@@ -592,7 +592,7 @@ After running Solver:
592592
593593<br >
594594
595- ### 1- 📊 [ Linear Programming Mathematical Model — Production Optimization] ( )
595+ ## 1- 📊 [ Linear Programming Mathematical Model — Production Optimization] ( )
596596
597597<br >
598598
@@ -773,15 +773,10 @@ x_1 \geq 0, \quad x_2 \geq 0
773773
774774• Can also be implemented in software such as Python (PuLP), MATLAB, or Excel Solver.
775775
776- <br >
777-
778- #
779-
780- <br >
781776
782- #
777+ < br >< br >
783778
784- ### 2- 📈 [ Graphical Solution to the Linear Programming (LP) Problem] ( ) :
779+ ## 2- 📈 [ Graphical Solution to the Linear Programming (LP) Problem] ( ) :
785780
786781<br >
787782
796791Z = 4x_1 + 3x_2
797792```
798793
799- <br >< br >
794+ <br >
800795
801796### ➢ [ ** Subject to:** ] ( ) :
802797
@@ -822,7 +817,7 @@ x_1 \geq 0, \quad x_2 \geq 0
822817
823818<br >
824819
825- ## [ Step 1] ( ) ➢ Plot the Constraints:
820+ ### [ Step 1] ( ) ➢ Plot the Constraints:
826821
827822Convert inequalities into equalities to draw the lines:
828823
@@ -840,7 +835,7 @@ x_1 + 3x_2 = 7$
840835 - If x_2 = 0 \Rightarrow x_1 = 7
841836```
842837
843- <br >< br >
838+ <br >
844839
845840### [ 2] ( ) . $2x_1 + 2x_2 = 8$
846841 - If $x_1 = 0 \Rightarrow x_2 = 4$
@@ -854,7 +849,7 @@ x_1 + 2x_2 = 8
854849 - If x_2 = 0 \Rightarrow x_1 = 4
855850```
856851
857- <br >< br >
852+ <br >
858853
859854### [ 3] ( ) . $x_1 + x_2 = 3$
860855 - If $x_1 = 0 \Rightarrow x_2 = 3$
@@ -878,9 +873,9 @@ x_1 + x_2 = 3
878873x_2 = 2 → horizontal line
879874```
880875
881- <br >< br >
876+ <br >
882877
883- ## [ Step 2] ( ) ➢ Identify the Feasible Region:
878+ ### [ Step 2] ( ) ➢ Identify the Feasible Region:
884879
885880- The feasible region is the intersection of all shaded regions that satisfy the constraints.
886881- Must include $x_1 \geq 0$ and $x_2 \geq 0$.
@@ -891,9 +886,9 @@ x_2 = 2 → horizontal line
891886x_1 \geq 0$ and $x_2 \geq 0
892887```
893888
894- <br ><br >< br >
889+ <br ><br >
895890
896- ## [ Step 3] ( ) ➢ Find Intersection Points (Vertices):
891+ ### [ Step 3] ( ) ➢ Find Intersection Points (Vertices):
897892
898893 <br >
899894
@@ -973,43 +968,64 @@ Intersection of x_1 + 3x_2 = 7 and 2x_1 + 2x_2 = 8:
973968
974969<br ><br >
975970
976- ## [ Step 5] ( ) ➢
977-
978-
979-
980-
981-
982-
983-
984-
985-
986-
987-
988-
989-
990-
971+ ## [ Step 5] ( ) ➢ Check Feasibility:
991972
973+ - ** (2,2)** violates: $x_1 + 3x_2 = 2 + 6 = 8 > 7$ ❌
974+ - All others: ✅
992975
976+ <br >
993977
978+ ### ✅ Final Step: Choose the Best Feasible Point
994979
980+ | Point | $Z$ | Feasible |
981+ | :-----:| :---:| :--------:|
982+ | A | 0 | Yes |
983+ | B | 6 | Yes |
984+ | C | 10 | Yes |
985+ | E | 8 | Yes |
986+ | F | 12 | ✅ Best |
987+ | D | 14 | No |
995988
996989
990+ <br ><br >
997991
992+ ### 🏁 [ Conclusion] ( ) :
998993
994+ - ** Optimal solution:** $x_1 = 3$, $x_2 = 0$
995+ - ** Maximum value:** $Z = 12$
999996
997+ <br >
1000998
999+ ``` latex
1000+ - **Optimal solution:** $x_1 = 3$, $x_2 = 0$
1001+ - **Maximum value:** $Z = 12$
1002+ ```
10011003
1002- <br ><br >< br >< br >< br >< br >
1004+ <br ><br >
10031005
1004- #
1006+ ## ** 3. ** [ Solve the following linear programming problem using the Simplex method ] ( ) :
10051007
10061008<br >
10071009
1008- ### ** 3.** [ Solve the following linear programming problem using the Simplex method] ( ) :
1010+ $$
1011+ \
1012+ \begin{aligned}
1013+ \text{Max.} \quad & Z = 4x_1 + 3x_2 \\
1014+ \text{S.a.} \quad &
1015+ \begin{cases}
1016+ x_1 + 3x_2 \leq 7 \\
1017+ 2x_1 + 2x_2 \leq 8 \\
1018+ x_1 + x_2 \leq 3 \\
1019+ x_2 \leq 2 \\
1020+ x_1 \geq 0 \text{ e } x_2 \geq 0
1021+ \end{cases}
1022+ \end{aligned}
1023+ \
1024+ $$
10091025
10101026<br >
10111027
1012- $$
1028+ ``` latex
10131029\
10141030\begin{aligned}
10151031\text{Max.} \quad & Z = 4x_1 + 3x_2 \\
@@ -1023,7 +1039,11 @@ x_1 \geq 0 \text{ e } x_2 \geq 0
10231039\end{cases}
10241040\end{aligned}
10251041\
1026- $$
1042+ ```
1043+
1044+ <br >
1045+
1046+ ## 🚜 UNDER CONSTRUTION -----
10271047
10281048
10291049
10381058<br >
10391059
10401060### [ Definition] ( ) :
1061+
10411062The transportation problem is a type of ** linear programming** model where the objective is to determine the most ** cost-efficient** way to transport goods from multiple sources (e.g., warehouses) to multiple
10421063
10431064<br >
0 commit comments