|
47 | 47 | }, |
48 | 48 | { |
49 | 49 | "cell_type": "code", |
50 | | - "execution_count": 2, |
| 50 | + "execution_count": null, |
51 | 51 | "metadata": {}, |
52 | 52 | "outputs": [], |
53 | 53 | "source": [ |
|
65 | 65 | " bulk_in=[Parameter(name=\"Air\", min=0.0, value=0.0, max=0.0, fit=False)],\n", |
66 | 66 | " bulk_out=[Parameter(name=\"D2O\", min=6.3e-06, value=6.35e-06, max=6.4e-06, fit=False)],\n", |
67 | 67 | " resolution_parameters=[Parameter(name=\"Resolution parameter 1\", min=0.01, value=0.03, max=0.05, fit=False)],\n", |
68 | | - " backgrounds=[Background(name=\"Background 1\", type=\"constant\", value_1=\"Background parameter 1\")],\n", |
69 | | - " resolutions=[Resolution(name=\"Resolution 1\", type=\"constant\", value_1=\"Resolution parameter 1\")],\n", |
| 68 | + " backgrounds=[Background(name=\"Background 1\", type=\"constant\", source=\"Background parameter 1\")],\n", |
| 69 | + " resolutions=[Resolution(name=\"Resolution 1\", type=\"constant\", source=\"Resolution parameter 1\")],\n", |
70 | 70 | " data=[\n", |
71 | 71 | " Data(name=\"Simulation\", data=np.empty([0, 3]), simulation_range=[0.005, 0.7]),\n", |
72 | 72 | " Data(\n", |
|
178 | 178 | }, |
179 | 179 | { |
180 | 180 | "cell_type": "code", |
181 | | - "execution_count": 4, |
| 181 | + "execution_count": null, |
182 | 182 | "metadata": {}, |
183 | 183 | "outputs": [], |
184 | 184 | "source": [ |
|
240 | 240 | "\n", |
241 | 241 | "print(\"Best values according to Nested Sampler:\\n\",\n", |
242 | 242 | " \"Roughness: \", ns_results.fitParams[0], \"\\n\",\n", |
243 | | - " ## FIXME: once fitParams outputs properly!\n", |
244 | | - ")# \"Background: \", ns_results.fitParams[1])\n", |
| 243 | + " \"Background: \", ns_results.fitParams[1])\n", |
245 | 244 | "\n", |
246 | 245 | "print(\"Best values according to DREAM:\\n\",\n", |
247 | 246 | " \"Roughness: \", dream_results.fitParams[0], \"\\n\",\n", |
248 | | - " ## FIXME: once fitParams outputs properly!\n", |
249 | | - " )# \"Background: \", dream_results.fitParams[1])" |
| 247 | + " \"Background: \", dream_results.fitParams[1])" |
250 | 248 | ] |
251 | 249 | }, |
252 | 250 | { |
|
341 | 339 | "fig.tight_layout()\n", |
342 | 340 | "fig.show()" |
343 | 341 | ] |
| 342 | + }, |
| 343 | + { |
| 344 | + "cell_type": "code", |
| 345 | + "execution_count": null, |
| 346 | + "metadata": {}, |
| 347 | + "outputs": [], |
| 348 | + "source": [] |
344 | 349 | } |
345 | 350 | ], |
346 | 351 | "metadata": { |
|
359 | 364 | "name": "python", |
360 | 365 | "nbconvert_exporter": "python", |
361 | 366 | "pygments_lexer": "ipython3", |
362 | | - "version": "3.11.2" |
| 367 | + "version": "3.10.12" |
363 | 368 | } |
364 | 369 | }, |
365 | 370 | "nbformat": 4, |
|
0 commit comments