@@ -473,22 +473,24 @@ def joint_OT_mapping_kernel(xs, xt, mu=1, eta=0.001, kerneltype='gaussian',
473473 Weight for the linear OT loss (>0)
474474 eta : float, optional
475475 Regularization term for the linear mapping L (>0)
476- bias : bool,optional
477- Estimate linear mapping with constant bias
478476 kerneltype : str,optional
479477 kernel used by calling function ot.utils.kernel (gaussian by default)
480478 sigma : float, optional
481479 Gaussian kernel bandwidth.
480+ bias : bool,optional
481+ Estimate linear mapping with constant bias
482+ verbose : bool, optional
483+ Print information along iterations
484+ verbose2 : bool, optional
485+ Print information along iterations
482486 numItermax : int, optional
483487 Max number of BCD iterations
484- stopThr : float, optional
485- Stop threshold on relative loss decrease (>0)
486488 numInnerItermax : int, optional
487489 Max number of iterations (inner CG solver)
488490 stopInnerThr : float, optional
489491 Stop threshold on error (inner CG solver) (>0)
490- verbose : bool , optional
491- Print information along iterations
492+ stopThr : float , optional
493+ Stop threshold on relative loss decrease (>0)
492494 log : bool, optional
493495 record log if True
494496
@@ -643,7 +645,8 @@ def OT_mapping_linear(xs, xt, reg=1e-6, ws=None,
643645 The function estimates the optimal linear operator that aligns the two
644646 empirical distributions. This is equivalent to estimating the closed
645647 form mapping between two Gaussian distributions :math:`N(\mu_s,\Sigma_s)`
646- and :math:`N(\mu_t,\Sigma_t)` as proposed in [14] and discussed in remark 2.29 in [15].
648+ and :math:`N(\mu_t,\Sigma_t)` as proposed in [14] and discussed in remark
649+ 2.29 in [15].
647650
648651 The linear operator from source to target :math:`M`
649652
@@ -1184,25 +1187,25 @@ class SinkhornTransport(BaseTransport):
11841187 algorithm if no it has not converged
11851188 tol : float, optional (default=10e-9)
11861189 The precision required to stop the optimization algorithm.
1187- mapping : string, optional (default="barycentric")
1188- The kind of mapping to apply to transport samples from a domain into
1189- another one.
1190- if "barycentric" only the samples used to estimate the coupling can
1191- be transported from a domain to another one.
1190+ verbose : bool, optional (default=False)
1191+ Controls the verbosity of the optimization algorithm
1192+ log : int, optional (default=False)
1193+ Controls the logs of the optimization algorithm
11921194 metric : string, optional (default="sqeuclidean")
11931195 The ground metric for the Wasserstein problem
11941196 norm : string, optional (default=None)
11951197 If given, normalize the ground metric to avoid numerical errors that
11961198 can occur with large metric values.
1197- distribution : string , optional (default=" uniform" )
1199+ distribution_estimation : callable , optional (defaults to the uniform)
11981200 The kind of distribution estimation to employ
1199- verbose : int , optional (default=0 )
1200- Controls the verbosity of the optimization algorithm
1201- log : int, optional (default=0)
1202- Controls the logs of the optimization algorithm
1201+ out_of_sample_map : string , optional (default="ferradans" )
1202+ The kind of out of sample mapping to apply to transport samples
1203+ from a domain into another one. Currently the only possible option is
1204+ "ferradans" which uses the method proposed in [6].
12031205 limit_max: float, optional (defaul=np.infty)
12041206 Controls the semi supervised mode. Transport between labeled source
1205- and target samples of different classes will exhibit an infinite cost
1207+ and target samples of different classes will exhibit an cost defined
1208+ by this variable
12061209
12071210 Attributes
12081211 ----------
@@ -1287,22 +1290,19 @@ class EMDTransport(BaseTransport):
12871290
12881291 Parameters
12891292 ----------
1290- mapping : string, optional (default="barycentric")
1291- The kind of mapping to apply to transport samples from a domain into
1292- another one.
1293- if "barycentric" only the samples used to estimate the coupling can
1294- be transported from a domain to another one.
12951293 metric : string, optional (default="sqeuclidean")
12961294 The ground metric for the Wasserstein problem
12971295 norm : string, optional (default=None)
12981296 If given, normalize the ground metric to avoid numerical errors that
12991297 can occur with large metric values.
1300- distribution : string, optional (default="uniform")
1301- The kind of distribution estimation to employ
1302- verbose : int, optional (default=0)
1303- Controls the verbosity of the optimization algorithm
1304- log : int, optional (default=0)
1298+ log : int, optional (default=False)
13051299 Controls the logs of the optimization algorithm
1300+ distribution_estimation : callable, optional (defaults to the uniform)
1301+ The kind of distribution estimation to employ
1302+ out_of_sample_map : string, optional (default="ferradans")
1303+ The kind of out of sample mapping to apply to transport samples
1304+ from a domain into another one. Currently the only possible option is
1305+ "ferradans" which uses the method proposed in [6].
