-
Notifications
You must be signed in to change notification settings - Fork 0
Description
Add Scalability Testing
Problem
The OGC-Client-CSAPI library currently lacks comprehensive scalability testing to validate performance characteristics under various load conditions, resource constraints, and edge cases. While the library demonstrates excellent architecture (Issue #23) and 98% OGC compliance (Issue #20), there is no empirical data on how the library performs when handling:
- Large collections (1,000s to 100,000s of features)
- Deep nesting (hierarchical systems/deployments with many levels)
- Concurrent operations (multiple simultaneous requests)
- Memory-intensive workloads (large observation datasets, complex SWE structures)
- Long-running operations (sustained API usage patterns)
- Resource-constrained environments (mobile devices, serverless functions)
Current State:
- ✅ Functional tests: 832+ tests verify correctness (Issue Validate: SWE Common Validation System (validation/swe-validator.ts) #19)
- ✅ Architecture: Well-designed with layering, caching, optional validation (Issue Validate: Architecture Assessment (Strengths & Weaknesses) #23)
- ❌ Scalability tests: None implemented
- ❌ Performance benchmarks: No baseline measurements
- ❌ Resource limits: Unknown breaking points
- ❌ Load testing: No stress testing conducted
- ❌ Memory profiling: No memory leak detection
Impact:
Without scalability testing, users face:
- Unknown performance characteristics - No guidance on expected response times for different data volumes
- Unpredictable failures - Library may fail unexpectedly under load without warning
- Poor resource planning - Users cannot estimate memory/CPU requirements
- Production incidents - Performance issues discovered in production rather than testing
- Limited optimization guidance - No data to prioritize performance improvements
Context
This issue was identified during the comprehensive validation conducted January 27-28, 2026.
Related Validation Issues:
- Issue #20: OGC Standards Compliance - Validated functional compliance but noted lack of performance testing
- Issue #23: Architecture Assessment - Identified performance considerations (caching, optional validation) but no measurements
Work Item ID: 45 from Remaining Work Items
Repository: https://github.com/OS4CSAPI/ogc-client-CSAPI
Validated Commit: a71706b9592cad7a5ad06e6cf8ddc41fa5387732
Detailed Findings
From Issue #20 (OGC Standards Compliance)
The validation confirmed comprehensive OGC compliance (~98%) but identified that scalability has not been tested:
Known Gaps:
"Some advanced query combinations not fully tested in integration"
- Individual query parameters tested (186 Navigator tests)
- Basic combinations tested (limit + bbox + datetime)
- Complex filter interactions not exhaustively tested
- No testing under high load or large datasets
Query Parameter Complexity:
The library supports 10+ query parameters per resource type (bbox, datetime, q, id, geom, foi, parent, recursive, procedure, observedProperty, controlledProperty, systemKind, select). With this many parameters:
- Theoretical combinations: 10! = 3,628,800 combinations (impractical to test all)
- Real-world combinations: Unknown which combinations cause performance degradation
- Resource impact: No data on memory/CPU usage for complex queries
From Issue #23 (Architecture Assessment)
The architecture validation identified performance considerations but no measurements:
Performance Features (Lines from architecture report):
-
Navigator Caching - "Navigator caching per collection (Map-based)"
- Implementation:
endpoint.tscaches collection metadata - Unknown: Cache hit rates, memory growth over time, eviction behavior
- Implementation:
-
Optional Validation - "Optional validation (default off)"
- Implementation:
parse(data, options)withvalidate: boolean - Unknown: Validation performance cost (CPU, time), scalability impact
- Implementation:
-
Lazy Parser Instantiation - "Lazy parser instantiation"
- Implementation: TypedNavigator instantiates parsers on first use
- Unknown: Memory savings, initialization overhead
-
Efficient Format Detection - "Efficient O(1) format detection with short-circuit"
- Implementation:
detectFormat()checks Content-Type header first (Lines 4,021 bytes) - Unknown: Actual O(1) performance verified, worst-case scenarios
- Implementation:
Bundle Size Concerns:
"Navigator.ts alone is 79 KB. Full CSAPI with types ~250-300 KB before minification."
- Impact on mobile: Unknown performance on slow connections
- Memory footprint: Unverified memory usage for full library
- Tree-shaking: Effectiveness not measured
File Sizes (From Issue #23):
navigator.ts 79,521 bytes
typed-navigator.ts 11,366 bytes
parsers/base.ts 13,334 bytes
parsers/resources.ts 15,069 bytes
parsers/swe-common-parser.ts 16,218 bytes
request-builders.ts 11,263 bytes
formats.ts 4,021 bytes
Total Core CSAPI Code: ~150 KB unminified, ~250-300 KB with types
Scalability Concerns:
- Large Collections - How does parsing 100,000 features perform?
