|
| 1 | +""" |
| 2 | +This example compares three Bayesian posteriors for a low-dimensional |
| 3 | +example: a posterior generated by DREAM, one generated by NS, and |
| 4 | +one calculated directly. |
| 5 | +
|
| 6 | +The likelihood of the parameters being equal to a certain value is proportional |
| 7 | +to exp(-chi^2 / 2) [1], so for a low-dimensional example we can calculate this directly |
| 8 | +for a sample of parameter values. |
| 9 | +
|
| 10 | +Citation: |
| 11 | +[1] D. S. Sivia, J. R. P. Webster, |
| 12 | + "The Bayesian approach to reflectivity data", |
| 13 | + Physica B: Condensed Matter, |
| 14 | + Volume 248, June 1998, pages 327-337 |
| 15 | + DOI: 10.1016/S0921-4526(98)00259-2 |
| 16 | + URL: https://bayes.wustl.edu/sivia/98_20feb03.pdf |
| 17 | +
|
| 18 | +""" |
| 19 | + |
| 20 | +from dataclasses import dataclass |
| 21 | +from pathlib import Path |
| 22 | + |
| 23 | +import matplotlib.pyplot as plt |
| 24 | +import numpy as np |
| 25 | + |
| 26 | +import RATapi as RAT |
| 27 | +import RATapi.utils.plotting as RATplot |
| 28 | + |
| 29 | +PWD = Path(__file__).parents[0] |
| 30 | + |
| 31 | + |
| 32 | +@dataclass |
| 33 | +class CalculationResults: |
| 34 | + """Data class for results from a direct calculation.""" |
| 35 | + |
| 36 | + x_data: list[np.array] |
| 37 | + distribution: np.array |
| 38 | + |
| 39 | + |
| 40 | +def bayes_benchmark_2d(grid_size: int) -> (RAT.outputs.BayesResults, CalculationResults): |
| 41 | + """Bayes benchmark for a 2-dimensional example. |
| 42 | +
|
| 43 | + Parameters |
| 44 | + ---------- |
| 45 | + grid_size : int |
| 46 | + The number of points to sample for each fit parameter. |
| 47 | +
|
| 48 | + Here we estimate the substrate roughness and background using two different methods: |
| 49 | + nested sampling (the 'ns' procedure in RAT) and through a direct calculation of chi-squared |
| 50 | + over a range of parameter values. |
| 51 | +
|
| 52 | + Returns |
| 53 | + ------- |
| 54 | + RAT.BayesResults |
| 55 | + The BayesResults object from a nested sampler calculation. |
| 56 | + CalculationResults |
| 57 | + Results from the direct calculation. |
| 58 | +
|
| 59 | + """ |
| 60 | + problem = RAT.utils.convert.r1_to_project_class(str(PWD / "defaultR1ProjectTemplate.mat")) |
| 61 | + |
| 62 | + ns_controls = RAT.Controls(procedure="ns", calcSldDuringFit=True, nsTolerance=1, nLive=500, display="final") |
| 63 | + |
| 64 | + _, ns_results = RAT.run(problem, ns_controls) |
| 65 | + |
| 66 | + # now we get the parameters and use them to do a direct calculation |
| 67 | + rough_param = problem.parameters[0] |
| 68 | + roughness = np.linspace(rough_param.min, rough_param.max, grid_size) |
| 69 | + |
| 70 | + back_param = problem.background_parameters[0] |
| 71 | + background = np.linspace(back_param.min, back_param.max, grid_size) |
| 72 | + |
| 73 | + controls = RAT.Controls(procedure="calculate", calcSldDuringFit=True, display="off") |
| 74 | + |
| 75 | + def calculate_posterior(roughness_index: int, background_index: int) -> float: |
| 76 | + """Calculate the posterior for an item in the roughness and background vectors. |
| 77 | +
|
| 78 | + Parameters |
| 79 | + ---------- |
| 80 | + roughness_index : int |
| 81 | + The index of the roughness vector to use as the roughness parameter value. |
| 82 | + background_index : int |
| 83 | + The index of the background vector to use as the background parameter value. |
| 84 | +
|
| 85 | + Returns |
| 86 | + ------- |
| 87 | + float |
| 88 | + The value of exp(-chi^2 / 2) for the given roughness and background values. |
| 89 | + """ |
| 90 | + problem.parameters[0].value = roughness[int(roughness_index)] |
| 91 | + problem.background_parameters[0].value = background[background_index] |
| 92 | + |
| 93 | + _, results = RAT.run(problem, controls) |
| 94 | + chi_squared = results.calculationResults.sumChi |
| 95 | + |
| 96 | + return np.exp(-chi_squared / 2) |
| 97 | + |
| 98 | + vectorized_calc_posterior = np.vectorize(calculate_posterior) |
| 99 | + |
| 100 | + print("Calculating posterior directly...") |
| 101 | + probability_array = vectorized_calc_posterior(*np.indices((grid_size, grid_size), dtype=int)) |
| 102 | + |
| 103 | + return ns_results, CalculationResults(x_data=[roughness, background], distribution=probability_array) |
| 104 | + |
| 105 | + |
| 106 | +def bayes_benchmark_3d(grid_size: int) -> (RAT.outputs.BayesResults, CalculationResults): |
| 107 | + """Bayes benchmark for a 3-dimensional example. |
| 108 | +
|
| 109 | + Here we estimate the substrate roughness and background using two different methods: |
| 110 | + nested sampling (the 'ns' procedure in RAT) and through a direct calculation of chi-squared |
| 111 | + over a range of parameter values. |
| 112 | +
|
| 113 | + Parameters |
| 114 | + ---------- |
| 115 | + grid_size : int |
| 116 | + The number of points to sample for each fit parameter. |
| 117 | +
|
| 118 | + Returns |
| 119 | + ------- |
| 120 | + RAT.BayesResults |
| 121 | + The BayesResults object from a nested sampler calculation. |
| 122 | + CalculationResults |
| 123 | + Results from the direct calculation. |
| 124 | +
|
| 125 | + """ |
| 126 | + problem = RAT.utils.convert.r1_to_project_class(str(PWD / "defaultR1ProjectTemplate.mat")) |
| 127 | + |
| 128 | + ns_controls = RAT.Controls(procedure="ns", calcSldDuringFit=True, nsTolerance=1, nLive=500, display="final") |
| 129 | + |
| 130 | + _, ns_results = RAT.run(problem, ns_controls) |
| 131 | + |
| 132 | + # now we get the parameters and use them to do a direct calculation |
| 133 | + rough_param = problem.parameters[0] |
| 134 | + roughness = np.linspace(rough_param.min, rough_param.max, grid_size) |
| 135 | + |
| 136 | + back_param = problem.background_parameters[0] |
| 137 | + background = np.linspace(back_param.min, back_param.max, grid_size) |
| 138 | + |
| 139 | + scale_param = problem.scalefactors[0] |
| 140 | + scalefactor = np.linspace(scale_param.min, scale_param.max, grid_size) |
| 141 | + |
| 142 | + controls = RAT.Controls(procedure="calculate", calcSldDuringFit=True, display="off") |
| 143 | + |
| 144 | + def calculate_posterior(roughness_index: int, background_index: int, scalefactor_index: int) -> float: |
| 145 | + """Calculate the posterior for an item in the roughness, background, and scalefactor vectors. |
| 146 | +
|
| 147 | + Parameters |
| 148 | + ---------- |
| 149 | + roughness_index : int |
| 150 | + The index of the roughness vector to use as the roughness parameter value. |
| 151 | + background_index : int |
| 152 | + The index of the background vector to use as the background parameter value. |
| 153 | + scalefactor_index : int |
| 154 | + The index of the scalefactor vector to use as the scalefactor parameter. |
| 155 | +
|
| 156 | + Returns |
| 157 | + ------- |
| 158 | + float |
| 159 | + The value of exp(-chi^2 / 2) for the given roughness and background values. |
| 160 | + """ |
| 161 | + problem.parameters[0].value = roughness[roughness_index] |
| 162 | + problem.background_parameters[0].value = background[background_index] |
| 163 | + problem.scalefactors[0].value = scalefactor[scalefactor_index] |
| 164 | + |
| 165 | + _, results = RAT.run(problem, controls) |
| 166 | + chi_squared = results.calculationResults.sumChi |
| 167 | + |
| 168 | + return np.exp(-chi_squared / 2) |
| 169 | + |
| 170 | + vectorized_calc_posterior = np.vectorize(calculate_posterior) |
| 171 | + |
| 172 | + print("Calculating posterior directly...") |
| 173 | + probability_array = vectorized_calc_posterior(*np.indices((grid_size, grid_size, grid_size), dtype=int)) |
| 174 | + |
| 175 | + return ns_results, CalculationResults(x_data=[roughness, background, scalefactor], distribution=probability_array) |
| 176 | + |
| 177 | + |
| 178 | +def plot_posterior_comparison(ns_results: RAT.outputs.BayesResults, calc_results: CalculationResults): |
| 179 | + """Create a grid of marginalised posteriors comparing different calculation methods. |
| 180 | +
|
| 181 | + Parameters |
| 182 | + ---------- |
| 183 | + ns_results : RAT.BayesResults |
| 184 | + The BayesResults object from a nested sampler calculation. |
| 185 | + calc_results : CalculationResults |
| 186 | + The results from a direct calculation. |
| 187 | + """ |
| 188 | + num_params = calc_results.distribution.ndim |
| 189 | + fig, axes = plt.subplots(2, num_params) |
| 190 | + |
| 191 | + def plot_marginalised_result(dimension: int, axes: plt.Axes): |
| 192 | + """Plot a histogram of a marginalised posterior from the calculation results. |
| 193 | +
|
| 194 | + Parameters |
| 195 | + ---------- |
| 196 | + dimension : int |
| 197 | + The dimension of the array to marginalise over. |
| 198 | + axes : plt.Axes |
| 199 | + The Axes object to plot the histogram onto. |
| 200 | +
|
| 201 | + """ |
| 202 | + # marginalise to the dimension |
| 203 | + # note we don't need to normalise here as np.histogram normalises for us |
| 204 | + sum_axes = tuple(i for i in range(0, num_params) if i != dimension) |
| 205 | + distribution = np.sum(calc_results.distribution, axis=sum_axes) |
| 206 | + |
| 207 | + # create histogram |
| 208 | + axes.hist( |
| 209 | + calc_results.x_data[i], |
| 210 | + weights=distribution, |
| 211 | + density=True, |
| 212 | + bins=25, |
| 213 | + edgecolor="black", |
| 214 | + linewidth=1.2, |
| 215 | + color="white", |
| 216 | + ) |
| 217 | + |
| 218 | + # row 0 contains NS histograms for each parameter |
| 219 | + # row 1 contains direct calculation histograms for each parameter |
| 220 | + for i in range(0, num_params): |
| 221 | + RATplot.plot_one_hist(ns_results, i, smooth=False, axes=axes[0][i]) |
| 222 | + plot_marginalised_result(i, axes[1][i]) |
| 223 | + axes[1][i].set_xlim(*axes[0][i].get_xlim()) |
| 224 | + |
| 225 | + axes[0][0].set_ylabel("nested sampler") |
| 226 | + axes[1][0].set_ylabel("direct calculation") |
| 227 | + |
| 228 | + fig.tight_layout() |
| 229 | + fig.show() |
| 230 | + |
| 231 | + |
| 232 | +if __name__ == "__main__": |
| 233 | + ns_2d, calc_2d = bayes_benchmark_2d(30) |
| 234 | + ns_3d, calc_3d = bayes_benchmark_3d(40) |
| 235 | + |
| 236 | + plot_posterior_comparison(ns_2d, calc_2d) |
| 237 | + |
| 238 | + plot_posterior_comparison(ns_3d, calc_3d) |
0 commit comments