Skip to content

Measure and optimize format detection performance #59

@Sam-Bolling

Description

@Sam-Bolling

Problem

The format detection system (formats.ts - 162 lines with comprehensive header and body inspection) has no performance benchmarking despite being called on every parse operation. This means:

  • No detection overhead data: Unknown cost of detectFormat() vs direct parser calls
  • No strategy comparison: Unknown cost of header detection vs body inspection
  • No confidence impact: Unknown performance difference between high/medium/low confidence paths
  • No scaling data: Unknown cost when checking multiple formats in fallback scenarios
  • No optimization data: Cannot make informed decisions about detection strategies

Real-World Impact:

  • Parse overhead: Format detection happens before every parse - cumulative cost unknown
  • Batch processing: Detecting formats for 1,000+ responses - acceptable latency unknown
  • Embedded devices: CPU overhead must stay within limits
  • Server-side: Detection throughput affects scalability
  • Optimization potential: Cannot optimize without baseline measurements

Context

This issue was identified during the comprehensive validation conducted January 27-28, 2026.

Related Validation Issues: #10 (Multi-Format Parsers)

Work Item ID: 36 from Remaining Work Items

Repository: https://github.com/OS4CSAPI/ogc-client-CSAPI

Validated Commit: a71706b9592cad7a5ad06e6cf8ddc41fa5387732

Detailed Findings

1. No Performance Benchmarks Exist

Evidence from Issue #10 validation report:

Format Detection: formats.ts (162 lines, SHA: 5676c6d57fb704fcc19ef2ba6fb6877b126bc4cf)

Features:

  • Automatic identification from Content-Type headers
  • Supported formats: application/geo+json, application/sml+json, application/swe+json
  • Fallback detection from response body structure
  • Format precedence: GeoJSON → SensorML → SWE → JSON

Current Situation:

  • ✅ Format detection works correctly (all claims confirmed)
  • ✅ Handles both header and body inspection
  • ✅ Confidence levels implemented (high/medium/low)
  • ZERO performance measurements (no ops/sec, latency, overhead data)
  • ❌ No detection strategy comparison (header vs body)
  • ❌ No confidence level performance analysis

2. Format Detection Workflow (Performance-Critical Path)

From Issue #10, formats.ts analysis:

Main Detection Function:

export function detectFormat(
  contentType: string | null,
  body: unknown
): FormatDetectionResult {
  const headerResult = detectFormatFromContentType(contentType);

  // If we have high confidence from header, use it
  if (headerResult && headerResult.confidence === 'high') {
    return headerResult;
  }

  // Otherwise inspect the body
  const bodyResult = detectFormatFromBody(body);

  // If body gives us high confidence, use it
  if (bodyResult.confidence === 'high') {
    return bodyResult;
  }

  // Use header result if available, otherwise use body result
  return headerResult || bodyResult;
}

Performance Questions:

  1. How expensive is header detection? Simple string parsing and comparison
  2. How expensive is body inspection? Type checking and property access
  3. Does high-confidence short-circuit save time? Early return vs full workflow
  4. What's the cost of each format check? GeoJSON vs SensorML vs SWE detection

3. Header Detection Performance

From Issue #10:

export function detectFormatFromContentType(contentType: string | null): FormatDetectionResult | null {
  if (!contentType) {
    return null;
  }

  // Normalize: extract just the media type, ignore parameters
  const mediaType = contentType.split(';')[0].trim().toLowerCase();

  if (mediaType === CSAPI_MEDIA_TYPES.GEOJSON) {
    return { format: 'geojson', mediaType, confidence: 'high' };
  }

  if (mediaType === CSAPI_MEDIA_TYPES.SENSORML_JSON) {
    return { format: 'sensorml', mediaType, confidence: 'high' };
  }

  if (mediaType === CSAPI_MEDIA_TYPES.SWE_JSON) {
    return { format: 'swe', mediaType, confidence: 'high' };
  }

  if (mediaType === CSAPI_MEDIA_TYPES.JSON) {
    return { format: 'json', mediaType, confidence: 'low' };
  }

  return null;
}

Performance Characteristics:

