*>7fz1 zz3&B}-~(rr_9UtIdvVikFghVwMzrfV5{|Fi?ymj(m@6R(N$r1MdqECmv1hgLR1TJT z!4{?p%IQA}NYC>=qWk^K-7XH41Z-Lv`=1}vbG)Y^mP$W`gPBxj#^XQjiTS)edDiiOcPs0JH#~+9Jf3f9WaSKajd}ZFZeMcf z9mK1xtp(S=YZgBA|G563+@`Nn=uEjyC-qvlluIr2&1Dstf;xjY?ElB!TZUEDe($2# zfryC;0@4j4-Aadmbc3`Yp>(4nf^-SeB3&XKix8x{VbR^)%^nN%eSg3I-ut@Fmvdd` z!{N(f!CY(3`ONW*=Nb1H&7`8NXu-Ngv!ZR=~8|ca&-h#edMN+_in{ z@;SG-puvV?-oB418%>p?Vst|P=>X3 z{!iqrYh$q%*LGVE2WaV!v*O4~gi3$qZf9|j)OP_m{6kp!IVi=!lC~>mBvd6DF!WZx zp7w#g)r_TpqTZ{Dg@BClOYJI!pXZ(*%!GE|uJ23N7-y#Vy%ql#f$BY*8Gf&K+SD$aVY$N6IK zsQK>N%4Ohp|CHC=E&NTRGc$K5cKvh{bn+P7uHz~f+t7=9-2p>FMFD?eOL9(1$1F$c zl0LCVCQQ@c`yw}IBO9J0Zs$j226^gLO!A#0Ui}N%5qdmqvkF*F0D8!ae+jerbR| zfbMY2>(}*oKJMj!oC_J5+mCZr&~AQK$*rfw{cTCNbD?hl+BkM2A^a_lnu zUd+d!QWQ9Ddsm)DS2e`>wifwX*eQMd9X%>G}6fTm|C=hpZ4haZy9b!2FiL1UlKk8{kB*fMGl zvYsr%dK_hGC!vyW_uO3=h!g-^3dY^VPz(_d`58yC&R!5O?hKVNUZST?5cYfjq)P!- z%8z!W&n3XUMZEHgjbPIa9n+Zuk0A*gLZo3DY2ixr3V7r?<<6UrU11 z9|9_ZhQ8L)3GagFs7;P=XoReR?zUu;gP;@qkou02ZyY7DWxmX?B z5f%X;<|}Af>o@m!FJwGaqB=ygrMswf0ye4Co`6l)zdivN<4lHXiJfJwAHjmYG`^%{ z3#>Q5fZA^P>msE7-GBh+--44lM&T#zL4{fLVzi?jnC&D$-1R?f3dO=;8Zy9>nc!RI zDQ_`8^r|uwKjSs0(hvZuQ&29KzZ4xgoERo-PEwuQma5|12}DxzUrUo7;C4;yjTJe2 zBPxDOM8`@EI_BoTn87`&UOk@0NRdTN=@>vz;y{34flMZPt}Au9H}jmiK|c`A&bQvg z)1`B6ma)=ZuT9S?#Ou-#*!1&rJE`^nwyr-B%-@1nV8f_WZc~Uhj($=sBmB)bwemMY zFHmCqd!A~sv)H;p&X?PGbzuf{!YXa}BK^a&!^zLy`G)t#ioOgS;*0gs8D@#NboXJn zoSP5f+Wni`{NqyRP|%{aI8GN$j^JH|&*2KWdo-6?b{_4^v#sk;0dO&r2=Lu+H_RSj zKst1oLus8riQ}415w;@iMCM!X;?XRLNN{}jQ?PKQ2yM-0jt{}0fgm+c zks9Iph5OoXsKp;ewPVh|(?!|G5u5M9rSu+_X(^bSwPo^YiqBjKxlW+HiShAl&_&B4 zW@iuk=j%COO|E-^%BuZW(clXy)iNi?O81)!HFEgY*4As@dq6;Jf%_P;Sg6N4N%q`y zjPQmqd$VM$*qvT7bWVG^CgNjuo0SoebojoZSn5zXR~rkpWHU1}4EoKjKj5LG;h>5} zp#|cRCFVXNGzE6~e=7b?Z|+&u8VWX^>->D!Iwu2S9+3F1sNgNS{uLyNETJM_V%q58 ztw(n*pZjF=0^g2UJhXpE?$H~ACxN{#l{IO;W_;GJ&i(T0Wk>) zNWf&_tDT!_j`URe*yOTO%Z|#4GV}=UFr3wVdMrm4Z*kM#`IR2J_4{A(tDTOv7XF%l zCw?uS4?a(+)8U@n9EkG)c!ET+EU;1P+609a#U{;M#GdwExNPP7i1UMoYXm9a!oZ+V zTjTE<6f za{;L@DzO57<1zp{eAYG=dlps)3qDS~?Pa{ahB2DnA5w*NA{XVi(6GVKy1FYvV*KZ)T*`*}N7dP*wKKA@4Uc$-cAs4KeTd>rp5eY2MS%FUMEuTU z3Oaoz@l;gR)TW!l0X;izv-|~OAKfu@oP=gR#$W0G?ylx!h|+3iTsh?Ew5h<7;FJ(^ zJ`r;oJD}zEdY9bkP?0cRxF*0Rq=0EULwn=$IYRm906O}sr}&vAfWp9xQO(3*1(SD*&bZ;|k3usw7Rw5%WgbEL}^O0k{llMK2(u zMN~GK_V#2mcLwcUa&KYI>}US6z0G+tGBRyi<8%KRKRpqu{`48rC>L_<=iU2Cbk{M( zQO57y-zdUtcc1y>;?U3@w*WK@S`jm|{AJCN9L}p%_bhN<0O$mG?H@d3a{@nfu$%AE zjf>s`_3Cwc*G`@wC`*1uZHN?q{%UISj#AjL*_{kAh4S*AGmtJRChWQZ>GG3psFFlj zcvOyQ$3bS~2c7&F3RV9ku@aH9ht)CZqp^zW&GxCQhO90N*IbRBTr zKnNBE1q5iM^DSnjvtIWC)DL^9Uq|3IC|`@vS?8f&IGgY1o^*a(2)C}439wbPcbg9D zO)T}di~kejs44uv#Tm7{yFybIsU44~)1X=Fs|C?G-oWebEsMz@AtVy{z;0rqc1a5o z8K}zw6dizHxb;x*#2XtMp!H-I)<#53JW=aU^i>Q8U_3ZVzb=48>c4{sCbrKwq`6yn zub$^Uo(@T<9gBtgI-!E__0_kJew53h6c8FJvV9F)bk$XKbP)AJ$qq>}+kuYYD5`#Y zo|Oaz(y;xRV!|1b+AbfBhRGklkDbxB6P5|t_)&5Be1LqmkH0g>Uj<-%-T-_@PeTcS zdbOe;HQtl&{=x}z77<#UoSeOZKHQ+qTw=9|tyWWan#F|Y1zYX7kO!k}up(et1w$qv zg^wk``5}ju5rh$`8}2?n5)u*#bTl^{z*3-)7nOqn6#evjTfu`4O{vv*`UOF9hkma z^G!AEmfC(plR4xzB$#ePy!tO-q31{1vN%F}<8f&V4OdJAwhHO;NMmr;B}$$$!bn<5 z%s=M+GaNcWL7=CN!4I#zyd1nZIW29%JS(cS@gJzIk$@}LP@mX=VIWUC3ng z0M~KV4VLyVOQSN@IF4mbe{Eh83Ufi!Az3Q+A{XW?Fi)IBv2RsRfbc&CA4=ia-`QPC z*#6clTqCkt9NTRN(Ln0|l5-wY%_+z`(2H={;Q8OlW#$sr;4xNv6aU;cUr zCDI+1sIu~ZZ*{6c+{4!1rswAgh}~Nv`a&@zhM}88r%lNFgf9vvM8VqM$T8rM{5z)Y z#%7Pk@kxf-2j=0wZsl}c1`9S(D|N61Nr8==xJ$c3r9kfn_2zAss6@_@pJ+TtSJZTY zM$@gollZjx2ySrY*=bBPQzzp4?b|otpTI(uoKOPs{6QuxF#<)@e;Po*C;&bFv%Lmi zB6;WDJzyH=VP*Xq^?ly4;QF_`XtPnzaQq@t|N=i zdEMg^mA`TM+O>g9Z6Viil<)XIJf;U z{RQcc*{htV*}&7)MAcS9RO+@pz|ncWM>2#Uq614{pWc8V}h(`X6*er27wtF zbX+9{SFT?DE;)Jof1V!zS>f#~XlPF_pj4J2)lyVc)E*dd)n9mHXH|QTbLi>j<~Us9 z9<2!fGg(L^!OYX&_6J$?#bT#Is zuqJ5Fa^J)#t}e4F7fK*G_C|`ahTVF+i5#e9iy;m`)zppUyV;?@7>i zx=H%aCH-d2>EaIEmj7WCr+bf6-nhTPj?5<^Xt|YE2dWvxY(0!!hm~$1D6lPc1vpea z-vsyY(s3HdL;%zM#Bqo7x}=502FQBM@YsAlRuSfYKVdF>TrRf5ka=VGMgUFR@d!zl zGbSjsNYWhKzICf2%I7BDYA~cnXH3SUA-^pvj#V-Hi?=vkWJklpj|XGz5-)sQrzPM} z?6{m~Xa48I-5YpZc0o~6J3^sqe&X@ddQ{MGb!YPW2-zo1AnBgvft#j&+DyS@*!k^v z1Q3Jbcx=2?8Mr=M^&YUe7XNj3Fq^|mDD%G9(l7(H$!*7=%>6PGR5IF+s}$rj069}? z07iyciLq3ez8xq3{sB!Ct?+Nqpo}{`YtYxPUm@?AHn~%?XWUBe}DH_5R+F}zu zZ4zLkxPY~{zuzIiDTA;wwnBGwaF`+FPF5{^g0O`J%;ILtPy7ntwDG}a@`!qAV*mu5 z(#b(lG3g*-e79tK$Q~t!ZSUy}IDa3iLsV+oSo}juomo;?BcByHLR04+d^O(@c`psI zGbwzVpJTlV0kQ%0z2QQw&g)(e&CO>Cx!G*j zh!M8HWg72kBUtDPh-!?d%@p9&3s@lg8A&@93XMEg=&&G)!WRNoh@@$3ZcgyrAtoYn z87zh|Z4=-O^z-{=qN%F-P;G({0vODr9^$)6hN7aP-#u;gKp$~BTD-~Lggj|y9{uqPY$@+`70n^VsSGXf}8AcD3la{6TxbNq=9xTBDiu`*ERFs0PmKC ze+TrmUIsgW5YF}V1q!*904#!ZKXAgBK^M$v%?auS-hIIL3iri4zEKi`LX zIXwxS^#Op8Fj>)0`!?YP^)9LR|GkU$b`U3YKAyN;41MEZ&OwRa0gC`@$_9FNEA+a2 z4)|lQOdE*K#7R?tje}$!UCDRtZ3*Piny66&Ry zSoBTKg8=%OUq&QEFq6~IJRa3hn5FT&8A0PIYr8o?jfaol(yu9Wo-HykW68k4U}N~e z9NOu#T!9M#eh&-?sF+60A3(TaYST z+>gTbYu)^U_;u*kxA-3jFcMEm;pdkJ|zZU!o7Z^o$3-^4tS1>#%q@o!dI=s9) zbK>%UAx}Iy+GDhnzp{ct0{j#0BGisODijIVyKacD+$BbMt8n+c>-PQIh5N)jbeEdB z9;fDp{1mNJ29>z5@EqOdTD&I1efz>9cVhLU-0)3oE;?FQAqHn*$tACc9oZsHP+5^_ zKRJiNf#ImVNiZZqAB4AV=C1hY8uo*RaGXeC=*}gWz7>z>ga(COW}7Rl>!S(GO`_ zV{L<0Ytng5xJaU6y}OuK*qS>H2XuG(ajvhAEh`@T7oLq&hrZ+5XAj=a%pJ?`3gufe zrz&`{QC8R&2S(j){8StCCoSK_4jTlot~mT!tmZEF{W1J%m9Px}2k zyv)9%ayCJkj&|XcS=V*`t#ao1R3y9j#2%Bbv}clx)-!35vY%I>jNSY0{?}C_)+g*= zoHfSc3|?QlP`4MT0Cm18rQBXd`G%t+HpJrnPclREjcyA-EgG|-YJQ5_0pBcg=F3-^ zhs%>@EnXGhLS|*yh`Amx&^CH5me0j#Y7(4T;zjbDWpDDCt~xxQWmPs9ALf}>#*f!E z$3%)y%zN*pf2f%nP!MS;bvj(skN`jp7dChPL2US&?d_>$j(^32=VP8iM5ETdUW#+;~H+YF4toicQ)3B*MOQjxi|< zKMnI4Vx`QieKM$SJw9^jUS~KAAr;tMBZ_9tw>vlND;aW(6z$k+1}-kqetlDV8Vy|!VaepJPJM2!J5%u{p##cW)(hCoOi}BaAC)p==W0t; z3SEl}o@RPVF4-ko`ziji$&Ipnmx{q?q4VQ$;yp2N-%nE9Xu0sUiK4Xlu$P<5V#D{! zqx(SwrR4WwW@FHyev2~FeQ~USpIHmNkj7v9up`I*vr*?oGbI9??DqrmwFyhwBqoxC zdGJICbWkZ6V&_%IE(xez)XO8T5l8hkuZ}W*_>--9ezbL-S3$x4AWW+`t?SUSPN^ni z`0A!<8LAeVt9I*R=^eh1HzZJV#V7qmB&;Mkk0D$8lN=e@qYQ4bU5oMMgINDT#|N5U zzCEIo4qOF>gM>z7A#NLWuGk%0Q|T>h^aN=H+m)1Q0s~PUYkU^E;oywrE@!(jkB!Q{ z@?6zg1s5#S%Jq>9HtU8rYnRGxw$;<@%%=`MK4=oYOPj*;c^oh3q@vB|-4c!d!x#Ip zwH`RQgj9Wm^4S8PxxQHI{J4>LFBKNr=U%K9Z|yBQ?5s<12N{|D#{Z64@1g!OYRsN| z=g-sqqF;$+ra~CLlW1`K*YNbt6{h=%57b=cr1DP(k$NIjF|ifz2F_0jM~gT{UG+-} z@1G8Ac%N@>utzmc*J^xyx0=>r-dEJ6t&@A+v?BK4qqY6{OFKIo2ah6YrE2@Pm5I!* z-n0HHbngv`_U}q7441QgC6@fg3RC!DLmwj^R~b(cuamYmb1)`GvJhQeD6^<*HRR=X zMKxOcofU4klek6KaXip_lS${0$sxO0s@Va`d2w$Fi!!tXGiQ7fec~vPfa;p{+72eRvU?R0)I^` z^Zi4GTGB=B3qxOOyMY_p$f_CW4L+9r1N8(Do8A{7<{rhEV z@n0-8zb(G%yP@rg@g7RFEzXpo(7@n_&9!yDq=39fZl7tY+(7vw_9U7bK9GT^jjk>qx^ zwI}TgF_y|^!AxFgkH8(Ds|(Kinyjwar?wRkHNoLQZqvxzbQD0^VnDQiNNF^8rl?Y) zp5uvvdxz&2SkSNq9~KpG70udNtK$ylu(W=S#Zh~SKDm9pr{>8xc>346V%!S4Bv~{< zTVG3DwS#0jbzChxz?dlFWuE4%ExUyTvKO{@1Kxb8SL>oXpQiIrARqCY z)mvSOcJiYgb@RA|ClbgrBNa+OBH&giVsVp4*t{cf%Q%cDPsZ<~tj_xuArfp>M88b8 zkBIl+`7u9#`dJ;8bt;%!G&2jNFFzNbooBxKTDC@mdpPo`YDvw2qblZhozh^7+sy(- zM+SoFovD0{xq-*6HR9B(DavKztx6Y7k>y_oc9JzG8a_OJH6wTgfQ^WhV@g1FuF%Xo z+f1Pjb8`v2zQ@_t;%nAp(&nw$Kc=Val%3Ux9G@yU;S`!=4?25zBMb|7x7`|t>iCFN2!<;uNDqqOce7n@3wplA<05L0W@So^g6Ng0+S{Gypj}`j$5?I1+M)3Br7C}weGkwl7w%JA3KE~ z4B>F1`>t&@&d757LYV!2zg*|s5qR2K{be%&RaP!xnnEUSpK*>tqiV5QVsVD-*5$!- zyx49`X>~)b{C8S+jhzP8B}KyW4lb<8JsauLT%vcmx~?{WH+Zdt zgU-jK=+wHjs6N@dVa8{ju8eHaRQtiTq(%fRBw06cYK=duHeWQ;Aix=TsxDiba1gqZ z&z}d1wbvinXFB|RQ%luH!dW8BV6(wo^bVi$DJUzmrfATZxxeJBATu6UcopHSBazRp zYb~lf;9}p@*F0qNPOLp}-t8jd^1$!Jh3{oAR;W4K$(CDH(sjs$GEDsQ%A!-9c5C!< zEeOI1?tIqSPC<%ozmgc+yRwE8=00DVdL0cJ z{iBklK+{I?l_gz!x|h(K{2pe!>4Q78;wp#V7x1Wfhpl9oDV(SqdbgeU-BVu(2g4Zc zVBtM5w;SEWFIa`~IrnFLiaB_EO!k;t-D7bOje_;_xJzQXf!ooMhPn*g3RblK;z(YJ zQ~SAv^m1&>QgDS~TKmS!oQ!U(LZ|{99hdw{4%mE~_;f)arC_JYa#H5cCB z{_~6(KGXgYl^B7_`}H17C>*`jb-*tnZ3dqlxc8gg6`Zb838OMb$~p>WCOVX51)qMm z#4^5>r`k0o{~?~3+LA`bg@=rcc=#atp8Tt3`MS{J!P~m`>=29*Mk5#Fx5&hmy7RG- zv~OQ5v-L~1(ll^mb0vE(v{aU~RbsO7c#CytRWl{?8{)oyDqV<0@pMjZ{mvEQa!0c3 z*X~~Vc*cdLmCWp!f{jk&tn0M%NHsLlod2`5?Jqg76+M`VGV?Xruw{P9zx+m(GCccu zL5eCoQw>I@>1ZM~q&BZ#f{59#{}yrqFDRSORrTnio|!5^c&{rbjeq*ZQU7z_?wRdl zDrfAvr5E@iW^t}qT;W+^gZh~wEgK>_>BAF7K&G{vI`I zs|@LE16VsaI>5e6 zNlV}ISR6;6%?BMEpCf|n1s8dW`0K9cW+lV43aQ0%T$2;k30LEkJ-TQWRcG+os9Qh7 zYmo}v_hZd7A$PMrdDc3FU8mX*hwR_diB=UK`Aq08kK4j6yvlb_l> zACX6BOq}79;&hG((7z7(joGq7KRl#>l`IRtm5bP(k&m!BLr1`MGGcwh$Ro4KFX_La z3qe)=TdkAWJ>jC#jLn{~+gz=_H=&?)u+n#h+;qG01@d#-FEt5P|J;H^oZY0^g29&A zh)oyadjZQB8^H1@?x3=j9cFKxZcor3=tE>)#ZmGV3afwr8Hi)lKy-)-q_spWQE(Ks zUFg<-zMM9`p{Un+6pJ3T@PaCQt#B-XKW`;4gW8|PFx`Y?()63gYi&`TA{ewT7ghP% zYNL@pOL$Fiyu7PSr~>p1LVnqAh2On6DYrk|q4+oNe4~uJtoWL5Try5IYr$~3KzXYS8B`1G5Ha%lvK9hKyl@=ad)w8 z!@VJ-WOS4FN!!Gb|fkv<&;+d77j>9Ds7R5MO;-}QTbwTR4{WTpeN6JoKIgIx#+q5gilwy_42`bAfMK;?5ZwY*(L>d@@`O0q zuBqeobpFQ7rHKa^Y3=1-Z-xHQcC6kQp`=Bb&l}@gU_Ncmq)&=rh5@R@SF4Ki>}byQ z%%MW0>~3lcs^@yaYtV+0r_?NXR1?CL`Aw`W|AK%KC(m0p*>a-o6NR|7r8*ALDk)Ac zTR2#=;}_o7w`6=1+i}qdNf+tB+FT(dGlVYfPG|I5FI)j`?<|7N2t6Sk^uP%YrTdIJ zC4Dn6YRfr+gT$X$Zr@H6+Fbc*Os_{;RXfHW%e0Ih@PI*;d8seA>0!}3qQcB^>|J|% zricQS#jg>$+PvqaBMWoGEWdUr^G*8~euwB6@S`>e=U`pe8yWOwDIT;}uDvC4v)^7xM(pMfI)ty2n>Pp}p25}d717FnJUuffH5#X{tseUHitkM(e|E5S`H=r=MEUGSoPpT!epNcW?=SiO9xU12lO z`^}aC7Za`bV5F@9$JEAkLWG*CejKiejgj9Hk@k>L7PSpIBzYocZa`^o(!bw z@*7)f2K{4XtUR+GqJYNV8x}S(9q`?13C&IDAQ4?zOkV!6|OlllTBtvO1JiWapOfX zAK|mrO;FT8>dkjBsLK(tn#N&z1vFnt`f_Az;R_sS)}q`wDxzd zQ9>{|iH`_(m)dfr24)i>d85Bw)WmpQx6DN4cYa&rJCn#Gg(p~bHOq5FJK^^2x5KMh z*8LAPFIRFu0}uhjaIeN(N_PAD-0V3D`Uv>*-FQ-qw1_*JRS@5da9|c5V&Yp|krf+_`3j{kqRT8+AyT z3T{4xeWQ|d*cP?Fci&UgXxaHSTt&_}HqPHdio!SfMQG#bUHc1B?R8$Br?(rG=*lcS zD9>JTZ@#FHMpr>Z$U-r-II8yh10}*!Kx>=wnWoyOX2p)&x^J`5C~qldPR?MH z7M+&tUXBjT+D4 zXWo_U7y{$rs@44qKxMlg(D|qTZ}=S~N73|8(${FefQ%d7jR02?q&Lt&%oB22Xc2%} z!3)|+5(@2I_DKg5+DmBhfj_>nI)Mk#uAQVZ{~v>f|Nlv0cpstr)*i?F`C&8Gh7Nrn zd`S?zrzav3L*BX_$Q0%E>GWsH$U8{ntZw8|QPlQP1h*rxkRE;g^U$sPN(5U+^?7G+YGAK~C0p(|oP%RVDy5}oaQ7r5Sd(w! z9fEx1h6w7T&2uwt`~$|Q%Zb2FcH3|jg32nc{fDUkB|>wx=Bd4Q{(stDLt)UhS8KLv zmW25DI!rF*;nmjF$2ilV`9KQjE5YWglq@&-+V>ALmpjTHpt-rMTz(!9>3^u4*u&@(h%$oa?!Da&PZew-UoTYO z=9vgQDbtVDZ*O2=i0gZP_KI<4MnhF^e4Q91ST=l!hcbbO$Tvcd%?WW0k!=X}dS)-JmoS~;C-lN#0NrCTZXkjg(n&1vzG&Ky>PY3D@xb1+?h2YC|UQa*84 zz^i$_84mplJ-2AAH1KU8cYBi2KoJQ{1B38$l(k2IIzb|EFQ527XzzRv>VW4-QOOZF z-oFDb4wWK##|^h)3!e)_kr2S~wFao60f+h&${0pC;d3JJINrhW6FI0s2KV_5Hq>uG z5f(KBXusfiGi7*#%CNLvf-3<*#Fqfkp^d=tY;bue{&)r+c?1Ntk5PR>Z{T>;<-M_j zzI~77;hmY*KDG>g3j?fMGxL+AScv`e=etY?^>=bG^YqnrGu*jbu$HPZ-`uWs?@uq% zYQq^ko>{EEC3vLlRZ!k|U~gets6*v}yzA<8m_N*DO65_i(kD&re3RkwIgN&d44Jks z2f3-ysRulw?dAt zJ?%uW-;xul9~yXWBAg@)OV2)7P25Ap_iK)-;qMYA$JSUu-w4h3dKtVh)gn>cU(^Hx!%)BW}d zN17|=6D`^PT8KW_=)_X!%rgQLN`Xh?V~`8V?#AV?Hta8U`j#mA9Yo{V>1q#uUzB>O(E4D^azHNBmh2~})-KA1G&b7K%RU{5@oa}gu}tw!FUJ5>6cRCWk-2JB#a~4xqk_) zrim`zbJXngy_oRR(1w^pe6s1)H&*e&T=#=DddH`UHTqb2-)2L9RyVjU_a;=@JLud` z_aZ6La?VtVr~uMpH0Zmy{9G$`#a;8G*MalpbJY+0fzeInenJ?o5*Md*ag^NMC||>7 z6Q=PYsx7iu2?G-6O3V#CM3Qu6)UYwP&iPTPDrqdd!jCjNqC__-DQF$`R)#f9Rd*PT zx7)AargofR&GKMANFQ*f8rvaio;UkD^Qk@w39wiR{^U!!;FV;!jcMlGvF{>S?pv4P z+7bO=GK3n3qwu|d+Cx15j!x%7)9%Fg_r{0xR(tF+^6kyGT;wS#N+2C-O*F1~Y->W4#(u2dd*>w|C-TKBrd@l__)=4|^mC-EPNgud$?JWypx3<}fo@ zsZP7R<)uhp5!*hd!R;^!2s#46wB@vDLSW zL>q5^wKUBf_O3IJHND~HAD@;6;w+8f>TX=7^ih#L>daGwbNbVS;cfJZ-|ez_a`kNW zptLI@VM$LCQ!XN*m_4H~PL7O+tE`x7zvI#PttY!d;?50Fuyg6J|Lvvb46_-V*G)%m zB=vm^{L~)%fo{n7QHu|DOUM$AatvH_KpAFmiF1if~>bO6grz*E)1tHO$bOz#boFws|p-38pIut3GPyqOf1vol_2vCFifp8QV5#t zO4gno=$C~_UB$-53*DJ=b&ldFva9~N)HHYA1~TfEQKh*Rh-;yxW33@&^M~py8x!X> zkSgwTO-IoSB9bQ4#*WrHEf9S~-TG|*WzJHCn@4lhjg6%tx@|?Txw|mdo+(va-ooET zE`3;Y#mifX1wRBIOK;1`DqI=|<^Uvtha7aCOjyYM|JjLa3x_kvne9-@BwxOrN9D(dRT#Ot-a?jNSfy+C9IUB>Gsz zc~oD*KUStLdjC@P__S^|0_Uqk%!;ZGD`KB>e`zPTl6ljkZdA%()|sqYA+ZNt)^@ko z*&-RMgS~M4zcm8aFB zbM<>GGCGX@WiM#m6|>OoE)V3rZF2Z%*z)4#$DvVet(Liix1#ZP4mO6iS8rEz4S&=c z;BzxYe9L%3c{Cp=cdpZ|;)!U;bf6c>CftWFl@P zOy+>dgeU6gF`EHD=fo~Ke<`zVYbuzgYG4WR|JZaSJYIuUr6hW%H%-a1UCIj}kl*sg zVLhAX+NvCB^smvyulv^9t_L`;P3NxC&cD4EtvqVXZe`e$7F9-Nzl?*FUS?ij%WZh0 zOQEP=*{E5*X3qM%V9zb@)o_fsqIh)Hlg~GMqGMj0Z3G|^r;{U!A1IXBty#KIW^y$Z z$YNZ3$)gEkz~z(PT*x0}_eCa0exjD{rPl9JW#Mb)6*ksN`;iYcUjN-RX6o8hswa>f z>yM-+T3ou^!W~7D!BI(rr9n=a?hbZZ9KRx*xJM~kwgV4r0#T1(1X z=eg2L;5=Fwq)ERo>gmkQ%pEjj9r;qV_;tW-=R_-UL)(rU&+^P76>iBbr|63K$F}_T zs$-hSsFlSF{-&RsxZwf{OulS()q0yAz;0O=&9R@w(@^IznTj2sgv8Y|%pg|TOE32- z8d%GE_-A9=j6EuaWDzVm5 z+FzewdHHB(m^H>olETGyXd<$jap_Z*9M*WB#n5q%6Pa8@{6xzQxn;!KMuw5@i=FBG zXea$4HEDQAIvb_7tCIT{JI-u)*_S*M3n<$cLXKBqnoJlu#8X5nOWkK(_%_u~A^J>E z@Rtpvje*=ACgvSUy94c^q8Q8BNX-W=)A~$9@_kF6Xxji5uCL-EhR@lHhOJH>mqGa~%j--k1IK2X*~fu)x@Mn7 zl~%pA%+yS5m3;mL8~WZLpfmPlYlu8f)U)@sI@b4u6&yRqvZu19%E8UgDyyumgnov| zF__RTb){W1#zyU9hRMjfVzjl0o3M1qBolbhi*glrTz#G>Oj47iF|)T(-rfqmjW_GK zek>uLB65r#RvfzN=A%HhyPUnm&*Th!^?cPJ`_h?Xa_uJ^8GhtCdL}6t^LMi=V!tm3 z=X{Gc&wqAFHkGb{y)j6AH)#O9(o0M0e?Ehig#$q&l5(JqOv*l>7pZgJr4rm)?8|!Q z{Vr-gW1dyN?#^*>d?No*LV(0PW3+tO_{VaR*d9KNC?hs=p)8gX3NT2%GcK{-m4t!KHO^I zj_%?7Y2x{V&L=E$n6djImPqnZIpTm`w(Tw3oTj`e7oli?qm zpJ&fRh>Yx2`0xa&n7(xjZKayRXJq^;8=|5fO!OyqRwChK&wuRoNoeV}k0Kck#W0tE zLDD$OLm-`-VBGBa{COcs1#2AXw98`W^i(P;{(im_f;#N}Pp{cg{~?w#Ym4*yw_}o; zRq%0GeR-N98n0_%T@-JL6-ZN6qDXR9!J|wem8Nz`mhQQ8T#$^Tf+%1-9KmtCAgQDT z+81}7cGdZ|vdPj0w!C-foD~LXJ^zW1=U0SDxKijzWJ-S81nd_XDV`^q%~`s%WW)fk$trt?$icon$AH>}hTJNKz zS$uJk#i~qMb>hCX16NVD!x2e!iS>fy+%cQ=?b+rp%iQ7JR8!uZdz!|V_Smc!5$lq= z*2+Vg)!SFqUSW`SP6mfe{zVVEFZ+6AWXvb+Eb?w{XgiWf9+zw`&Q3(84%^1Vo;6Zl zYCw71jRJA9X`QpFGVoZPE8gQMv3$2iO_H+vsq!n+NE!>dosBVjvePP!bx$J1fn7HgBxR~4{nD6({;+V8{JgbUW z7ye-+L3G?EGIx*a?(v;|u^}2S6@^LX6av9+;p$FeJs|ohMO?Vcx0;Tj)@vs7w*31| zYC5xPlt*kod>!-ztJC`vR489lxOvmxvP$wlwYn^-8xOW)uGHTY?4Ef%ZeJDV^`n7? z?%&`ARuyhe<_{7P)9n+EC9y({FV<$J=>qc8zj7Eaj7+mLr>ZoG*%D#gRgMi?yo2YT z-SSzXm!I#^Y?9?{#MMcqdJ@jH*Ho6iCxho4ma>!aIP9Ri*20ok>8i(E*}iMkacS1{ z$I^8rWN495mgVow>&d#kR5Q6^MP$Rqvl?pqF6EcGT$D>#cU>?g)pi=v>fiknd2XQ= zvD{o-%Qzw5tc2Qjtm<@oueGfBs}JF-4=0SbUh~N4?r3%?5qUZ*_I$=IkxD-Pp<#K* z@>PlGflT22o4^CUG^KDY{z7!w?Rvd)CN9_S+v|o-3ixQAgxtX;@9ST%^4cy!7)%wc z?y85dt4dpOU(ngwqer&JI806tP~z(GW+(>w|JP1i4xDL2gG#m~);Qa%vb%bXq)~@K zC5AfLlp9M|!gQ>=(gaPPOZlT1W2c+g#S9pTINR5!e6M$W@3*1#o{pBYrO*wXZhztU zuJ9^X{7Yoz<*{HfjDe(#nKcjQHQ%qz!{^YQ4_~e448;r;@qiViN15UmYE^Fr{S&1? zR2oml$aNKjSy?~w)PE&Lyb)o3V1}H0e3y-r66ZL^$((YxM0nzO(}~E};I4ddC(49A z{U-7p8a(ib*-$#NKz?IDF5&yXT6o?Ne2;DNg}QxhQfCB-bza${WnFKPSYz3YueU)< zRn}|#mT*x`5D8m1YUQpne16@xk>+0$x`o1Ic4&6R&2?S7Qxm;P!~_gxT{`PD#qGRo z%-^cE>+__fZ7tOMynjZ?)BKpXr=AHXfAJ>0S^Yv1hP@0==|;`C^OrNwMc`QxOXflL zm|I(>sc6ylLj1S-S|XR+Ff(Q2b1rpac*kbUBug$m7cG-iLa%>S(Bkj9v|OS)Cj>-s zr&y!?N1=s}rCE~|-wfCmESoSTOR$AY{hus3j>$G(xXaENpz*EdI=%F+pqh<|W&x)( z(45wFe$DQ!z^~nZHboIyPp3Vd9GESed zWpsNr7cswe&EI7JMlom1>+uR0?!41U7TLM%jT7pbz#H}w*zqc`=MQ?AV z$zB|l3N;&!xTDRu%W$9(6HOBT&8(AA#_PiyBx3!JhJUKUpP;X z*Wz3o)f#rK6Gq+Qhpz=0WuE(TXp*|U6qD!VDcG6$Gm9tt>*`~u*` zhYT!cO=m7mPWB9hR%1-TjNo(3tr41+Dc87?9;T}8H0@hl9&dSn&x1Qi#;Z~ zVDeVed?bK>6x&T=M+05H>3t7c?pe)5D8xJr4*F2VQ?nJ&b1MupiDJ)5S0(QyBP}Q8 z`h=+J`I3a;_;OXpb*dRa!%t&O#|ok~OBsK>E<2**QCi=@y>SC~7D~qvO1x>!8Y}%wmRCEh&B^yHGr} z>xyZQ`L7Aw;k(M}6Zd0A8acP*4cBlJibtdYNy=-BU8PA@fO&J3miqN?ERC~LwT&Gq z+fUN~($wk*xAH zPv{B~IOC;)#GSlDo#9V?#W!tbDOmOzXl~$CsvB1A@Gr>YIwX7_Nxh)CmangBUmf64 zK1Nt`zut4cDm_@O;JN7?@|5i@vW+4-oE|FDPePKkX|tr!&B|M!=L-bKt1Y|df3De8 z&B1mLMIouLp9`0evobfuE%)jnamvxbn(tBTz5XE1f&z0LwOzK4H@dJxzS}t;*N70^ z-8Ol>u{2#I@mQctzu8Ez;T|$OhZGPv*=l#dH)x#vv|4O)A|m$_eM0Q5bYJs0Z?W+@ zd)IN$P+k!8Twd^bxm?#EjQw2VQ0}!e*N&m>J>`j4AB8+LV(L;%jIkm+Y`gkhIvC~~ zs3@y*=LNg=tFZrdP_9C{8ae`&i2^=>Enn0OM!37azfam3m6{zdo?S~l*3D)ctPO3} z6H-64HpDpiSuB`E%$ZezP?4n%8sIv*8oB&bc7D<&KUd@1h+9GFf@Gjq4?2E5`b9C% zhq2^NSG0+7^-HU+hnQbcQ4AjM%~J>TlJaP}L7dO91ApSa$ap@F-BWz2EOoapJyhK= zBTvl^aN`N$)s8lWpwJuRw_5EMvOcyrIV72F&=y&bZ~U;m8B>prc+i5iEZo(?R+X<+ z)Iiorm6VbhyR>wqwAU zqYZz(&vLg#!sesdjf;E=QN?zWNK;qmXr8>0!bbw}qez1$lFgpXv^&HkwfPPG+5N&p z#YbYV%}sc|N4r;)l_7bu&*8R_CcZ_2)Xk7_WpjUBf$TEV@l1Y7ej!ci@$Y03$Jyd2 zFUjFW-TWzf;3z#!O+ovdsHdrkP6ttSm-rD=r+#gD8B=L8`%{~^;!3wwJI#8<-JDk5 z;hRFaWq~UHO!PGHdB#furjymehTFcPyXs0mz?`B=wO(G{Kk|xOjgY)^`;wCU#Qnsb z#NMGSNqV9HVV!MhZN@44EQ1m)R!&NQ?MIfQGa{NqdRLmoXb!$)N1~@%XdHSsKWs3> zl~>QGebqT>k*xHO5qGV)+id-g5fQ&b_K;0*;r7GsBJJtsMPG`4=!mzYyXO&*#Bld&wiOBeX+e(s`zp460 zN9GlbR|4b!4E4Moidx7e&84DRdz#f5KP6^w`l{3;KK>Dfj8iW|POw=B!*@}p-~Cn# z00H5rKYI`&I%G7G#5OHeSB7N34v|Zl_{@ZzJJ;*#pd8kDkhHH8SdMJ_Rq zheTfvO0AzN9X1qLsb{F)@5@rBK=<{kx_pQboO*q2R7NxXI#q_k<&Q!y-a}SXA5vBB za?S$g>vd6g8I}!@P%W)n6;--TWs$)wYQX#-o=Ld{~&e>Doh3L4>@YYN9*bEfAB< z)5XHzrOOl`FnUvS6rmEUMP3|;+r^?t()WU7!-U;wpJh9T`+u?bmSI_~UE8S3L_`o! z5s+4CP!Nz-kp__vq@|^$8$=|e8zrS1lx~#n?(Xhx_P9Y^`n=Ek9ee-U`^P?xmBM|` zYtDI%ag8{~dESMRW);Qm_6!osXVOHu@cuaI)Sj;j56Ib+KLpJ2QVHd!u?XhSbj^NU zvx0WH1R)|I=_O=SzHwl|K@Cxq^R{L`*`x3MjliUJ+GbrJsA0Of+;BKrVqe6SHc={A z-Cgt`#^_Ze#S+a^EU&swEoU=qx=n{gi`<#?S7u%ws?EGn-b`y9w&9@lQ&quaXF0v@ zKsjWdXtnNrhV~=h%-GT*!R;Z7@5w&>nRa>U(^wSA{_p83kFBkYC$sGFaL!v6x;{$_ zIE!n1YlCN_RvS(5N;CHy@X5O_E3lx`o5>xcdN>?X=DXgCbPF-dwoJA33eBcj4JmC{ zH2PIw0rA0ro5PZFly^7q0uoe$)vJ-b1O#mdJ0pfJDjJv>6;mbnP+j#x5*!+oflNL+ zB%grh)^NJ+;bSpX*NX6$S`QZ<_Z`~z|L=kc+EKmuLbk`)9zM+CNV9o(^bic?7i>bElSy{`nkyiNro4s6 zXLy0Ij1&>gg*B}pAy6RzL_jcNe|pAx0v$5ygIPy@gtmw?)rYntRm_=6@XFPvnV|7$8qLGe0#iZBCq(*kGyN=zvO#SiXg?{8Ul*) z#z%#CeSLj4;_B(AYMUCudn}`>o}6H2dS&$ams16E+DJ$qu|N-*PAqX_W+=L_dzl9T zwy|PdVE#Aa!I?BQHMQ3E%uN^#zaYl3IFRqR#0Y=<)eU5uCa0#_{Jz1D=mdbp4e{IG&jGJ3 zNQ!Ns=-x&0(uo9pb>j#GBn+=JL6ijOA;Y~8v;v}cFfI=Qlg63v*^XDR+UT=j+$RGe z+1g%=_!d(vOiV73T1glwBO~^48TvE^78~!?QarY<`FIQLBH`IvhY%v&&J=-#N2M!khQPCGKt}P0{pML!Y zJPVoAiXi6;RTEeZOu{2P4*X~zA@6pAD+B5a3B>t#${qvEIel~*s$S~ZhsAR8&oF3@ z`x-4h!m)yUc?lRHYJ!gfe@4>d6D%5n50_r;M5Tyo`wx|(z|CmEPMXYZ)mBn$h;HFC z)7S7{!XX3yg+WtA{fi%VTci3ox7q0G|Yz|Sq*#DCQs0pe=k?n z6EU)h{m*!}zGDh16^U?Y{}6&T|2oc;DE0|*}c5Hg@n4YI=lOX zMLxjXq1nD$l6G&mF7KpG5knxHpPo4 z%LgC+lCW+i0hA@ODB*P@5Hr#~4|g5#1F-GC7ncv*A(xlL|4DdsMh-#(``bXeF(?fx z2>*US_++T-!&!U5#ULh)7PU!WnFlU&>_Jj^F0U04B5*))mBA`VcD?O4jUHaUbM#)P zFVcB;-klg-*BLTk#vmu3O~40U0HCp0v>5|Neb6nh*!lHZxqw9=OI^&z*Ed6@8r4(- zQXqJ@xF2{Wy}wzR=03)fHtcviQQ)6(r3;AjZ(?TwIRS_?0GC9DDr|G(W>^h^uXQY> zsHjM-KJeS7uhY!Tn?Jtj=FjmNr|b7$$_RT3i-*j;X$)q_YG`#ZX6fIL*^|!Jx*?rm zv94aA0bllA0a#dsO-)TDB(BTSY7%bVD9k+FKfwHdg-=8;WQgdoX|hdj-yt!YYHOtc zaE2YMl%uI^_LSIISz5wZR-kbnJU-e5a;!FXge`2nUvY89z{Jee8x*L&=LnCD;*uW8 zuN$56jnli;-s6Xk^vrfKP78&Z?jInxI;9OnE{jG!kEsq{g4n(5s*9Gzjtj~R{BKLS zFEblQGXG?XJM;De=&KA13hqX&t}meGp4PM~jV* z2L>p+hyoCyS?KxZFerU$MzAqYMJr)DB7TvQR;_=)hrLW&a@Cu!=s=rciSA(Ws&nRy z1EcqEc7bGOXH`ADCEvS(H)k{S23h`ir>7*H2qyuu_s_bPatkGld^X?LM9UOcdCW_i zU?HDBor7PSHA;a|LDLuBE=6H!D`cdk8mnWK2(1>=MVVe6C}_iO0}|pb?|^`8Q2tn) ztMP4U5c&w$0_u|(7vFR^vtgOGz}8$o)fh7Cr8Woji@#{S-cdd$z&{-#IX*m@ zqOLc{7~^qvIqz;)F^5u6L9yn=W4f*O;pO}HMYn85eKCwRCQ_wo?BOZHb; zP=ZVD{fPPKvxeHJIo;@TcAr+BE-U!ji5CIlpbTe#$s%;BCCq^TuBeFZ_hT{G12tHF z5g5L{&ZZus?n)vY-p(V0j~rt8?tqe0b92Qh9A%c=N9y&PSFaoh^?S4R+@;2S<~{4v zO(+%h4sfa2utigeS~ZzNPE1Pz$RK}nN}W8D$rQI0we#-FXC`-u9gB+na9qxxRmu)h zem;%&sk6_GEmf?iX409ix7x^)Tjb3w*UdfSP_qsfi|kBOA+3db*PPwm`8jP^un@QM zxbodEYFsdZy!Xr?-jid7iS*&+e!74-?qmN#D>1GIv$v|^kLOZM&Yk-(VP_)$DQ4@o zX5A%r>s$5-T{U@YbYI+i9&Fw@+kJ67w>I7A#O1$u0)FRIngC&2k8I41WrB0|xO*F$ zKa?!S=?FxLKCdd-CV497__P;q-)1k>#e)0=+3TVR#V42W0{Fe=Mv1PuJSAOXG!|!^ zt=;5ukUtN6bf&GV!Ubi~Sy@>K2b&w$d6R(Pc+{C7gVjx^Csj6=V{axJcuiV45T|oL zzzk27PvL*Sm)~*oLd-DU32EXZOq5H8vCm?yaANyAdCL{{k;L}*U$^+0_0?4o=D*Z! zNy&FokNgK?&6_tuEm*2Jz~_%q%X{1arm(d=0-~N-5AF>hhw{)Nxo{SkfA0zgdf!Fx zyVxMZC4tP~C+#r&PaZhB0F$?q{5OE0w;7ujhHHDpY|g+xBS&Z5-0@wRuO z=OSN$kOeaz-|>?N_R%?hQcWT<9rcPeJ6RD%d}?ofCC%>y2uP*MR60G|OOeg>w9)+d zECbYuGVU-lf8HX8EA?Fb#ZZmd_sC@=#W5fCb1|-*Um6@9<`mrGlq*xrW2G&l`|;yPR?~&oQrD0jfkUj&de`vDlYbV);rqW{ z{Uz@5)5+}di4V;K`6oE#IBpc!H_QUD_6`Fdi2LvvX8pzUMzMY7Z4n zURhp1o%`T z!!q~GwkO^$*L6O%Y$j=@yRejV5yk;v&t*8Lq@)0seM|obGVi;eKY#wow265BGsb&K zwzi;}c{2PY{BEtyv|$$S&P}8W6CS-LZ|d4X=0qRL*}J*kSXc|pl|yNY!QYM@T&`vK zuWGT9{>WMY06drsH*i$oGwKgDJYP*v0wtn9udp$DP;u8rP1NU|!8Y3EEBdecyM;~X z8G^p+Emu%3M+SzhJSlxGZF}dMuLgr2hGcq@GvAg-cOSZ-SMV)7W<&E0V7j)sa^{RR zaex3l9o-D)&Rps7Q8X#W5kLpg3=9mwJ!9eGo@k4K?|eszFk$() z73#muR8X1H=Zr+Z%-=p9B>eHsFkwseAUCKxqN3>b+pYQT7@HFMYTkapW(gd5h07&^ zIUa+2@M6dF^YT!z>3|84bR(vW6m(dKI604JTBA1@iI90cZ`an>L!fgSfWq0r_KYI7 zF@&i)VIPio&_u3UqOx`3t!so6`F=Cd^~~}+id@70&0Kc|Vy{(UNy(dd@u_M+A-K>q zreWTZsUc#z4%coF2W~w}u~Fc%`|AL+_KS!pRjxz^4no;dTlT`t9c+9LJl4QLHu%u` zL;a!9aETo_kN-MC(IzJ+?*c7sA}bJYHBYkv5nYP2^QA&Z_>4LqAKw?!8yvqi!