|
23 | 23 | import ot |
24 | 24 |
|
25 | 25 |
|
26 | | -np.random.seed(0) |
| 26 | +np.random.seed(42) |
27 | 27 |
|
28 | 28 | ############################################################################## |
29 | 29 | # generate |
30 | 30 | ############################################################################## |
31 | 31 |
|
32 | 32 | n = 100 # nb samples in source and target datasets |
33 | 33 | theta = 2 * np.pi / 20 |
34 | | -nz = 0.1 |
35 | | -Xs, ys = ot.datasets.get_data_classif('gaussrot', n, nz=nz) |
36 | | -Xs_new, _ = ot.datasets.get_data_classif('gaussrot', n, nz=nz) |
37 | | -Xt, yt = ot.datasets.get_data_classif('gaussrot', n, theta=theta, nz=nz) |
| 34 | +noise_level = 0.1 |
| 35 | +Xs, ys = ot.datasets.get_data_classif('gaussrot', n, nz=noise_level) |
| 36 | +Xs_new, _ = ot.datasets.get_data_classif('gaussrot', n, nz=noise_level) |
| 37 | +Xt, yt = ot.datasets.get_data_classif( |
| 38 | + 'gaussrot', n, theta=theta, nz=noise_level) |
38 | 39 |
|
39 | 40 | # one of the target mode changes its variance (no linear mapping) |
40 | 41 | Xt[yt == 2] *= 3 |
|
46 | 47 | kernel="linear", mu=1e0, eta=1e-8, bias=True, |
47 | 48 | max_iter=20, verbose=True) |
48 | 49 |
|
49 | | -ot_mapping_linear.fit( |
50 | | - Xs=Xs, Xt=Xt) |
| 50 | +ot_mapping_linear.fit(Xs=Xs, Xt=Xt) |
51 | 51 |
|
52 | 52 | # for original source samples, transform applies barycentric mapping |
53 | 53 | transp_Xs_linear = ot_mapping_linear.transform(Xs=Xs) |
|
0 commit comments