  • String operations: .split(), .trim(), .toLowerCase()
  • 4 string equality comparisons (worst case)
  • Object allocation for result
  • Expected: Very fast (<0.01ms per detection)

Performance Questions:

  • Cost of string normalization: Is .split().trim().toLowerCase() expensive?
  • Cost of comparisons: Are 4 string comparisons significant?
  • Memory allocation: Does result object creation cause GC pressure?

4. Body Inspection Performance

From Issue #10:

export function detectFormatFromBody(body: unknown): FormatDetectionResult {
  if (!body || typeof body !== 'object') {
    return { format: 'json', mediaType: 'application/json', confidence: 'low' };
  }

  const obj = body as Record<string, unknown>;

  // GeoJSON detection
  if (obj.type === 'Feature' || obj.type === 'FeatureCollection') {
    return { format: 'geojson', mediaType: CSAPI_MEDIA_TYPES.GEOJSON, confidence: 'high' };
  }

  // SensorML detection - look for type field with SensorML values
  if (typeof obj.type === 'string') {
    const type = obj.type;
    if (
      type === 'PhysicalSystem' ||
      type === 'PhysicalComponent' ||
      type === 'SimpleProcess' ||
      type === 'AggregateProcess' ||
      type === 'Deployment'
    ) {
      return { format: 'sensorml', mediaType: CSAPI_MEDIA_TYPES.SENSORML_JSON, confidence: 'high' };
    }
  }

  // SWE Common detection - look for type field with SWE values
  if (typeof obj.type === 'string') {
    const type = obj.type;
    if (
      type === 'Boolean' ||
      type === 'Text' ||
      type === 'Category' ||
      type === 'Count' ||
      type === 'Quantity' ||
      type === 'Time' ||
      type === 'DataRecord' ||
      type === 'Vector' ||
      type === 'DataChoice' ||
      type === 'DataArray' ||
      type === 'Matrix' ||
      type === 'DataStream'
    ) {
      return { format: 'swe', mediaType: CSAPI_MEDIA_TYPES.SWE_JSON, confidence: 'medium' };
    }
  }

  // Default to generic JSON
  return { format: 'json', mediaType: 'application/json', confidence: 'low' };
}

Performance Characteristics:

  • Type checking: typeof body !== 'object', typeof obj.type === 'string'
  • Property access: obj.type (potentially multiple times)
  • 17 string equality comparisons (worst case: 2 GeoJSON + 5 SensorML + 12 SWE - 2 type checks)
  • Object allocation for result
  • Expected: Fast but slower than header detection (<0.1ms per detection)

Performance Questions:

  • Cost of type checking: Are type guards expensive?
  • Cost of property access: Is obj.type access expensive?
  • Cost of 17 comparisons: Are all these string comparisons significant?
  • Early exit benefit: How much faster is GeoJSON (2 checks) vs SWE (17 checks)?
  • Type coercion overhead: Cost of body as Record<string, unknown>

5. Detection Strategy Performance

From Issue #10:

Format precedence: GeoJSON → SensorML → SWE → JSON

In detectFormat():

  1. Try header detection (fast)
  2. If header high confidence → return (short-circuit)
  3. Otherwise try body inspection (slower)
  4. If body high confidence → return
  5. Prefer header result if available, otherwise body result

Three Detection Scenarios:

Scenario 1: High-Confidence Header (Best Case)

// Input: contentType = 'application/geo+json', body = { ... }
// Steps:
// 1. detectFormatFromContentType() → high confidence
// 2. Return immediately (body never inspected)
// Expected: Fastest path