{N_P z;=Gk(J#CGqPz%tAVFlt*{4-~EehdzVv722((25D}k`fb-MSF2X#bbv5kIzcD$Zo=I zKf3iFtN$}b|9wCpg38}v`d>Hu@2{((0o@XCa`mQpQq?vzsQ&rb{ZHdT8AkGo>T0{4 zQRjswXuLq+$pmjqX??2E&A2y9^Ut_uEF?5EG$DaZ=6<3qFxmYPv{|{hxkYb!7C_AS z$NDOmEG#S#oRk;*KtG}D8!HSPz-AjHWNY)bdM&9nv!&C-4z*5^@Wp*>u3p^z7n3F#^ONx%JU)XOWrc`k!CS`X*w78V=%dA#Bor7auk ziInZ{zfn!`-2Oh;1$Vl0ZnRYs!Oo(3&hu6?3wwO3Ec?A@s?W^*Gxgrll6Yr@``wBC z`;yD05!BSha7o#s9bE)(bq4Wl?I!~zg$(UAAWPyZFME1+K#jm!^l^OeYVQVf7jUq! zlJOn2hXE5kB(@83EZjLPCsRrYD&ereII4y2l*)j=iJ)E1{*)s@8- zJ0h~WlV(MaT5Fa{+`kIE@WzT>&R{sX!*`sZGDuIuR@YA-ExveWx$f$v5>kTnJ0!wh zUbnB$JueWGGt-f~S@_lZrx!Pet&R{~o3B^ss)no-j>SkBPrppYDCB5c(%zI0o$Z%Q zbZ*U%5SZijd@27jtBv8FX07^nl=wo?JO=F~OF{6s&bb%q2zwQA>1X>^@+u4xi+hA# z`G^n_gKex2RE!|sr)q=XfWf+a-d9~8UkqEtKT}1Hy|?Wqz1KwjQCLKlr8$>~sY1;6 zmaktgJ{h8!AUF*fai#Yss!ChS{LnjbFv0>eLGTdHCr1!K4pT$W7;E~-5At7rxmyW@ zJQWocoAcf2tqwo|3cPNL z@DQW57N^g}+5+d#1_e8G#nk#n7M;tKv3hVe?q{6YY4}H+DS>|COohq*k*cZ? zOJd<^6pMo7)gg_8KUw9G!aql2;A}w}6EBq}#~*LnK?3adi#B41R6x~CB@IpoWfL-K79M{9V4mRWt?4>REL_Z?K$U5Ry3HOiub zg!tTpQt1(vgPxZjyq*1>{mgC}X!?U>2^sOp6_kW|i{A}G43D=Z)-^3d$d|ccva7#_ zIm1%9dJZFp@>Lo`q41!04G*jI{Kbn%7u-d<9p{)r0^+P&%AL_&v^?A?Y0uUDLD#~< zbW)+X0dra=JkLLc{St80wl+m%g=<&Ke=0aavImURy@h79kpF^SU#)Le){f=n? z7k{w8OkGdJE^?uc@TI%#P8Ob->%(vzWh-k#16ir9fUAzY+yweIO(922xTwa+92^f5 zpWLk!54aU6(p|}KCYTkTKIm>o8vxbNn?G4iF8A7C439XCDn)h{%hhnQy)P`zSv4<7 zsj>KYo!NaGy5wJ?>1Kha2J;?JROr5u(fu>PwsJeoWeE|MLxE5csfmyn(hHl4XyNl( z^D60lYAWJeFmCpZ`-Qst6ghiFhH7a(r~Khv1>J5@jCUsQ>D4d zu(wn~w(GaWUee1d4wbGi1nkU>*S9>wZPh})aJG;$hpcIReMUbSbxX7{@iUgdL&;Vh zp3)#oFbtD6e>I!r+KVEWHp4Ry&wISf@Zu5C8W-I1vWoslppI`BPfc!kUhgIDL+!Lk z=>#fc4D$`?xMR=EHvb!k=eXUa>akbrV)%fZ$=^QU(!`yEHd40OOGfeKYg4Nrsn6A_9 zV)r~1mkd{8u~+RVXLdBB_S;o&)!UI_~B88+qo5R{DNw2`H^<6H8LMbt-_NNMoIl%YBq|J&5|)(#&K4?X_d+~ zP$jCPz2!@db}C0#r`_G$g!U2@OX-6GN5C7G7)rK+O{=jlgg6T1v#7=bM}v=IFl?M+ ztUA0ZgGI>FKd&hCfuqe<1BDewUf}%@u?Q3^n=k~M#!X7-J5Y*IE^ zGhNguHx|dhPv+&X1Fv3hv=vnCu4A6b&w3Rq9b-My+J&AmAFFmJj70yFcZa_tulu97 zBU3vj#s0JY>gEz_-JX}TC-j^17?+2{7&|@OmmbHDL|@K$kVjW$ndyg|75+N!^Tz2- zlGDg0)3ZDuXZi|?J{h>R1v#Jn%(Z5XINTqP3>i*6*>oZQH<4r2k-__b;J`ma0lnN` zk@0ugEo3jf!H@G3btQg}2Pn7Plqb2GQH9Z>NSsbo?nY$pH}aH|@V|(!X`n@RYp&Sr z!o&{<6^RfNzhj4)3zSXl4+;t*A5V7;7g`1C&IN|*qY2@*-Aix<$k2hY(U^;BzLp+118fE1nb&c?w2~KL1IgG2EO~oW~+;393UeJQ;&ah^iNRe2?}< zEcQO93lfnac6yExhS0%P0QtZU|z?$+4UvP>!6%?O`Bd< zmIe35Dd&NgP7R7~Gf$|@ZJ}ts6rCC9lr^F47 z!~EMqWEtihNH?luB{`gCj=e7%rWW>1o9V;)UwR}4 zZw1Mu$J!;2OCH`U4FZw(8XiMT6?Lzf)`vaKK)}jhbTFSa!>&HmHBPb3%W5MNj9;oF z@NEC0J;xFau}`wu>o@&JenA!O#ZN~gjoXgAL3Q{PLN?7#qpg!7!>P2Tiw@so zkMfGFG9Cy_I`K~5q+kjt3QXvFcVRb|hNJj+c6PJ5TM~ueH!IX8l23)3{^XrcG@RD4 zp^|I`A%351j#}eyFMO6R${s$5B3?KrB<$w@@W0#~UrArS}wiwagk4Q{WmVpHz zH(oV%wNq#le6YdS#y-azz&3ACM~GwpU`R#09!S&z@tgk9t^U@qss{m1cUuzQH)wVt&@O9|*;wr!hT7SC zYiO>{X|^ndsI2)+B$~xXRl<`LNM1FZv-`Es7Jz|yxWY+m?q^zEq*l6;u+fKQG~f2l z(LkHos2c59{%FxH;mH%@b01z_BA^WkmT46z>05nIjIo9vs`Z*hR~}P+UWccF%Xob{ zjQs{y@8tnpl%9iD(&HnusfIMAQGDY_Uay1@9yukDM)`i{SbzEXNbsYZobQ(JT}wl9 z{X*s%<$^qvD=Dj=92+}io+Ftm#V$kL)phR2x$7^`KOje$zl*9N*Wk;_&EB%i$==jD zPB+`v5)t`we3|th3=AZqUY(ld{mU`qP^wiDKokzA6?sI@ zaa`u4o<#V{+KKo0$ZEb>5VtDlruId?6#3j~RO|H@Dx-DEU~0qZlt)4MYoC&ZQ@;vM zER+(j>ryiZl|xPZvf8r4xbiGRVBG7@cXP}`6ceD>@aG#bplp8h6~)cyOLA9$a_mjoA;m6cJm zd~kL)x^z-QIivsQI-i=~$$Gz%P%BP$9pnk)4MeXhDJjK-v%WgL=g115yZR(6xvKwGrq;z5R7#r^`*jKH0ZNkd*R+COET6j8liv|Mn|%^l6)y5!>Ot z;|kv!AfRP9?e)Sc)T{oti`O*db)C32B&hU6LJ_g*p5UkPyHmlBS-ThreQC6x?LMF{ z*2VVGcoFK})$taJNrQ!E?I9gW3;nsv&^8+2IO&3pK*RCh&4c9i0rnNPZ1Jd1jgk6o z`L0*j^9#?h2Z$s=>;@7RxmbyJiHYAYVV>Mx3BUmUW9{gQ$e7`a>dp5}IWkq&u4gqp zy8c-SQ^r7_N_W)fX{3w0dkj1<@QRXYCq1iooIq3Wu6>fjzk5x@h9Ltb!7JQNOY!~v z_fxW(UHvg+H14czczES!MBNMz7nAH((?)h217Q}6IafEg2PZP6f9+X16Z4IcLO+9K zQj}E#qi;cvvUU2k2R6Q<^bTj=Y%jf)^TeU6z%tpqK8gIWFxSM?zvoe2o(c9tOa5nL zot*leG8sJN`#aI%w6s?i=KH%UMTs@1y3(5S$U{UX4rL^@`SB1<$m{v&|KLvqEO(eq zKFEF(Peu*Cv?UFn1~n&Viw3`h>uk`n0A&=~Tm%?}Ku_0$LCRUZ|lbjx#e6!)O22QC{8L z+}+;mbnru<@DjKBoP~S{l^QnzspNpIp@d#7$H}^G0y=>pBQq0BMNl6z>ZuGHJ-y$r z_w$*CEop~A(>^F?!|`>j*CM&iEA4;+HznMMZ&E{!+3A{us|7w7_asNKcf4}+r;MdF z@9lW*N#-*hx)VVGxu_V}Y%rDD$B3}CcS60gkCR>6#OnwoOm z%zCNuQfEF7SDgoC|G`~3-!c}ISAH9vi_Il=X5#NIU6p#48n1es_Dx{0^6OQcEJS|`U6)Dj3FJFV2mQ0|sbIa`Y!zX* z{d{J_Q+e;ex1_M7Ao82!BA`>UuIKlY=J}Ek<6&4A@Zd{a-}Ntaxt))mu9gs{8dKB9 z*5;^IvFI>1U;hqyY|1$BzG+GG9SMc$)AsFCX!MnXWQe9*%n~Sp{W=!vB}QAzi@FbH z7h5awrYM&TH<|RGp?!@O708^8=Ma^RT~hA3cvW`Zw8L*Jz>6+rdY$)Jv@^(Nw~jDP z{#M8n^tFtnNy_^2W0-(f=}5#IJLktbDHDxDh7KtHsCu%iGe4noHPfx4(Uy2|>zP!t;5K6a z&`yaxoYSQ%F7LZ z4zE-l$Fml#R^?}awwySHutJNp5Gr>!H#tKzA@@{49o7dM%3+0KhK)4?sS>B#)q2s1 z-Zx!S@ch^+QnHro{F7q%WX%!ve-L84j|b9qV`F0!UIBD$b-KBTkciQnMeoNS0O>F4!>X!G;?0&?a!&>6hYYVlh<=mf5K<*0z&lEz-PG zd>EWJz7WL;_Dt42WFu|CnNHCb{v_UHFj^QeGIU{W6BjsORH->he6C%QvMFVjS7D9O zw*L7{I2NmB8r071qUR16!z%Emik=68lpG<}Wz8EmZ|2w?+v;6dt75ZQn}FD!RP2C*XKOxC@b1&w>MoE7T!*wpLyK=@&>-9HFcM(i7m^1xOz`y>cEap2qzZj z19$ny0v`O1_@VOCToJA&s10q}+A+6se()?*4f;BW_qSU3bbK7V=vcDJ?^v}KJn7a> ze>=G=XZ7}t-6h^V`6)=Pj3-E?wlau#Tl8lQ8eJ0Z(0wtyx%eP*H!JQR*Qlw@`0l*U zmilU8Y;yhq8_Uh5L9?;~m4UL@*jPHe3B!B{i=l5OXN4#Z&B7D$CZ3_uVRq1iAd_5RQ5K)0&3jqOY#^?v9Z|L?*YgM~Q0eww8cXES z7b**%Qls^*A(gI(4jVCF#?!tI_!-2KvOgAAH4K~IcXKyY2gWxu zdIOwTaRmXTH74Kp8pa})tv9EcG{&ZPAHB`i$$an)YtF+yPi(b)D3MwdMXlXrwsLQ( zfyZ2x;({zsAH92z_Vf2!4|xM~ETW_)Z%Y$jVp?8eKVZo~w> zh=tA}Z024n1)J9Q551etyiBDYxJkiJU(ww=Qr<*)vMnBz9m_Akb+3U@$Km2q73VHJ zTb`s6UR6c$OO@b7qY$fhyS%*m_2pTE`K-FN+11B-Te=xo=c4q7QnKGcw4+MAw(-)Y zrZsc6a4M^bkk2O~L)YN@Yeh7yOSs>9ntIDMMq;=l$#(}n@?Ax=aL#;3yuXWsqoRZK z9KIJI3S1g4Rg{$EL4$5L(nrm*==5cE_SDcPaTz6wufFxMuZ899ISnQaBaXVRO)o~1 z*kd;S(!p*mb@uL|SA(7ki}$cCM+#*b@ROpgP4w*NVBBz6n4rt3nE?QD?>#?jC9o?Y z0H7x+kgx>DHWA_3bz+vHj$h@0%Z>E`%7(C zs(J#OZzlyS6)eo{)mhPz%_BU$;!8#S2k@{`O%_wJUS9UmZN`fjPT2Jxb7V|fdGkG7 zmcb|%S4teKIf8D?hXb!a=Q7`6anjMe9VG`}=$Bv)e!4fq-H+C5`pB=l0s&$B1M#ak zxpVQt2-N32Fy33nA9#V2BZdSI55#}-yGWxWT3TL+VS-lE>GFsG;xzeVmSM=ae#|t} zZPvYmsq`bR41;b9Xx^qqk3z;OH~z{bK*X?L$Q=yItesB>To0zi(SyX0=JtWDwZ;Fz^Wp z4dm$J;xQ&J^kq}h(0Km2`ungE9{a^nv(Y^#Kju*9!41xSqm1XgNMQkiAWJz380Uzd zwOCeBbgE|nl4Kw4fnWN=?!9d{w-Bp@w!74!&S{4uo>dewaB6Eioyd?vB2{w>k@r2+ zjJpCizTFiO#OSU|-Q_O+s!*>PZ--~TQ`W?Z7YfbNC^GZm2RlacVVeC3==oa~vjg0V zq}SN3nWh0_lHIM$z2ucDb|BZR!wWzJ)yCg>=TE;PgpE%w*eim4saqIlYJN#sf4-+I zy8072QM~K1MCnL!K?f%MLOEjs#l_Uk$>Xr$Z?;=shwy?~`71C;gSOb6n~;Zgt8x{) zWHQuu*ZP@EFJ8L3x@~OgPZm*cCoz)Dn_-uxpA?-0kznv?as`>W3IgWQ67!jb?WyLQ z|F)|COe_CKX4iEp-1k?K^D}S7xdReu`|I7;(9!KrfD?ab+5d;!dG#4hP<@9Fj#%@r z3^S=LTD!XmG;?oU&kQn|ziGq^ylUdHFUYo*hegJta3BHaWB)frM<-}&YXj=h*#urk zcQYXH{PFJ>kz9jVU07CAll-tzn42a@r3q2RL1e?{H06SCCAzu0PyC9b7#SHi%5l!C z50}_%5HbLs`pOB!^c|p&ciw{PF{tC}MO9OP#jx4z!CpEoOlY-6UD%dh92Mgc{r@_y}OQF2}+G?9XGJBPVlcIf7M42Aa;&qyMt9;nG3>Dfe7$zw~`db z9xB!~;{E9HY;I|AdDXGs^G3@h4;oJOxLj(IH56CBR-7A-Prm^`-ZCi%k-i%K_bNok z1QDB<*hCf0%w&VF`ZYmWv$?KfaZ26?yACFEjI>js?`c%oTn7g2!|O;}ZsOm#al=4V zR2Ll`y^af52O(VG{W~4jS_51GXL=11_MorYt^FnuU4h#42G{Gm&JMg5F4#N+2G5`J zPm1wG*Pw*7xQ2XGkTrh>GP_iCbcVSFAT47Abr){NY7?N_ zE`7A=1DX0(4u)nj4Oe_hZ$zYkseo7dEUg-L&S%Azt&XQ@X%ogBnKrcrDfKOzvxaGD zG~6Gr6!z2S3_W?UJKbD=;#ppS7RR3j8U~9le0*|4MQr8z`#BC%G}wJ&4KB9_iVOEm zbf=%r-Qrm|s&R7;2#USI%`r)%{3_`GL0eSnX>TFhuXbz?(QY1>A#Osj`2XIwThs zl6F(ApBWA*n&~p;^AA4Bct+O@?7W)f*2K(-Ps2@+t11c5Pandu+|3iL;qp|;oekHM z^~qN8b^a8vCI4A$6Q!>#8bs*YB7GU5Xb0sxsU)PZ5!;BAiK~}TuNtSO+@t_bjnuU=(J3W48TQVt!>*)K6n`)JJF8Uy|6#$Gt~l-Z#rPAzmiKJz;aAr7qJ? z=O8ewg`L*4O%5LJQPpUjaT3iKs*wVzU|dX$4hU9y25R+YYfC}xGxt5;9SSnCp1*U? zKTBiqzB$;$RP}E`b#3f<^PNQbY##htn@x1qHNMBTAfq?_DsvFe%mZXa=uu`Ako|$$rBZUZUrX zS?*G-PFmCC=po(|zSv^cd3o~#e_&C~aK451@`HJiIfKk2oKqmu6+mt7cmPmRD4`y)r*gCz^85p2qd~Rce0D{E3%6iJ<@Z#+uiVu7QT}ZX}npWV%8z z2vFw^S-No$-beBx<5pOU+a2FGHTDzGSqL30-sd=y<1@rJ^F)uW5$Vl&^!jVMvzvp* zE1l_uQTn%SQ7!(~*^V2hD@R1?e_SWw$y<57wG5st|m_ZI>wQ_TwwGHlv(lE zEsc9K)NJ-Ph=%*~88s7>%AH!Nkztzf9~RSvSE{NLdM2Rm3L@$w|E_C{OH2&o@SD&e z;9ekLKQZpWPA6Ww<3py|O4Fr*-41b){K7&bkCt07ZZ>Saes!<_9#{t9r**`!i3k?H z>JM`OxRu1C=~p0B)U6RE4Ko1wo9y2}5?F%-3QTdBym7up3V(A^g0*$#P|dOwB6e?ilVuQC4? zLEUYN^K8j)yJkjgGin~OjB8)--NZ+{X@Jl|wg5`yIFH_b@$k61ovw{SN*XU3%~K4Z zGY|_!ggrL*>cRAWuRnTyTCLi_xsbBC9!s#_cy+$7B>!12;nt8iamHMYmune;S*tCj zG9u{~7J|;x61aw~etl4^wE`Vr-M*~RBW8~dh@dRir|mmDSBi1JUzE27Hn!IehQ3xAQlA)w6HCn^krHm&dGsS{{A8 zUwX`HGS?BzpnVYyUq?InP^b5zfw8gm!nbM#i^%}kSrN8-A322m0DbpPKu{2Y-WJw+ zxwZze5F!9+o-2Q4WatI~fGsH8E(Fm&C=Fy!@Qxlg8&Zv=U_}Vnc>xtLV+1}XuqpNEuHg!1q z$&bs@vBubkznf8!j=T_JDq62r!pkKU4z5^yMFQ;kL}X-dAlzOqJuWfXf{61x89O^W zBV%A8uWkUG#P{yp`D+=AVQm5xU(-amwVLE&if9@Gm2?h*BEB#%kQpl4RD^3Y@lb8f zbTp>R@-kiWSrh4JBysRcil~%`uhS(%IE`ym_8)k2!8(nm8pbN!ii?W!4j+693mg2Z zR1Wb(kdM#m;r4Jl=~rdYDn^<*aWfGC&b*cV)yxmv^W9B-giq&1V?;pX8dt*TTc7H4slwB?e7ieJ}N3L-HUkd7#MUQK>h8N zh4u@FZ2e)|DtGLdQoH5i?Uva$kIhwoHYuC?%A-@G7yK``7F7W7Yc=Pa=LAuD@8ztg zXt9aO`{d&!v(dPjH>R5@ue+wCP%TXnW~*sv_??ttAUYU6KFS3*jE{Zh%rz9~aki0o z>(_wrf<7W$>A2|4cZbUf#bUJ*tG&Iw_Tp^Z6PQ6f8?&jW4W|6l-_v{fUluL=vU4%a zB1U$p3LO=toY78Ms&;q%+qZAVTD*9u_-r-V96sLOkF_8JoACjg_%TAtRsaIZ0A2#K zf_bXEc>0Dc&Gx9Ms3D8#FvJ{>Fc&b{latdaENIkcJ6!bHpJ2~+65#PBpl|OFM7OwD zsi}u&CVLLneZ9dVCUm`q`o2teC@;HIOe;=t&6q>qN9-!on!VeVyKoq=G_=}3Wa-{h z-6;3)M&QOz>ngKAeeUXdd@#-F*Z7mea0vTHsaGjXY}jZ%8YgGQ0-Dw-EezHH9z>AAEv50Ln;>etb*{X}SkW-cU$XN{%^;naKwpEwNT0Y?tC-RN)#R*za>Ru_bufQ~*u4tCW0>@- zs;gn906OKL`}w%|W7|k0tmzmTxB9ZRjiX=dAbB-K(EjV?SiZ@~i^^22eUFr9m%FW_ z3kRFE^Ld)#fVgcN^#B3!Zd60{N_@Yvr}0@gPhy8_9FU1M)%#+Zh&Q<}a#))X2NBdh zUq)UtQpWBwS?Ho#9FH&S`GTtKq!h9lie=)&s*(6`{`-}3S@P&;#(&U*HSWy*?uX;x z;KSjl2zEnTwDL5FMn3Px)s}R{(yO?P-r;BQ&Z9x%Oe-usL8<;~dWobOb#88UO71gC z_NLWCvPVS8dqEE^cq%s1RK1^7v5KJ)aB?b&XyC40qFltk{yA}ahBq)H$_tZHkCT}q zR~709kP5iHTbVi79rF)z%8^horZv=A9Pe&Sc0?SlVR1`h+`I$k0=hXhQC!IvbMKg- zkZ6u}HkQg>lH#A_tJ9qco^U$Yi5qx&*P01zjLN1g8V)oV;e9*Z6bAT#tn5zP`XtM2 zy+O;NB8zG-g5%lvh#6CREF`b%`RN?W&Dr*JSaYXN*13-PqfWm&3WrRJT*AgqFe01| z*}b4E66^OgFx1mBC;dvIF?In*@mBUx_Vv3o3wq5xmX|6gA~B4z|ZC&URkTAi-4agld0YGJ~OgqRpqrBnte8|8q0>~BZyX?lH^9QT~fZNAJN z(_mah;}Wtpax?Vu0(W!a!#YOpt|=cHDiS?{>xzmOC9W~WXMXs$ZgVekEgr<{;RPT% z1pnefJXTz+mFp+h0E@pp+wPpq^td}s9>)0sf`YcUhwY4-&#He|;R|Z(=sfga_1S3k zz~29v2z$zyMKz*f&(@HU+6Z;gNvYo8R@k^si(B=>ZZ)zF^K%v)J(ZOZcaa)DGMW-n zRwg$4`i!