@@ -8,6 +8,16 @@ This repository will store all my implementations of Incremental Learning's pape
88
99Every model must inherit ` inclearn.models.base.IncrementalLearner ` .
1010
11+ ## Papers implemented:
12+
13+ :white_check_mark : --> Paper implemented & reached expected results.\
14+ :construction : --> Runnable but not yet reached expected results.\
15+ :x : --> Not yet implemented or barely working.\
16+
17+ [ 1] : :white_check_mark : iCaRL\
18+ [ 2] : :construction : LwF\
19+ [ 3] : :construction : End-to-End Incremental Learning\
20+
1121
1222## iCaRL
1323
@@ -26,3 +36,60 @@ The metric used is the `average incremental accuracy`:
2636If I understood well, the accuracy at task i (computed on all seen tasks) is averaged
2737with all previous accuracy. A bit weird, but doing so get me a curve very similar
2838to what the papier displayed.
39+
40+ ---
41+
42+ # References
43+
44+ [ 1] iCaRL:
45+
46+ ```
47+ @InProceedings{icarl,
48+ author = {Rebuffi, Sylvestre-Alvise and Kolesnikov, Alexander and Sperl, Georg and Lampert, Christoph H.},
49+ title = {iCaRL: Incremental Classifier and Representation Learning},
50+ booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
51+ month = {July},
52+ year = {2017}
53+ }
54+ ```
55+
56+ [ 2 ] : LwF:
57+
58+ ```
59+ @ARTICLE{lwf,
60+ author={Z. {Li} and D. {Hoiem}},
61+ journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
62+ title={Learning without Forgetting},
63+ year={2018},
64+ volume={40},
65+ number={12},
66+ pages={2935-2947},
67+ keywords={convolution;feature extraction;feedforward neural nets;learning (artificial intelligence);fine-tuning adaption techniques;CNN;forgetting method;convolutional neural network;vision system;feature extraction;Feature extraction;Deep learning;Training data;Neural networks;Convolutional neural networks;Knowledge engineering;Learning systems;Visual perception;Convolutional neural networks;transfer learning;multi-task learning;deep learning;visual recognition},
68+ doi={10.1109/TPAMI.2017.2773081},
69+ ISSN={0162-8828},
70+ month={Dec},}
71+ ```
72+
73+ [ 3] : End-to-End Incremental Learning:
74+
75+ ```
76+ @inproceedings{end_to_end_inc_learn,
77+ TITLE = {{End-to-End Incremental Learning}},
78+ AUTHOR = {Castro, Francisco M. and Mar{\'i}n-Jim{\'e}nez, Manuel J and Guil, Nicol{\'a}s and Schmid, Cordelia and Alahari, Karteek},
79+ URL = {https://hal.inria.fr/hal-01849366},
80+ BOOKTITLE = {{ECCV 2018 - European Conference on Computer Vision}},
81+ ADDRESS = {Munich, Germany},
82+ EDITOR = {Vittorio Ferrari and Martial Hebert and Cristian Sminchisescu and Yair Weiss},
83+ PUBLISHER = {{Springer}},
84+ SERIES = {Lecture Notes in Computer Science},
85+ VOLUME = {11216},
86+ PAGES = {241-257},
87+ YEAR = {2018},
88+ MONTH = Sep,
89+ DOI = {10.1007/978-3-030-01258-8\_15},
90+ KEYWORDS = {Incremental learning ; CNN ; Distillation loss ; Image classification},
91+ PDF = {https://hal.inria.fr/hal-01849366/file/IncrementalLearning_ECCV2018.pdf},
92+ HAL_ID = {hal-01849366},
93+ HAL_VERSION = {v1},
94+ }
95+ ```
0 commit comments