Scenario 2: Low-Confidence Header + High-Confidence Body

// Input: contentType = 'application/json', body = { type: 'Feature', ... }
// Steps:
// 1. detectFormatFromContentType() → low confidence
// 2. detectFormatFromBody() → high confidence
// 3. Return body result
// Expected: Medium speed

Scenario 3: No Header + Body Inspection

// Input: contentType = null, body = { type: 'DataRecord', ... }
// Steps:
// 1. detectFormatFromContentType() → null
// 2. detectFormatFromBody() → SWE detection (12 comparisons)
// 3. Return body result
// Expected: Slowest path (most comparisons)

Performance Questions:

  • Best case savings: How much faster is Scenario 1 vs Scenario 3?
  • Typical case: What's the most common scenario in real usage?
  • Worst case overhead: What if body is large and complex?

6. Unknown Optimization Opportunities

Potential Optimizations (Unverified):

1. Caching:

  • Could cache detection results for identical content types?
  • Could cache body structure for repeated parsing?
  • Would caching overhead outweigh detection cost?

2. Early Exit Optimization:

  • Could check most common formats first (GeoJSON likely most common)?
  • Could stop after first match in body inspection?
  • Would reordering checks improve average performance?

3. Comparison Optimization:

  • Could use Set membership instead of multiple equality checks?
  • Could use switch statement instead of if/else chains?
  • Would these changes be faster?

4. Object Allocation Optimization:

  • Could reuse result objects (object pooling)?
  • Could use singleton patterns for common results?
  • Would this reduce GC pressure?

Cannot optimize without benchmark data!


7. Integration Context

From Issue #10:

Parser Integration:
Every parser.parse() call invokes detectFormat():

parse(data: unknown, options: ParserOptions = {}): ParseResult<T> {
  const format = detectFormat(options.contentType || null, data);
  const errors: string[] = [];
  const warnings: string[] = [];
  
  try {
    // ... parse based on format ...
  } catch (error) {
    // ...
  }
}

Performance Impact:

  • Called on every parse: Format detection overhead is per-parse, not per-batch
  • No caching between parses: Each parse re-detects format even for same data structure
  • Cannot skip: No option to provide pre-detected format directly

Usage Patterns:

  • Single feature parsing: 1 detection per feature
  • Collection parsing: 1 detection for collection + potentially N detections for features
  • Batch processing: N detections for N responses
  • Real-time streaming: Continuous detection overhead

Performance Questions:

  • Cumulative overhead: At 1,000 parses, what's total detection time?
  • Relative overhead: What % of total parse time is detection?
  • Optimization value: Is detection overhead worth optimizing?

8. No Optimization History

No Baseline Data:

  • Cannot track format detection performance regressions
  • Cannot validate optimization attempts
  • Cannot compare detection strategies
  • Cannot document detection overhead for users
  • Cannot decide when detection optimization is needed

9. Parser System Context

From Issue #10:

Total parser code: ~1,714 lines

  • base.ts: 479 lines
  • resources.ts: 494 lines
  • swe-common-parser.ts: 540 lines
  • formats.ts: 162 lines
  • index.ts: 39 lines

Total tests: 166 tests (31 base + 79 resources + 56 swe-common)

Format Detection Usage:

  • Used by all parsers: Every parser inherits parse() method that calls detectFormat()
  • 9 parser classes: System, Deployment, Procedure, SamplingFeature, Property, Datastream, ControlStream, Observation, Command
  • 3 formats supported: GeoJSON, SensorML, SWE Common (+ generic JSON)
  • Format precedence order: Defined in detectFormat() logic

Proposed Solution

1. Establish Benchmark Infrastructure (DEPENDS ON #55)

PREREQUISITE: This work item REQUIRES the benchmark infrastructure from work item #32 (Issue #55) to be completed first.

