-
Notifications
You must be signed in to change notification settings - Fork 556
Open
Description
I built the docker image per the instructions in the readme. I ran it using the example command line and got this:
A module that was compiled using NumPy 1.x cannot be run in
NumPy 2.0.2 as it may crash. To support both 1.x and 2.x
versions of NumPy, modules must be compiled with NumPy 2.0.
Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.
If you are a user of the module, the easiest solution will be to
downgrade to 'numpy<2' or try to upgrade the affected module.
We expect that some modules will need time to support NumPy 2.
Traceback (most recent call last): File "/app/RFdiffusion/scripts/run_inference.py", line 24, in <module>
from rfdiffusion.util import writepdb_multi, writepdb
File "/usr/local/lib/python3.9/dist-packages/rfdiffusion/util.py", line 2, in <module>
from rfdiffusion.chemical import *
File "/usr/local/lib/python3.9/dist-packages/rfdiffusion/chemical.py", line 184, in <module>
init_N = torch.tensor([-0.5272, 1.3593, 0.000]).float()
/usr/local/lib/python3.9/dist-packages/rfdiffusion/chemical.py:184: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:68.)
init_N = torch.tensor([-0.5272, 1.3593, 0.000]).float()
[2025-12-12 17:45:59,930][__main__][INFO] - Found GPU with device_name NVIDIA L40S. Will run RFdiffusion on NVIDIA L40S
Reading models from /home/dtenenba/models
[2025-12-12 17:45:59,931][rfdiffusion.inference.model_runners][INFO] - Reading checkpoint from /home/dtenenba/models/Base_ckpt.pt
This is inf_conf.ckpt_path
/home/dtenenba/models/Base_ckpt.pt
Assembling -model, -diffuser and -preprocess configs from checkpoint
USING MODEL CONFIG: self._conf[model][n_extra_block] = 4
USING MODEL CONFIG: self._conf[model][n_main_block] = 32
USING MODEL CONFIG: self._conf[model][n_ref_block] = 4
USING MODEL CONFIG: self._conf[model][d_msa] = 256
USING MODEL CONFIG: self._conf[model][d_msa_full] = 64
USING MODEL CONFIG: self._conf[model][d_pair] = 128
USING MODEL CONFIG: self._conf[model][d_templ] = 64
USING MODEL CONFIG: self._conf[model][n_head_msa] = 8
USING MODEL CONFIG: self._conf[model][n_head_pair] = 4
USING MODEL CONFIG: self._conf[model][n_head_templ] = 4
USING MODEL CONFIG: self._conf[model][d_hidden] = 32
USING MODEL CONFIG: self._conf[model][d_hidden_templ] = 32
USING MODEL CONFIG: self._conf[model][p_drop] = 0.15
USING MODEL CONFIG: self._conf[model][SE3_param_full] = {'num_layers': 1, 'num_channels': 32, 'num_degrees': 2, 'n_heads': 4, 'div': 4, 'l0_in_features': 8, 'l0_out_features': 8, 'l1_in_features': 3, 'l1_out_features': 2, 'num_edge_features': 32}
USING MODEL CONFIG: self._conf[model][SE3_param_topk] = {'num_layers': 1, 'num_channels': 32, 'num_degrees': 2, 'n_heads': 4, 'div': 4, 'l0_in_features': 64, 'l0_out_features': 64, 'l1_in_features': 3, 'l1_out_features': 2, 'num_edge_features': 64}
USING MODEL CONFIG: self._conf[model][freeze_track_motif] = False
USING MODEL CONFIG: self._conf[model][use_motif_timestep] = True
USING MODEL CONFIG: self._conf[diffuser][T] = 50
USING MODEL CONFIG: self._conf[diffuser][b_0] = 0.01
USING MODEL CONFIG: self._conf[diffuser][b_T] = 0.07
USING MODEL CONFIG: self._conf[diffuser][schedule_type] = linear
USING MODEL CONFIG: self._conf[diffuser][so3_type] = igso3
USING MODEL CONFIG: self._conf[diffuser][crd_scale] = 0.25
USING MODEL CONFIG: self._conf[diffuser][so3_schedule_type] = linear
USING MODEL CONFIG: self._conf[diffuser][min_b] = 1.5
USING MODEL CONFIG: self._conf[diffuser][max_b] = 2.5
USING MODEL CONFIG: self._conf[diffuser][min_sigma] = 0.02
USING MODEL CONFIG: self._conf[diffuser][max_sigma] = 1.5
USING MODEL CONFIG: self._conf[preprocess][sidechain_input] = False
USING MODEL CONFIG: self._conf[preprocess][motif_sidechain_input] = True
USING MODEL CONFIG: self._conf[preprocess][d_t1d] = 22
USING MODEL CONFIG: self._conf[preprocess][d_t2d] = 44
USING MODEL CONFIG: self._conf[preprocess][prob_self_cond] = 0.5
USING MODEL CONFIG: self._conf[preprocess][str_self_cond] = True
USING MODEL CONFIG: self._conf[preprocess][predict_previous] = False
[2025-12-12 17:46:28,079][rfdiffusion.inference.model_runners][INFO] - Loading checkpoint.
[2025-12-12 17:46:30,151][rfdiffusion.diffusion][INFO] - Calculating IGSO3.
Error executing job with overrides: ['inference.output_prefix=/home/dtenenba/outputs/motifscaffolding', 'inference.model_directory_path=/home/dtenenba/models', 'inference.input_pdb=/home/dtenenba/inputs/5TPN.pdb', 'inference.num_designs=3', 'contigmap.contigs=[10-40/A163-181/10-40]']
Traceback (most recent call last):
File "/app/RFdiffusion/scripts/run_inference.py", line 54, in main
sampler = iu.sampler_selector(conf)
File "/usr/local/lib/python3.9/dist-packages/rfdiffusion/inference/utils.py", line 511, in sampler_selector
sampler = model_runners.SelfConditioning(conf)
File "/usr/local/lib/python3.9/dist-packages/rfdiffusion/inference/model_runners.py", line 38, in __init__
self.initialize(conf)
File "/usr/local/lib/python3.9/dist-packages/rfdiffusion/inference/model_runners.py", line 148, in initialize
self.diffuser = Diffuser(**self._conf.diffuser, cache_dir=schedule_directory)
File "/usr/local/lib/python3.9/dist-packages/rfdiffusion/diffusion.py", line 582, in __init__
self.so3_diffuser = IGSO3(
File "/usr/local/lib/python3.9/dist-packages/rfdiffusion/diffusion.py", line 198, in __init__
self.igso3_vals = self._calc_igso3_vals(L=L)
File "/usr/local/lib/python3.9/dist-packages/rfdiffusion/diffusion.py", line 236, in _calc_igso3_vals
igso3_vals = igso3.calculate_igso3(
File "/usr/local/lib/python3.9/dist-packages/rfdiffusion/igso3.py", line 93, in calculate_igso3
discrete_sigma = 10 ** np.linspace(np.log10(min_sigma), np.log10(max_sigma), num_sigma + 1)[1:]
File "/usr/local/lib/python3.9/dist-packages/torch/_tensor.py", line 757, in __array__
return self.numpy()
RuntimeError: Numpy is not available
Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.
exit status 1
Any ideas to solve this issue?
Metadata
Metadata
Assignees
Labels
No labels