diff --git a/source/linear-algebra/exercises/outcomes/AT/AT2/generator.sage b/source/linear-algebra/exercises/outcomes/AT/AT2/generator.sage index df21f8cf7..547d87fa5 100644 --- a/source/linear-algebra/exercises/outcomes/AT/AT2/generator.sage +++ b/source/linear-algebra/exercises/outcomes/AT/AT2/generator.sage @@ -35,10 +35,12 @@ class Generator(BaseGenerator): "varmap": A*xs, "varvector": xs, "Sstandardmatrix": A, + "Scolumns": [{"i": i+1, "col": column_matrix(A.column(i))} for i in range(Scolumns)], "Trows": Trows, "Tcols": Tcolumns, "Tstandardmatrix": B, "vector": v, - "Tvector": B*v + "Tvector": B*v, + "Tcolumns": [{"i": i+1, "col": column_matrix(B.column(i))} for i in range(Tcolumns)], } diff --git a/source/linear-algebra/exercises/outcomes/AT/AT2/template.xml b/source/linear-algebra/exercises/outcomes/AT/AT2/template.xml index 917ec0e61..e2ace68af 100644 --- a/source/linear-algebra/exercises/outcomes/AT/AT2/template.xml +++ b/source/linear-algebra/exercises/outcomes/AT/AT2/template.xml @@ -1,28 +1,73 @@ - -

Explain and demonstrate how to compute - the standard matrix for the linear transformation - S:\mathbb{R}^{{Scols}} \to \mathbb{R}^{{Srows}} given by - S\left( {{varvector}} \right) = {{varmap}} - by computing transformations of the standard basic vectors.

-
- -

{{Sstandardmatrix}}

-
+ +

+Consider the linear transformation +S:\mathbb{R}^{{Scols}} \to \mathbb{R}^{{Srows}} given by +S\left( {{varvector}} \right) = {{varmap}}. +

+
+ + +

+Compute the transformation of each vector from the standard +basis for \mathbb R^{{Scols}}. +

+
+ +

\hspace{1em} + +S(\vec e_{ {{i}} }) = {{col}} \hspace{1em} + +

+
+
+ + +

+Explain and demonstrate how these are used to +form the standard matrix for this transformation. +

+
+ +

{{Sstandardmatrix}}

+
+
- -

Let T:\mathbb{R}^{{Tcols}} \to \mathbb{R}^{{Trows}} - be the linear transformation given by the standard matrix - {{Tstandardmatrix}}. - Explain and demonstrate how to compute - T\left({{vector}}\right) by using the values of - transformed standard basic vectors.

-
- -

T\left({{vector}}\right)={{Tvector}}

-
+ +

+Consider the linear transformation +T:\mathbb{R}^{{Tcols}} \to \mathbb{R}^{{Trows}} +defined by the standard matrix {{Tstandardmatrix}}. +

+
+ + +

+Describe how this map transforms each of the vectors for the +standard basis of \mathbb R^{{Tcols}}. +

+
+ +

\hspace{1em} + +T(\vec e_{ {{i}} }) = {{col}} \hspace{1em} + +

+
+
+ + +

+Explain and demonstrate how to use these to compute +T\left({{vector}}\right). +

+
+ +

T\left({{vector}}\right)={{Tvector}}

+
+