Once benchmark infrastructure exists:

2. Create Comprehensive Format Detection Benchmarks

Create benchmarks/format-detection.bench.ts (~400-600 lines) with:

Header Detection Benchmarks:

  • Detect GeoJSON from header (high confidence, early exit)
  • Detect SensorML from header (high confidence, early exit)
  • Detect SWE from header (high confidence, early exit)
  • Detect generic JSON from header (low confidence, requires body inspection)
  • Detect with missing header (null, requires body inspection)

Body Inspection Benchmarks:

  • Detect GeoJSON Feature (2 comparisons - best case)
  • Detect GeoJSON FeatureCollection (2 comparisons - best case)
  • Detect SensorML PhysicalSystem (2 + 5 comparisons)
  • Detect SensorML Deployment (2 + 5 comparisons)
  • Detect SWE Quantity (2 + 17 comparisons - worst case)
  • Detect SWE DataRecord (2 + 17 comparisons - worst case)
  • Detect unknown format (all comparisons fail)

Combined Strategy Benchmarks:

  • Scenario 1: High-confidence header (best case - no body inspection)
  • Scenario 2: Low-confidence header + high-confidence body (medium case)
  • Scenario 3: No header + body inspection (worst case)
  • Scenario 4: Wrong content-type + body inspection (header overhead + body inspection)

Detection Precedence Benchmarks:

  • GeoJSON detection (first in precedence)
  • SensorML detection (second in precedence)
  • SWE detection (third in precedence, most comparisons)
  • Unknown format (all checks fail)

Scale Benchmarks:

  • Single detection (baseline)
  • 100 detections (typical batch)
  • 1,000 detections (large batch)
  • 10,000 detections (stress test)

3. Create Memory Usage Benchmarks

Create benchmarks/format-detection-memory.bench.ts (~150-200 lines) with:

Memory per Detection:

  • Header detection memory (string operations + result object)
  • Body inspection memory (type checking + result object)
  • Combined detection memory (both strategies)

Memory Scaling:

  • 100 detections: total memory, average per detection
  • 1,000 detections: total memory, GC pressure
  • 10,000 detections: total memory, heap usage

String Operations Memory:

  • String normalization (split, trim, toLowerCase)
  • String comparisons (equality checks)
  • Media type constants (string literals)

4. Analyze Benchmark Results

Create benchmarks/format-detection-analysis.ts (~100-150 lines) with:

Performance Comparison:

  • Header vs body inspection (speed difference)
  • Best case vs worst case (early exit vs all checks)
  • Format differences (GeoJSON vs SensorML vs SWE detection)

Identify Bottlenecks:

  • Operations taking >20% of detection time
  • Operations with >0.01ms latency per detection
  • Operations with sublinear scaling
  • Memory-intensive operations

Generate Recommendations:

  • When to rely on headers (high confidence)
  • When body inspection is necessary
  • Optimal detection strategy
  • Optimization opportunities (if any)

5. Implement Targeted Optimizations (If Needed)

ONLY if benchmarks identify issues:

Optimization Candidates (benchmark-driven):

  • If string normalization slow: Cache normalized media types
  • If comparisons slow: Use Set membership or Map lookup instead of if/else
  • If object allocation expensive: Reuse singleton result objects
  • If body inspection expensive: Check most common formats first

Optimization Guidelines:

  • Only optimize proven bottlenecks (>10% overhead or <100,000 detections/sec)
  • Measure before and after (verify improvement)
  • Document tradeoffs (code complexity vs speed gain)
  • Add regression tests (ensure optimization doesn't break functionality)

6. Document Performance Characteristics

Update README.md with new "Format Detection Performance" section (~100-150 lines):

Performance Overview:

  • Typical detection overhead: X μs per detection
  • Header detection: X μs (fast path)
  • Body inspection: X μs (slower path)
  • Throughput: X detections/sec

Detection Strategy Performance:

Best case (high-confidence header):    ~X μs  (header only)
Medium case (low-confidence header):   ~X μs  (header + body)
Worst case (no header + SWE):          ~X μs  (body with 17 comparisons)

Format Detection Overhead:

