-
Notifications
You must be signed in to change notification settings - Fork 2
Open
Description
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-5-8ac2c27a4800> in <module>
2
3 tica.save_tica_ffi_catalog(77)
----> 4 images = tica.list_tica_images(sector=77, camera=1, ccd=4)
5 tpf = images.cutout(column=1000, row=1000, shape=(21, 21))
~/miniconda3/envs/exo/lib/python3.8/site-packages/tess_cloud/tica.py in list_tica_images(sector, camera, ccd, time, provider)
111 ) -> TessImageList:
112 """Returns a list of TICA FFI images."""
--> 113 df = _load_tica_ffi_catalog(sector=sector)
114 if camera:
115 df = df[df.camera == camera]
~/miniconda3/envs/exo/lib/python3.8/site-packages/tess_cloud/tica.py in _load_tica_ffi_catalog(sector)
146 log.debug(f"Reading {path}")
147 # TODO: move sort_values to `save_catalog`
--> 148 return pd.read_parquet(path).sort_values("path")
~/miniconda3/envs/exo/lib/python3.8/site-packages/pandas/core/frame.py in sort_values(self, by, axis, ascending, inplace, kind, na_position, ignore_index, key)
6756
6757 by = by[0]
-> 6758 k = self._get_label_or_level_values(by, axis=axis)
6759
6760 # need to rewrap column in Series to apply key function
~/miniconda3/envs/exo/lib/python3.8/site-packages/pandas/core/generic.py in _get_label_or_level_values(self, key, axis)
1776 values = self.axes[axis].get_level_values(key)._values
1777 else:
-> 1778 raise KeyError(key)
1779
1780 # Check for duplicates
KeyError: 'path'
The above is in an older environment (Python 3.8) but I get the same error in a fresh install with Python 3.12.3:
channels:
- conda-forge
- defaults
dependencies:
- appnope=0.1.4=pyhd8ed1ab_0
- asttokens=2.4.1=pyhd8ed1ab_0
- bzip2=1.0.8=h80987f9_6
- ca-certificates=2024.6.2=hf0a4a13_0
- comm=0.2.2=pyhd8ed1ab_0
- debugpy=1.6.7=py312h313beb8_0
- decorator=5.1.1=pyhd8ed1ab_0
- exceptiongroup=1.2.0=pyhd8ed1ab_2
- executing=2.0.1=pyhd8ed1ab_0
- expat=2.6.2=h313beb8_0
- importlib-metadata=7.1.0=pyha770c72_0
- importlib_metadata=7.1.0=hd8ed1ab_0
- ipykernel=6.29.3=pyh3cd1d5f_0
- ipython=8.25.0=pyh707e725_0
- jedi=0.19.1=pyhd8ed1ab_0
- jupyter_client=8.6.2=pyhd8ed1ab_0
- jupyter_core=5.5.0=py312hca03da5_0
- libcxx=14.0.6=h848a8c0_0
- libffi=3.4.4=hca03da5_1
- libsodium=1.0.18=h27ca646_1
- matplotlib-inline=0.1.7=pyhd8ed1ab_0
- ncurses=6.4=h313beb8_0
- nest-asyncio=1.6.0=pyhd8ed1ab_0
- openssl=3.3.0=hfb2fe0b_3
- packaging=24.0=pyhd8ed1ab_0
- parso=0.8.4=pyhd8ed1ab_0
- pexpect=4.9.0=pyhd8ed1ab_0
- pickleshare=0.7.5=py_1003
- pip=24.0=py312hca03da5_0
- platformdirs=4.2.2=pyhd8ed1ab_0
- prompt-toolkit=3.0.42=pyha770c72_0
- psutil=5.9.0=py312h80987f9_0
- ptyprocess=0.7.0=pyhd3deb0d_0
- pure_eval=0.2.2=pyhd8ed1ab_0
- pygments=2.18.0=pyhd8ed1ab_0
- python=3.12.3=h99e199e_1
- pyzmq=25.1.2=py312h313beb8_0
- readline=8.2=h1a28f6b_0
- setuptools=69.5.1=py312hca03da5_0
- six=1.16.0=pyh6c4a22f_0
- sqlite=3.45.3=h80987f9_0
- stack_data=0.6.2=pyhd8ed1ab_0
- tk=8.6.14=h6ba3021_0
- traitlets=5.14.3=pyhd8ed1ab_0
- typing_extensions=4.12.1=pyha770c72_0
- tzdata=2024a=h04d1e81_0
- wcwidth=0.2.13=pyhd8ed1ab_0
- wheel=0.43.0=py312hca03da5_0
- xz=5.4.6=h80987f9_1
- zeromq=4.3.5=h313beb8_0
- zipp=3.17.0=pyhd8ed1ab_0
- zlib=1.2.13=h18a0788_1
- pip:
- aioboto3==13.0.0
- aiobotocore==2.13.0
- aiofiles==23.2.1
- aiohttp==3.9.5
- aioitertools==0.11.0
- aiosignal==1.3.1
- astropy==5.3.4
- astroquery==0.4.6
- attrs==23.2.0
- autograd==1.6.2
- backoff==2.2.1
- beautifulsoup4==4.12.3
- bokeh==3.4.1
- boto3==1.34.106
- botocore==1.34.106
- certifi==2024.6.2
- charset-normalizer==3.3.2
- contourpy==1.2.1
- cycler==0.12.1
- diskcache==5.6.3
- fbpca==1.0
- fonttools==4.53.0
- frozenlist==1.4.1
- fsspec==2024.6.0
- future==1.0.0
- html5lib==1.1
- idna==3.7
- jaraco-classes==3.4.0
- jaraco-context==5.3.0
- jaraco-functools==4.0.1
- jinja2==3.1.4
- jmespath==1.0.1
- joblib==1.4.2
- keyring==25.2.1
- kiwisolver==1.4.5
- lightkurve==2.4.2
- markupsafe==2.1.5
- matplotlib==3.9.0
- memoization==0.4.0
- more-itertools==10.2.0
- multidict==6.0.5
- numpy==1.26.4
- oktopus==0.1.2
- pandas==1.5.3
- patsy==0.5.6
- pillow==10.3.0
- pyarrow==16.1.0
- pyerfa==2.0.1.4
- pyparsing==3.1.2
- python-dateutil==2.9.0.post0
- pytz==2024.1
- pyvo==1.5.2
- pyyaml==6.0.1
- requests==2.32.3
- s3fs==2024.6.0
- s3transfer==0.10.1
- scikit-learn==1.5.0
- scipy==1.13.1
- soupsieve==2.5
- tess-cloud==0.5.0
- tess-ephem==0.4.0
- tess-locator==0.6.0
- tess-point==0.8.1
- threadpoolctl==3.5.0
- tornado==6.4
- tqdm==4.66.4
- uncertainties==3.2.0
- urllib3==2.2.1
- webencodings==0.5.1
- wrapt==1.16.0
- xyzservices==2024.4.0
- yarl==1.9.4
Metadata
Metadata
Assignees
Labels
No labels