13061306 limit_max: float, optional (default=10)
13071307 Controls the semi supervised mode. Transport between labeled source
13081308 and target samples of different classes will exhibit an infinite cost
@@ -1387,28 +1387,32 @@ class SinkhornLpl1Transport(BaseTransport):
13871387 Entropic regularization parameter
13881388 reg_cl : float, optional (default=0.1)
13891389 Class regularization parameter
1390- mapping : string, optional (default="barycentric")
1391- The kind of mapping to apply to transport samples from a domain into
1392- another one.
1393- if "barycentric" only the samples used to estimate the coupling can
1394- be transported from a domain to another one.
1395- metric : string, optional (default="sqeuclidean")
1396- The ground metric for the Wasserstein problem
1397- norm : string, optional (default=None)
1398- If given, normalize the ground metric to avoid numerical errors that
1399- can occur with large metric values.
1400- distribution : string, optional (default="uniform")
1401- The kind of distribution estimation to employ
14021390 max_iter : int, float, optional (default=10)
14031391 The minimum number of iteration before stopping the optimization
14041392 algorithm if no it has not converged
14051393 max_inner_iter : int, float, optional (default=200)
14061394 The number of iteration in the inner loop
1407- verbose : int, optional (default=0)
1395+ log : bool, optional (default=False)
1396+ Controls the logs of the optimization algorithm
1397+ tol : float, optional (default=10e-9)
1398+ Stop threshold on error (inner sinkhorn solver) (>0)
1399+ verbose : bool, optional (default=False)
14081400 Controls the verbosity of the optimization algorithm
1401+ metric : string, optional (default="sqeuclidean")
1402+ The ground metric for the Wasserstein problem
1403+ norm : string, optional (default=None)
1404+ If given, normalize the ground metric to avoid numerical errors that
1405+ can occur with large metric values.
1406+ distribution_estimation : callable, optional (defaults to the uniform)
1407+ The kind of distribution estimation to employ
1408+ out_of_sample_map : string, optional (default="ferradans")
1409+ The kind of out of sample mapping to apply to transport samples
1410+ from a domain into another one. Currently the only possible option is
1411+ "ferradans" which uses the method proposed in [6].
14091412 limit_max: float, optional (defaul=np.infty)
14101413 Controls the semi supervised mode. Transport between labeled source
1411- and target samples of different classes will exhibit an infinite cost
1414+ and target samples of different classes will exhibit a cost defined by
1415+ limit_max.
14121416
14131417 Attributes
14141418 ----------
@@ -1504,27 +1508,28 @@ class SinkhornL1l2Transport(BaseTransport):
15041508 Entropic regularization parameter
15051509 reg_cl : float, optional (default=0.1)
15061510 Class regularization parameter
1507- mapping : string, optional (default="barycentric")
1508- The kind of mapping to apply to transport samples from a domain into
1509- another one.
1510- if "barycentric" only the samples used to estimate the coupling can
1511- be transported from a domain to another one.
1512- metric : string, optional (default="sqeuclidean")
1513- The ground metric for the Wasserstein problem
1514- norm : string, optional (default=None)
1515- If given, normalize the ground metric to avoid numerical errors that
1516- can occur with large metric values.
1517- distribution : string, optional (default="uniform")
1518- The kind of distribution estimation to employ
15191511 max_iter : int, float, optional (default=10)
15201512 The minimum number of iteration before stopping the optimization
15211513 algorithm if no it has not converged
15221514 max_inner_iter : int, float, optional (default=200)
15231515 The number of iteration in the inner loop
1524- verbose : int, optional (default=0)
1516+ tol : float, optional (default=10e-9)
1517+ Stop threshold on error (inner sinkhorn solver) (>0)
1518+ verbose : bool, optional (default=False)
15251519 Controls the verbosity of the optimization algorithm
1526- log : int , optional (default=0 )
1520+ log : bool , optional (default=False )
15271521 Controls the logs of the optimization algorithm
1522+ metric : string, optional (default="sqeuclidean")
1523+ The ground metric for the Wasserstein problem
1524+ norm : string, optional (default=None)
1525+ If given, normalize the ground metric to avoid numerical errors that
1526+ can occur with large metric values.
1527+ distribution_estimation : callable, optional (defaults to the uniform)
1528+ The kind of distribution estimation to employ
1529+ out_of_sample_map : string, optional (default="ferradans")
1530+ The kind of out of sample mapping to apply to transport samples
1531+ from a domain into another one. Currently the only possible option is
1532+ "ferradans" which uses the method proposed in [6].
15281533 limit_max: float, optional (default=10)
15291534 Controls the semi supervised mode. Transport between labeled source
15301535 and target samples of different classes will exhibit an infinite cost
@@ -1646,10 +1651,12 @@ class MappingTransport(BaseEstimator):
16461651 Max number of iterations (inner CG solver)
16471652 inner_tol : float, optional (default=1e-6)
16481653 Stop threshold on error (inner CG solver) (>0)
1649- verbose : bool, optional (default=False)
1650- Print information along iterations
16511654 log : bool, optional (default=False)
16521655 record log if True
1656+ verbose : bool, optional (default=False)
1657+ Print information along iterations
1658+ verbose2 : bool, optional (default=False)
1659+ Print information along iterations
16531660
16541661 Attributes
16551662 ----------
0 commit comments