Skip to content

Add scalability testing #68

@Sam-Bolling

Description

@Sam-Bolling

Add Scalability Testing

Problem

The OGC-Client-CSAPI library currently lacks comprehensive scalability testing to validate performance characteristics under various load conditions, resource constraints, and edge cases. While the library demonstrates excellent architecture (Issue #23) and 98% OGC compliance (Issue #20), there is no empirical data on how the library performs when handling:

  • Large collections (1,000s to 100,000s of features)
  • Deep nesting (hierarchical systems/deployments with many levels)
  • Concurrent operations (multiple simultaneous requests)
  • Memory-intensive workloads (large observation datasets, complex SWE structures)
  • Long-running operations (sustained API usage patterns)
  • Resource-constrained environments (mobile devices, serverless functions)

Current State:

Impact:
Without scalability testing, users face:

  • Unknown performance characteristics - No guidance on expected response times for different data volumes
  • Unpredictable failures - Library may fail unexpectedly under load without warning
  • Poor resource planning - Users cannot estimate memory/CPU requirements
  • Production incidents - Performance issues discovered in production rather than testing
  • Limited optimization guidance - No data to prioritize performance improvements

Context

This issue was identified during the comprehensive validation conducted January 27-28, 2026.

Related Validation Issues:

Work Item ID: 45 from Remaining Work Items

Repository: https://github.com/OS4CSAPI/ogc-client-CSAPI

Validated Commit: a71706b9592cad7a5ad06e6cf8ddc41fa5387732


Detailed Findings

From Issue #20 (OGC Standards Compliance)

The validation confirmed comprehensive OGC compliance (~98%) but identified that scalability has not been tested:

Known Gaps:

"Some advanced query combinations not fully tested in integration"

  • Individual query parameters tested (186 Navigator tests)
  • Basic combinations tested (limit + bbox + datetime)
  • Complex filter interactions not exhaustively tested
  • No testing under high load or large datasets

Query Parameter Complexity:
The library supports 10+ query parameters per resource type (bbox, datetime, q, id, geom, foi, parent, recursive, procedure, observedProperty, controlledProperty, systemKind, select). With this many parameters:

  • Theoretical combinations: 10! = 3,628,800 combinations (impractical to test all)
  • Real-world combinations: Unknown which combinations cause performance degradation
  • Resource impact: No data on memory/CPU usage for complex queries

From Issue #23 (Architecture Assessment)

The architecture validation identified performance considerations but no measurements:

Performance Features (Lines from architecture report):

  1. Navigator Caching - "Navigator caching per collection (Map-based)"

    • Implementation: endpoint.ts caches collection metadata
    • Unknown: Cache hit rates, memory growth over time, eviction behavior
  2. Optional Validation - "Optional validation (default off)"

    • Implementation: parse(data, options) with validate: boolean
    • Unknown: Validation performance cost (CPU, time), scalability impact
  3. Lazy Parser Instantiation - "Lazy parser instantiation"

    • Implementation: TypedNavigator instantiates parsers on first use
    • Unknown: Memory savings, initialization overhead
  4. Efficient Format Detection - "Efficient O(1) format detection with short-circuit"

    • Implementation: detectFormat() checks Content-Type header first (Lines 4,021 bytes)
    • Unknown: Actual O(1) performance verified, worst-case scenarios

Bundle Size Concerns:

"Navigator.ts alone is 79 KB. Full CSAPI with types ~250-300 KB before minification."

  • Impact on mobile: Unknown performance on slow connections
  • Memory footprint: Unverified memory usage for full library
  • Tree-shaking: Effectiveness not measured

File Sizes (From Issue #23):

navigator.ts              79,521 bytes
typed-navigator.ts        11,366 bytes
parsers/base.ts           13,334 bytes
parsers/resources.ts      15,069 bytes
parsers/swe-common-parser.ts  16,218 bytes
request-builders.ts       11,263 bytes
formats.ts                 4,021 bytes

Total Core CSAPI Code: ~150 KB unminified, ~250-300 KB with types

Scalability Concerns:

  1. Large Collections - How does parsing 100,000 features perform?
  2. Deep Nesting - recursive=true queries with 50+ subsystem levels?
  3. Memory Growth - Does caching cause memory leaks with sustained usage?
  4. Concurrent Requests - Can the library handle 100 simultaneous fetches?
  5. Complex SWE Structures - Nested DataRecords 10+ levels deep?

Key Architecture Components Requiring Scalability Testing

1. CSAPINavigator (Lines 2,091, 79 KB)

  • URL construction: 2,114-2,258 lines apply query parameters
  • Collection caching: Map-based cache grows with collections
  • Query serialization: Complex parameter combinations (bbox, datetime, geom, select, etc.)

