|
| 1 | +import os |
| 2 | +import sys |
| 3 | +import neat |
| 4 | +import torch |
| 5 | +import numpy as np |
| 6 | + |
| 7 | +sys.path.append(os.path.dirname(os.path.dirname(__file__))) |
| 8 | + |
| 9 | +from population import GuidedPopulation |
| 10 | +from genome import OptimizerGenome |
| 11 | +from genes import NODE_TYPE_TO_INDEX, ConnectionGene, NodeGene |
| 12 | +from attributes import IntAttribute, FloatAttribute |
| 13 | +from tasks import RegressionTask |
| 14 | +from reproduction import GuidedReproduction |
| 15 | + |
| 16 | + |
| 17 | +def make_config(): |
| 18 | + config_path = os.path.join(os.path.dirname(__file__), os.pardir, "neat-config") |
| 19 | + return neat.Config( |
| 20 | + OptimizerGenome, |
| 21 | + GuidedReproduction, |
| 22 | + neat.DefaultSpeciesSet, |
| 23 | + neat.DefaultStagnation, |
| 24 | + config_path, |
| 25 | + ) |
| 26 | + |
| 27 | + |
| 28 | +def create_simple_genome(key=0): |
| 29 | + genome = OptimizerGenome(key) |
| 30 | + ng0 = NodeGene(0, None) |
| 31 | + ng0.node_type = "aten::add" |
| 32 | + ng0.dynamic_attributes = {IntAttribute("a"): 1} |
| 33 | + ng1 = NodeGene(1, None) |
| 34 | + ng1.node_type = "aten::mul" |
| 35 | + ng1.dynamic_attributes = {FloatAttribute("b"): 0.5} |
| 36 | + genome.nodes = {0: ng0, 1: ng1} |
| 37 | + cg = ConnectionGene((0, 1)) |
| 38 | + cg.enabled = True |
| 39 | + genome.connections = {(0, 1): cg} |
| 40 | + genome.next_node_id = 2 |
| 41 | + return genome |
| 42 | + |
| 43 | + |
| 44 | +def test_genome_to_data(): |
| 45 | + config = make_config() |
| 46 | + pop = GuidedPopulation(config) |
| 47 | + genome = create_simple_genome() |
| 48 | + data = pop.genome_to_data(genome) |
| 49 | + |
| 50 | + assert genome.graph_dict is not None |
| 51 | + assert list(data.node_types.tolist()) == [NODE_TYPE_TO_INDEX["aten::add"], NODE_TYPE_TO_INDEX["aten::mul"]] |
| 52 | + assert data.edge_index.size(1) == 1 |
| 53 | + assert data.edge_index[:, 0].tolist() == [0, 1] |
| 54 | + assert len(data.node_attributes) == 2 |
| 55 | + assert "a" in pop.shared_attr_vocab.name_to_index |
| 56 | + assert "b" in pop.shared_attr_vocab.name_to_index |
| 57 | + |
| 58 | + |
| 59 | +def test_generate_guided_offspring(): |
| 60 | + config = make_config() |
| 61 | + pop = GuidedPopulation(config) |
| 62 | + pop.guide.decoder.max_nodes = 2 |
| 63 | + pop.guide.decoder.max_attributes_per_node = 2 |
| 64 | + |
| 65 | + g1 = create_simple_genome(0) |
| 66 | + g1.fitness = 1.0 |
| 67 | + g2 = create_simple_genome(1) |
| 68 | + g2.fitness = 0.5 |
| 69 | + pop.genome_to_data(g1) |
| 70 | + pop.genome_to_data(g2) |
| 71 | + |
| 72 | + task = RegressionTask.random_init(num_samples=4, silent=True) |
| 73 | + offspring = pop.generate_guided_offspring( |
| 74 | + task.name(), task.features, [g1, g2], config, n_offspring=2, latent_steps=1 |
| 75 | + ) |
| 76 | + |
| 77 | + assert isinstance(offspring, list) |
| 78 | + assert len(offspring) <= 2 |
| 79 | + for child in offspring: |
| 80 | + assert isinstance(child, OptimizerGenome) |
| 81 | + assert child.graph_dict is not None |
0 commit comments