@@ -1534,11 +1534,11 @@ def empirical_sinkhorn(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', numI
15341534 Examples
15351535 --------
15361536
1537- >>> n_a = 2
1538- >>> n_b = 2
1537+ >>> n_samples_a = 2
1538+ >>> n_samples_b = 2
15391539 >>> reg = 0.1
1540- >>> X_s = np.reshape(np.arange(n_a ), (dim_a , 1))
1541- >>> X_t = np.reshape(np.arange(0, n_b ), (dim_b , 1))
1540+ >>> X_s = np.reshape(np.arange(n_samples_a ), (n_samples_a , 1))
1541+ >>> X_t = np.reshape(np.arange(0, n_samples_b ), (n_samples_b , 1))
15421542 >>> empirical_sinkhorn(X_s, X_t, reg, verbose=False) # doctest: +NORMALIZE_WHITESPACE
15431543 array([[4.99977301e-01, 2.26989344e-05],
15441544 [2.26989344e-05, 4.99977301e-01]])
@@ -1624,8 +1624,8 @@ def empirical_sinkhorn2(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', num
16241624 Examples
16251625 --------
16261626
1627- >>> n_a = 2
1628- >>> n_b = 2
1627+ >>> n_samples_a = 2
1628+ >>> n_samples_b = 2
16291629 >>> reg = 0.1
16301630 >>> X_s = np.reshape(np.arange(n_samples_a), (n_samples_a, 1))
16311631 >>> X_t = np.reshape(np.arange(0, n_samples_b), (n_samples_b, 1))
@@ -1730,8 +1730,8 @@ def empirical_sinkhorn_divergence(X_s, X_t, reg, a=None, b=None, metric='sqeucli
17301730
17311731 Examples
17321732 --------
1733- >>> n_a = 2
1734- >>> n_b = 4
1733+ >>> n_samples_a = 2
1734+ >>> n_samples_b = 4
17351735 >>> reg = 0.1
17361736 >>> X_s = np.reshape(np.arange(n_samples_a), (n_samples_a, 1))
17371737 >>> X_t = np.reshape(np.arange(0, n_samples_b), (n_samples_b, 1))
0 commit comments