_0j!THRBRI`h-u+Gu|3yx`9Bl9{b|hwFvla}4te4X3hKhzpF8FydKOdhbznf#fpNT(6$=gD50KldsK%6m{1)Qvs+-+fTRC-UcK z!LMzX+9p~?HHgFU_>@^PCW zEktpH`9{thcVFRv551l*%Og-*I(*{Ir*GV-YFxW1)#PZyXG)_J3Uwb;8>z4trOd&9 zwEuK^TEBgn_+B8o*o5D^qqeHtczCqtwHtJMS%j||4LyA?v%EHcv5 z(_aad?Bje+PM&Z0Oz-FCS9-W5yI1kL_HA$9F2Y++gq1PQGtuW_f=_oitkNvi7dVMVfYvq3x=IkKlN>dL+B6yuS;EGM;-v*!%eg?|fnuirry zJ`Ll*5PkPUcqlHyJ~=+lRU*=cCfN?;HO1zu%F@!$cMtM;A6w;Mo+i8g=qo7>j3CNc*xNVe^a?sT<%f;BU=pbpezS7E_E}bpC^!O4);Qry^__(-*iiq+9CI&{H z!)Y-d#z22P&ri=SEOx=2tS-U}fGrAng92bIczCLSYh)Xc$k0|885xNc3~KsJKV1uf z6Qr|yTZ{AKU~=M-%=JAwNK5f8(2Ks(epHv^Ll7k-@J zY5#zRJr)5j9m8jjTndJ zXqkTc3wm?*J@JW#1Z z)T1Lf4tq5sMjg-r=lMs0g5&n1x9=-!_3K^yJp=)jz73T5{D^r;4q>LhY1 zg1+NVn6bHJz%`#`qAtH{a1o3HlV_@ z1k>{o*>so_6BARgJ2d&94)H}Uyi0&vT?n}b=K|t+?yQXZ-4liv+Xaav!j4p`J@fMN zz|=u{Q7-T8C~UwI7zEcZJ(L8<#<4{gOt^dkdAuv{PsVi+&G6G2y8R~1bQgllMx=f8BHnmD==X%CEOpgEUu%0BhSB`XsX5_aGmEIB^fhi!)V7eJaIngn_; z=*u7uhuyO|@T{ORc;VtjPaFm<*s>)hCHVOGo}Qi?+_bM5Fr%ntb0qFQgJ7BUu-ZYi z5jLXsE>M0|*}tBcnp$JjEcmb2#`XysZst6;hHMyYYo^Tc$^@>8mX_Ajr)6pKg}`Q$ zWx1)fmaR3{kqA$dfKJsVB0>?~Ay{oqLRg74wfN$Pgs)$(UG|aQSRRhRzj5u8xA!$m z?_eN@``7#YM7H10hB~hGW~UU~9^4xgz-0@JXE8Xs#q2q0=)8xs7aAfu@8dB2@CsN&3=Qc3 zi-9;|p4U9v$ujxmIuq-T4MM?K(TN!MK4S#d^Yr_uli+M=DkB+-^6EH`)ZD z?E({`!21Gz4nh^X`P5vF!wvB@+CvCqwnu)P+w;2g0?N!VvQXnfMGs9qC*e1hgV%pZ zjEWwL09W1Hg`Nj2I$}hF$g^@3Qm4}Za34;-cxd=bX$Sd2RJ!ez>Dv2K7;5x=Rw5s3 z+5!n?qvR4XpdadfdjOGjHZlzh2@3XSYj;CD2AKuh>+fgK(9i4#Hs&Xn?EoQ^L!pnrM#s=&LMaqD{vu5B?s<(fBmVE}f}!pAc`&TzOpVQ$r`+NA>60## z5*1xV@U(0XnyKc2w^^=N&49=anxhKjE};D*EawuT?Xd~WUl8;F%^Uvf zf4=7CZo?+pXS6#ykW#c^;Nak3V%i25dj!wf`4&3{=7N_2cm6Mjp?P9|1z)T9)`@}1rGN_U_tTBrH)w8p<07Zo)IygrWSQV9(K6Zn=1U4J>w55bZXW?}Hxm&0~#~@{9yu!6##IugNSBkaQN8_2$@?6XU zYUTf|W9e&bvT+xm_D$fe5D9Ftr8aoVa9~RdX+LsJ+2mTdRh2XC`p~BR^o?Bnzc_o# zfU3GKY!?$10SgfnP!WSh0i_K>P(Zptq+1#`rBYJTAt}<`T`Jwu(jvX-Za8CY)W;{@ zbH4BVLuBt&bIvv9825b*cOsl;5L`6bjodPZ1jmAgYgWbnhr+yM;>tU!Q)#i+WfN?k((d4@1~c^@7Qs2Le* zv3DCEKL3=oH8KY-T+BF4v7FGM(r&>#rE-}Tzm$zA5B22~Ab6}?#OiZPss!=ty>=9I z7*>o{Bo_iC#5TFM+_wskW61yX{No zQ2TryD3l-d`m+*)l(t+>E|Fl0F-c@d5E})gD%jcl5joe@3Gnm73UC|;2iB5)Sj03M zf*2qMffDoP#)c&dbpq{5FP5H@1Cjjj+tcLg&EX`ME*0DD?KU(t!0zOGT!bwp9bH_? z(XZEn7{PWyt}`Bg{)g-hJl4(T+TB^FsxK%%IXn52q@&kc`$%=>$`}`lZhJUN#Qd=T zl2a0FYBCVT z%^aVwk2P_AT;T=o7Br9au>NjXKwF)#`CTGCRI@6i#Zx5&MWKMN!~{H&^OxnEG8U9< z-*mP+>)3p}<;d4(stkLv;XozZ4Vc)0etwVwa%w`N`bQ5RDndyLVncm+o5LasQQ-$j zG&nmu+uI+~J4U6VqS6NU33gV#bj@^7;)ESY6TE>T`X#enKXClCH2zs9J_52)YR#mn zK9ccjW(CBE!uq5#jUT5t`^cTcR5rT8ljX8W+go#ud!$6;u__b~S*JUiv*)S;kKo9m z6@_&yROgKoz&FLK$}r@8l@8?^h&%kfZ2c5Rn(Uo!@5-kumxsy57uY8F`8pOK@v?%1 zLF0kZt(2D7-MD9U4Gr#|o}O)2Ab7ZPFM*Z&w-)T2N7JA$3>ue zY&6_yW`~6(iq``TOChWg{e69~dQX;}Xotwk7?x+)WHr{*dVh;RQeKTQt@|p3oovK@U%l{t&!+1F(uuEVfi&<>(H@=PyyH~%H_ zVajiLYs(F$3RW3`y>o%vl5oc7r@+VIwdJ; zygVWD+lz7XS+S{K*zGI9fznj$lmpC?8}%Vw(}!h6$l%qj?8FD<07XSb6T*~m4-Y{o zqyP%(8$_}&l0da&2zw0JVAxK^1j1GV2BNQzk5Cw^#ItAf@D%JI1E*xSvjU;{>ip27 zo?xsG_O)N4rUI3w9!8zZ7{_rqu`;MQt3x_DT!M3XAZ^5+8c?B8q>?_ zeFt;PKhpZ?uqWnR*p^4b9`3XZx5c&QZ?}5{D+*64hR6;#T=7ul3zxO*uvNHLPT0KM zes9TRCCKzyK`y7T;coH6$ZrsE5uTYm171bFp3cqyxuBC$njwh$Knqe__ZLm1_4 z0;sk+n%F6+so9Mj+zE4F<9~~mc1$*6eYR+B05z2Ya;r9Sax7K5i6$l*>iWX`{A|#J z!loYf`Vf_eu$oeC^rUNdBzj!DI}6faPR`v5m$RzZP_P|_LdN{&$`qu=mLM&_K*;pU zC5V!p60-0wiQm7Kj~nR&M^ddBUi9E=9?~q=xi0CLCQ-x*gd#mV_1g+mclNg53TZQ0 z+dZE6AJt*QT9Rsr2MB#~Vqhw3vR&`Tz?CC8hr*l*1IQa&BP)x7abQ9M9=Ee+ z&lV7HUp+k;1_6_f`~?GP zVTZa0HLIFeSPoTS>M9x0kZZ-M)7>gw*ILo-R0<6rdQ9fE>{)7uFEMTt7dzFx z+$}3j@_F0%xs&!$yISXd$AF1($QqZ4Lu50Hl=Lgid=rPZz&LoZN?^wJ%%n`}o zr#%w->U4jf!lmg@4p!WV0`}3x>KxPN z`=ZLu?dgt%r29<9Erup0zCjKJ(hInx>=r=V0O5@s><^yMfm?X06IMG?PV4pQ?yTGI zr(xfWB*zeS&D;P-VHDQ$p{M6aC9L!G+$og<-0^mDS=%-eO)PbS54vzjDdbD$2!xGx znlF@#_hylhtSOpWW4uhbQ57WNCG#J&2~y>^=qmBM=igoWG-Nrk9g?i;a-E$+5T)W2>>9 z&G{p--af3p!_m$g0=pFe+w z-D)qW1UJSZc=WvvftsiOKrzAr=7h==Cl!`7*;(kC5|JXIs47;=c{#DFkGE?;q3d;% zLWRJ%>ZB>px3awfuu7F_TbUiW#Wco@dTADh-)Jd4{wdi?A}PLZ-z3%c_79U(wBIc= z+yot4qR!ZUV-_-PnU+`Mi4x$B5fM9qlyuLViCvFh9S|-?tzR-PvgP@l(Rg4WI=~-K zKBO~!pZ54F22>VaU-}Q|Q{^zJ$^jq5E#K zu@ylg$m0UT)ytQkL%3NVNH>_Sj2PVRay(O19DoAP22@CGmm2TFOO!2^6zkPd1`&(p z`9&OwwyhqnlC@^EbE;C$SDBT!{q4R=;whpU1-6z^+M9Y+vy*3~63I|OS&XO$j(6tMxC4*p# zK68Yp|Jq4%GqO@v?|M(wIP)VLEEy-KSj}`KJ-8D{k(+VSbHHkjLx0T)k3=8|3(MUj zVtyhGF05=%V7NT08M%rbfv};L9Xj*o>EspF%Zn>gh)at&u)Ra7Zs6P61#<=BNr#>k zOR=S3wkUQ&cr|Ok7&;yKzod&h*jyc$?SeFbW1J|3EVVR8D-y0&cXHbH7t4w(4yp}m zp;M1?V@fwq&AWU2i33wOv>fU?Q`_@(XZUyMr;bkOOYXbiQPO0JER z$jVo#n0nck^tc0O)w`bRT~ql%Cn-#7!euHWhe{QmIi9sw8!_~mgJ_EW`fLhun{GsJ zUr2cEwb{jOEBqv>grdIsu-1nwy0&R!oz^wdnA3zo5BpP9NWS&q@-l+XGUTsQ{3X?V z)d5b|<+*-)V}*R&JGncZiXuf4TpXw49^|3RLRPXDCB+1ocfPoG=y%Ljbaa(U>|uOa z86MGtvpP%>Q#}`xdRxwZxb_I&+B~W1k*U9x%1jP!AuoQfQ$ zalH28WMYq12`Crtz&t-MF8DCrp-RxDvV$4*TrW zNV*Cl;0%@Oe5-az7E`o1rf|N$_xywCkffFf6bc=KR1rt$UP@7E@?v_?;2|H|%N+Om z?4aI`z^o1_(on_Wl)}E0{^=L246BU>Kb#~RZ!*#d4lAzTHJBm#P=}f(>$i&Bw2s-b z3_-P&sK^~wPZZ3unOfT(=fj;INDI z{p7ePIAtxVjGUBXjI(rv;&wW$K8H=LN^g}Wok`o--N2u7JdA4P=5I$&HuMHdIr!V; z3i(gaCui-oMzIX;8PCia-0?kcVi+wIk&)WAwwD;L?5|*>M&Ey&ccf>{v0OucpcFM; z9a@fKBcbEMPIzfkP=&@mJjo2%%fh3_(6kUv$3kR&{`x*umJ)U%zsv#BG;NN2djVw; z%;jOcY&nme_12%(x3`!&@F@k_k==>H^-yNacvo)b&z_t?PeTxKj%H3XNrmE#|0>Sj zNK%gu0rg6v3QdO8_sKaO1snBm#vOnaKn7gPz62O4Vna~^ao|^0RQwbhCaHbdhl@0H zGj%q`N{0XVs#i5>kg7v1FM~eeSrcWa*h8P2BW-N840c;e`>gGnR0f)OyLtlPBiy{bDXPDmKR6Mj$HTk8Aev1#8st>@D0O0DrK=*mh zQ)0y5g*|skp4}!W&)F@kqNPB=Q+espi?nUaC&mo2Xgp89nCUoo`>E@=OQz--d8WEU zEh-IuUSgGYoyIiZ0{6^qt2evLQRbSn*G@kPmG4=*#7bo`esNH{+ty>T(&J-_jt1W3 zBv0p=?r&^)a~#$WG^gWoXy1v^IdMpt{`>i4XDVsuPQt?F$!)7Q>?kRiV| zID7vxln$hxJ-d&8=G7>9n)YlI1cj#s4j~a5TxmMU2FdQdyey;u^#?#n|K+^Gh+vN0 zL9FU=Ti6Fx3=H;q4a!=E4?iE;_mbVd3Trn6_jt#TN5*LQkb+* zD1ix!Waai%^*2%H9r(U3gK!=((js}DTZ=x-O++103dY!Sa?WFVg?J&ESFh&0<RAmD}&mI|-xgCXzjhTK%O=h_Z-n+K54E@lq)l*v8HAu zBE*jZ=^5ThawGh=_oQT0xG@?-Zhwzd$nMpTLVy=#=)Dh?#VFgoe0^c7@~DcH$vb#@ zS{F0i|9R=qR5X?vtzAyt z_tkSw_ZJ23O2^UyI#kEzi)?w6&R`h60!Klb@Ra(h86HhZp@&>L^RQd94o$3`*7ngf zy8?swJ8~P%xe+Ft;Z;!`G1GSALNh@Z?^P6~B$ZS&)uu!Z=5HhkS+9%8q)>F!h22%d z4v%0;lyeSvXO?T$*vDbzdA!fddes>_C!k#fC`N4{NkXtUr)2~z#M3oCe@G3VwU>-Y zd`}V<7)Lv&3=-%=o#82kMk)VkEz|j0@i--3JfOoVb#G6s&<_0yR(&x}c1(Kr$0kgoi2R5H+_PRqH>{w5atSEf1n zcotKwa0%nrjK#vtL-K{>&2NJSI{3T2U1CT%ZEZ`#o0v!NC3`q--WF?i@m9S>wRtb& z$Et6X(UVoo>Y5I9dJ8CGdPUK4aYZ1|AZaBFlc}!INyVHuqWRWSy z@hgL`=EQeG#j1^9z$!!FfEdGksl18lP?$WwiA9<%# zVJS8p{-Tc+j{P%4a&sRp+{W|SKkJkGQi(5UaDM;L+tCE(%8I;iRQ^ua*4!-7%md$x zxhvZhgOGPBx}a=-cQ54jKnW{rD*W+Th*jey++kS};bfuEY>g3wv#y2p( zVa3L`hSy(BCm&)v>KgD&jt{d0T_7cJd}sDO*nZhz;J_6v#_n6L)~?Gw$@Oo$Znq2F z7FE?Fo&0k9$LfQH6}9_E42@ZzTwoj2I79if+r#rKKbP4YM?QSIvhTuC=S7?eTLJnq z3ecB0{u5KTArX=zfu{8se7<466>ItRf^#b=sls0Kkma50xU+*P9$TL}$T-D20)Y|H z9w6tb$4McjQt2xEj%()r8h0z*VozhD^Dgbl#b_7*{9dYV{3OX1%rq=Fwh&+7>ueIC z(T?DlnBcmxRdkUUXG%nW$B@CoFXS=2x=Z$2E9THbmib0E45se0ZEiff!@h|j5y>`5 zsp|D`Wh}IkL4V0-S$(%y*o&fUQgWoX%*4*R&S_F7M?o^`D$YsIk+@FIo|dlWG`Bdn zOgR;jV%{{CptO6S<3?Y3Aq_cKZNcy`vfHiR%P%-_e4c1|F#lmxtds`_63pyh@~LEC z&mun3hO{A( zNagrvW&D?7~jOke80MA0>KBn8XXbQ(;>b#Sfh8E+o%$Wh4kbAk4!xDz@zHN9=loYl z!F`x)0b22vwSpb(Ntm8XV@w`=E7WRIovUJ%IYNiR>o?H8Wu;t2H}0EOCf4ZLGFxhB zrN$It649o%QRT0g_?7y1r?<@S9*GxHIhPaevr|+>*)h6%xAtOne3+a#0VIOR7(@i7 z#uNSl;4$Z#Msn@%`Sd3Um?&DHBf#A|vhO!8|_#uJ>v zKH?<_am35Qkj%%G+%~hwFdwD3k*qK%s9_WkU&@OV(*#4pFb zbeP-Qh}#?X4p|K(-$nG>g7}_8Ei2IDCUWi`WTj7_0$w0l>6v`lDmBzJvNTZRFDWj? z#WA?BHAwZ1q74S#l71+}OX*$~i-=DVm8r9(Vl5h;EKLn2ERuj#W-rUC(p|)JWv*|a zq$>bFX>6;^QZJ8k>qXf3xORh&*-l9yn~_y{&uY&Gk3{zJh9lF!vQneKAy36r^F_eK z@TyKCM$d6YD~I9XnhxGnoeND8LB{XzqN%N%uwOlpN!$KtRNWFZ%8Y-Q{ z1@c0_t0st=Sz5|MTrx8yf|5RiEKF2|@+0;f?W%}^@W*B*`D{jYdxD4n>bXw}7q3oc zEQi^ZQp)sr%})S-X`=gpssr_E=rX#f49%rcm%=q@8Ce#ktyct)u4Fp}NvVpQxNd>A%8!3W`bQQ@{+tG&~&3&fjWH$d(cut%s3yS;=+Q)gniwG_=`Ym$p)1xJXo>281WFBXkadFa39ruX4v zyyea$lRm<)5-U}wnB^=%t( z(GMk4v7>_WL{{WDRJe94B0BKB4es?PihfAg+Dkyj-&@>W%iV%h|G@=mxro4lb$9E# zI?#dGc1EIuvD@#P&G+jY&YOK56SEr1!r2L|bFZM@@IA2SPEb2+1wTv<(Xkf>ZtFhT z49}Wb`VrTWC1YoZaw506-^#VgyVC7u8fY~hn-d*D$ZV5)K0ty)oLn-1J#&HAa)r`A zhL!z=9!Gdj#F>QPji=@i+w9JORw1-oE=MLVGEKhaUTwxxQU+;%>J@1jjt!zsO0&pMlM;D5Li^~f&yOzorF}9~X3;hmrQ*m)Oj~?CHf%l;fpc;E;lK@y z20CI;_Mcv5gkXa8%JJt+l_VkEk=XfKz7|Myg}v3z-Y&wjyUeKcv}E6?V>_2$w_rI~ zn#u->cI_hicDC&IRH;c)H$^G6SvJ4kU9sLM-r}k7TkXiRI#b}mxtyaoD0Ldb*>X8} zkM`#>B%b8C&AQx+emb7iIyyq7OOY|2h=bDK{++FsQlUj}CDe0FZprlxb>lDz9ZaNV zWcRVa>y=&~C|^Y57{H#rYd}K5v&wt*B&*GnoosT^x zW9ngtvL;4NSuxptzxvK|<5v&)i`BaIIi$8K*F?_|hBB=w`p?quRZ(lo{>V z??-28HFrai!}=Z0`*TOCnXxT=WhGf(>dBU8!nB6b6abwS$Uw>fm5&L%hvJW+VI6bV zrh~siuB7}hWfntKzHVbWu42i$thv78nT)mRFN69LlFaj&IcTG)xU-%~O%G0)D?~_C zhjyE%>f-21gOlyiCbK2fKpt&jZP%dY6j zwArl@v(aiH51C$|05J)uwXuj=#b6(Xiy1Yi-;i!JpnNMkNYir<3JNr&R8)j1WpBwacU`4a5iAhGbZ6R`{cx zNyl_2VtY*Yv)-<`q6RSQZP%W4EQ!CUOeJTI=`8)aLe?!$*U`qhF34swxns9my3D`% zBQkO6s{ge|DtmIxmhX_DCG&bifLcZIJsXDz4cKgFq&&hAE*lb)#_S17a zbaV@qfA8DdO0yrNr<8re=3u*Is*)m%T zV+qm$_U~VNgUNhG4X$&vyrKQzwn=j<2QwaIhP-)x%Ru~9iMAw<;H_#=_`j`Or48RD zAJ=`_l(a?2$W!GeLC6(v{xh^<0iySNh?5i1Glge%_Wy$F5f3} z0fOi>r!~orA}*zE2@iBGTZ}}=`z_nF#J#mC*N87SZpJyq z%a6CvD0Q(e#s66IrCW<#o4YO@(kWa?DAga%-we2%VA5e2>~n?Ejp{EQinZ<4q_pL8 zSEEnU$`y$YXXf0v__8|~m9Pi%5<^9kxMJEBL#X4}PEZ!BXI;TV&UL0>b3IS2quYaX zF=R}Z7zvOd$?^?E7*NT~P(bu_f8+DQ`#y8{b9ul2AW=mtv%+>E@UU1M^47x7cuVlv zil5ufUwlU{tBLDr5{cY_E%ioufcE|6!ygKX%l>MlzXt<46mg>&-J6a;6z6cLOPD=N|(`TvJKCO2}F}; zjxHNBjkR{l?&prn&z(Qtx|FSR9FQS@iIII`sArUgkFM$QV#nPSKEi5O`u}B%?>tYs zW5snRKMAd2%eN=dJq|(p&f1GA%S5znqs@+4$|SpA+-m%+?g;x`5xrF%d*=9*cDC`B z#t?=_;(=c>Xq;&Uw&r)rX06vJYc;SF7r8q#22<%0>B5HV1{XI*n4+$t*ZZ#6=r<@8 zA$bbtJjl`(VUHJn#n#{S!}qW?ed}TXw6%=DF}1|<7{GbaB`}GyzsBQ zAy7*w-K|>{D$?~mlSaA0M!m`Eb=t0(Afd`#ls;72B z_fx*aQTYL_t)f5S(K^5z`X4&Glt~f(5#Lm5^2svhaxW{l_D}G3uo*hNal&M@HI+}c zYcsW))x>soxmR}1SV_Y|wdQCJLCI|H>UR7PZ^11sN)jm)-G26Hs8C76KcN+>T7j~LNlR-6*wh&8p0Rz3O z_=Z651cX&zga|&_iVi1Q%W>d?%Fc@KOSw}l*s;Y*IgX2Rkt#9%D|Kf*1B&A~$6E#o z-^6ioYCgwL%he~5tVvY2E86UQ5+>dqv}HWbnI@|!_4gF`KExn(o2Jw3S^C&AZ=af$ zdwG0HUyd$XKFGCGB|JARf43we zjqi??i;bIEsmfRyi|MFqDxK_#17BThI<7VqYA|tcz{=o~{29hfHw_#sm&JlY_u#A_ zHCur>vEs1#vP9pbO1uuvg)obgo~5OG13syVZ@V+*vbwuCceb1xf)_2w!IJt{cG<^)%Q52}(+D%I; zvo5sj_@r*qmb~*-Arp-=O8KPQu5&d;gPo!2QNReKX?EBM2U$*ie{{F`+p6`D59zoB zthA7@=LHJ~LNbvgC9MT<9mQ3ZmAI=+8nmK{fxJh*Gw;?5e+?!^yucp|69S~sEeRn? zdGGY`{L3x>23(NQv2bYpj(I0=l#>tpEv~hx#~=J58(q$9EjhKT1|+@xDv)4G)+v_c z;dBLxm59}No2Do_TK(Cfc$IR8rLQ?;;tFO`5_N+@p%ckdO4Y0zWs6mI%g5Uw_(n4I zKl$WT_@0QwO?20R#N z&y9XrtJk4HQnY{GV!(9ik?@q_y)7B1=!DJ-c^;s6n;cT*Im^{%y^ zSLASN>OZy6Q zA06xfAZJA;xEdZdFs>Nv)ctRRb2Tc5(pnB z@faE)&;M8u*#3WB=U?Tea-bH$G4+e1l>v40=Ov<_WtwLey#;j5K$I=o`zn=1I#6Af zrNb%XBsv6E4;N;fRN>Nn^o|#GO<1YFIzYK1ES#l60Xr}vA|mP$G;@`C1@{?T51<^B z15eg}AKxBmrG0(!AnU(HO*Kb`eToe!Bl0Hpm#83-Qe&+0I|by?}2C_8=d9tn5L?6nf@(`yl0S>Kx-dVM9$al#Q(OU*;w2CgKI}JB$(W7h-JE4_mU3 zxFL>`UEqn^Evll|FIGiGjY8S30vH<~H2*iV;rZ^jOc-w_j4Ni$jxiFw=B=VbR;I5= zLunAC3xW|^2@`PyTJx0DJffJ-lvkuBQo>%&ht!@+B|s6kmVELTj7h#{(<5|8R@9^ZTebtA z!?f;n50U4l6|;Fd#V}RZDhFTl389))4j$1kjEgUF0;b}Fwx#W*X5%#NQ^DXJX|r!{ zzrud?1RgEf*M}SB7pSxb2KIB?DVc)0vbc7WFCW(}?U@R6-dw3Oo=js+FILGi*-j>m!|U!sfm~& z+L&{itc;X$ri66&vScr#ne{*SxYKc_CLsVAI?rVzb3>vWmWa-HKT@00 zi<7gu&dJS@Ogvhr>km1bt-Le@3BCEkJjt1SYbjZKS{*7u1-6>^1XfQ^;DoixVvOGR z*Fh@59r>)LV;^^_>;b8KJKEVxXi2J9$|Ob9jiu7D8R?wJ$>w)f9*Uxhd-GMu%EDxP zsXwde+pRcBDUG=ui!c63Pz{0n7wE9?G)O1KGsm?6UUBc;ajI)}wU{;wiN$jOixrJAwmDWeN#LL=`f zp{xb%Zq=tZZokQmqs+SY5d*eVcpQU(Em3{U(Kij1&8@0B*=}Cn+qT?qTT&0L%<)@V zS{NBb35kem;jH*!gIc?~TQ^8lo1QWp+=icsz9?SjnzxcQ>T|9$VLbR!!kPfYyZuyAEO8QT==ebIUZ5cVoyww-}=s^wE6Vv_)yw48_TUF zrP9ZE7Y7CWZ@Bc(Jl%a{OhfbgVgv$K>)r-L^JP!c8{2)}SmN;(E^xchsaBywqj3@9n=2KkT`ItIoSoO8MA+YExcb(buc|x_s z%`)MXg_s+h8BN3QcCC|81V~p9%mYXiG=p9NR>vp9F6|IrKX;P~0dPLnV6w&Ln2eXT zt$7SnYm54E?3z}afHxsWWxbQ(ypnZ%P!eV#{apa`cjQB~PWO*S`}e+lA0fun-|RtW zw)*kTahJXby3TQT(p025i23kl`7CvsQ%9zk?9-)5IxKt(%W+Cq?jE*)rZK*k8?}Y`!C^3aHNMi!*W?tLT)-K+mE~ zHq%Q*9a&!4^JlW z|Hyqb)^O=tir^h=s|3ET19$FnE9^!Dob|3NwN|6|h^pXV9_2{3o#gP_b z|DKb;BqWqbKw3Mxh-R3Qx^fcqnsvKub>R2s=N8d< z_+O~9Y8v7w2}` zN5dHnGACEJizK9gyzfgtkU{x2(~A8^pewPC7L+lORdLAM=c-k6=xp8Ayqg@Jtf)<$ zw*bHDD=N!ptk)SMIvM{rmsBnvT&dDvoEPw8*nsLX7Kd*m;d6WZ-bdzI!!EOIha`iMmC(WDgw1pIn9VO&Zk znlfagmD*?0T;y5>G-HB|m51eP4*vfsFc{lc4R~Z;lp{5c)^TCuTpK%-!&h&>!#>1Y zPN8ru>QNaF(oh@h?i4OK))Xhp3-RnI1U0me=Bf*UDMZ;1qULxZ8673DXH@&C zL`kP1)MiSm636qV@J5=8>B>~A(2Bg-0q?Sel#emL-^50F??l4IqeJw{2%Eh|F>Doy zfw2dFuvKh=6r5kBFCYEc{E!;BxyX~#6ae8Z0G-PS?+WBN^rx@S=}V+om6_ z;2rd^D{Bawdx|~C%$a8UvZV8%(%{afX8V%o>Y}bXU4}t-!CM18j_5&U+sZ3wz-##0O)0MkK|E;UM@-r`WuJP(T(LF5@O@Y#}bNri_ zEH1LRLL`8T;E9kiHJBu09Ma-d*~vBS3XKvZmX0z_NbbN~o+w&S>%7!Kv#VF=Z2ggf zJyBs+m8<_@PSY!r%uHDvP0*ZRVevZGcRIM>1wr_SkWmp??1okbmm2^YSP zl24wLLX!w^A{@qg4$4Oa>RPD8{O>U6oFWnBu{*+$9IzX2c%mR-^_^k3Z&0Fs3iguw zE5KJIGuk3bgDj9Wv8k--f}X^K}&-xOZa6gV>4`0cE#CN%J^2Y zH2Ni%*L+W`JH7>qa6gKFo_PC59g6TVe9=G z8qX{_!ZiMAEoU}gX;*NayJLhmhh;@!wTdhcI^;mQ_yE=g4B+8+w*yRpmJW2rgRWG8 zW*n`-O>1HvrW4zJlX+y?h+Ouh=gIC5nHRD~v1>~!&jt!hdDsRSmbyX< zjd*t6q@hKHEuyJ$dp{(?!MF_0%_y-Ot4gH>;GN0%R>~7HFdXX~PT6i`C~sP@(d%q= zw~6S-TzA7jrzE;Fw>m!V?xni*g~+NGrXZO_ro*4~70j~TIe#qX^RKw*U%Uy-X6M)4 z`3JzrHT>7d5GJySw6ydGq3gcCC)%H)&EHdln~%>Rf#TXVRS>WKG4y`&NO+J!2`2hE zE(onTJlwSZp1c3y^6(JLGcreAY#f_Pz4)oyR z;MxnFB|Fv(Hh4kLvshS+|LB0QAG|um_ksr&jsd$+2OBt1eqCWGt|BPeQ z*~{c(*QE+Mg>>S5r3OCqr^~C^=zUo~SjvBOW}=nEQ{3;&g!QWOp@q2HP~gbj`?d{F z4di%7h|b-JVxj~-9JCV|P>yy2UK05DBmOW>+;>e5#J(kb??o8vJ6U2PhH5!?WJG*= z2>leg;-4(8#MJbYOvr4IhX%|8=EJLsC+F|IAc-D(uk=(Xs*D-12l4Q-Wkzr8Uk@PS zwLMC&DRKSO*fxKpVZRFPYjXAb1q?)!_NV^0x_#5jJjggPy+W|kRgZa65{>&<+tjq( znDzp02yPxy60 zrWbDW7nmzZo0@%Oo|rRGrZcg+HY>n93B-|VSJx9LRrs@4bjLi8+0fPoVl4g@J^^Q* za9D3|TXTfz)sQ7;TRl^aeM2jb|KHn7m9Gq+SYLj}3hNPZPHe${up81I%4rjfuxYWr zLxogOwwgJnjx9aoWN!nVrj_;;DJhK7lQz0lZDP}eMM^60x6m`ldJ(h0V^IUVEX-#N zWz=?0Qkg@&rJ8Z#nCF-Bas&+s&@laa)#WUkEi=(9;Gg`y1V*ikz32X~dmgkVEDVVN zB}Z3xT9E|Wvl$s1PsS3B0nP%@0tL{Z1nHK8^$EJx1!ueKsWOOhaG#uF|Hm$iHioI^ z=HkaVi*9}G|tEGvm3G>fEfIfDr8yh-_1WJgQ>FLDGLym zT8SLFBFN?_RJivajSO1EALH67riGiD?Og^}Kff+r8sx*QA8rDPY&mSKi49&9iw{VD=yUMUb6oJ&VS)c+(;z zBupIx4$$uwZXLVdsMjwgnhHkVrM?%m0l`{9`UKY7zDNaUadkJV{P+Hdt8a{}6Wg z$Cb7+=dvI!O0^5lrAb2ZgO>#VDb0ELi%vyI7zeT_xTY(?#YOm1IAx&Ma zI)Du~IyMHtGYqQ%`NTo!Z3}5oPRKmFq*eSy?)gOo!@@$yVgF{&{rvsk0*c?K{TJ=* zA7Ar-_vcsygoF|7mbV4_yR$S9JNCcHdzc4#CK!-vAa|qb;r^E+1=A1+%NX9zjBxQl zDPg1)&C}_k{o`JSBSe2O1;ucqQ;^O2eG$jM!ch^=|6x;Ln_c(+BWSRGEF=`m6_Ah= zyx{$NR8SxLgW?JDMNqCl(EYPt0cNcJ#r$9Q3Jip4nkS{8tE;Q8Py4fR5#~Ja=l2rB z0Dbufe-dl#&HP)gOm~~4gVbmDA}wB9c(i zXEI_wqzqX_XY1eg-I%TExVQ6@zm4~s_mOcT8S7{{(hhb|BIC`g~Fs||MiL692+j9yUZt5*ltRzprSydrojr-apiW&S=n6F zZ}!N3><2Z6=P*&93g?;&P{Da|639H%5kDvM*&boV+HD+{6}y3X)&61c+aJ-B1O{Z| z74$y<%b}VbDare^sU^ygR84&<@aEW75t%M`oLy>v#$5uo%{tUk`g>NmW& zPMkOa)-1d!paP=izdx9L?!x^MK}3Ru9VkALe@nw);w5A?Yoi+A6ncLu2gfySxPiPt zz7+T;G^W68yK9~f;8E~)^J)W>g6D5~Sa$1mFH#5&vA%PR+ByG7u zLqh{VLpEu^ts(Ymz|b6$M}`rCMQC_ReLaeT0&`Q5(TYuBb)(1)boL`0=s40_nQyRr z8QcXuM-z->CE|eHHTxVWH?6VA;m;y%&N1;=1C*!8PMBloXSmk@sXY9Rw zirw;wih7!i=@1?i#J?@H5e=B*7hrE5LZpFqf{5Y;&Z! zEldDUb@8sgUtnNc87%tfB|unO13PIMe+ZeTzpmE%$Z1=PWne$*0(KCHBqto-NW!1D zPr~~=diZjxe8Iz{!-zfh_o<)fULR@!hE-1_)oun{3_gOyGEWf{@PdvNuT*e3{d1=reQA4_nS0x`zwxzCC)>687j2GkE=! z=Z1jlcvr87+luh@(B=!kY0rZI{4j^@m#i0+t{UN%>d;7S8TT@MU-c1Z$>S&cS%zjv z`)N$DJ?^jJr*S-L*(ooI8k*QWZh^1S7@T9hVf6X>q3kIh3sqW)A#ZyAYiH!-< zr0C#(Oh;-?_dL1??P8*+XlV305(zk-zZn4r@E)|c{O}sJJn>-fi5DPnpt*onpzgI} zP$62K?j}^UP=5W4MkdptNLLT2mNrMU09(>m>-@+WFGk|vQVqH1ODlj+-j}7I_vBc; zkmtN?@S2GJITipsY)+rB!w2k6!^{vMhc*2_iI)f-#Um&ApmT&?q4 z)?R(`ntiqP_41q`d^Y;Y=&F}VX12fudTs4%?)=1QXr7zd49D}N4)4f4uQ6u;w?96a z5Ijfgj4(#6)~sgEBJB>!p0H!hfZhT|rly82`!UbpH{b-+?@W!4zX@LolXrA=9*GDA zo+F$R4tC?QlPPC{0OzTXuXdX#<%|z(G4$7f-6xoII940qe5Qv7t`9(@eWbwT@RB_K z6lp@`JUKZDUjgAl(~L4udEs*)X4GGU2w%(plULeiA1U+*XroL5e!+<_X#HvRnU9yZ zmGbqK{sVc=s#3@w(fap3YOQUhR6d4-Gi-J;>U#O}r>z!WF8S7s8tJD2c?a&Ws=B(7 zRX*$y;M`T+D`u3z;F^*N&6a}?0tA3FDc1PM*j8#o8pZyZH_|MUgs z81u)dFJcba{unvNp&U3nnYy7nP66j_FgC*D6B5E( zBW1H%rH022?-cL;-a=Cye*WX|PiT_r%W-ac#(`f7(&9*KXo2SrWzIm8A}``Y_Jr_p zZEebKj@vyqDJefn97I}ZWI98WBV@HYe!M#gpwB)Wm~KQcJ1XVCb@Wj}5*kDiuwGf0 zTk)NJ1&{o}SIXBz2k*6(_y`3^9zVn@=y7eE;rQAv!ETT$>@^-<^o0bCF9~EW$zY(X z-X>b}wGr6tGJByqv$$;`~m!@WDFR6`A6 zrbCHfGjHC{&+pha&&_R)YX-ics@Qa%_lm7=YNDm4j<&N!HrH?|(_jRqmVpct z!MSsQsXn%$_X1=K$B$T%BTNFW6iiCjADFtDWIMI#B=A$UQY!eoT8usQ*SKmf+< z@lq`4!|1-h)B`wOeh?tJ50a80E$&7R-H|EO(Vq&Ba!+Kq*U}#B(!eI4oNRQg&Z7(d zHrT5GG91&FTD^Mf*@SBvL7O8&HfCP5vcdkRE-|*2Dd6zAaHBg*x8^75W?5=`{q;7p z-%+a!CVu+NnGy|&yMf9!yOB_jTFc_F;qLU|8*HVqW#Z70{jTSYysk3mzlkVnMP|S1 zEKjd2$XJKfCh?u6{7?I|#Iv+7!HX*DsNUOGn?K~Up1&Q7GJod1@PbQjb3pQjQADw` zb4h#B@h8CNU{bSK%WWi~U_O&jWL{QHsLxi_=16He^ZXHKGY!1Ur~H5+Z>HIm80Q?6 zM6P$i*d%)8jxk?ih~-wZ(~pw9-p}1o<9C$qsj6;n?(KgN zykPDp#6P;ilc=5YsfTN{a}!kCkOSteCzu-YB-rbV>328+l3Z|;&{Fo z(MNhM+fAF`XSV8c_p#YVNqcgpzbTk{$;72T5b3_oRfB8mNoiz`jiT)Jjr*LY$R-Vv zX*VP99*Yax=p1L)zHdiLLJJ&a&C$G^+Lx%5{Dk_)Dnsuqh@=`|uk5fJoPagqMwVGL zuBy{Jas08F$5YQcce6gP&vLE2=-d?}8=K~wika)eHP)P8e`l_~b4Kz;e?)medkEt} zK!iro4|VIWo>UpX!^W#okCSN5q_VojRz`74 zeZ3@c49{oBEu=$aBT@~)`QO^`Pl>5v%hq>~qbV2IN@LOQA!&~@MW~-%I|Q(|cp7+% z-!rJY--W_vvx21HI_D=`7TXw^tw4?+pLZ-O2ZQoe;f0XuYM@=hFSLyrxy(9V>T%!R(SrOINZFD6M- z#@~!kzPt}D+8J*enQ`?GI2A{3CO>XjkwI>x*i@}rMq4k^aI>K^IM2{4E@hf$z~=`o zj_3S#!G{cc*FGBZm=WL4k#lv!+BOy<+qwp7!o;UO+t3F&ai)k}*obD6shTm&!H;f* zxVX0FajP*;BEP+*ji*ve?S%gU+eUuE%D2)W5R;SRb6jR+hKpt&*oY_5br;|(^O z&(2B^u}a-S2&tfSaArK!Bs)ck;xo43N`|(YV0RPUApSY})=z8k>^8$Hsmbw#S9%^G6vxFv-*+b%%B7Cjta@!}`RFlg>d7`9l~C2QZm3j5_n5!uWxFVG$TI`E zd2Mj>9O34n>#a$&c9tg|YvDFG^x83>+S`d!Z0NB=NAAx0b{=!NyeWKW%XT1W<4KU& ziVdC|ufdCx$eW%=pZgW|%c6F@As+z;(;;vun zPR}uWmaB1l{6}^mAF7}z-@PYPm`v;z$ENk&RyIV; zsPcvE#Ioj>Hyk)eO;=3FvN!#DGW-BT@Sv&!!4NQw;uGPbJOg4=Nk$r6Ij%c83Te^& z(3nr^!VBQ$J7p_;VrhkCX|ZrAe8*gcWr2i4M*$zd+HAeP}&pMAWd z()2D{(TIapRQB_orPT=B7w>k(=+tMprZfg-+vpEYa^a%4ETfwP>BI3+B@yN4TS6{i z!`!`ZsZTZ;NzqS8F=d@MmE~TmX|>o|j#G4V3RU7IOFl@;A37)_)2rc+GB9|NW1fD` z!Z$dS+dR+t_Mv!WkY>zr=TT*d|rmBbs zA@|ie#(!;mSBny^3R*Un<(H^N2-%3pO}{SR2W-!>vnf=tlzcMUx`0qxmxq7@?Q4#y znu)I@oJ7{>l>O&`_al7y4f<$3bsV|#a{P^CyTWvlnC#_3pR;E{UN93|Dc(a+fm5~9 z=XISzL>GGkm43%=0-sO{oCB#69rR-gOYs3mtAKw^Ff0RC(@ zTcaja?&NitryxGXhDS=qI0lEiX^j{}BG9=6Bqb(#B4yqZmYNWJ+jWq0{_6_$nj75W zu+ST|pI#`b}E~uoj zCc?tSytjFB9|zjSUl&ez1?c8G1-iOSL8Kfugml*2V&QF3=TEO5KjqojP+eIAw|H5W zU#V_ShaQPSLlg)>qnp5qZq10V^6C6dpjX;zDJHZx&mFfJljXOTFJYI&`>CIS6U&kC zVucx>nw}Z6^N=Q%%*cDU3M1zIs9$_T**FFgYz$*Yw|!eiKPUz40>Q6a-7%|LBX7!E zvn(~d*2v6@zH0;b_RnaX07!-;%ijL2LZsxyE6Q!&Sp&W&i_IU-d6uF@J>;}iCDw~_ z``!WBp>CpYc}m&UeO8)C&WyWRsS`7+QvcntW)*4@&o6@7L>Xo2jm?nX7EFZPY;okM zuRtZiQm^~ckAV8h)ru7#s{l2?+Lv+iYG$=* ze)^uzxq6lhh#sz!J#`(XLD+D%N3MK=;gNWm|X@FDTcDrn=m}HDX;M#!P ze!2#~2x939LH71#Uc&i2<%@sJk>4Y0#%t;gOZj4m4I;1TBX|JPbtMGfx(- z+Cu!Ze^qxL<1k--`{lD+9eo>D(%Y%}Y&dp9J&p)@dRwA>C<@)%k(1C6-audCL~lG5 zB5rkgs|b8f#(>=e@Q*!c3oqS8{1N-zsp$an*9_ zcg$M$+mwelyWwJa){F^I6NkCj39;W&{LNEMs`)lfYzq%Rjs~;zqRBQT8v>Q6HP7t8 zL%fviY4Z(*jGL6nnJ7mod1ZulV{P`QU})URXJPb#*PpW!cmUCyCA3=gx^dtOSor69 z@kBWF$@K*drxYvzEZ38WO^V++#x%kyg5$?bmh13h=qY9Z&(M`)irj8v#7X9!F10vt zfA%`8GvaYHi;acAKFkI#`;)i;hN&9Xi8~Txi{_+QQ zqmW!kNeM(|katL!*tv`)>px)?czhr40CyytD6jKOzT@p zhM7Kqt|;9*bY~i#>KpaKP`^8AH0f7F?y7sY^(7)yHI;L~TCWy%7QRuw3&lC~{7nTG zCvag|X&pADWnpmiRJWmuxBQq4lQB?V)F&clf3Pu?GUMGYj&)zLcX)7NUT#e^N3Mda z=EwFy(&D}`V$a(`lWrREAid|p#Nty{WcN?7O|+FgWSOsUl^oG|1QOCkYr}O+G|DAof)lrwS$-Dc4zm`uJm0*R9jv9 zhpUXk+)QQHc28w{@Lx3?o0Q2J#@ z4rfC%G=qgjNNM6QlqpM(rG(#(*kq9Nx>DNf*^y_N2OZ-}W_T0|n6Wah2Kwt@e@V&w<5jy)`t;ZXGBTxOEpy@h4fiZkVYc)}YmS9nE z_md`aeLKa33=My3qx3Ec?^1crNVt|Cu!ZNI(Dg$b?;`$hK6!s@n>mA$uLHPU3k3_$fZaP9tWgGAx0&&P-Zs#MkH!*pO_Au30-rn>?~ zl98{qLM^w@>c23i5KbZGJlU-7tc5he{l??SSQYE*L*MiNva@pbCGXxfrV;rLDm7Bl zJVAcoe#y6X;e+<6(}C-PUrTbfQ`iX+dv2Pi8$I`wh3I3JTdb_PL5R-m>5Tnyvp z6)xrVs@Rmle`nB7uj!3pVOIKVs?BAuVo<+6Ta{^5tKR(wJ=VMyWH&|GgyoYDL;D(J zoVFtym;-fPLUmV~>l|)2g=7$D`snPLEZm!o2VL#>WD10O5LRVVV&=&E&0Xl+nJf33 z9=Y@c&Pjunk8LsC*}^}9?QN=W1s|Lj4O5fU$$}!Wn-!X^aNk(ZCt5o`&&^213S*$| zFYV9~*)6)CkI>dn?A5$qvbzf+aQvGK*2b~LtZuvrO)}@A@*^hMkGWISh-%w7gF0lT zftShs6RyvI%7oU)*eb!Dy7Q-yIwZ~GY4ZBmCVgv4r)*=E`#z~p&#YC3gR;e)cdiCc z2UccQVwUSArO-6*=~@Xy%+^z>c7q%6#weWgfDfPiT)QLF1!}pR!;g6*W(btOd!R?1vBiqLXR|TniIdk~;3mR#CGL$ntq;Nqq!N zbSTx^K>;37A9ggM(HdVX4&6K&RX1k`Zm^vXTy_hOhFH0@{`?{U-rN&cs4xZ!