@@ -327,7 +327,8 @@ def gromov_wasserstein(C1, C2, p, q, loss_fun, log=False, armijo=False, **kwargs
327327 The function solves the following optimization problem:
328328
329329 .. math::
330- \mathbf{GW} = \mathop{\arg \min}_\mathbf{T} \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}
330+ \mathbf{GW} = \mathop{\arg \min}_\mathbf{T} \quad \sum_{i,j,k,l}
331+ L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}
331332
332333 Where :
333334
@@ -410,7 +411,8 @@ def gromov_wasserstein2(C1, C2, p, q, loss_fun, log=False, armijo=False, **kwarg
410411 The function solves the following optimization problem:
411412
412413 .. math::
413- GW = \min_\mathbf{T} \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}
414+ GW = \min_\mathbf{T} \quad \sum_{i,j,k,l}
415+ L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}
414416
415417 Where :
416418
@@ -487,8 +489,8 @@ def fused_gromov_wasserstein(M, C1, C2, p, q, loss_fun='square_loss', alpha=0.5,
487489 Computes the FGW transport between two graphs (see :ref:`[24] <references-fused-gromov-wasserstein>`)
488490
489491 .. math::
490- \gamma = \mathop{\arg \min}_\gamma (1 - \alpha) <\ gamma, \mathbf{M}>_F + \alpha \sum_{i,j,k,l}
491- L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}
492+ \gamma = \mathop{\arg \min}_\gamma \quad (1 - \alpha) \langle \ gamma, \mathbf{M} \rangle_F +
493+ \alpha \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}
492494
493495 s.t. \ \mathbf{\gamma} \mathbf{1} &= \mathbf{p}
494496
@@ -569,7 +571,7 @@ def fused_gromov_wasserstein2(M, C1, C2, p, q, loss_fun='square_loss', alpha=0.5
569571 Computes the FGW distance between two graphs see (see :ref:`[24] <references-fused-gromov-wasserstein2>`)
570572
571573 .. math::
572- \min_\gamma (1 - \alpha) <\ gamma, \mathbf{M}>_F + \alpha \sum_{i,j,k,l}
574+ \min_\gamma \quad (1 - \alpha) \langle \ gamma, \mathbf{M} \rangle_F + \alpha \sum_{i,j,k,l}
573575 L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}
574576
575577 s.t. \ \mathbf{\gamma} \mathbf{1} &= \mathbf{p}
@@ -591,9 +593,9 @@ def fused_gromov_wasserstein2(M, C1, C2, p, q, loss_fun='square_loss', alpha=0.5
591593 M : array-like, shape (ns, nt)
592594 Metric cost matrix between features across domains
593595 C1 : array-like, shape (ns, ns)
594- Metric cost matrix respresentative of the structure in the source space.
596+ Metric cost matrix representative of the structure in the source space.
595597 C2 : array-like, shape (nt, nt)
596- Metric cost matrix espresentative of the structure in the target space.
598+ Metric cost matrix representative of the structure in the target space.
597599 p : array-like, shape (ns,)
598600 Distribution in the source space.
599601 q : array-like, shape (nt,)
@@ -612,8 +614,8 @@ def fused_gromov_wasserstein2(M, C1, C2, p, q, loss_fun='square_loss', alpha=0.5
612614
613615 Returns
614616 -------
615- gamma : array-like, shape (ns, nt)
616- Optimal transportation matrix for the given parameters.
617+ fgw-distance : float
618+ Fused gromov wasserstein distance for the given parameters.
617619 log : dict
618620 Log dictionary return only if log==True in parameters.
619621
@@ -780,7 +782,8 @@ def pointwise_gromov_wasserstein(C1, C2, p, q, loss_fun,
780782 The function solves the following optimization problem:
781783
782784 .. math::
783- \mathbf{GW} = \mathop{\arg \min}_\mathbf{T} \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}
785+ \mathbf{GW} = \mathop{\arg \min}_\mathbf{T} \quad \sum_{i,j,k,l}
786+ L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}
784787
785788 s.t. \ \mathbf{T} \mathbf{1} &= \mathbf{p}
786789
@@ -901,7 +904,8 @@ def sampled_gromov_wasserstein(C1, C2, p, q, loss_fun,
901904 The function solves the following optimization problem:
902905
903906 .. math::
904- \mathbf{GW} = \mathop{\arg \min}_\mathbf{T} \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}
907+ \mathbf{GW} = \mathop{\arg \min}_\mathbf{T} \quad \sum_{i,j,k,l}
908+ L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}
905909
906910 s.t. \ \mathbf{T} \mathbf{1} &= \mathbf{p}
907911
@@ -1052,7 +1056,7 @@ def entropic_gromov_wasserstein(C1, C2, p, q, loss_fun, epsilon,
10521056 The function solves the following optimization problem:
10531057
10541058 .. math::
1055- \mathbf{GW} = \mathop{\arg\min}_\mathbf{T} \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l} - \epsilon(H(\mathbf{T}))
1059+ \mathbf{GW} = \mathop{\arg\min}_\mathbf{T} \quad \ sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l} - \epsilon(H(\mathbf{T}))
10561060
10571061 s.t. \ \mathbf{T} \mathbf{1} &= \mathbf{p}
10581062
@@ -1157,7 +1161,8 @@ def entropic_gromov_wasserstein2(C1, C2, p, q, loss_fun, epsilon,
11571161 The function solves the following optimization problem:
11581162
11591163 .. math::
1160- GW = \min_\mathbf{T} \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l} - \epsilon(H(\mathbf{T}))
1164+ GW = \min_\mathbf{T} \quad \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l})
1165+ \mathbf{T}_{i,j} \mathbf{T}_{k,l} - \epsilon(H(\mathbf{T}))
11611166
11621167 Where :
11631168
@@ -1223,7 +1228,7 @@ def entropic_gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun, epsilon,
12231228
12241229 .. math::
12251230
1226- \mathbf{C} = \mathop{\arg \min}_{\mathbf{C}\in \mathbb{R}^{N \times N}} \sum_s \lambda_s \mathrm{GW}(\mathbf{C}, \mathbf{C}_s, \mathbf{p}, \mathbf{p}_s)
1231+ \mathbf{C} = \mathop{\arg \min}_{\mathbf{C}\in \mathbb{R}^{N \times N}} \quad \ sum_s \lambda_s \mathrm{GW}(\mathbf{C}, \mathbf{C}_s, \mathbf{p}, \mathbf{p}_s)
12271232
12281233 Where :
12291234
@@ -1336,7 +1341,7 @@ def gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun,
13361341
13371342 .. math::
13381343
1339- \mathbf{C} = \mathop{\arg \min}_{\mathbf{C}\in \mathbb{R}^{N \times N}} \sum_s \lambda_s \mathrm{GW}(\mathbf{C}, \mathbf{C}_s, \mathbf{p}, \mathbf{p}_s)
1344+ \mathbf{C} = \mathop{\arg \min}_{\mathbf{C}\in \mathbb{R}^{N \times N}} \quad \ sum_s \lambda_s \mathrm{GW}(\mathbf{C}, \mathbf{C}_s, \mathbf{p}, \mathbf{p}_s)
13401345
13411346 Where :
13421347
0 commit comments