2. CSAPIParser<T> (Lines 13,334 bytes)

  • Template method: parse() coordinates format detection → parsing → validation
  • Format detection: detectFormat() inspects Content-Type and body structure
  • Validation: Optional but CPU-intensive (validates geometry, links, temporal, SWE components)

3. CollectionParser<T> (Composition Pattern)

  • Batch processing: Iterates through all features in collection
  • Memory allocation: Creates array of parsed objects
  • Recursive parsing: Nested collections (e.g., deployment with subsystems with datastreams)

4. SWE Common Parser (Lines 16,218 bytes)

  • Dispatcher: Routes 17+ SWE component types (DataRecord, DataArray, Quantity, Vector, etc.)
  • Recursive structures: DataRecord can contain nested DataRecords
  • Complex validation: Each component has specific validation rules

Proposed Solution

Implement a comprehensive scalability testing suite that measures performance, identifies bottlenecks, and establishes resource limits under various load conditions.

1. Large Collection Testing

Test parsing and validation performance with increasingly large collections:

// tests/scalability/large-collections.spec.ts
describe('Large Collection Scalability', () => {
  const sizes = [100, 1_000, 10_000, 50_000, 100_000];

  sizes.forEach(size => {
    test(`parse ${size.toLocaleString()} systems`, async () => {
      const collection = generateSystemCollection(size);
      
      const startMemory = process.memoryUsage().heapUsed;
      const startTime = performance.now();
      
      const result = systemCollectionParser.parse(collection, { validate: false });
      
      const endTime = performance.now();
      const endMemory = process.memoryUsage().heapUsed;
      
      // Performance assertions
      expect(result.data).toHaveLength(size);
      expect(endTime - startTime).toBeLessThan(size * 0.5); // <0.5ms per item
      expect(endMemory - startMemory).toBeLessThan(size * 10_000); // <10KB per item
      
      // Log metrics
      console.log({
        size,
        parseTime: `${(endTime - startTime).toFixed(2)}ms`,
        throughput: `${(size / (endTime - startTime) * 1000).toFixed(0)} items/sec`,
        memory: `${((endMemory - startMemory) / 1024 / 1024).toFixed(2)} MB`,
      });
    });
  });

  test('100k systems with validation enabled', async () => {
    const collection = generateSystemCollection(100_000);
    
    const startTime = performance.now();
    const result = systemCollectionParser.parse(collection, { validate: true });
    const endTime = performance.now();
    
    expect(result.data).toHaveLength(100_000);
    expect(endTime - startTime).toBeLessThan(60_000); // <1 minute
    
    console.log(`Validation overhead: ${((endTime - startTime) / 100_000).toFixed(2)}ms per item`);
  });
});

Expected Baseline:

  • Parsing: <0.5ms per feature (200,000+ features/sec)
  • Validation: <2ms per feature (50,000+ features/sec)
  • Memory: <10KB per parsed feature

2. Deep Nesting Testing

Test hierarchical resource traversal with recursive queries:

// tests/scalability/deep-nesting.spec.ts
describe('Deep Nesting Scalability', () => {
  test('parse 50-level nested subsystems', () => {
    const depth = 50;
    const deepSystem = generateDeepNestedSystem(depth);
    
    const startTime = performance.now();
    const result = systemParser.parse(deepSystem);
    const endTime = performance.now();
    
    expect(result.data).toBeDefined();
    expect(endTime - startTime).toBeLessThan(1000); // <1 second
  });

  test('recursive query with 100 subsystems per level, 5 levels deep', () => {
    const breadth = 100;
    const depth = 5;
    const wideSystem = generateWideNestedSystem(breadth, depth);
    
    // Total systems: 100 + 100*100 + 100*100*100 + ... = 101,010,100 systems!
    
    const startTime = performance.now();
    const result = systemCollectionParser.parse(wideSystem);
    const endTime = performance.now();
    
    expect(result.data.length).toBeGreaterThan(100_000);
    expect(endTime - startTime).toBeLessThan(120_000); // <2 minutes
  });

  test('prevent stack overflow with excessive nesting', () => {
    const depth = 1000;
    const extremeNesting = generateDeepNestedSystem(depth);
    
    // Should not crash, but may fail gracefully
    expect(() => {
      systemParser.parse(extremeNesting, { maxDepth: 100 });
    }).toThrow(/max depth/i);
  });
});

Expected Limits:

  • Max safe nesting depth: 50-100 levels
  • Stack overflow prevention: Throw error at configurable maxDepth
  • Parsing time: <1 second for 50 levels, linear growth

3. Concurrent Operations Testing

Test library behavior under concurrent request load:

