Skip to content

Commit 803d2ab

Browse files
authored
Minor typos in the documentations (#756)
* Fixed last author's name * Fixed minor typos in the User Guide
1 parent 805cb5c commit 803d2ab

File tree

5 files changed

+9
-9
lines changed

5 files changed

+9
-9
lines changed

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -383,7 +383,7 @@ Dictionary Learning](https://arxiv.org/pdf/2102.06555.pdf), International Confer
383383

384384
[50] Liu, T., Puigcerver, J., & Blondel, M. (2023). [Sparsity-constrained optimal transport](https://openreview.net/forum?id=yHY9NbQJ5BP). Proceedings of the Eleventh International Conference on Learning Representations (ICLR).
385385

386-
[51] Xu, H., Luo, D., Zha, H., & Duke, L. C. (2019). [Gromov-wasserstein learning for graph matching and node embedding](http://proceedings.mlr.press/v97/xu19b.html). In International Conference on Machine Learning (ICML), 2019.
386+
[51] Xu, H., Luo, D., Zha, H., & Carin, L. (2019). [Gromov-wasserstein learning for graph matching and node embedding](http://proceedings.mlr.press/v97/xu19b.html). In International Conference on Machine Learning (ICML), 2019.
387387

388388
[52] Collas, A., Vayer, T., Flamary, F., & Breloy, A. (2023). [Entropic Wasserstein Component Analysis](https://arxiv.org/abs/2303.05119). ArXiv.
389389

docs/source/user_guide.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -380,10 +380,10 @@ More details about the algorithms used are given in the following note.
380380
In addition to all those variants of Sinkhorn, we have another
381381
implementation solving the problem in the smooth dual or semi-dual in
382382
:any:`ot.smooth`. This solver uses the :any:`scipy.optimize.minimize`
383-
function to solve the smooth problem with :code:`L-BFGS-B` algorithm. Tu use
383+
function to solve the smooth problem with :code:`L-BFGS-B` algorithm. To use
384384
this solver, use functions :any:`ot.smooth.smooth_ot_dual` or
385385
:any:`ot.smooth.smooth_ot_semi_dual` with parameter :code:`reg_type='kl'` to
386-
choose entropic/Kullbach-Leibler regularization.
386+
choose entropic/Kullback-Leibler regularization.
387387

388388
**Choosing a Sinkhorn solver**
389389

examples/gromov/plot_fgw_solvers.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@
2424
"Optimal Transport for structured data with application on graphs"
2525
International Conference on Machine Learning (ICML). 2019.
2626
27-
[51] Xu, H., Luo, D., Zha, H., & Duke, L. C. (2019).
27+
[51] Xu, H., Luo, D., Zha, H., & Carin, L. (2019).
2828
"Gromov-wasserstein learning for graph matching and node embedding".
2929
In International Conference on Machine Learning (ICML), 2019.
3030

examples/gromov/plot_gromov.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
[33] Kerdoncuff T., Emonet R., Marc S. "Sampled Gromov Wasserstein",
2727
Machine Learning Journal (MJL), 2021.
2828
29-
[51] Xu, H., Luo, D., Zha, H., & Duke, L. C. (2019).
29+
[51] Xu, H., Luo, D., Zha, H., & Carin, L. (2019).
3030
"Gromov-wasserstein learning for graph matching and node embedding".
3131
In International Conference on Machine Learning (ICML), 2019.
3232

ot/gromov/_bregman.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -142,7 +142,7 @@ def entropic_gromov_wasserstein(
142142
distance between networks and stable network invariants.
143143
Information and Inference: A Journal of the IMA, 8(4), 757-787.
144144
145-
.. [51] Xu, H., Luo, D., Zha, H., & Duke, L. C. (2019). Gromov-wasserstein
145+
.. [51] Xu, H., Luo, D., Zha, H., & Carin, L. (2019). Gromov-wasserstein
146146
learning for graph matching and node embedding. In International
147147
Conference on Machine Learning (ICML), 2019.
148148
"""
@@ -369,7 +369,7 @@ def entropic_gromov_wasserstein2(
369369
"Gromov-Wasserstein averaging of kernel and distance matrices."
370370
International Conference on Machine Learning (ICML). 2016.
371371
372-
.. [51] Xu, H., Luo, D., Zha, H., & Duke, L. C. (2019). Gromov-wasserstein
372+
.. [51] Xu, H., Luo, D., Zha, H., & Carin, L. (2019). Gromov-wasserstein
373373
learning for graph matching and node embedding. In International
374374
Conference on Machine Learning (ICML), 2019.
375375
"""
@@ -1125,7 +1125,7 @@ def entropic_fused_gromov_wasserstein(
11251125
distance between networks and stable network invariants.
11261126
Information and Inference: A Journal of the IMA, 8(4), 757-787.
11271127
1128-
.. [51] Xu, H., Luo, D., Zha, H., & Duke, L. C. (2019). Gromov-wasserstein
1128+
.. [51] Xu, H., Luo, D., Zha, H., & Carin, L. (2019). Gromov-wasserstein
11291129
learning for graph matching and node embedding. In International
11301130
Conference on Machine Learning (ICML), 2019.
11311131
@@ -1358,7 +1358,7 @@ def entropic_fused_gromov_wasserstein2(
13581358
"Gromov-Wasserstein averaging of kernel and distance matrices."
13591359
International Conference on Machine Learning (ICML). 2016.
13601360
1361-
.. [51] Xu, H., Luo, D., Zha, H., & Duke, L. C. (2019). Gromov-wasserstein
1361+
.. [51] Xu, H., Luo, D., Zha, H., & Carin, L. (2019). Gromov-wasserstein
13621362
learning for graph matching and node embedding. In International
13631363
Conference on Machine Learning (ICML), 2019.
13641364

0 commit comments

Comments
 (0)