|
1 | | -package sudoku; |
2 | 1 |
|
3 | | -import java.util.Iterator; |
4 | | -import java.util.NoSuchElementException; |
| 2 | +package com.thealgorithms.puzzlesandgames; |
5 | 3 |
|
6 | 4 | /** |
7 | | - * Represents a Sudoku board with support for iteration using the Iterator pattern. |
| 5 | + * A class that provides methods to solve Sudoku puzzles of any n x n size |
| 6 | + * using a backtracking approach, where n must be a perfect square. |
| 7 | + * The algorithm checks for safe number placements in rows, columns, |
| 8 | + * and subgrids (which are sqrt(n) x sqrt(n) in size) and recursively solves the puzzle. |
| 9 | + * Though commonly used for 9x9 grids, it is adaptable to other valid Sudoku dimensions. |
8 | 10 | */ |
9 | | -public class SudokuBoard implements Iterable<SudokuBoard.Cell> { |
| 11 | +final class Sudoku { |
10 | 12 |
|
11 | | - private final int[][] board; |
12 | | - private final int size; |
13 | | - |
14 | | - public SudokuBoard(int size) { |
15 | | - this.size = size; |
16 | | - this.board = new int[size][size]; |
17 | | - } |
18 | | - |
19 | | - public int getSize() { |
20 | | - return size; |
| 13 | + private Sudoku() { |
21 | 14 | } |
22 | 15 |
|
23 | | - public int getValue(int row, int col) { |
24 | | - return board[row][col]; |
25 | | - } |
| 16 | + /** |
| 17 | + * Checks if placing a number in a specific position on the Sudoku board is safe. |
| 18 | + * The number is considered safe if it does not violate any of the Sudoku rules: |
| 19 | + * - It should not be present in the same row. |
| 20 | + * - It should not be present in the same column. |
| 21 | + * - It should not be present in the corresponding 3x3 subgrid. |
| 22 | + * - It should not be present in the corresponding subgrid, which is sqrt(n) x sqrt(n) in size (e.g., for a 9x9 grid, the subgrid will be 3x3). |
| 23 | + * |
| 24 | + * @param board The current state of the Sudoku board. |
| 25 | + * @param row The row index where the number is to be placed. |
| 26 | + * @param col The column index where the number is to be placed. |
| 27 | + * @param num The number to be placed on the board. |
| 28 | + * @return True if the placement is safe, otherwise false. |
| 29 | + */ |
| 30 | + public static boolean isSafe(int[][] board, int row, int col, int num) { |
| 31 | + // Check the row for duplicates |
| 32 | + for (int d = 0; d < board.length; d++) { |
| 33 | + if (board[row][d] == num) { |
| 34 | + return false; |
| 35 | + } |
| 36 | + } |
26 | 37 |
|
27 | | - public void setValue(int row, int col, int value) { |
28 | | - board[row][col] = value; |
29 | | - } |
| 38 | + // Check the column for duplicates |
| 39 | + for (int r = 0; r < board.length; r++) { |
| 40 | + if (board[r][col] == num) { |
| 41 | + return false; |
| 42 | + } |
| 43 | + } |
30 | 44 |
|
31 | | - /** Represents a single cell in the Sudoku board */ |
32 | | - public static class Cell { |
33 | | - private final int row; |
34 | | - private final int col; |
35 | | - private final int value; |
| 45 | + // Check the corresponding 3x3 subgrid for duplicates |
| 46 | + int sqrt = (int) Math.sqrt(board.length); |
| 47 | + int boxRowStart = row - row % sqrt; |
| 48 | + int boxColStart = col - col % sqrt; |
36 | 49 |
|
37 | | - public Cell(int row, int col, int value) { |
38 | | - this.row = row; |
39 | | - this.col = col; |
40 | | - this.value = value; |
| 50 | + for (int r = boxRowStart; r < boxRowStart + sqrt; r++) { |
| 51 | + for (int d = boxColStart; d < boxColStart + sqrt; d++) { |
| 52 | + if (board[r][d] == num) { |
| 53 | + return false; |
| 54 | + } |
| 55 | + } |
41 | 56 | } |
42 | 57 |
|
43 | | - public int getRow() { |
44 | | - return row; |
45 | | - } |
| 58 | + return true; |
| 59 | + } |
46 | 60 |
|
47 | | - public int getCol() { |
48 | | - return col; |
| 61 | + /** |
| 62 | + * Solves the Sudoku puzzle using backtracking. |
| 63 | + * The algorithm finds an empty cell and tries placing numbers |
| 64 | + * from 1 to n, where n is the size of the board |
| 65 | + * (for example, from 1 to 9 in a standard 9x9 Sudoku). |
| 66 | + * The algorithm finds an empty cell and tries placing numbers from 1 to 9. |
| 67 | + * The standard version of Sudoku uses numbers from 1 to 9, so the algorithm can be |
| 68 | + * easily modified for other variations of the game. |
| 69 | + * If a number placement is valid (checked via `isSafe`), the number is |
| 70 | + * placed and the function recursively attempts to solve the rest of the puzzle. |
| 71 | + * If no solution is possible, the number is removed (backtracked), |
| 72 | + * and the process is repeated. |
| 73 | + * |
| 74 | + * @param board The current state of the Sudoku board. |
| 75 | + * @param n The size of the Sudoku board (typically 9 for a standard puzzle). |
| 76 | + * @return True if the Sudoku puzzle is solvable, false otherwise. |
| 77 | + */ |
| 78 | + public static boolean solveSudoku(int[][] board, int n) { |
| 79 | + int row = -1; |
| 80 | + int col = -1; |
| 81 | + boolean isEmpty = true; |
| 82 | + |
| 83 | + // Find the next empty cell |
| 84 | + for (int i = 0; i < n; i++) { |
| 85 | + for (int j = 0; j < n; j++) { |
| 86 | + if (board[i][j] == 0) { |
| 87 | + row = i; |
| 88 | + col = j; |
| 89 | + isEmpty = false; |
| 90 | + break; |
| 91 | + } |
| 92 | + } |
| 93 | + if (!isEmpty) { |
| 94 | + break; |
| 95 | + } |
49 | 96 | } |
50 | 97 |
|
51 | | - public int getValue() { |
52 | | - return value; |
| 98 | + // No empty space left |
| 99 | + if (isEmpty) { |
| 100 | + return true; |
53 | 101 | } |
54 | | - } |
55 | 102 |
|
56 | | - /** Iterator implementation for Sudoku board cells */ |
57 | | - private class CellIterator implements Iterator<Cell> { |
58 | | - private int row = 0; |
59 | | - private int col = 0; |
60 | | - |
61 | | - @Override |
62 | | - public boolean hasNext() { |
63 | | - return row < size && col < size; |
| 103 | + // Try placing numbers 1 to n in the empty cell (n should be a perfect square) |
| 104 | + // Eg: n=9 for a standard 9x9 Sudoku puzzle, n=16 for a 16x16 puzzle, etc. |
| 105 | + for (int num = 1; num <= n; num++) { |
| 106 | + if (isSafe(board, row, col, num)) { |
| 107 | + board[row][col] = num; |
| 108 | + if (solveSudoku(board, n)) { |
| 109 | + return true; |
| 110 | + } else { |
| 111 | + // replace it |
| 112 | + board[row][col] = 0; |
| 113 | + } |
| 114 | + } |
64 | 115 | } |
| 116 | + return false; |
| 117 | + } |
65 | 118 |
|
66 | | - @Override |
67 | | - public Cell next() { |
68 | | - if (!hasNext()) { |
69 | | - throw new NoSuchElementException(); |
| 119 | + /** |
| 120 | + * Prints the current state of the Sudoku board in a readable format. |
| 121 | + * Each row is printed on a new line, with numbers separated by spaces. |
| 122 | + * |
| 123 | + * @param board The current state of the Sudoku board. |
| 124 | + * @param n The size of the Sudoku board (typically 9 for a standard puzzle). |
| 125 | + */ |
| 126 | + public static void print(int[][] board, int n) { |
| 127 | + // Print the board in a nxn grid format |
| 128 | + // if n=9, print the board in a 9x9 grid format |
| 129 | + // if n=16, print the board in a 16x16 grid format |
| 130 | + for (int r = 0; r < n; r++) { |
| 131 | + for (int d = 0; d < n; d++) { |
| 132 | + System.out.print(board[r][d]); |
| 133 | + System.out.print(" "); |
70 | 134 | } |
71 | | - Cell cell = new Cell(row, col, board[row][col]); |
72 | | - col++; |
73 | | - if (col == size) { |
74 | | - col = 0; |
75 | | - row++; |
| 135 | + System.out.print("\n"); |
| 136 | + |
| 137 | + if ((r + 1) % (int) Math.sqrt(n) == 0) { |
| 138 | + System.out.print(""); |
76 | 139 | } |
77 | | - return cell; |
78 | 140 | } |
79 | 141 | } |
80 | 142 |
|
81 | | - @Override |
82 | | - public Iterator<Cell> iterator() { |
83 | | - return new CellIterator(); |
| 143 | + /** |
| 144 | + * The driver method to demonstrate solving a Sudoku puzzle. |
| 145 | + * A sample 9x9 Sudoku puzzle is provided, and the program attempts to solve it |
| 146 | + * using the `solveSudoku` method. If a solution is found, it is printed to the console. |
| 147 | + * |
| 148 | + * @param args Command-line arguments (not used in this program). |
| 149 | + */ |
| 150 | + public static void main(String[] args) { |
| 151 | + int[][] board = new int[][] { |
| 152 | + {3, 0, 6, 5, 0, 8, 4, 0, 0}, |
| 153 | + {5, 2, 0, 0, 0, 0, 0, 0, 0}, |
| 154 | + {0, 8, 7, 0, 0, 0, 0, 3, 1}, |
| 155 | + {0, 0, 3, 0, 1, 0, 0, 8, 0}, |
| 156 | + {9, 0, 0, 8, 6, 3, 0, 0, 5}, |
| 157 | + {0, 5, 0, 0, 9, 0, 6, 0, 0}, |
| 158 | + {1, 3, 0, 0, 0, 0, 2, 5, 0}, |
| 159 | + {0, 0, 0, 0, 0, 0, 0, 7, 4}, |
| 160 | + {0, 0, 5, 2, 0, 6, 3, 0, 0}, |
| 161 | + }; |
| 162 | + int n = board.length; |
| 163 | + |
| 164 | + if (solveSudoku(board, n)) { |
| 165 | + print(board, n); |
| 166 | + } else { |
| 167 | + System.out.println("No solution"); |
| 168 | + } |
84 | 169 | } |
85 | 170 | } |
0 commit comments