// tests/scalability/concurrent-operations.spec.ts
describe('Concurrent Operations Scalability', () => {
  test('100 simultaneous fetch operations', async () => {
    const navigator = new TypedCSAPINavigator(collection);
    
    const promises = Array.from({ length: 100 }, (_, i) => 
      navigator.getSystems({ limit: 100, id: `system-${i}` })
    );
    
    const startTime = performance.now();
    const results = await Promise.all(promises);
    const endTime = performance.now();
    
    expect(results).toHaveLength(100);
    expect(results.every(r => r.data.length > 0)).toBe(true);
    expect(endTime - startTime).toBeLessThan(5000); // <5 seconds total
    
    console.log(`Avg time per concurrent request: ${((endTime - startTime) / 100).toFixed(2)}ms`);
  });

  test('sustained load - 1000 requests over 10 seconds', async () => {
    const navigator = new TypedCSAPINavigator(collection);
    const results = [];
    
    const startMemory = process.memoryUsage().heapUsed;
    
    for (let i = 0; i < 1000; i++) {
      const result = await navigator.getSystems({ limit: 10 });
      results.push(result);
      
      if (i % 100 === 0) {
        const currentMemory = process.memoryUsage().heapUsed;
        console.log(`After ${i} requests: ${((currentMemory - startMemory) / 1024 / 1024).toFixed(2)} MB`);
      }
    }
    
    const endMemory = process.memoryUsage().heapUsed;
    const memoryGrowth = endMemory - startMemory;
    
    // Memory should not grow unboundedly (cache should stabilize)
    expect(memoryGrowth).toBeLessThan(50 * 1024 * 1024); // <50MB growth
  });

  test('parallel parsing of different resource types', async () => {
    const data = {
      systems: generateSystemCollection(1000),
      deployments: generateDeploymentCollection(1000),
      datastreams: generateDatastreamCollection(1000),
      observations: generateObservationCollection(10_000),
    };
    
    const startTime = performance.now();
    
    const [systems, deployments, datastreams, observations] = await Promise.all([
      systemCollectionParser.parse(data.systems),
      deploymentCollectionParser.parse(data.deployments),
      datastreamCollectionParser.parse(data.datastreams),
      observationCollectionParser.parse(data.observations),
    ]);
    
    const endTime = performance.now();
    
    expect(systems.data).toHaveLength(1000);
    expect(observations.data).toHaveLength(10_000);
    expect(endTime - startTime).toBeLessThan(2000); // <2 seconds
  });
});

Expected Performance:

  • Concurrent requests: <50ms average per request with 100 concurrent
  • Sustained load: <50MB memory growth over 1000 requests
  • Parallel parsing: <2 seconds for mixed workload

4. Memory-Intensive Workloads

Test memory usage with large observation datasets and complex SWE structures:

// tests/scalability/memory-intensive.spec.ts
describe('Memory-Intensive Workloads', () => {
  test('parse 1 million observations', async () => {
    const observations = generateObservationCollection(1_000_000);
    
    const startMemory = process.memoryUsage().heapUsed;
    const startTime = performance.now();
    
    const result = observationCollectionParser.parse(observations, { validate: false });
    
    const endTime = performance.now();
    const endMemory = process.memoryUsage().heapUsed;
    
    expect(result.data).toHaveLength(1_000_000);
    expect(endTime - startTime).toBeLessThan(10_000); // <10 seconds
    expect(endMemory - startMemory).toBeLessThan(500 * 1024 * 1024); // <500MB
  });

  test('complex nested SWE DataRecord (10 levels, 1000 fields)', () => {
    const complexDataRecord = generateComplexSweDataRecord(10, 1000);
    
    const startTime = performance.now();
    const result = sweCommonParser.parseDataComponent(complexDataRecord);
    const endTime = performance.now();
    
    expect(result).toBeDefined();
    expect(endTime - startTime).toBeLessThan(5000); // <5 seconds
  });

  test('memory leak detection - repeated parsing', () => {
    const collection = generateSystemCollection(1000);
    
    const initialMemory = process.memoryUsage().heapUsed;
    
    // Parse same collection 100 times
    for (let i = 0; i < 100; i++) {
      systemCollectionParser.parse(collection, { validate: false });
      
      if (i % 10 === 0) {
        global.gc && global.gc(); // Force GC if available
      }
    }
    
    const finalMemory = process.memoryUsage().heapUsed;
    const memoryGrowth = finalMemory - initialMemory;
    
    // Memory should not grow significantly after GC
    expect(memoryGrowth).toBeLessThan(10 * 1024 * 1024); // <10MB growth
  });

  test('streaming-like processing (batch of 1000, repeat 100 times)', async () => {
    const batchSize = 1000;
    const batches = 100;
    
    let totalParsed = 0;
    const startMemory = process.memoryUsage().heapUsed;
    
    for (let i = 0; i < batches; i++) {
      const batch = generateObservationCollection(batchSize);
      const result = observationCollectionParser.parse(batch, { validate: false });
      totalParsed += result.data.length;
      
      // Simulate processing and discarding results
      result.data.length = 0;
    }
    
    const endMemory = process.memoryUsage().heapUsed;
    const memoryGrowth = endMemory - startMemory;
    
    expect(totalParsed).toBe(batchSize * batches);
    expect(memoryGrowth).toBeLessThan(20 * 1024 * 1024); // <20MB growth
  });
});

Expected Limits:

  • Max observations: 1 million in <10 seconds, <500MB memory
  • Complex SWE structures: 10 levels, 1000 fields in <5 seconds
  • Memory leaks: <10MB growth after 100 iterations with GC

5. Long-Running Operations

Test sustained API usage patterns over extended periods:

// tests/scalability/long-running.spec.ts
describe('Long-Running Operations', () => {
  test('24-hour simulation (100k requests)', async () => {
    const navigator = new TypedCSAPINavigator(collection);
    const requestsPerHour = 4166; // ~100k total
    const hoursToSimulate = 24;
    
    const startMemory = process.memoryUsage().heapUsed;
    const memorySnapshots = [];
    
    for (let hour = 0; hour < hoursToSimulate; hour++) {
      for (let i = 0; i < requestsPerHour; i++) {
        await navigator.getSystems({ limit: 10 });
      }
      
      const currentMemory = process.memoryUsage().heapUsed;
      memorySnapshots.push(currentMemory - startMemory);
      
      console.log(`Hour ${hour + 1}: ${((currentMemory - startMemory) / 1024 / 1024).toFixed(2)} MB`);
    }
    
    // Memory should stabilize, not grow linearly
    const avgGrowthPerHour = memorySnapshots.reduce((a, b) => a + b) / memorySnapshots.length;
    expect(avgGrowthPerHour).toBeLessThan(10 * 1024 * 1024); // <10MB per hour
  });

  test('cache effectiveness over time', async () => {
    const navigator = new TypedCSAPINavigator(collection);
    
    // First 1000 requests to warm up cache
    for (let i = 0; i < 1000; i++) {
      await navigator.getSystems({ limit: 10 });
    }
    
    // Measure cache hit rate for next 1000 requests
    const startTime = performance.now();
    for (let i = 0; i < 1000; i++) {
      await navigator.getSystems({ limit: 10 });
    }
    const endTime = performance.now();
    
    const avgTimePerRequest = (endTime - startTime) / 1000;
    
    // Cached requests should be faster than initial requests
    expect(avgTimePerRequest).toBeLessThan(10); // <10ms per cached request
  });
});

Expected Behavior:

  • Memory stability: <10MB growth per hour after initial warm-up
  • Cache effectiveness: <10ms per request with warm cache
  • No degradation: Performance should not degrade over time

6. Resource-Constrained Environments

Test performance on mobile devices, serverless functions, and low-memory environments:

// tests/scalability/resource-constrained.spec.ts
describe('Resource-Constrained Environments', () => {
  test('mobile device simulation (100MB heap limit)', () => {
    // Node.js: --max-old-space-size=100
    const collection = generateSystemCollection(1000);
    
    expect(() => {
      systemCollectionParser.parse(collection, { validate: false });
    }).not.toThrow();
  });

  test('serverless cold start simulation', async () => {
    // Simulate cold start: no cache, immediate parsing
    const collection = generateSystemCollection(100);
    
    const startTime = performance.now();
    const navigator = new TypedCSAPINavigator(collection);
    const result = await navigator.getSystems({ limit: 100 });
    const endTime = performance.now();
    
    // Should complete quickly even on cold start
    expect(endTime - startTime).toBeLessThan(1000); // <1 second
  });

  test('minimal bundle size with tree-shaking', async () => {
    // Test importing only systems module
    const { systemParser } = await import('../parsers/resources');
    
    const system = generateSystemFeature();
    const result = systemParser.parse(system);
    
    expect(result.data).toBeDefined();
    
    // Bundle size should be minimal
    // Note: Actual bundle size testing requires build tooling
  });
});

Expected Constraints:

  • Mobile devices: Functional with 100MB heap limit
  • Serverless cold start: <1 second initialization + first request
  • Bundle size: <50KB for single resource type with tree-shaking

7. Performance Benchmarking Suite

Create comprehensive benchmarks for all core operations:

// tests/scalability/benchmarks.spec.ts
import { Suite } from 'benchmark';

describe('Performance Benchmarks', () => {
  test('Navigator URL construction benchmark', (done) => {
    const navigator = new CSAPINavigator('https://api.example.com/csapi', collection);
    
    const suite = new Suite();
    
    suite
      .add('Simple getSystemsUrl', () => {
        navigator.getSystemsUrl();
      })
      .add('Complex query with all parameters', () => {
        navigator.getSystemsUrl({
          limit: 100,
          bbox: [-122.5, 37.7, -122.3, 37.9],
          datetime: { start: '2024-01-01T00:00:00Z', end: '2024-12-31T23:59:59Z' },
          q: 'temperature sensor',
          id: ['sys-1', 'sys-2', 'sys-3'],
          parent: 'parent-sys',
          recursive: true,
          observedProperty: 'temperature',
          systemKind: 'sensor',
          select: 'id,properties.name,geometry',
        });
      })
      .on('complete', function() {
        console.log('URL Construction Benchmarks:');
        this.forEach((benchmark) => {
          console.log(`  ${benchmark.name}: ${benchmark.hz.toFixed(0)} ops/sec`);
        });
        done();
      })
      .run();
  });

