Skip to content

Query about interpolation in gridded_timeseries.py #140

@sspagnol

Description

@sspagnol

Have a query about the interpolation done in grid_variable function in gridded_timeseries.py

Had a situation where in some timesteps the profile had nan data, which when interpolated seems to produce more nans that I expected. Consider the toy problem

print("np.interp test")
depth_bins = np.array([10, 20, 30, 40, 50])

depths = np.array([12, 27, 35, 46])
values = np.array([1, 2, np.nan, 5])

print(depth_bins)
interp_values = np.interp(depth_bins, depths, values, left=np.nan, right=np.nan)
print(interp_values)

# interpolate non-nan
nmask = np.logical_or(np.isnan(depths), np.isnan(values))
interp_values = np.interp(depth_bins, depths[~nmask], values[~nmask], left=np.nan, right=np.nan)
print(interp_values)

which produces

np.interp test
[10 20 30 40 50]
[       nan 1.53333333        nan        nan        nan]
[       nan 1.53333333 2.47368421 4.05263158        nan]

What is the reasoning to want depth_bins 30 and 40 to be set to nan?

Metadata

Metadata

Assignees

No one assigned

    Labels

    gridded_timeseriesIssues relating to the gridded time series productquestionFurther information is requested

    Type

    No type

    Projects

    No projects

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions