@@ -15,82 +15,82 @@ Source Code (MIT): https://github.com/PythonOT/POT
1515POT provides the following generic OT solvers (links to examples):
1616
1717- `OT Network Simplex
18- solver <https://pythonot.github.io/ auto_examples/plot_OT_1D.html> `__
18+ solver <auto_examples/plot_OT_1D.html> `__
1919 for the linear program/ Earth Movers Distance [1] .
2020- `Conditional
21- gradient <https://pythonot.github.io/ auto_examples/plot_optim_OTreg.html> `__
21+ gradient <auto_examples/plot_optim_OTreg.html> `__
2222 [6] and `Generalized conditional
23- gradient <https://pythonot.github.io/ auto_examples/plot_optim_OTreg.html> `__
23+ gradient <auto_examples/plot_optim_OTreg.html> `__
2424 for regularized OT [7].
2525- Entropic regularization OT solver with `Sinkhorn Knopp
26- Algorithm <https://pythonot.github.io/ auto_examples/plot_OT_1D.html> `__
26+ Algorithm <auto_examples/plot_OT_1D.html> `__
2727 [2] , stabilized version [9] [10], greedy Sinkhorn [22] and
2828 `Screening Sinkhorn
29- [26] <https://pythonot.github.io/ auto_examples/plot_screenkhorn_1D.html> `__
29+ [26] <auto_examples/plot_screenkhorn_1D.html> `__
3030 with optional GPU implementation (requires cupy).
3131- Bregman projections for `Wasserstein
32- barycenter <https://pythonot.github.io/ auto_examples/plot_barycenter_lp_vs_entropic.html> `__
32+ barycenter <auto_examples/plot_barycenter_lp_vs_entropic.html> `__
3333 [3], `convolutional
34- barycenter <https://pythonot.github.io/ auto_examples/plot_convolutional_barycenter.html> `__
34+ barycenter <auto_examples/plot_convolutional_barycenter.html> `__
3535 [21] and unmixing [4].
3636- Sinkhorn divergence [23] and entropic regularization OT from
3737 empirical data.
3838- `Smooth optimal transport
39- solvers <https://pythonot.github.io/ auto_examples/plot_OT_1D_smooth.html> `__
39+ solvers <auto_examples/plot_OT_1D_smooth.html> `__
4040 (dual and semi-dual) for KL and squared L2 regularizations [17].
4141- Non regularized `Wasserstein barycenters
42- [16] <https://pythonot.github.io/ auto_examples/plot_barycenter_lp_vs_entropic.html> `__)
42+ [16] <auto_examples/plot_barycenter_lp_vs_entropic.html> `__)
4343 with LP solver (only small scale).
4444- `Gromov-Wasserstein
45- distances <https://pythonot.github.io/ auto_examples/plot_gromov.html> `__
45+ distances <auto_examples/plot_gromov.html> `__
4646 and `GW
47- barycenters <https://pythonot.github.io/ auto_examples/plot_gromov_barycenter.html> `__
47+ barycenters <auto_examples/plot_gromov_barycenter.html> `__
4848 (exact [13] and regularized [12])
4949- `Fused-Gromov-Wasserstein distances
50- solver <https://pythonot.github.io/ auto_examples/plot_fgw.html#sphx-glr-auto-examples-plot-fgw-py> `__
50+ solver <auto_examples/plot_fgw.html#sphx-glr-auto-examples-plot-fgw-py> `__
5151 and `FGW
52- barycenters <https://pythonot.github.io/ auto_examples/plot_barycenter_fgw.html> `__
52+ barycenters <auto_examples/plot_barycenter_fgw.html> `__
5353 [24]
5454- `Stochastic
55- solver <https://pythonot.github.io/ auto_examples/plot_stochastic.html> `__
55+ solver <auto_examples/plot_stochastic.html> `__
5656 for Large-scale Optimal Transport (semi-dual problem [18] and dual
5757 problem [19])
5858- Non regularized `free support Wasserstein
59- barycenters <https://pythonot.github.io/ auto_examples/plot_free_support_barycenter.html> `__
59+ barycenters <auto_examples/plot_free_support_barycenter.html> `__
6060 [20].
6161- `Unbalanced
62- OT <https://pythonot.github.io/ auto_examples/plot_UOT_1D.html> `__
62+ OT <auto_examples/plot_UOT_1D.html> `__
6363 with KL relaxation and
64- `barycenter <https://pythonot.github.io/ auto_examples/plot_UOT_barycenter_1D.html >`__
64+ `barycenter <auto_examples/plot_UOT_barycenter_1D.html >`__
6565 [10, 25].
6666- `Partial Wasserstein and
67- Gromov-Wasserstein <https://pythonot.github.io/ auto_examples/plot_partial_wass_and_gromov.html> `__
67+ Gromov-Wasserstein <auto_examples/plot_partial_wass_and_gromov.html> `__
6868 (exact [29] and entropic [3] formulations).
6969
7070POT provides the following Machine Learning related solvers:
7171
7272- `Optimal transport for domain
73- adaptation <https://pythonot.github.io/ auto_examples/plot_otda_classes.html> `__
73+ adaptation <auto_examples/plot_otda_classes.html> `__
7474 with `group lasso
75- regularization <https://pythonot.github.io/ auto_examples/plot_otda_classes.html> `__,
75+ regularization <auto_examples/plot_otda_classes.html> `__,
7676 `Laplacian
77- regularization <https://pythonot.github.io/ auto_examples/plot_otda_laplacian.html> `__
77+ regularization <auto_examples/plot_otda_laplacian.html> `__
7878 [5] [30] and `semi supervised
79- setting <https://pythonot.github.io/ auto_examples/plot_otda_semi_supervised.html> `__.
79+ setting <auto_examples/plot_otda_semi_supervised.html> `__.
8080- `Linear OT
81- mapping <https://pythonot.github.io/ auto_examples/plot_otda_linear_mapping.html> `__
81+ mapping <auto_examples/plot_otda_linear_mapping.html> `__
8282 [14] and `Joint OT mapping
83- estimation <https://pythonot.github.io/ auto_examples/plot_otda_mapping.html> `__
83+ estimation <auto_examples/plot_otda_mapping.html> `__
8484 [8].
8585- `Wasserstein Discriminant
86- Analysis <https://pythonot.github.io/ auto_examples/plot_WDA.html> `__
86+ Analysis <auto_examples/plot_WDA.html> `__
8787 [11] (requires autograd + pymanopt).
8888- `JCPOT algorithm for multi-source domain adaptation with target
89- shift <https://pythonot.github.io/ auto_examples/plot_otda_jcpot.html> `__
89+ shift <auto_examples/plot_otda_jcpot.html> `__
9090 [27].
9191
9292Some demonstrations are available in the
93- `documentation <https://pythonot.github.io/ auto_examples/index.html >`__.
93+ `documentation <auto_examples/index.html >`__.
9494
9595Using and citing the toolbox
9696^^^^^^^^^^^^^^^^^^^^^^^^^^^^
0 commit comments