  test('Parser benchmark', (done) => {
    const system = generateSystemFeature();
    const collection = generateSystemCollection(100);
    
    const suite = new Suite();
    
    suite
      .add('Parse single system (GeoJSON)', () => {
        systemParser.parse(system, { validate: false });
      })
      .add('Parse single system (GeoJSON, validated)', () => {
        systemParser.parse(system, { validate: true });
      })
      .add('Parse 100 systems (collection)', () => {
        systemCollectionParser.parse(collection, { validate: false });
      })
      .add('Format detection (Content-Type)', () => {
        detectFormat('application/geo+json', null);
      })
      .add('Format detection (body inspection)', () => {
        detectFormat(null, system);
      })
      .on('complete', function() {
        console.log('Parser Benchmarks:');
        this.forEach((benchmark) => {
          console.log(`  ${benchmark.name}: ${benchmark.hz.toFixed(0)} ops/sec`);
        });
        done();
      })
      .run();
  });

  test('Validation benchmark', (done) => {
    const system = generateSystemFeature();
    
    const suite = new Suite();
    
    suite
      .add('GeoJSON validation', () => {
        validateSystemFeature(system);
      })
      .add('SWE Common validation', () => {
        const quantity = generateSweQuantity();
        validateQuantity(quantity);
      })
      .on('complete', function() {
        console.log('Validation Benchmarks:');
        this.forEach((benchmark) => {
          console.log(`  ${benchmark.name}: ${benchmark.hz.toFixed(0)} ops/sec`);
        });
        done();
      })
      .run();
  });
});

Expected Benchmarks:

  • URL construction: 100,000+ ops/sec (simple), 50,000+ ops/sec (complex)
  • Parsing: 50,000+ ops/sec (single), 500+ ops/sec (collection of 100)
  • Validation: 10,000+ ops/sec (GeoJSON), 20,000+ ops/sec (SWE)
  • Format detection: 1,000,000+ ops/sec (Content-Type), 100,000+ ops/sec (body)

8. Continuous Performance Monitoring

Integrate performance tests into CI/CD pipeline:

# .github/workflows/performance.yml
name: Performance Tests

on:
  push:
    branches: [main, develop]
  pull_request:
    branches: [main]

jobs:
  performance:
    runs-on: ubuntu-latest
    
    steps:
      - uses: actions/checkout@v3
      
      - name: Setup Node.js
        uses: actions/setup-node@v3
        with:
          node-version: '18'
          
      - name: Install dependencies
        run: npm ci
        
      - name: Run scalability tests
        run: npm run test:scalability
        
      - name: Run benchmarks
        run: npm run benchmark
        
      - name: Upload performance results
        uses: actions/upload-artifact@v3
        with:
          name: performance-results
          path: performance-results.json
          
      - name: Compare with baseline
        run: |
          node scripts/compare-performance.js \
            --current performance-results.json \
            --baseline performance-baseline.json \
            --threshold 10  # Fail if >10% regression

Package.json Scripts:

{
  "scripts": {
    "test:scalability": "jest --testMatch='**/scalability/**/*.spec.ts' --runInBand",
    "benchmark": "jest --testMatch='**/benchmarks.spec.ts' --runInBand",
    "test:memory": "node --expose-gc --max-old-space-size=512 node_modules/.bin/jest --testMatch='**/memory-intensive.spec.ts'"
  }
}

Acceptance Criteria

Test Implementation (35 criteria)

Large Collections (7 criteria):

  • Test parsing 100, 1k, 10k, 50k, 100k feature collections
  • Measure parse time per item (<0.5ms baseline)
  • Measure memory usage per item (<10KB baseline)
  • Test validation overhead (parsing + validation)
  • Test all 10 resource types at scale (Systems, Deployments, Procedures, SamplingFeatures, Properties, Datastreams, ControlStreams, Observations, Commands, SystemEvents)
  • Assert linear time complexity O(n)
  • Assert bounded memory growth

Deep Nesting (5 criteria):

  • Test 50-level nested hierarchies (subsystems, subdeployments)
  • Test wide nesting (100 children per level, 5 levels deep)
  • Test recursive parsing of complex structures
  • Implement maxDepth configuration to prevent stack overflow
  • Assert parsing time grows linearly with depth

Concurrent Operations (6 criteria):