&n|2k z{`8oapbvDew+>k2qaT#M6M=?R$G+ck{jrWo=AYVX{}^xcVJ2S^_k_(CK<6m<(njc1HcY6Lo{Q)um)`|jYr352# zw_n;>a4UOguyUa{=2|3W?8ld;Dvq=lzKJlb?ft8dary5yhRFpxb{C^7P#XpgDXV|W z@i^oKhBHUnO_hfNWaAhN?xg({cCM&b?TvQo+C?Q7#}5L*I=wCNP^Wqx88vE}cuLqZC4MJO^M|7%q;ghw zm{28phbNzLm*Rj7U<@i`%@5d2s*YPhiJuZxRer~UIXJoZi+5{sp z`caU-)w!7W|L)&VViYr;KsCI=vGo2cs$=$06xh+5?g}mlk3E(~SX^Z+_{I5iGuOZWzv-kPRnAuwwL_j6?$is zd^+Yw{7(g5kRYY`79ikka0dfB*{>`?2=KE7*vHk;kAd+52giT5Z1Jg_2P@-{mk-(R zXJ^*HmnG4`kIHG++J_Vc5bgB#nHVtTC`VR1Z74J%w7kYqxa9%u1jFw z7j%$*FW%e2\n", - "#T_cf833_row0_col0, #T_cf833_row0_col2, #T_cf833_row1_col1, #T_cf833_row1_col5, #T_cf833_row2_col6, #T_cf833_row3_col3, #T_cf833_row4_col4 {\n", + "#T_cb71f_row0_col0, #T_cb71f_row0_col2, #T_cb71f_row1_col1, #T_cb71f_row1_col5, #T_cb71f_row2_col6, #T_cb71f_row3_col3, #T_cb71f_row4_col4 {\n", " background-color: #3b4cc0;\n", " color: #f1f1f1;\n", "}\n", - "#T_cf833_row0_col1, #T_cf833_row8_col0 {\n", + "#T_cb71f_row0_col1, #T_cb71f_row8_col0 {\n", " background-color: #6f92f3;\n", " color: #f1f1f1;\n", "}\n", - "#T_cf833_row0_col3 {\n", + "#T_cb71f_row0_col3 {\n", " background-color: #8db0fe;\n", " color: #000000;\n", "}\n", - "#T_cf833_row0_col4, #T_cf833_row0_col5, #T_cf833_row0_col6, #T_cf833_row1_col2, #T_cf833_row1_col3, #T_cf833_row4_col0, #T_cf833_row7_col1 {\n", + "#T_cb71f_row0_col4, #T_cb71f_row0_col5, #T_cb71f_row0_col6, #T_cb71f_row1_col2, #T_cb71f_row1_col3, #T_cb71f_row4_col0, #T_cb71f_row7_col1 {\n", " background-color: #b40426;\n", " color: #f1f1f1;\n", "}\n", - "#T_cf833_row0_col7, #T_cf833_row0_col8, #T_cf833_row1_col0, #T_cf833_row1_col6, #T_cf833_row1_col7, #T_cf833_row1_col8, #T_cf833_row2_col0, #T_cf833_row2_col1, #T_cf833_row2_col3, #T_cf833_row2_col5, #T_cf833_row2_col7, #T_cf833_row2_col8, #T_cf833_row3_col4, #T_cf833_row3_col5, #T_cf833_row3_col6, #T_cf833_row3_col7, #T_cf833_row3_col8, #T_cf833_row4_col3, #T_cf833_row4_col5, #T_cf833_row4_col6, #T_cf833_row4_col7, #T_cf833_row4_col8, #T_cf833_row5_col2, #T_cf833_row5_col4, #T_cf833_row5_col5, #T_cf833_row5_col6, #T_cf833_row5_col7, #T_cf833_row5_col8, #T_cf833_row6_col1, #T_cf833_row6_col3, #T_cf833_row6_col4, #T_cf833_row6_col5, #T_cf833_row6_col6, #T_cf833_row6_col7, #T_cf833_row6_col8, #T_cf833_row7_col0, #T_cf833_row7_col2, #T_cf833_row7_col3, #T_cf833_row7_col4, #T_cf833_row7_col5, #T_cf833_row7_col6, #T_cf833_row7_col7, #T_cf833_row7_col8, #T_cf833_row8_col1, #T_cf833_row8_col2, #T_cf833_row8_col3, #T_cf833_row8_col4, #T_cf833_row8_col5, #T_cf833_row8_col6, #T_cf833_row8_col7, #T_cf833_row8_col8 {\n", + "#T_cb71f_row0_col7, #T_cb71f_row0_col8, #T_cb71f_row1_col0, #T_cb71f_row1_col6, #T_cb71f_row1_col7, #T_cb71f_row1_col8, #T_cb71f_row2_col0, #T_cb71f_row2_col1, #T_cb71f_row2_col3, #T_cb71f_row2_col5, #T_cb71f_row2_col7, #T_cb71f_row2_col8, #T_cb71f_row3_col4, #T_cb71f_row3_col5, #T_cb71f_row3_col6, #T_cb71f_row3_col7, #T_cb71f_row3_col8, #T_cb71f_row4_col3, #T_cb71f_row4_col5, #T_cb71f_row4_col6, #T_cb71f_row4_col7, #T_cb71f_row4_col8, #T_cb71f_row5_col2, #T_cb71f_row5_col4, #T_cb71f_row5_col5, #T_cb71f_row5_col6, #T_cb71f_row5_col7, #T_cb71f_row5_col8, #T_cb71f_row6_col1, #T_cb71f_row6_col3, #T_cb71f_row6_col4, #T_cb71f_row6_col5, #T_cb71f_row6_col6, #T_cb71f_row6_col7, #T_cb71f_row6_col8, #T_cb71f_row7_col0, #T_cb71f_row7_col2, #T_cb71f_row7_col3, #T_cb71f_row7_col4, #T_cb71f_row7_col5, #T_cb71f_row7_col6, #T_cb71f_row7_col7, #T_cb71f_row7_col8, #T_cb71f_row8_col1, #T_cb71f_row8_col2, #T_cb71f_row8_col3, #T_cb71f_row8_col4, #T_cb71f_row8_col5, #T_cb71f_row8_col6, #T_cb71f_row8_col7, #T_cb71f_row8_col8 {\n", " background-color: #dddcdc;\n", " color: #000000;\n", "}\n", - "#T_cf833_row1_col4, #T_cf833_row3_col0, #T_cf833_row3_col1 {\n", + "#T_cb71f_row1_col4, #T_cb71f_row3_col0, #T_cb71f_row3_col1 {\n", " background-color: #aac7fd;\n", " color: #000000;\n", "}\n", - "#T_cf833_row2_col2 {\n", + "#T_cb71f_row2_col2 {\n", " background-color: #c0d4f5;\n", " color: #000000;\n", "}\n", - "#T_cf833_row2_col4, #T_cf833_row4_col1, #T_cf833_row5_col0 {\n", + "#T_cb71f_row2_col4, #T_cb71f_row4_col1, #T_cb71f_row5_col0 {\n", " background-color: #f7b89c;\n", " color: #000000;\n", "}\n", - "#T_cf833_row3_col2 {\n", + "#T_cb71f_row3_col2 {\n", " background-color: #f2cbb7;\n", " color: #000000;\n", "}\n", - "#T_cf833_row4_col2 {\n", + "#T_cb71f_row4_col2 {\n", " background-color: #ee8468;\n", " color: #f1f1f1;\n", "}\n", - "#T_cf833_row5_col1, #T_cf833_row6_col0 {\n", + "#T_cb71f_row5_col1, #T_cb71f_row6_col0 {\n", " background-color: #e7745b;\n", " color: #f1f1f1;\n", "}\n", - "#T_cf833_row5_col3 {\n", + "#T_cb71f_row5_col3 {\n", " background-color: #f4987a;\n", " color: #000000;\n", "}\n", - "#T_cf833_row6_col2 {\n", + "#T_cb71f_row6_col2 {\n", " background-color: #7b9ff9;\n", " color: #f1f1f1;\n", "}\n", "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4832,10 +4832,10 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4844,9 +4844,9 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4856,8 +4856,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7289,8 +7289,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7304,7 +7304,7 @@ ], "text/plain": [ " 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120\n", - "(All) 2.61 1.43 1.19 1.1 1.04 1.02 1.01 1.01 1.01" + "(All) 2.48 1.4 1.19 1.1 1.04 1.02 1.01 1.01 1.01" ] }, "execution_count": 38, @@ -7380,8 +7380,8 @@ " \n", "To support a wider range of model forms, patsy formulas are used. The PTF framework is \n", "particularly useful when there is calendar period inflation influences on loss development,\n", - "which other models might not account for. For example, a simple model is fit below with all \n", - "alphas and gammas independent, and no iotas.\n" + "which other models might not account for. To illustrate this, a simple model is fit below \n", + "with all alphas and gammas independent, and no iotas.\n" ] }, { @@ -7494,7 +7494,7 @@ "source": [ "abc = cl.load_sample('abc')\n", "\n", - "# Discrete origin and development, akin to an ODP model\n", + "# Discrete origin and development, means are equivalent to those of an ODP model\n", "cl.BarnettZehnwirth(formula='C(origin)+C(development)').fit(abc).coef_.T" ] }, @@ -7529,19 +7529,37 @@ }, { "cell_type": "markdown", - "id": "1feda665-060d-4756-96d3-1645bd106a5f", + "id": "9755dc92-1ca7-48a7-8508-eec7330a1253", "metadata": {}, "source": [ "The general form of the PTF family includes a great number of parameters. The number of parameters \n", "should be reduced, where reasonable, to improve parameter estimates. Origin coefficients can be set to \n", "0, corresponding to periods of unchanging origin levels. Adjacent development and valuation coefficients\n", - "can be set equal, indicating periods of constant trend. \n", - "\n", + "can be set equal, creating periods of constant linear trend. One such model from {cite}`barnett2008` \n", + "(pp. 48-49) is described below by three graphs of its parameters.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "845565e7-a8af-4a0e-acec-5ff9c75d6151", + "metadata": {}, + "source": [ + "```{eval-rst}\n", + ".. image:: ../images/plot_ptf_coefficients.png\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "1feda665-060d-4756-96d3-1645bd106a5f", + "metadata": {}, + "source": [ "Grouping parameters like this requires complex patsy formulas, so a convenience function, \n", "`utils.utilityfunctions.PTF_formula`, is provided. This function takes lists for alpha, gamma and iota.\n", "Alpha is passed as a list of ranges delimiting groups of origin periods. Gamma and iota are passed as tuples\n", "denoting the bounds of linear segments. \n", - "A model from {cite}`barnett2008` (pp. 48-49) is fit below." + "Fitting the model described above is easy now:" ] }, { @@ -7649,10 +7667,11 @@ } ], "source": [ - "# A reasonable model. Incrementals are adjusted for exposure (see Barnett and Zehnwirth, 2000) \n", + "# A reasonable model. Incrementals are adjusted for exposure (see Barnett and Zehnwirth 2000, p. 280) \n", "# and one cell is dropped \n", "import numpy as np\n", "from chainladder.utils.utility_functions import PTF_formula\n", + "abc = cl.load_sample('abc')\n", "exposure=np.array([[2.2], [2.4], [2.2], [2.0], [1.9], [1.6], [1.6], [1.8], [2.2], [2.5], [2.6]])\n", "abc_adj = abc/exposure\n", "\n", From b8e967f369bb2765d45350cb5c27825604771797 Mon Sep 17 00:00:00 2001 From: danielfong-act Date: Thu, 22 Jan 2026 14:17:10 -0800 Subject: [PATCH 5/9] PTF_formula now takes lists. Alphas are the start of every origin bucket. Gammas/iotas are the endpoints of each linear piece. Updated test_barnzehn accordingly --- chainladder/development/tests/test_barnzehn.py | 8 ++++---- chainladder/utils/utility_functions.py | 16 +++++++++------- 2 files changed, 13 insertions(+), 11 deletions(-) diff --git a/chainladder/development/tests/test_barnzehn.py b/chainladder/development/tests/test_barnzehn.py index 593e26be..148703ff 100644 --- a/chainladder/development/tests/test_barnzehn.py +++ b/chainladder/development/tests/test_barnzehn.py @@ -40,10 +40,10 @@ def test_bz_2008(): exposure=np.array([[2.2], [2.4], [2.2], [2.0], [1.9], [1.6], [1.6], [1.8], [2.2], [2.5], [2.6]]) abc_adj = abc/exposure - origin_buckets = [(0,1),(2,2),(3,4),(5,10)] - dev_buckets = [(12,24),(24,36),(36,72),(72,96),(96,132)] - val_buckets = [(0,7),(7,8),(8,11)] - + origin_buckets = [0,2,3,5] + dev_buckets = [12,24,36,72,96,132] + val_buckets = [0,7,8,11] + abc_formula = PTF_formula(abc_adj,alpha=origin_buckets,gamma=dev_buckets,iota=val_buckets) model=cl.BarnettZehnwirth(formula=abc_formula, drop=('1982',72)).fit(abc_adj) diff --git a/chainladder/utils/utility_functions.py b/chainladder/utils/utility_functions.py index b641d883..7ffe8756 100644 --- a/chainladder/utils/utility_functions.py +++ b/chainladder/utils/utility_functions.py @@ -772,9 +772,9 @@ def model_diagnostics(model, name=None, groupby=None): def PTF_formula(tri: Triangle, alpha: ArrayLike = None, gamma: ArrayLike = None, iota: ArrayLike = None): """ Helper formula that builds a patsy formula string for the BarnettZehnwirth estimator. Each axis's parameters can be grouped together. Groups of origin - parameters (alpha) are set equal, and are specified by a ranges (inclusive). + parameters (alpha) are set equal, and are specified by the first period in each bin. Groups of development (gamma) and valuation (iota) parameters are fit to - separate linear trends, specified as tuples denoting ranges with shared endpoints. + separate linear trends, specified a list denoting the endpoints of the linear pieces. In other words, development and valuation trends are fit to a piecewise linear model. A triangle must be supplied to provide some critical information. """ @@ -782,14 +782,16 @@ def PTF_formula(tri: Triangle, alpha: ArrayLike = None, gamma: ArrayLike = None, if(alpha): # The intercept term takes the place of the first alpha for ind,a in enumerate(alpha): - if(a[0]==0): + if(a==0): alpha=alpha[:ind]+alpha[(ind+1):] - formula_parts += ['+'.join([f'I({x[0]} <= origin)' for x in alpha])] - if(gamma): + formula_parts += ['+'.join([f'I({x} <= origin)' for x in alpha])] + if(gamma): dgrain = min(tri.development) - formula_parts += ['+'.join([f'I((np.minimum({x[1]},development) - np.minimum({x[0]},development))/{dgrain})' for x in gamma])] + for ind in range(1,len(gamma)): + formula_parts += ['+'.join([f'I((np.minimum({gamma[ind]},development) - np.minimum({gamma[ind-1]},development))/{dgrain})'])] if(iota): - formula_parts += ['+'.join([f'I(np.minimum({x[1]},valuation) - np.minimum({x[0]},valuation))' for x in iota])] + for ind in range(1,len(iota)): + formula_parts += ['+'.join([f'I(np.minimum({iota[ind]},valuation) - np.minimum({iota[ind-1]},valuation))'])] if(formula_parts): return '+'.join(formula_parts) return '' From b9333c26ebc39ac8ec797b2510579c1be09adff0 Mon Sep 17 00:00:00 2001 From: danielfong-act Date: Thu, 22 Jan 2026 14:33:50 -0800 Subject: [PATCH 6/9] updated docs to reflect changes to PTF_formula --- docs/user_guide/development.ipynb | 11 ++++++----- 1 file changed, 6 insertions(+), 5 deletions(-) diff --git a/docs/user_guide/development.ipynb b/docs/user_guide/development.ipynb index 7ac5365d..51078f50 100644 --- a/docs/user_guide/development.ipynb +++ b/docs/user_guide/development.ipynb @@ -7557,8 +7557,9 @@ "source": [ "Grouping parameters like this requires complex patsy formulas, so a convenience function, \n", "`utils.utilityfunctions.PTF_formula`, is provided. This function takes lists for alpha, gamma and iota.\n", - "Alpha is passed as a list of ranges delimiting groups of origin periods. Gamma and iota are passed as tuples\n", - "denoting the bounds of linear segments. \n", + "Alpha is passed as a list of periods (indexed from 0) denoting the begnning of each origin group.\n", + "Gamma and iota are passed as lists denoting the endpoints of linear segments. Note that while valuation \n", + "periods are indexed from 0, development periods are indexed from the first development period.\n", "Fitting the model described above is easy now:" ] }, @@ -7675,9 +7676,9 @@ "exposure=np.array([[2.2], [2.4], [2.2], [2.0], [1.9], [1.6], [1.6], [1.8], [2.2], [2.5], [2.6]])\n", "abc_adj = abc/exposure\n", "\n", - "origin_buckets = [(0,1),(2,2),(3,4),(5,10)]\n", - "dev_buckets = [(24,36),(36,48),(48,84),(84,108),(108,144)]\n", - "val_buckets = [(1,8),(8,9),(9,12)]\n", + "origin_buckets = [0,2,3,5]\n", + "dev_buckets = [12,24,36,72,96,132]\n", + "val_buckets = [0,7,8,11]\n", " \n", "abc_formula = PTF_formula(abc_adj,alpha=origin_buckets,gamma=dev_buckets,iota=val_buckets)\n", " \n", From 0a58083f0743d2395120786837e315d2c51a80ec Mon Sep 17 00:00:00 2001 From: danielfong-act Date: Fri, 23 Jan 2026 12:51:53 -0800 Subject: [PATCH 7/9] More checks for how BZ parameters are passed. Moved PTF_formula to within BZ estimator (called during fit). Changed how gamma is passed: index from 0 and increment grain-agnostic. Docs not updated yet --- chainladder/development/barnzehn.py | 30 ++++++++++++++----- .../development/tests/test_barnzehn.py | 7 ++--- chainladder/utils/utility_functions.py | 9 +++--- 3 files changed, 29 insertions(+), 17 deletions(-) diff --git a/chainladder/development/barnzehn.py b/chainladder/development/barnzehn.py index 783b3645..9591cf78 100644 --- a/chainladder/development/barnzehn.py +++ b/chainladder/development/barnzehn.py @@ -9,10 +9,7 @@ from chainladder.development.glm import TweedieGLM from sklearn.linear_model import LinearRegression from sklearn.pipeline import Pipeline -import warnings -from chainladder.utils.utility_functions import PatsyFormula -from patsy import ModelDesc - +from chainladder.utils.utility_functions import PatsyFormula, PTF_formula class BarnettZehnwirth(TweedieGLM): """ This estimator enables modeling from the Probabilistic Trend Family as @@ -31,21 +28,38 @@ class BarnettZehnwirth(TweedieGLM): response: str Column name for the reponse variable of the GLM. If ommitted, then the first column of the Triangle will be used. - + alpha: list of int + List of origin periods denoting the first indices of each group + gamma: list of int + iota: list of int """ - def __init__(self, drop=None,drop_valuation=None,formula='C(origin) + development', response=None): + def __init__(self, drop=None,drop_valuation=None,formula=None, response=None, alpha=None, gamma=None, iota=None): self.drop = drop self.drop_valuation = drop_valuation - self.formula = formula - self.response = response + self.response = response + if formula and (alpha or gamma or iota): + raise ValueError("Model can only be specified by either a formula or some combination of alpha, gamma and iota.") + if not (formula or alpha or gamma or iota): + raise ValueError("Model must be specified, either a formula or some combination of alpha, gamma and iota.") + for Greek in [alpha,gamma,iota]: + if Greek: + if not ( (type(Greek) is list) and all(type(bound) is int for bound in Greek) ): + raise ValueError("Alpha, gamma and iota must be given as lists of integers, specifying periods.") + self.formula = formula + self.alpha = alpha + self.gamma = gamma + self.iota = iota + def fit(self, X, y=None, sample_weight=None): if max(X.shape[:2]) > 1: raise ValueError("Only single index/column triangles are supported") tri = X.cum_to_incr().log() response = X.columns[0] if not self.response else self.response + if(not self.formula): + self.formula = PTF_formula(self.alpha,self.gamma,self.iota,dgrain=min(tri.development)) self.model_ = DevelopmentML(Pipeline(steps=[ ('design_matrix', PatsyFormula(self.formula)), ('model', LinearRegression(fit_intercept=False))]), diff --git a/chainladder/development/tests/test_barnzehn.py b/chainladder/development/tests/test_barnzehn.py index 148703ff..fa32b506 100644 --- a/chainladder/development/tests/test_barnzehn.py +++ b/chainladder/development/tests/test_barnzehn.py @@ -1,7 +1,6 @@ import numpy as np import chainladder as cl import pytest -from chainladder.utils.utility_functions import PTF_formula abc = cl.load_sample('abc') def test_basic_bz(): @@ -41,12 +40,10 @@ def test_bz_2008(): abc_adj = abc/exposure origin_buckets = [0,2,3,5] - dev_buckets = [12,24,36,72,96,132] + dev_buckets = [0,1,2,5,7,10] val_buckets = [0,7,8,11] - abc_formula = PTF_formula(abc_adj,alpha=origin_buckets,gamma=dev_buckets,iota=val_buckets) - - model=cl.BarnettZehnwirth(formula=abc_formula, drop=('1982',72)).fit(abc_adj) + model=cl.BarnettZehnwirth(drop=('1982',72),alpha=origin_buckets,gamma=dev_buckets,iota=val_buckets).fit(abc_adj) assert np.all( np.around(model.coef_.values,4).flatten() == np.array([11.1579,0.1989,0.0703,0.0919,0.1871,-0.3771,-0.4465,-0.3727,-0.3154,0.0432,0.0858,0.1464]) diff --git a/chainladder/utils/utility_functions.py b/chainladder/utils/utility_functions.py index 7ffe8756..c7d61b90 100644 --- a/chainladder/utils/utility_functions.py +++ b/chainladder/utils/utility_functions.py @@ -769,7 +769,7 @@ def model_diagnostics(model, name=None, groupby=None): return concat(triangles, 0) -def PTF_formula(tri: Triangle, alpha: ArrayLike = None, gamma: ArrayLike = None, iota: ArrayLike = None): +def PTF_formula(alpha: list = None, gamma: list = None, iota: list = None,dgrain: int = 12): """ Helper formula that builds a patsy formula string for the BarnettZehnwirth estimator. Each axis's parameters can be grouped together. Groups of origin parameters (alpha) are set equal, and are specified by the first period in each bin. @@ -786,9 +786,10 @@ def PTF_formula(tri: Triangle, alpha: ArrayLike = None, gamma: ArrayLike = None, alpha=alpha[:ind]+alpha[(ind+1):] formula_parts += ['+'.join([f'I({x} <= origin)' for x in alpha])] if(gamma): - dgrain = min(tri.development) - for ind in range(1,len(gamma)): - formula_parts += ['+'.join([f'I((np.minimum({gamma[ind]},development) - np.minimum({gamma[ind-1]},development))/{dgrain})'])] + # preprocess gamma to align with grain + graingamma = [(i+1)*dgrain for i in gamma] + for ind in range(1,len(graingamma)): + formula_parts += ['+'.join([f'I((np.minimum({graingamma[ind]},development) - np.minimum({graingamma[ind-1]},development))/{dgrain})'])] if(iota): for ind in range(1,len(iota)): formula_parts += ['+'.join([f'I(np.minimum({iota[ind]},valuation) - np.minimum({iota[ind-1]},valuation))'])] From d7b8c729d1f7b5c49bc014ed397af29d6f7aa948 Mon Sep 17 00:00:00 2001 From: danielfong-act Date: Fri, 23 Jan 2026 14:07:40 -0800 Subject: [PATCH 8/9] updated user_guide/development to reflect PTF_formula integration into BZ --- docs/user_guide/development.ipynb | 239 ++++++++++++++---------------- 1 file changed, 114 insertions(+), 125 deletions(-) diff --git a/docs/user_guide/development.ipynb b/docs/user_guide/development.ipynb index 51078f50..4c45d5ba 100644 --- a/docs/user_guide/development.ipynb +++ b/docs/user_guide/development.ipynb @@ -4690,141 +4690,141 @@ "data": { "text/html": [ "\n", - "
 12-2424-3636-4848-6060-7272-8484-9696-108108-12012-2424-3636-4848-6060-7272-8484-9696-108108-120
19811.64981.31901.08231.14691.19511.11301.033319811.64981.31901.08231.14691.19511.11301.03331.00921.0092
198219821.25931.97661.29211.13180.99341.25931.97661.29211.13180.99341.03311.0331
19832.63701.54281.16351.16071.185719832.63701.54281.16351.16071.18571.02641.0264
19842.04331.36441.34891.101519842.04331.36441.34891.10151.03771.0377
19858.75921.65561.399919858.75921.65561.39991.00871.0087
19864.25971.815719864.25971.81571.22551.2255
19877.217219877.21721.12501.1250
198819881.88741.8874
19891.722019891.7220
(All)2.61001.43002.48001.40001.19001.10001.0400
\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4832,10 +4832,10 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4844,9 +4844,9 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4856,8 +4856,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7289,8 +7289,8 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -7304,7 +7304,7 @@ ], "text/plain": [ " 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120\n", - "(All) 2.48 1.4 1.19 1.1 1.04 1.02 1.01 1.01 1.01" + "(All) 2.7 1.42 1.19 1.1 1.04 1.02 1.01 1.01 1.01" ] }, "execution_count": 38, @@ -7535,9 +7535,9 @@ "The general form of the PTF family includes a great number of parameters. The number of parameters \n", "should be reduced, where reasonable, to improve parameter estimates. Origin coefficients can be set to \n", "0, corresponding to periods of unchanging origin levels. Adjacent development and valuation coefficients\n", - "can be set equal, creating periods of constant linear trend. One such model from {cite}`barnett2008` \n", - "(pp. 48-49) is described below by three graphs of its parameters.\n", - "\n" + "can be set equal, creating periods of constant linear trend. In other words, development and valuation\n", + "parameters will have a piecewise linear relationship. One such model from {cite}`barnett2008`(pp. 48-49) \n", + "is described below by three graphs of its parameters." ] }, { @@ -7555,17 +7555,16 @@ "id": "1feda665-060d-4756-96d3-1645bd106a5f", "metadata": {}, "source": [ - "Grouping parameters like this requires complex patsy formulas, so a convenience function, \n", - "`utils.utilityfunctions.PTF_formula`, is provided. This function takes lists for alpha, gamma and iota.\n", + "Grouping parameters like this requires complex patsy formulas, so BarnettZehnwirth can be passed \n", + "lists specifying alpha, gamma and iota in lieu of a formula.\n", "Alpha is passed as a list of periods (indexed from 0) denoting the begnning of each origin group.\n", - "Gamma and iota are passed as lists denoting the endpoints of linear segments. Note that while valuation \n", - "periods are indexed from 0, development periods are indexed from the first development period.\n", + "Gamma and iota are passed as lists denoting the endpoints of linear segments. This leads\n", "Fitting the model described above is easy now:" ] }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 43, "id": "nominated-zimbabwe", "metadata": {}, "outputs": [ @@ -7596,51 +7595,51 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", "
 12-2424-3636-4848-6060-7272-8484-9696-108108-12012-2424-3636-4848-6060-7272-8484-9696-108108-120
19811.64981.31901.08231.14691.19511.11301.033319811.64981.31901.08231.14691.19511.11301.03331.00921.0092
198219821.25931.97661.29211.13180.99341.25931.97661.29211.13180.99341.03311.0331
19832.63701.54281.16351.16071.185719832.63701.54281.16351.16071.18571.02641.0264
19842.04331.36441.34891.101519842.04331.36441.34891.10151.03771.0377
19858.75921.65561.399919858.75921.65561.39991.00871.0087
19864.25971.815719864.25971.81571.22551.2255
19877.217219877.21721.12501.1250
198819881.88741.8874
19891.722019891.7220
(All)2.48001.40002.70001.42001.19001.10001.0400
Intercept11.266511.1579
I(2 <= origin)[T.True]0.17840.1989
I(3 <= origin)[T.True]0.04800.0703
I(5 <= origin)[T.True]0.04500.0919
I((np.minimum(36, development) - np.minimum(24, development)) / 12)-0.2898I((np.minimum(24, development) - np.minimum(12, development)) / 12)0.1871
I((np.minimum(48, development) - np.minimum(36, development)) / 12)-0.4830I((np.minimum(36, development) - np.minimum(24, development)) / 12)-0.3771
I((np.minimum(84, development) - np.minimum(48, development)) / 12)-0.4408I((np.minimum(72, development) - np.minimum(36, development)) / 12)-0.4465
I((np.minimum(108, development) - np.minimum(84, development)) / 12)-0.3447I((np.minimum(96, development) - np.minimum(72, development)) / 12)-0.3727
I((np.minimum(144, development) - np.minimum(108, development)) / 12)-0.3220I((np.minimum(132, development) - np.minimum(96, development)) / 12)-0.3154
I(np.minimum(8, valuation) - np.minimum(1, valuation))0.0643I(np.minimum(7, valuation) - np.minimum(0, valuation))0.0432
I(np.minimum(9, valuation) - np.minimum(8, valuation))0.1841I(np.minimum(8, valuation) - np.minimum(7, valuation))0.0858
I(np.minimum(12, valuation) - np.minimum(9, valuation))0.1408I(np.minimum(11, valuation) - np.minimum(8, valuation))0.1464
\n", @@ -7648,21 +7647,21 @@ ], "text/plain": [ " coef_\n", - "Intercept 11.2665\n", - "I(2 <= origin)[T.True] 0.1784\n", - "I(3 <= origin)[T.True] 0.0480\n", - "I(5 <= origin)[T.True] 0.0450\n", - "I((np.minimum(36, development) - np.minimum(24,... -0.2898\n", - "I((np.minimum(48, development) - np.minimum(36,... -0.4830\n", - "I((np.minimum(84, development) - np.minimum(48,... -0.4408\n", - "I((np.minimum(108, development) - np.minimum(84... -0.3447\n", - "I((np.minimum(144, development) - np.minimum(10... -0.3220\n", - "I(np.minimum(8, valuation) - np.minimum(1, valu... 0.0643\n", - "I(np.minimum(9, valuation) - np.minimum(8, valu... 0.1841\n", - "I(np.minimum(12, valuation) - np.minimum(9, val... 0.1408" + "Intercept 11.1579\n", + "I(2 <= origin)[T.True] 0.1989\n", + "I(3 <= origin)[T.True] 0.0703\n", + "I(5 <= origin)[T.True] 0.0919\n", + "I((np.minimum(24, development) - np.minimum(12,... 0.1871\n", + "I((np.minimum(36, development) - np.minimum(24,... -0.3771\n", + "I((np.minimum(72, development) - np.minimum(36,... -0.4465\n", + "I((np.minimum(96, development) - np.minimum(72,... -0.3727\n", + "I((np.minimum(132, development) - np.minimum(96... -0.3154\n", + "I(np.minimum(7, valuation) - np.minimum(0, valu... 0.0432\n", + "I(np.minimum(8, valuation) - np.minimum(7, valu... 0.0858\n", + "I(np.minimum(11, valuation) - np.minimum(8, val... 0.1464" ] }, - "execution_count": 40, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -7677,22 +7676,12 @@ "abc_adj = abc/exposure\n", "\n", "origin_buckets = [0,2,3,5]\n", - "dev_buckets = [12,24,36,72,96,132]\n", + "dev_buckets = [0,1,2,5,7,10]\n", "val_buckets = [0,7,8,11]\n", - " \n", - "abc_formula = PTF_formula(abc_adj,alpha=origin_buckets,gamma=dev_buckets,iota=val_buckets)\n", - " \n", - "model=cl.BarnettZehnwirth(formula=abc_formula, drop=('1982',72)).fit(abc_adj)\n", + " \n", + "model=cl.BarnettZehnwirth(drop=('1982',72),alpha=origin_buckets,gamma=dev_buckets,iota=val_buckets).fit(abc_adj)\n", "model.coef_.round(4)" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "blank-enemy", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { From 840bc4f02dd746312c30168928c2ba7bcb7cbac3 Mon Sep 17 00:00:00 2001 From: danielfong-act Date: Fri, 23 Jan 2026 14:12:38 -0800 Subject: [PATCH 9/9] moved PTF_formula into PatsyFormula --- chainladder/development/barnzehn.py | 4 +--- chainladder/utils/utility_functions.py | 9 ++++++--- 2 files changed, 7 insertions(+), 6 deletions(-) diff --git a/chainladder/development/barnzehn.py b/chainladder/development/barnzehn.py index 9591cf78..35a42b39 100644 --- a/chainladder/development/barnzehn.py +++ b/chainladder/development/barnzehn.py @@ -58,10 +58,8 @@ def fit(self, X, y=None, sample_weight=None): raise ValueError("Only single index/column triangles are supported") tri = X.cum_to_incr().log() response = X.columns[0] if not self.response else self.response - if(not self.formula): - self.formula = PTF_formula(self.alpha,self.gamma,self.iota,dgrain=min(tri.development)) self.model_ = DevelopmentML(Pipeline(steps=[ - ('design_matrix', PatsyFormula(self.formula)), + ('design_matrix', PatsyFormula(self.formula,self.alpha,self.gamma,self.iota,dgrain=min(tri.development))), ('model', LinearRegression(fit_intercept=False))]), y_ml=response, fit_incrementals=True, drop=self.drop, drop_valuation = self.drop_valuation, weighted_step = 'model').fit(X = tri, sample_weight = sample_weight) resid = tri - self.model_.triangle_ml_[ diff --git a/chainladder/utils/utility_functions.py b/chainladder/utils/utility_functions.py index c7d61b90..4f99b615 100644 --- a/chainladder/utils/utility_functions.py +++ b/chainladder/utils/utility_functions.py @@ -663,8 +663,11 @@ class PatsyFormula(BaseEstimator, TransformerMixin): """ - def __init__(self, formula=None): - self.formula = formula + def __init__(self, formula=None, alpha: list = None, gamma: list = None, iota: list = None, dgrain: int = 12): + if(formula): + self.formula = formula + else: + self.formula = PTF_formula(alpha,gamma,iota,dgrain) def _check_X(self, X): from chainladder.core import Triangle @@ -769,7 +772,7 @@ def model_diagnostics(model, name=None, groupby=None): return concat(triangles, 0) -def PTF_formula(alpha: list = None, gamma: list = None, iota: list = None,dgrain: int = 12): +def PTF_formula(alpha: list = None, gamma: list = None, iota: list = None, dgrain: int = 12): """ Helper formula that builds a patsy formula string for the BarnettZehnwirth estimator. Each axis's parameters can be grouped together. Groups of origin parameters (alpha) are set equal, and are specified by the first period in each bin.