GeoJSON (2 checks):     ~X μs  (fastest body detection)
SensorML (7 checks):    ~X μs  (medium body detection)
SWE (17 checks):        ~X μs  (slowest body detection)
Unknown (all checks):   ~X μs  (all checks fail)

Best Practices:

  • When possible: Provide accurate Content-Type headers to enable fast header detection
  • High confidence: Header detection with correct media type is fastest
  • Low confidence: Body inspection required for generic application/json content-type
  • No header: Body inspection required, slightly slower but still fast
  • Optimization: Format detection is typically <1% of total parse time

Performance Targets:

  • Good: <10 μs per detection (<0.01ms)
  • Acceptable: <100 μs per detection (<0.1ms)
  • Poor: >1000 μs per detection (>1ms) - needs optimization

7. Integrate with CI/CD

Add to .github/workflows/benchmarks.yml (coordinate with #55):

Benchmark Execution:

- name: Run format detection benchmarks
  run: npm run bench:format-detection

- name: Run format detection memory benchmarks
  run: npm run bench:format-detection:memory

Performance Regression Detection:

  • Compare against baseline (main branch)
  • Alert if any benchmark >10% slower
  • Alert if memory usage >20% higher

PR Comments:

  • Post benchmark results to PRs
  • Show comparison with base branch
  • Highlight regressions and improvements

Acceptance Criteria

Benchmark Infrastructure (4 items)

  • ✅ Benchmark infrastructure from Add comprehensive performance benchmarking #55 is complete and available
  • Created benchmarks/format-detection.bench.ts with comprehensive detection benchmarks (~400-600 lines)
  • Created benchmarks/format-detection-memory.bench.ts with memory usage benchmarks (~150-200 lines)
  • Created benchmarks/format-detection-analysis.ts with results analysis (~100-150 lines)

Header Detection Benchmarks (5 items)

  • Benchmarked GeoJSON header detection (high confidence)
  • Benchmarked SensorML header detection (high confidence)
  • Benchmarked SWE header detection (high confidence)
  • Benchmarked generic JSON header detection (low confidence)
  • Benchmarked missing header scenario (null input)

Body Inspection Benchmarks (7 items)

  • Benchmarked GeoJSON Feature detection (2 comparisons)
  • Benchmarked GeoJSON FeatureCollection detection (2 comparisons)
  • Benchmarked SensorML detection (5 process types)
  • Benchmarked SWE detection (12 component types)
  • Benchmarked unknown format detection (all checks fail)
  • Documented comparison count per format
  • Identified fastest and slowest detection paths

Combined Strategy Benchmarks (4 items)

  • Benchmarked Scenario 1: High-confidence header (best case)
  • Benchmarked Scenario 2: Low-confidence header + body inspection (medium case)
  • Benchmarked Scenario 3: No header + body inspection (worst case)
  • Documented performance difference between scenarios

Detection Precedence Benchmarks (4 items)

  • Benchmarked GeoJSON detection (first in precedence)
  • Benchmarked SensorML detection (second in precedence)
  • Benchmarked SWE detection (third in precedence, most checks)
  • Verified precedence order affects performance

Scale Benchmarks (4 items)

  • Benchmarked single detection (baseline)
  • Benchmarked 100 detections (typical batch)
  • Benchmarked 1,000 detections (large batch)
  • Benchmarked 10,000 detections (stress test)

Memory Benchmarks (4 items)

  • Measured memory per header detection
  • Measured memory per body inspection
  • Measured memory scaling (100, 1,000, 10,000 detections)
  • Measured string operation memory overhead

Performance Analysis (5 items)

  • Analyzed all benchmark results
  • Identified bottlenecks (operations >20% of detection time or >0.01ms per detection)
  • Generated performance comparison report (header vs body, best vs worst case)
  • Created recommendations document (when to use each strategy)
  • Documented current performance characteristics

Optimization (if needed) (4 items)

  • Identified optimization opportunities from benchmark data
  • Implemented targeted optimizations ONLY for proven bottlenecks
  • Re-benchmarked after optimization (verified improvement)
  • Added regression tests to prevent optimization from breaking functionality

Documentation (7 items)

  • Added "Format Detection Performance" section to README.md (~100-150 lines)
  • Documented typical detection overhead (μs per detection)
  • Documented header vs body inspection performance
  • Documented detection strategy performance (best/medium/worst case)
  • Documented format-specific detection overhead (GeoJSON vs SensorML vs SWE)
  • Documented best practices (when to use headers, when body inspection is needed)
  • Documented performance targets (good/acceptable/poor thresholds)

CI/CD Integration (4 items)

  • Added format detection benchmarks to .github/workflows/benchmarks.yml
  • Configured performance regression detection (>10% slower = fail)
  • Added PR comment with benchmark results and comparison
  • Verified benchmarks run on every PR and main branch commit

Implementation Notes

Files to Create

Benchmark Files (~650-950 lines total):

  1. benchmarks/format-detection.bench.ts (~400-600 lines)

    • Header detection benchmarks (5 scenarios)
    • Body inspection benchmarks (7 formats)
    • Combined strategy benchmarks (4 scenarios)
    • Detection precedence benchmarks (4 formats)
    • Scale benchmarks (4 sizes)
  2. benchmarks/format-detection-memory.bench.ts (~150-200 lines)

    • Memory per detection (3 scenarios)
    • Memory scaling (3 sizes)
    • String operation memory
  3. benchmarks/format-detection-analysis.ts (~100-150 lines)

    • Performance comparison logic
    • Bottleneck identification
    • Recommendation generation
    • Results formatting

Files to Modify

README.md (~100-150 lines added):

  • New "Format Detection Performance" section with:
    • Performance overview
    • Detection strategy comparison table
    • Format-specific overhead table
    • Best practices
    • Performance targets

package.json (~10 lines):

{
  "scripts": {
    "bench:format-detection": "tsx benchmarks/format-detection.bench.ts",
    "bench:format-detection:memory": "tsx benchmarks/format-detection-memory.bench.ts",
    "bench:format-detection:analyze": "tsx benchmarks/format-detection-analysis.ts"
  }
}

.github/workflows/benchmarks.yml (coordinate with #55):

  • Add format detection benchmark execution
  • Add memory benchmark execution
  • Add regression detection
  • Add PR comment generation

Files to Reference

Format Detection Source File (for accurate benchmarking):

  • src/ogc-api/csapi/parsers/formats.ts (162 lines)
    • CSAPI_MEDIA_TYPES constants
    • detectFormatFromContentType() function
    • detectFormatFromBody() function
    • detectFormat() function

Test Fixtures (reuse existing test data):

  • src/ogc-api/csapi/parsers/base.spec.ts (has sample format detection tests)
  • src/ogc-api/csapi/parsers/resources.spec.ts (has sample GeoJSON/SensorML/SWE data)

Technology Stack

Benchmarking Framework (from #55):

  • Tinybench (statistical benchmarking)
  • Node.js process.memoryUsage() for memory tracking
  • Node.js performance.now() for timing

Benchmark Priorities:

  • High: Header vs body comparison, detection strategy scenarios, format precedence
  • Medium: Scale benchmarks, memory usage
  • Low: Extreme scaling (>10,000), micro-optimizations

Performance Targets (Hypothetical - Measure to Confirm)

Detection Overhead:

  • Good: <10 μs per detection (<0.01ms)
  • Acceptable: <100 μs per detection (<0.1ms)
  • Poor: >1000 μs per detection (>1ms)

Throughput:

  • Good: >100,000 detections/sec (<10 μs per detection)
  • Acceptable: >10,000 detections/sec (<100 μs per detection)
  • Poor: <1,000 detections/sec (>1000 μs per detection)

Memory:

  • Good: <100 bytes per detection
  • Acceptable: <500 bytes per detection
  • Poor: >1 KB per detection

Optimization Guidelines

ONLY optimize if benchmarks prove need:

  • Detection overhead >1ms per detection
  • Throughput <10,000 detections/sec
  • Memory >1 KB per detection

Optimization Approach:

  1. Identify bottleneck from benchmark data
  2. Profile with Chrome DevTools or Node.js profiler
  3. Implement targeted optimization
  4. Re-benchmark to verify improvement (>20% faster)
  5. Add regression tests
  6. Document tradeoffs

Common Optimizations:

  • Cache normalized media types (if string operations slow)
  • Use Map/Set for format lookups (if many comparisons slow)
  • Reuse singleton result objects (if allocation expensive)
  • Reorder checks (if some formats more common)

Dependencies

CRITICAL DEPENDENCY:

Why This Dependency Matters:

Testing Requirements

Benchmark Validation:

  • All benchmarks must run without errors
  • All benchmarks must complete in <30 seconds total
  • All benchmarks must produce consistent results (variance <10%)
  • Memory benchmarks must not cause out-of-memory errors

Regression Tests:

  • Add tests to verify optimizations don't break functionality
  • Rerun all format detection tests after any optimization
  • Verify detection accuracy remains 100%

Caveats

Performance is Environment-Dependent:

  • Benchmarks run on specific hardware (document specs)
  • Results vary by Node.js version, CPU, memory
  • Production performance may differ from benchmark environment
  • Document benchmark environment in README

Optimization Tradeoffs:

  • Faster code may be more complex
  • Cached values increase memory usage
  • Lookup tables add initialization overhead
  • Document all tradeoffs in optimization PRs

Format Detection Context:

  • Detection overhead typically <1% of total parse time
  • Network latency typically dominates detection overhead
  • Optimization may not be necessary unless benchmarks show >1ms detection time
  • Focus on correctness over micro-optimizations

Priority Justification

Priority: Low

Why Low Priority:

  1. No Known Performance Issues: No user complaints about slow format detection
  2. Functional Excellence: Detection works correctly with comprehensive format support
  3. Expected Overhead: Detection likely <1% of total parse time
  4. Depends on Infrastructure: Cannot start until Add comprehensive performance benchmarking #55 (benchmark infrastructure) is complete
  5. Educational Value: Primarily for documentation and optimization guidance

Why Still Important:

  1. Baseline Establishment: Detect format detection performance regressions early
  2. Optimization Guidance: Data-driven decisions about what (if anything) to optimize
  3. Strategy Comparison: Understand header vs body inspection tradeoffs
  4. Documentation: Help users understand detection overhead and best practices
  5. Integration Context: Format detection happens on every parse - cumulative cost matters

Impact if Not Addressed:

  • ⚠️ Unknown detection overhead (users can't estimate cost)
  • ⚠️ No baseline for regression detection (can't track performance over time)
  • ⚠️ No optimization guidance (can't prioritize improvements)
  • ⚠️ Unknown strategy tradeoffs (can't recommend best practices)
  • ✅ Detection still works correctly (functional quality not affected)
  • ✅ No known performance bottlenecks (no urgency)

Effort Estimate: 6-10 hours (after #55 complete)

  • Benchmark creation: 4-6 hours
  • Memory analysis: 1-2 hours
  • Results analysis: 1-2 hours
  • Documentation: 1-2 hours
  • CI/CD integration: 0.5-1 hour (reuse from Add comprehensive performance benchmarking #55)
  • Optimization (optional, if needed): 2-4 hours

When to Prioritize Higher:

  • If users report slow parsing (detection may contribute)
  • If adding real-time detection features (need performance baseline)
  • If optimizing for embedded/mobile (need overhead data)
  • If detection overhead >1% of parse time (needs optimization)

Metadata

Metadata

Assignees

No one assigned

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions