Skip to content

Commit 1eb6814

Browse files
Merge pull request #512 from Quantum-Software-Development/FabianaCampanari-patch-1
Update README.md
2 parents 807eff1 + ffda435 commit 1eb6814

File tree

1 file changed

+57
-36
lines changed

1 file changed

+57
-36
lines changed

README.md

Lines changed: 57 additions & 36 deletions
Original file line numberDiff line numberDiff line change
@@ -592,7 +592,7 @@ After running Solver:
592592

593593
<br>
594594

595-
### 1- 📊 [Linear Programming Mathematical Model — Production Optimization]()
595+
## 1- 📊 [Linear Programming Mathematical Model — Production Optimization]()
596596

597597
<br>
598598

@@ -773,15 +773,10 @@ x_1 \geq 0, \quad x_2 \geq 0
773773

774774
• Can also be implemented in software such as Python (PuLP), MATLAB, or Excel Solver.
775775

776-
<br>
777-
778-
#
779-
780-
<br>
781776

782-
#
777+
<br><br>
783778

784-
### 2- 📈 [Graphical Solution to the Linear Programming (LP) Problem]():
779+
## 2- 📈 [Graphical Solution to the Linear Programming (LP) Problem]():
785780

786781
<br>
787782

@@ -796,7 +791,7 @@ $
796791
Z = 4x_1 + 3x_2
797792
```
798793

799-
<br><br>
794+
<br>
800795

801796
### [**Subject to:**]():
802797

@@ -822,7 +817,7 @@ x_1 \geq 0, \quad x_2 \geq 0
822817

823818
<br>
824819

825-
## [Step 1]() ➢ Plot the Constraints:
820+
### [Step 1]() ➢ Plot the Constraints:
826821

827822
Convert inequalities into equalities to draw the lines:
828823

@@ -840,7 +835,7 @@ x_1 + 3x_2 = 7$
840835
- If x_2 = 0 \Rightarrow x_1 = 7
841836
```
842837

843-
<br><br>
838+
<br>
844839

845840
### [2](). $2x_1 + 2x_2 = 8$
846841
- If $x_1 = 0 \Rightarrow x_2 = 4$
@@ -854,7 +849,7 @@ x_1 + 2x_2 = 8
854849
- If x_2 = 0 \Rightarrow x_1 = 4
855850
```
856851

857-
<br><br>
852+
<br>
858853

859854
### [3](). $x_1 + x_2 = 3$
860855
- If $x_1 = 0 \Rightarrow x_2 = 3$
@@ -878,9 +873,9 @@ x_1 + x_2 = 3
878873
x_2 = 2 → horizontal line
879874
```
880875

881-
<br><br>
876+
<br>
882877

883-
## [Step 2]() ➢ Identify the Feasible Region:
878+
### [Step 2]() ➢ Identify the Feasible Region:
884879

885880
- The feasible region is the intersection of all shaded regions that satisfy the constraints.
886881
- Must include $x_1 \geq 0$ and $x_2 \geq 0$.
@@ -891,9 +886,9 @@ x_2 = 2 → horizontal line
891886
x_1 \geq 0$ and $x_2 \geq 0
892887
```
893888

894-
<br><br><br>
889+
<br><br>
895890

896-
## [Step 3]() ➢ Find Intersection Points (Vertices):
891+
### [Step 3]() ➢ Find Intersection Points (Vertices):
897892

898893
<br>
899894

@@ -973,43 +968,64 @@ Intersection of x_1 + 3x_2 = 7 and 2x_1 + 2x_2 = 8:
973968

974969
<br><br>
975970

976-
## [Step 5]()
977-
978-
979-
980-
981-
982-
983-
984-
985-
986-
987-
988-
989-
990-
971+
## [Step 5]() ➢ Check Feasibility:
991972

973+
- **(2,2)** violates: $x_1 + 3x_2 = 2 + 6 = 8 > 7$ ❌
974+
- All others: ✅
992975

976+
<br>
993977

978+
### ✅ Final Step: Choose the Best Feasible Point
994979

980+
| Point | $Z$ | Feasible |
981+
|:-----:|:---:|:--------:|
982+
| A | 0 | Yes |
983+
| B | 6 | Yes |
984+
| C | 10 | Yes |
985+
| E | 8 | Yes |
986+
| F | 12 | ✅ Best |
987+
| D | 14 | No |
995988

996989

990+
<br><br>
997991

992+
### 🏁 [Conclusion]():
998993

994+
- **Optimal solution:** $x_1 = 3$, $x_2 = 0$
995+
- **Maximum value:** $Z = 12$
999996

997+
<br>
1000998

999+
```latex
1000+
- **Optimal solution:** $x_1 = 3$, $x_2 = 0$
1001+
- **Maximum value:** $Z = 12$
1002+
```
10011003

1002-
<br><br><br><br><br><br>
1004+
<br><br>
10031005

1004-
#
1006+
## **3.** [Solve the following linear programming problem using the Simplex method]():
10051007

10061008
<br>
10071009

1008-
### **3.** [Solve the following linear programming problem using the Simplex method]():
1010+
$$
1011+
\
1012+
\begin{aligned}
1013+
\text{Max.} \quad & Z = 4x_1 + 3x_2 \\
1014+
\text{S.a.} \quad &
1015+
\begin{cases}
1016+
x_1 + 3x_2 \leq 7 \\
1017+
2x_1 + 2x_2 \leq 8 \\
1018+
x_1 + x_2 \leq 3 \\
1019+
x_2 \leq 2 \\
1020+
x_1 \geq 0 \text{ e } x_2 \geq 0
1021+
\end{cases}
1022+
\end{aligned}
1023+
\
1024+
$$
10091025

10101026
<br>
10111027

1012-
$$
1028+
```latex
10131029
\
10141030
\begin{aligned}
10151031
\text{Max.} \quad & Z = 4x_1 + 3x_2 \\
@@ -1023,7 +1039,11 @@ x_1 \geq 0 \text{ e } x_2 \geq 0
10231039
\end{cases}
10241040
\end{aligned}
10251041
\
1026-
$$
1042+
```
1043+
1044+
<br>
1045+
1046+
## 🚜 UNDER CONSTRUTION -----
10271047

10281048

10291049

@@ -1038,6 +1058,7 @@ $$
10381058
<br>
10391059

10401060
### [Definition]():
1061+
10411062
The transportation problem is a type of **linear programming** model where the objective is to determine the most **cost-efficient** way to transport goods from multiple sources (e.g., warehouses) to multiple
10421063

10431064
<br>

0 commit comments

Comments
 (0)