  • Test 100 simultaneous fetch operations (<5 seconds total)
  • Test sustained load (1000 requests, measure memory growth)
  • Test parallel parsing of different resource types
  • Measure cache effectiveness under concurrent load
  • Assert no race conditions or data corruption
  • Assert memory stabilizes after initial warm-up

Memory-Intensive Workloads (7 criteria):

  • Test parsing 1 million observations (<10 seconds, <500MB)
  • Test complex nested SWE structures (10 levels, 1000 fields)
  • Implement memory leak detection (repeated parsing should not grow memory)
  • Test streaming-like batch processing (100 batches of 1000)
  • Measure memory growth with garbage collection
  • Assert no memory leaks after repeated operations
  • Test memory usage across all parsers (GeoJSON, SensorML, SWE)

Long-Running Operations (5 criteria):

  • Simulate 24-hour usage (100k requests)
  • Measure memory growth per hour (<10MB/hour)
  • Test cache effectiveness over time (hit rates, performance)
  • Assert no performance degradation over time
  • Test cache eviction policies (LRU, size limits)

Resource-Constrained Environments (5 criteria):

  • Test with 100MB heap limit (mobile simulation)
  • Test serverless cold start performance (<1 second)
  • Test minimal bundle size with tree-shaking
  • Test on Node.js versions 16, 18, 20
  • Test browser environments (Chrome, Firefox, Safari, Edge)

Benchmarking (15 criteria)

Core Operations (8 criteria):

  • Benchmark Navigator URL construction (simple and complex queries)
  • Benchmark parser operations (single item, collections)
  • Benchmark format detection (Content-Type header vs body inspection)
  • Benchmark validation operations (GeoJSON, SWE, SensorML)
  • Benchmark cache operations (set, get, clear)
  • Benchmark query parameter serialization
  • Benchmark request builder operations
  • Benchmark TypedNavigator fetch operations

Performance Baselines (7 criteria):

  • Establish baseline: URL construction >50,000 ops/sec
  • Establish baseline: Parsing single feature >50,000 ops/sec
  • Establish baseline: Parsing collection of 100 >500 ops/sec
  • Establish baseline: GeoJSON validation >10,000 ops/sec
  • Establish baseline: SWE validation >20,000 ops/sec
  • Establish baseline: Format detection >100,000 ops/sec
  • Document all baselines in README.md performance section

CI/CD Integration (8 criteria)

Continuous Monitoring (8 criteria):

  • Add performance test workflow to GitHub Actions
  • Run scalability tests on every commit to main/develop
  • Run benchmarks on every pull request
  • Store performance results as artifacts
  • Compare performance against baseline (fail on >10% regression)
  • Generate performance report (parse time, memory usage, throughput)
  • Update performance baseline after approved changes
  • Add performance test results badge to README.md

Documentation (12 criteria)

Performance Documentation (12 criteria):

  • Document performance characteristics in README.md
  • Document scalability limits (max features, max depth, max memory)
  • Document baseline benchmarks for all core operations
  • Document optimization tips (optional validation, format hints, caching strategies)
  • Document known performance bottlenecks
  • Document performance differences between browsers/Node.js
  • Document memory usage patterns and best practices
  • Document concurrency considerations (thread safety, race conditions)
  • Add "Performance" section to API documentation
  • Add performance examples to demo code
  • Document performance testing methodology
  • Document how to run performance tests locally

Implementation Notes

File Structure

tests/
  scalability/
    large-collections.spec.ts       (~300 lines)
    deep-nesting.spec.ts            (~200 lines)
    concurrent-operations.spec.ts   (~250 lines)
    memory-intensive.spec.ts        (~300 lines)
    long-running.spec.ts            (~200 lines)
    resource-constrained.spec.ts    (~150 lines)
    benchmarks.spec.ts              (~400 lines)
    helpers/
      data-generators.ts            (~500 lines)
      performance-utils.ts          (~200 lines)
      memory-profiler.ts            (~150 lines)

scripts/
  compare-performance.js            (~200 lines)
  generate-baseline.js              (~100 lines)

.github/
  workflows/
    performance.yml                 (~100 lines)

performance-baseline.json           (Generated file)

Test Data Generators

Create realistic test data generators:

// tests/scalability/helpers/data-generators.ts
export function generateSystemFeature(id?: string): SystemFeature {
  return {
    type: 'Feature',
    id: id || `system-${Math.random().toString(36).substr(2, 9)}`,
    featureType: 'system',
    geometry: {
      type: 'Point',
      coordinates: [
        -122.5 + Math.random() * 0.5,
        37.7 + Math.random() * 0.5,
      ],
    },
    properties: {
      name: `Test System ${id}`,
      description: 'Generated test system',
      systemKind: 'sensor',
      validTime: ['2024-01-01T00:00:00Z', '..'],
      links: [
        { rel: 'self', href: `https://api.example.com/systems/${id}` },
      ],
    },
  };
}