- Deep Nesting -
recursive=truequeries with 50+ subsystem levels? - Memory Growth - Does caching cause memory leaks with sustained usage?
- Concurrent Requests - Can the library handle 100 simultaneous fetches?
- Complex SWE Structures - Nested DataRecords 10+ levels deep?
Key Architecture Components Requiring Scalability Testing
1. CSAPINavigator (Lines 2,091, 79 KB)
- URL construction: 2,114-2,258 lines apply query parameters
- Collection caching: Map-based cache grows with collections
- Query serialization: Complex parameter combinations (bbox, datetime, geom, select, etc.)
2. CSAPIParser<T> (Lines 13,334 bytes)
- Template method:
parse()coordinates format detection → parsing → validation - Format detection:
detectFormat()inspects Content-Type and body structure - Validation: Optional but CPU-intensive (validates geometry, links, temporal, SWE components)
3. CollectionParser<T> (Composition Pattern)
- Batch processing: Iterates through all features in collection
- Memory allocation: Creates array of parsed objects
- Recursive parsing: Nested collections (e.g., deployment with subsystems with datastreams)
4. SWE Common Parser (Lines 16,218 bytes)
- Dispatcher: Routes 17+ SWE component types (DataRecord, DataArray, Quantity, Vector, etc.)
- Recursive structures: DataRecord can contain nested DataRecords
- Complex validation: Each component has specific validation rules
Proposed Solution
Implement a comprehensive scalability testing suite that measures performance, identifies bottlenecks, and establishes resource limits under various load conditions.
1. Large Collection Testing
Test parsing and validation performance with increasingly large collections:
// tests/scalability/large-collections.spec.ts
describe('Large Collection Scalability', () => {
const sizes = [100, 1_000, 10_000, 50_000, 100_000];
sizes.forEach(size => {
test(`parse ${size.toLocaleString()} systems`, async () => {
const collection = generateSystemCollection(size);
const startMemory = process.memoryUsage().heapUsed;
const startTime = performance.now();
const result = systemCollectionParser.parse(collection, { validate: false });
const endTime = performance.now();
const endMemory = process.memoryUsage().heapUsed;
// Performance assertions
expect(result.data).toHaveLength(size);
expect(endTime - startTime).toBeLessThan(size * 0.5); // <0.5ms per item
expect(endMemory - startMemory).toBeLessThan(size * 10_000); // <10KB per item
// Log metrics
console.log({
size,
parseTime: `${(endTime - startTime).toFixed(2)}ms`,
throughput: `${(size / (endTime - startTime) * 1000).toFixed(0)} items/sec`,
memory: `${((endMemory - startMemory) / 1024 / 1024).toFixed(2)} MB`,
});
});
});
test('100k systems with validation enabled', async () => {
const collection = generateSystemCollection(100_000);
const startTime = performance.now();
const result = systemCollectionParser.parse(collection, { validate: true });
const endTime = performance.now();
expect(result.data).toHaveLength(100_000);
expect(endTime - startTime).toBeLessThan(60_000); // <1 minute
console.log(`Validation overhead: ${((endTime - startTime) / 100_000).toFixed(2)}ms per item`);
});
});Expected Baseline:
- Parsing: <0.5ms per feature (200,000+ features/sec)
- Validation: <2ms per feature (50,000+ features/sec)
- Memory: <10KB per parsed feature
2. Deep Nesting Testing
Test hierarchical resource traversal with recursive queries:
// tests/scalability/deep-nesting.spec.ts
describe('Deep Nesting Scalability', () => {
test('parse 50-level nested subsystems', () => {
const depth = 50;
const deepSystem = generateDeepNestedSystem(depth);
const startTime = performance.now();
const result = systemParser.parse(deepSystem);
const endTime = performance.now();
expect(result.data).toBeDefined();
expect(endTime - startTime).toBeLessThan(1000); // <1 second
});
test('recursive query with 100 subsystems per level, 5 levels deep', () => {
const breadth = 100;
const depth = 5;
const wideSystem = generateWideNestedSystem(breadth, depth);
// Total systems: 100 + 100*100 + 100*100*100 + ... = 101,010,100 systems!
const startTime = performance.now();
const result = systemCollectionParser.parse(wideSystem);
const endTime = performance.now();
expect(result.data.length).toBeGreaterThan(100_000);
expect(endTime - startTime).toBeLessThan(120_000); // <2 minutes
});
test('prevent stack overflow with excessive nesting', () => {
const depth = 1000;
const extremeNesting = generateDeepNestedSystem(depth);
// Should not crash, but may fail gracefully
expect(() => {
systemParser.parse(extremeNesting, { maxDepth: 100 });
}).toThrow(/max depth/i);
});
});Expected Limits:
- Max safe nesting depth: 50-100 levels
- Stack overflow prevention: Throw error at configurable
maxDepth - Parsing time: <1 second for 50 levels, linear growth
3. Concurrent Operations Testing
Test library behavior under concurrent request load:
// tests/scalability/concurrent-operations.spec.ts
describe('Concurrent Operations Scalability', () => {
test('100 simultaneous fetch operations', async () => {
const navigator = new TypedCSAPINavigator(collection);
const promises = Array.from({ length: 100 }, (_, i) =>
navigator.getSystems({ limit: 100, id: `system-${i}` })
);
const startTime = performance.now();
const results = await Promise.all(promises);
const endTime = performance.now();
expect(results).toHaveLength(100);
expect(results.every(r => r.data.length > 0)).toBe(true);
expect(endTime - startTime).toBeLessThan(5000); // <5 seconds total
console.log(`Avg time per concurrent request: ${((endTime - startTime) / 100).toFixed(2)}ms`);
});
test('sustained load - 1000 requests over 10 seconds', async () => {
const navigator = new TypedCSAPINavigator(collection);
const results = [];
const startMemory = process.memoryUsage().heapUsed;
for (let i = 0; i < 1000; i++) {
const result = await navigator.getSystems({ limit: 10 });
results.push(result);
if (i % 100 === 0) {
const currentMemory = process.memoryUsage().heapUsed;
console.log(`After ${i} requests: ${((currentMemory - startMemory) / 1024 / 1024).toFixed(2)} MB`);
}
}
const endMemory = process.memoryUsage().heapUsed;
const memoryGrowth = endMemory - startMemory;
// Memory should not grow unboundedly (cache should stabilize)
expect(memoryGrowth).toBeLessThan(50 * 1024 * 1024); // <50MB growth
});
test('parallel parsing of different resource types', async () => {
const data = {
systems: generateSystemCollection(1000),
deployments: generateDeploymentCollection(1000),
datastreams: generateDatastreamCollection(1000),
observations: generateObservationCollection(10_000),
};
const startTime = performance.now();
const [systems, deployments, datastreams, observations] = await Promise.all([
systemCollectionParser.parse(data.systems),
deploymentCollectionParser.parse(data.deployments),
datastreamCollectionParser.parse(data.datastreams),
observationCollectionParser.parse(data.observations),
]);
const endTime = performance.now();
expect(systems.data).toHaveLength(1000);
expect(observations.data).toHaveLength(10_000);
expect(endTime - startTime).toBeLessThan(2000); // <2 seconds
});
});Expected Performance:
- Concurrent requests: <50ms average per request with 100 concurrent
- Sustained load: <50MB memory growth over 1000 requests
- Parallel parsing: <2 seconds for mixed workload
4. Memory-Intensive Workloads
Test memory usage with large observation datasets and complex SWE structures:
// tests/scalability/memory-intensive.spec.ts
describe('Memory-Intensive Workloads', () => {
test('parse 1 million observations', async () => {
const observations = generateObservationCollection(1_000_000);
const startMemory = process.memoryUsage().heapUsed;
const startTime = performance.now();
const result = observationCollectionParser.parse(observations, { validate: false });
const endTime = performance.now();
const endMemory = process.memoryUsage().heapUsed;
expect(result.data).toHaveLength(1_000_000);
expect(endTime - startTime).toBeLessThan(10_000); // <10 seconds
expect(endMemory - startMemory).toBeLessThan(500 * 1024 * 1024); // <500MB
});
test('complex nested SWE DataRecord (10 levels, 1000 fields)', () => {
const complexDataRecord = generateComplexSweDataRecord(10, 1000);
const startTime = performance.now();
const result = sweCommonParser.parseDataComponent(complexDataRecord);
const endTime = performance.now();
expect(result).toBeDefined();
expect(endTime - startTime).toBeLessThan(5000); // <5 seconds
});
test('memory leak detection - repeated parsing', () => {
const collection = generateSystemCollection(1000);
const initialMemory = process.memoryUsage().heapUsed;
// Parse same collection 100 times
for (let i = 0; i < 100; i++) {
systemCollectionParser.parse(collection, { validate: false });
if (i % 10 === 0) {
global.gc && global.gc(); // Force GC if available
}
}
const finalMemory = process.memoryUsage().heapUsed;
const memoryGrowth = finalMemory - initialMemory;
// Memory should not grow significantly after GC
expect(memoryGrowth).toBeLessThan(10 * 1024 * 1024); // <10MB growth
});
test('streaming-like processing (batch of 1000, repeat 100 times)', async () => {
const batchSize = 1000;
const batches = 100;
let totalParsed = 0;
const startMemory = process.memoryUsage().heapUsed;
for (let i = 0; i < batches; i++) {
const batch = generateObservationCollection(batchSize);
const result = observationCollectionParser.parse(batch, { validate: false });
totalParsed += result.data.length;
// Simulate processing and discarding results
result.data.length = 0;
}
const endMemory = process.memoryUsage().heapUsed;
const memoryGrowth = endMemory - startMemory;
expect(totalParsed).toBe(batchSize * batches);
expect(memoryGrowth).toBeLessThan(20 * 1024 * 1024); // <20MB growth
});
});Expected Limits:
- Max observations: 1 million in <10 seconds, <500MB memory
- Complex SWE structures: 10 levels, 1000 fields in <5 seconds
- Memory leaks: <10MB growth after 100 iterations with GC
5. Long-Running Operations
Test sustained API usage patterns over extended periods:
// tests/scalability/long-running.spec.ts
describe('Long-Running Operations', () => {
test('24-hour simulation (100k requests)', async () => {
const navigator = new TypedCSAPINavigator(collection);
const requestsPerHour = 4166; // ~100k total
const hoursToSimulate = 24;
const startMemory = process.memoryUsage().heapUsed;
const memorySnapshots = [];
for (let hour = 0; hour < hoursToSimulate; hour++) {
for (let i = 0; i < requestsPerHour; i++) {
await navigator.getSystems({ limit: 10 });
}
const currentMemory = process.memoryUsage().heapUsed;
memorySnapshots.push(currentMemory - startMemory);
console.log(`Hour ${hour + 1}: ${((currentMemory - startMemory) / 1024 / 1024).toFixed(2)} MB`);
}
// Memory should stabilize, not grow linearly
const avgGrowthPerHour = memorySnapshots.reduce((a, b) => a + b) / memorySnapshots.length;
expect(avgGrowthPerHour).toBeLessThan(10 * 1024 * 1024); // <10MB per hour
});
test('cache effectiveness over time', async () => {
const navigator = new TypedCSAPINavigator(collection);
// First 1000 requests to warm up cache
for (let i = 0; i < 1000; i++) {
await navigator.getSystems({ limit: 10 });
}
// Measure cache hit rate for next 1000 requests
const startTime = performance.now();
for (let i = 0; i < 1000; i++) {
await navigator.getSystems({ limit: 10 });
}
const endTime = performance.now();
const avgTimePerRequest = (endTime - startTime) / 1000;
// Cached requests should be faster than initial requests
expect(avgTimePerRequest).toBeLessThan(10); // <10ms per cached request
});
});Expected Behavior:
- Memory stability: <10MB growth per hour after initial warm-up
- Cache effectiveness: <10ms per request with warm cache
- No degradation: Performance should not degrade over time
6. Resource-Constrained Environments
Test performance on mobile devices, serverless functions, and low-memory environments:
// tests/scalability/resource-constrained.spec.ts
describe('Resource-Constrained Environments', () => {
test('mobile device simulation (100MB heap limit)', () => {
// Node.js: --max-old-space-size=100
const collection = generateSystemCollection(1000);
expect(() => {
systemCollectionParser.parse(collection, { validate: false });
}).not.toThrow();
});
test('serverless cold start simulation', async () => {
// Simulate cold start: no cache, immediate parsing
const collection = generateSystemCollection(100);
const startTime = performance.now();
const navigator = new TypedCSAPINavigator(collection);
const result = await navigator.getSystems({ limit: 100 });
const endTime = performance.now();
// Should complete quickly even on cold start
expect(endTime - startTime).toBeLessThan(1000); // <1 second
});
test('minimal bundle size with tree-shaking', async () => {
// Test importing only systems module
const { systemParser } = await import('../parsers/resources');
const system = generateSystemFeature();
const result = systemParser.parse(system);
expect(result.data).toBeDefined();
// Bundle size should be minimal
// Note: Actual bundle size testing requires build tooling
});
});Expected Constraints:
- Mobile devices: Functional with 100MB heap limit
- Serverless cold start: <1 second initialization + first request
- Bundle size: <50KB for single resource type with tree-shaking
7. Performance Benchmarking Suite
Create comprehensive benchmarks for all core operations:
// tests/scalability/benchmarks.spec.ts
import { Suite } from 'benchmark';
describe('Performance Benchmarks', () => {
test('Navigator URL construction benchmark', (done) => {
const navigator = new CSAPINavigator('https://api.example.com/csapi', collection);
const suite = new Suite();
suite
.add('Simple getSystemsUrl', () => {
navigator.getSystemsUrl();
})
.add('Complex query with all parameters', () => {
navigator.getSystemsUrl({
limit: 100,
bbox: [-122.5, 37.7, -122.3, 37.9],
datetime: { start: '2024-01-01T00:00:00Z', end: '2024-12-31T23:59:59Z' },
q: 'temperature sensor',
id: ['sys-1', 'sys-2', 'sys-3'],
parent: 'parent-sys',
recursive: true,
observedProperty: 'temperature',
systemKind: 'sensor',
select: 'id,properties.name,geometry',
});
})
.on('complete', function() {
console.log('URL Construction Benchmarks:');
this.forEach((benchmark) => {
console.log(` ${benchmark.name}: ${benchmark.hz.toFixed(0)} ops/sec`);
});
done();
})
.run();
});
test('Parser benchmark', (done) => {
const system = generateSystemFeature();
const collection = generateSystemCollection(100);
const suite = new Suite();
suite
.add('Parse single system (GeoJSON)', () => {
systemParser.parse(system, { validate: false });
})
.add('Parse single system (GeoJSON, validated)', () => {
systemParser.parse(system, { validate: true });
})
.add('Parse 100 systems (collection)', () => {
systemCollectionParser.parse(collection, { validate: false });
})
.add('Format detection (Content-Type)', () => {
detectFormat('application/geo+json', null);
})
.add('Format detection (body inspection)', () => {
detectFormat(null, system);
})
.on('complete', function() {
console.log('Parser Benchmarks:');
this.forEach((benchmark) => {
console.log(` ${benchmark.name}: ${benchmark.hz.toFixed(0)} ops/sec`);
});
done();
})
.run();
});
test('Validation benchmark', (done) => {
const system = generateSystemFeature();
const suite = new Suite();
suite
.add('GeoJSON validation', () => {
validateSystemFeature(system);
})
.add('SWE Common validation', () => {
const quantity = generateSweQuantity();
validateQuantity(quantity);
})
.on('complete', function() {
console.log('Validation Benchmarks:');
this.forEach((benchmark) => {
console.log(` ${benchmark.name}: ${benchmark.hz.toFixed(0)} ops/sec`);
});
done();
})
.run();
});
});Expected Benchmarks:
- URL construction: 100,000+ ops/sec (simple), 50,000+ ops/sec (complex)
- Parsing: 50,000+ ops/sec (single), 500+ ops/sec (collection of 100)
- Validation: 10,000+ ops/sec (GeoJSON), 20,000+ ops/sec (SWE)
- Format detection: 1,000,000+ ops/sec (Content-Type), 100,000+ ops/sec (body)
8. Continuous Performance Monitoring
Integrate performance tests into CI/CD pipeline:
# .github/workflows/performance.yml
name: Performance Tests
on:
push:
branches: [main, develop]
pull_request:
branches: [main]
jobs:
performance:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Node.js
uses: actions/setup-node@v3
with:
node-version: '18'
- name: Install dependencies
run: npm ci
- name: Run scalability tests
run: npm run test:scalability
- name: Run benchmarks
run: npm run benchmark
- name: Upload performance results
uses: actions/upload-artifact@v3
with:
name: performance-results
path: performance-results.json
- name: Compare with baseline
run: |
node scripts/compare-performance.js \
--current performance-results.json \
--baseline performance-baseline.json \
--threshold 10 # Fail if >10% regressionPackage.json Scripts:
{
"scripts": {
"test:scalability": "jest --testMatch='**/scalability/**/*.spec.ts' --runInBand",
"benchmark": "jest --testMatch='**/benchmarks.spec.ts' --runInBand",
"test:memory": "node --expose-gc --max-old-space-size=512 node_modules/.bin/jest --testMatch='**/memory-intensive.spec.ts'"
}
}Acceptance Criteria
Test Implementation (35 criteria)
Large Collections (7 criteria):
- Test parsing 100, 1k, 10k, 50k, 100k feature collections
- Measure parse time per item (<0.5ms baseline)
- Measure memory usage per item (<10KB baseline)
- Test validation overhead (parsing + validation)
- Test all 10 resource types at scale (Systems, Deployments, Procedures, SamplingFeatures, Properties, Datastreams, ControlStreams, Observations, Commands, SystemEvents)
- Assert linear time complexity O(n)
- Assert bounded memory growth
Deep Nesting (5 criteria):
- Test 50-level nested hierarchies (subsystems, subdeployments)
- Test wide nesting (100 children per level, 5 levels deep)
- Test recursive parsing of complex structures
- Implement
maxDepthconfiguration to prevent stack overflow - Assert parsing time grows linearly with depth
Concurrent Operations (6 criteria):
- Test 100 simultaneous fetch operations (<5 seconds total)
- Test sustained load (1000 requests, measure memory growth)
- Test parallel parsing of different resource types
- Measure cache effectiveness under concurrent load
- Assert no race conditions or data corruption
- Assert memory stabilizes after initial warm-up
Memory-Intensive Workloads (7 criteria):
- Test parsing 1 million observations (<10 seconds, <500MB)
- Test complex nested SWE structures (10 levels, 1000 fields)
- Implement memory leak detection (repeated parsing should not grow memory)
- Test streaming-like batch processing (100 batches of 1000)
- Measure memory growth with garbage collection
- Assert no memory leaks after repeated operations
- Test memory usage across all parsers (GeoJSON, SensorML, SWE)
Long-Running Operations (5 criteria):
- Simulate 24-hour usage (100k requests)
- Measure memory growth per hour (<10MB/hour)
- Test cache effectiveness over time (hit rates, performance)
- Assert no performance degradation over time
- Test cache eviction policies (LRU, size limits)
Resource-Constrained Environments (5 criteria):
- Test with 100MB heap limit (mobile simulation)
- Test serverless cold start performance (<1 second)
- Test minimal bundle size with tree-shaking
- Test on Node.js versions 16, 18, 20
- Test browser environments (Chrome, Firefox, Safari, Edge)
Benchmarking (15 criteria)
Core Operations (8 criteria):
- Benchmark Navigator URL construction (simple and complex queries)
- Benchmark parser operations (single item, collections)
- Benchmark format detection (Content-Type header vs body inspection)
- Benchmark validation operations (GeoJSON, SWE, SensorML)
- Benchmark cache operations (set, get, clear)
- Benchmark query parameter serialization
- Benchmark request builder operations
- Benchmark TypedNavigator fetch operations
Performance Baselines (7 criteria):
- Establish baseline: URL construction >50,000 ops/sec
- Establish baseline: Parsing single feature >50,000 ops/sec
- Establish baseline: Parsing collection of 100 >500 ops/sec
- Establish baseline: GeoJSON validation >10,000 ops/sec
- Establish baseline: SWE validation >20,000 ops/sec
- Establish baseline: Format detection >100,000 ops/sec
- Document all baselines in README.md performance section
CI/CD Integration (8 criteria)
Continuous Monitoring (8 criteria):
- Add performance test workflow to GitHub Actions
- Run scalability tests on every commit to main/develop
- Run benchmarks on every pull request
- Store performance results as artifacts
- Compare performance against baseline (fail on >10% regression)
- Generate performance report (parse time, memory usage, throughput)
- Update performance baseline after approved changes
- Add performance test results badge to README.md
Documentation (12 criteria)
Performance Documentation (12 criteria):
- Document performance characteristics in README.md
- Document scalability limits (max features, max depth, max memory)
- Document baseline benchmarks for all core operations
- Document optimization tips (optional validation, format hints, caching strategies)
- Document known performance bottlenecks
- Document performance differences between browsers/Node.js
- Document memory usage patterns and best practices
- Document concurrency considerations (thread safety, race conditions)
- Add "Performance" section to API documentation
- Add performance examples to demo code
- Document performance testing methodology
- Document how to run performance tests locally
Implementation Notes
File Structure
tests/
scalability/
large-collections.spec.ts (~300 lines)
deep-nesting.spec.ts (~200 lines)
concurrent-operations.spec.ts (~250 lines)
memory-intensive.spec.ts (~300 lines)
long-running.spec.ts (~200 lines)
resource-constrained.spec.ts (~150 lines)
benchmarks.spec.ts (~400 lines)
helpers/
data-generators.ts (~500 lines)
performance-utils.ts (~200 lines)
memory-profiler.ts (~150 lines)
scripts/
compare-performance.js (~200 lines)
generate-baseline.js (~100 lines)
.github/
workflows/
performance.yml (~100 lines)
performance-baseline.json (Generated file)
Test Data Generators
Create realistic test data generators:
// tests/scalability/helpers/data-generators.ts
export function generateSystemFeature(id?: string): SystemFeature {
return {
type: 'Feature',
id: id || `system-${Math.random().toString(36).substr(2, 9)}`,
featureType: 'system',
geometry: {
type: 'Point',
coordinates: [
-122.5 + Math.random() * 0.5,
37.7 + Math.random() * 0.5,
],
},
properties: {
name: `Test System ${id}`,
description: 'Generated test system',
systemKind: 'sensor',
validTime: ['2024-01-01T00:00:00Z', '..'],
links: [
{ rel: 'self', href: `https://api.example.com/systems/${id}` },
],
},
};
}
export function generateSystemCollection(count: number): SystemFeatureCollection {
return {
type: 'FeatureCollection',
features: Array.from({ length: count }, (_, i) =>
generateSystemFeature(`system-${i}`)
),
};
}
export function generateDeepNestedSystem(depth: number): SystemFeature {
let current = generateSystemFeature('root');
for (let i = 1; i < depth; i++) {
const child = generateSystemFeature(`subsystem-${i}`);
current.properties.subsystems = [child];
current = child;
}
return current;
}
export function generateWideNestedSystem(breadth: number, depth: number): SystemFeatureCollection {
function generateLevel(parentId: string, level: number): SystemFeature[] {
if (level >= depth) return [];
return Array.from({ length: breadth }, (_, i) => {
const id = `${parentId}-${i}`;
const system = generateSystemFeature(id);
if (level < depth - 1) {
system.properties.subsystems = generateLevel(id, level + 1);
}
return system;
});
}
return {
type: 'FeatureCollection',
features: generateLevel('root', 0),
};
}
export function generateComplexSweDataRecord(depth: number, fieldCount: number): DataRecord {
// Generate deeply nested DataRecord with many fields
// Used for SWE Common parser stress testing
}Performance Utilities
Utility functions for measuring performance:
// tests/scalability/helpers/performance-utils.ts
export interface PerformanceMetrics {
operation: string;
duration: number;
throughput: number;
memoryUsed: number;
timestamp: string;
}
export class PerformanceProfiler {
private metrics: PerformanceMetrics[] = [];
async profile<T>(
operation: string,
fn: () => T | Promise<T>
): Promise<{ result: T; metrics: PerformanceMetrics }> {
const startMemory = process.memoryUsage().heapUsed;
const startTime = performance.now();
const result = await fn();
const endTime = performance.now();
const endMemory = process.memoryUsage().heapUsed;
const metrics: PerformanceMetrics = {
operation,
duration: endTime - startTime,
throughput: 1000 / (endTime - startTime), // ops/sec
memoryUsed: endMemory - startMemory,
timestamp: new Date().toISOString(),
};
this.metrics.push(metrics);
return { result, metrics };
}
getMetrics(): PerformanceMetrics[] {
return this.metrics;
}
saveToFile(filename: string): void {
const fs = require('fs');
fs.writeFileSync(filename, JSON.stringify(this.metrics, null, 2));
}
}CI/CD Performance Comparison
Script to compare current performance against baseline:
// scripts/compare-performance.js
const fs = require('fs');
function comparePerformance(currentFile, baselineFile, threshold = 10) {
const current = JSON.parse(fs.readFileSync(currentFile, 'utf8'));
const baseline = JSON.parse(fs.readFileSync(baselineFile, 'utf8'));
const regressions = [];
const improvements = [];
current.forEach(currentMetric => {
const baselineMetric = baseline.find(m => m.operation === currentMetric.operation);
if (!baselineMetric) {
console.log(`⚠️ New operation: ${currentMetric.operation}`);
return;
}
const durationChange = ((currentMetric.duration - baselineMetric.duration) / baselineMetric.duration) * 100;
const memoryChange = ((currentMetric.memoryUsed - baselineMetric.memoryUsed) / baselineMetric.memoryUsed) * 100;
if (durationChange > threshold || memoryChange > threshold) {
regressions.push({
operation: currentMetric.operation,
durationChange: durationChange.toFixed(2),
memoryChange: memoryChange.toFixed(2),
});
} else if (durationChange < -threshold || memoryChange < -threshold) {
improvements.push({
operation: currentMetric.operation,
durationChange: durationChange.toFixed(2),
memoryChange: memoryChange.toFixed(2),
});
}
});
if (regressions.length > 0) {
console.log(`\n❌ Performance Regressions (>${threshold}%):`);
regressions.forEach(r => {
console.log(` ${r.operation}: duration ${r.durationChange}%, memory ${r.memoryChange}%`);
});
process.exit(1);
}
if (improvements.length > 0) {
console.log(`\n✅ Performance Improvements (>${threshold}%):`);
improvements.forEach(i => {
console.log(` ${i.operation}: duration ${i.durationChange}%, memory ${i.memoryChange}%`);
});
}
console.log(`\n✅ All performance tests passed (no regressions >${threshold}%)`);
}
// Run comparison
const args = process.argv.slice(2);
const currentFile = args.find(a => a.startsWith('--current='))?.split('=')[1];
const baselineFile = args.find(a => a.startsWith('--baseline='))?.split('=')[1];
const threshold = parseInt(args.find(a => a.startsWith('--threshold='))?.split('=')[1] || '10');
comparePerformance(currentFile, baselineFile, threshold);Dependencies
Install performance testing dependencies:
npm install --save-dev benchmark @types/benchmarkImplementation Phases
Phase 1: Test Infrastructure (8-12 hours)
- Create test file structure
- Implement data generators
- Implement performance utilities
- Set up Jest configuration for scalability tests
Phase 2: Large Collection Tests (6-8 hours)
- Implement large collection parsing tests (100 to 100k features)
- Measure parse time, memory usage, throughput
- Test all 10 resource types
- Establish baselines
Phase 3: Deep Nesting Tests (4-6 hours)
- Implement deep nesting tests (50 levels)
- Implement wide nesting tests (100 children, 5 levels)
- Test recursive parsing
- Implement
maxDepthguard
Phase 4: Concurrent Operations Tests (6-8 hours)
- Implement concurrent fetch tests (100 simultaneous)
- Implement sustained load tests (1000 requests)
- Implement parallel parsing tests
- Test cache behavior
Phase 5: Memory-Intensive Tests (8-10 hours)
- Implement 1 million observation test
- Implement complex SWE structure test
- Implement memory leak detection
- Implement batch processing test
Phase 6: Long-Running Tests (6-8 hours)
- Implement 24-hour simulation
- Implement cache effectiveness tests
- Test memory stability over time
Phase 7: Resource-Constrained Tests (4-6 hours)
- Implement mobile device simulation (100MB heap)
- Implement serverless cold start test
- Test multiple Node.js versions
- Test browser environments
Phase 8: Benchmarking (8-10 hours)
- Implement benchmark suite (Navigator, Parser, Validator)
- Establish performance baselines
- Document benchmarks
Phase 9: CI/CD Integration (4-6 hours)
- Create GitHub Actions workflow
- Implement performance comparison script
- Set up performance artifact storage
- Configure regression detection
Phase 10: Documentation (6-8 hours)
- Document performance characteristics in README.md
- Document scalability limits
- Add performance examples
- Create performance testing guide
Total Estimated Effort: 60-82 hours (1.5-2 weeks)
Priority Justification
Priority: Low
Justification:
Why Low Priority:
- Functional completeness: Library is fully functional with 98% OGC compliance (Issue Validate: OGC API Endpoint Integration (endpoint.ts) #20) and 832+ tests (Issue Validate: SWE Common Validation System (validation/swe-validator.ts) #19)
- No critical performance issues reported: No evidence of performance problems in existing usage
- Good architecture: Performance considerations already built in (caching, optional validation, lazy loading)
- Large time investment: 60-82 hours required for comprehensive testing
- Not blocking production use: Library can be used in production without scalability data
Why Still Important:
- Professional quality: Enterprise-grade libraries need performance documentation
- User confidence: Users need to know scalability limits before deploying
- Optimization guidance: Identifies bottlenecks for future optimization work
- Regression prevention: Detects performance regressions in CI/CD
- Production readiness: Validates performance under realistic load
Impact if Not Addressed:
- Unknown limits: Users don't know when library will fail at scale
- Reactive optimization: Performance issues discovered in production rather than testing
- No performance baselines: Cannot detect regressions over time
- Risk mitigation: Users may over-provision resources or avoid library for large-scale use
- Competitive disadvantage: Other libraries with performance data may be preferred
When to Prioritize:
- After 1.0 release: Include scalability data in 2.0 release
- User reports performance issues: Prioritize immediately if production issues arise
- Enterprise customers: Required for enterprise adoption (SLAs, capacity planning)
- Large-scale deployments: Before deploying to systems with >10k resources
- Cloud/SaaS offerings: Before offering hosted CSAPI services
ROI Assessment:
- High for large-scale users: Prevents production incidents, enables capacity planning
- Medium for library maintainers: Identifies optimization opportunities, demonstrates quality
- Low for small-scale users: Unlikely to encounter scalability limits
- Best for: Production deployments, enterprise customers, performance-critical applications
Quick Win Opportunities:
- Start with Phase 1-2 (infrastructure + large collections) for 14-20 hours
- Provides immediate value: large collection performance data
- Can expand to other phases incrementally as needed
Recommended Approach:
- Implement Phases 1-2 (infrastructure + large collections) now for quick wins
- Defer Phases 3-7 (comprehensive tests) until user demand or production needs
- Implement Phase 8 (benchmarking) when optimization work begins
- Implement Phase 9 (CI/CD) when performance baselines are established