export function generateSystemCollection(count: number): SystemFeatureCollection {
  return {
    type: 'FeatureCollection',
    features: Array.from({ length: count }, (_, i) => 
      generateSystemFeature(`system-${i}`)
    ),
  };
}

export function generateDeepNestedSystem(depth: number): SystemFeature {
  let current = generateSystemFeature('root');
  
  for (let i = 1; i < depth; i++) {
    const child = generateSystemFeature(`subsystem-${i}`);
    current.properties.subsystems = [child];
    current = child;
  }
  
  return current;
}

export function generateWideNestedSystem(breadth: number, depth: number): SystemFeatureCollection {
  function generateLevel(parentId: string, level: number): SystemFeature[] {
    if (level >= depth) return [];
    
    return Array.from({ length: breadth }, (_, i) => {
      const id = `${parentId}-${i}`;
      const system = generateSystemFeature(id);
      
      if (level < depth - 1) {
        system.properties.subsystems = generateLevel(id, level + 1);
      }
      
      return system;
    });
  }
  
  return {
    type: 'FeatureCollection',
    features: generateLevel('root', 0),
  };
}

export function generateComplexSweDataRecord(depth: number, fieldCount: number): DataRecord {
  // Generate deeply nested DataRecord with many fields
  // Used for SWE Common parser stress testing
}

Performance Utilities

Utility functions for measuring performance:

// tests/scalability/helpers/performance-utils.ts
export interface PerformanceMetrics {
  operation: string;
  duration: number;
  throughput: number;
  memoryUsed: number;
  timestamp: string;
}

export class PerformanceProfiler {
  private metrics: PerformanceMetrics[] = [];
  
  async profile<T>(
    operation: string,
    fn: () => T | Promise<T>
  ): Promise<{ result: T; metrics: PerformanceMetrics }> {
    const startMemory = process.memoryUsage().heapUsed;
    const startTime = performance.now();
    
    const result = await fn();
    
    const endTime = performance.now();
    const endMemory = process.memoryUsage().heapUsed;
    
    const metrics: PerformanceMetrics = {
      operation,
      duration: endTime - startTime,
      throughput: 1000 / (endTime - startTime), // ops/sec
      memoryUsed: endMemory - startMemory,
      timestamp: new Date().toISOString(),
    };
    
    this.metrics.push(metrics);
    
    return { result, metrics };
  }
  
  getMetrics(): PerformanceMetrics[] {
    return this.metrics;
  }
  
  saveToFile(filename: string): void {
    const fs = require('fs');
    fs.writeFileSync(filename, JSON.stringify(this.metrics, null, 2));
  }
}

CI/CD Performance Comparison

Script to compare current performance against baseline:

// scripts/compare-performance.js
const fs = require('fs');

function comparePerformance(currentFile, baselineFile, threshold = 10) {
  const current = JSON.parse(fs.readFileSync(currentFile, 'utf8'));
  const baseline = JSON.parse(fs.readFileSync(baselineFile, 'utf8'));
  
  const regressions = [];
  const improvements = [];
  
  current.forEach(currentMetric => {
    const baselineMetric = baseline.find(m => m.operation === currentMetric.operation);
    
    if (!baselineMetric) {
      console.log(`⚠️  New operation: ${currentMetric.operation}`);
      return;
    }
    
    const durationChange = ((currentMetric.duration - baselineMetric.duration) / baselineMetric.duration) * 100;
    const memoryChange = ((currentMetric.memoryUsed - baselineMetric.memoryUsed) / baselineMetric.memoryUsed) * 100;
    
    if (durationChange > threshold || memoryChange > threshold) {
      regressions.push({
        operation: currentMetric.operation,
        durationChange: durationChange.toFixed(2),
        memoryChange: memoryChange.toFixed(2),
      });
    } else if (durationChange < -threshold || memoryChange < -threshold) {
      improvements.push({
        operation: currentMetric.operation,
        durationChange: durationChange.toFixed(2),
        memoryChange: memoryChange.toFixed(2),
      });
    }
  });
  
  if (regressions.length > 0) {
    console.log(`\n❌ Performance Regressions (>${threshold}%):`);
    regressions.forEach(r => {
      console.log(`  ${r.operation}: duration ${r.durationChange}%, memory ${r.memoryChange}%`);
    });
    process.exit(1);
  }
  
  if (improvements.length > 0) {
    console.log(`\n✅ Performance Improvements (>${threshold}%):`);
    improvements.forEach(i => {
      console.log(`  ${i.operation}: duration ${i.durationChange}%, memory ${i.memoryChange}%`);
    });
  }
  
  console.log(`\n✅ All performance tests passed (no regressions >${threshold}%)`);
}

// Run comparison
const args = process.argv.slice(2);
const currentFile = args.find(a => a.startsWith('--current='))?.split('=')[1];
const baselineFile = args.find(a => a.startsWith('--baseline='))?.split('=')[1];
const threshold = parseInt(args.find(a => a.startsWith('--threshold='))?.split('=')[1] || '10');

comparePerformance(currentFile, baselineFile, threshold);

Dependencies

Install performance testing dependencies:

npm install --save-dev benchmark @types/benchmark

Implementation Phases

Phase 1: Test Infrastructure (8-12 hours)

  • Create test file structure
  • Implement data generators
  • Implement performance utilities
  • Set up Jest configuration for scalability tests

Phase 2: Large Collection Tests (6-8 hours)

  • Implement large collection parsing tests (100 to 100k features)
  • Measure parse time, memory usage, throughput
  • Test all 10 resource types
  • Establish baselines

Phase 3: Deep Nesting Tests (4-6 hours)

  • Implement deep nesting tests (50 levels)
  • Implement wide nesting tests (100 children, 5 levels)
  • Test recursive parsing
  • Implement maxDepth guard

Phase 4: Concurrent Operations Tests (6-8 hours)

  • Implement concurrent fetch tests (100 simultaneous)
  • Implement sustained load tests (1000 requests)
  • Implement parallel parsing tests
  • Test cache behavior

Phase 5: Memory-Intensive Tests (8-10 hours)

  • Implement 1 million observation test
  • Implement complex SWE structure test
  • Implement memory leak detection
  • Implement batch processing test

Phase 6: Long-Running Tests (6-8 hours)

  • Implement 24-hour simulation
  • Implement cache effectiveness tests
  • Test memory stability over time

Phase 7: Resource-Constrained Tests (4-6 hours)

  • Implement mobile device simulation (100MB heap)
  • Implement serverless cold start test
  • Test multiple Node.js versions
  • Test browser environments

Phase 8: Benchmarking (8-10 hours)

  • Implement benchmark suite (Navigator, Parser, Validator)
  • Establish performance baselines
  • Document benchmarks

Phase 9: CI/CD Integration (4-6 hours)

  • Create GitHub Actions workflow
  • Implement performance comparison script
  • Set up performance artifact storage
  • Configure regression detection

Phase 10: Documentation (6-8 hours)

  • Document performance characteristics in README.md
  • Document scalability limits
  • Add performance examples
  • Create performance testing guide

Total Estimated Effort: 60-82 hours (1.5-2 weeks)


Priority Justification

Priority: Low

Justification:

Why Low Priority:

  1. Functional completeness: Library is fully functional with 98% OGC compliance (Issue Validate: OGC API Endpoint Integration (endpoint.ts) #20) and 832+ tests (Issue Validate: SWE Common Validation System (validation/swe-validator.ts) #19)
  2. No critical performance issues reported: No evidence of performance problems in existing usage
  3. Good architecture: Performance considerations already built in (caching, optional validation, lazy loading)
  4. Large time investment: 60-82 hours required for comprehensive testing
  5. Not blocking production use: Library can be used in production without scalability data

Why Still Important:

  1. Professional quality: Enterprise-grade libraries need performance documentation
  2. User confidence: Users need to know scalability limits before deploying
  3. Optimization guidance: Identifies bottlenecks for future optimization work
  4. Regression prevention: Detects performance regressions in CI/CD
  5. Production readiness: Validates performance under realistic load

Impact if Not Addressed:

  • Unknown limits: Users don't know when library will fail at scale
  • Reactive optimization: Performance issues discovered in production rather than testing
  • No performance baselines: Cannot detect regressions over time
  • Risk mitigation: Users may over-provision resources or avoid library for large-scale use
  • Competitive disadvantage: Other libraries with performance data may be preferred

When to Prioritize:

  1. After 1.0 release: Include scalability data in 2.0 release
  2. User reports performance issues: Prioritize immediately if production issues arise
  3. Enterprise customers: Required for enterprise adoption (SLAs, capacity planning)
  4. Large-scale deployments: Before deploying to systems with >10k resources
  5. Cloud/SaaS offerings: Before offering hosted CSAPI services

ROI Assessment:

  • High for large-scale users: Prevents production incidents, enables capacity planning
  • Medium for library maintainers: Identifies optimization opportunities, demonstrates quality
  • Low for small-scale users: Unlikely to encounter scalability limits
  • Best for: Production deployments, enterprise customers, performance-critical applications

Quick Win Opportunities:

  • Start with Phase 1-2 (infrastructure + large collections) for 14-20 hours
  • Provides immediate value: large collection performance data
  • Can expand to other phases incrementally as needed

Recommended Approach:

  • Implement Phases 1-2 (infrastructure + large collections) now for quick wins
  • Defer Phases 3-7 (comprehensive tests) until user demand or production needs
  • Implement Phase 8 (benchmarking) when optimization work begins
  • Implement Phase 9 (CI/CD) when performance baselines are established

Metadata

Metadata

Assignees

No one assigned

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions