@@ -1317,9 +1317,9 @@ def empirical_sinkhorn(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', numI
13171317 \gamma\geq 0
13181318 where :
13191319
1320- - M is the (ns,nt) metric cost matrix
1320+ - :math:`M` is the (ns,nt) metric cost matrix
13211321 - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
1322- - a and b are source and target weights (sum to 1)
1322+ - :math:`a` and :math:`b` are source and target weights (sum to 1)
13231323
13241324
13251325 Parameters
@@ -1399,7 +1399,7 @@ def empirical_sinkhorn2(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', num
13991399 The function solves the following optimization problem:
14001400
14011401 .. math::
1402- W = \min_\gamma_\ gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
1402+ W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
14031403
14041404 s.t. \gamma 1 = a
14051405
@@ -1408,9 +1408,9 @@ def empirical_sinkhorn2(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', num
14081408 \gamma\geq 0
14091409 where :
14101410
1411- - M is the (ns,nt) metric cost matrix
1411+ - :math:`M` is the (ns,nt) metric cost matrix
14121412 - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
1413- - a and b are source and target weights (sum to 1)
1413+ - :math:`a` and :math:`b` are source and target weights (sum to 1)
14141414
14151415
14161416 Parameters
@@ -1484,13 +1484,20 @@ def empirical_sinkhorn_divergence(X_s, X_t, reg, a=None, b=None, metric='sqeucli
14841484 '''
14851485 Compute the sinkhorn divergence loss from empirical data
14861486
1487- The function solves the following optimization problem:
1487+ The function solves the following optimization problems and return the
1488+ sinkhorn divergence :math:`S`:
14881489
14891490 .. math::
1490- S = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) -
1491- \min_\gamma_a <\gamma_a,M_a>_F + reg\cdot\Omega(\gamma_a) -
1492- \min_\gamma_b <\gamma_b,M_b>_F + reg\cdot\Omega(\gamma_b)
14931491
1492+ W &= \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
1493+
1494+ W_a &= \min_{\gamma_a} <\gamma_a,M_a>_F + reg\cdot\Omega(\gamma_a)
1495+
1496+ W_b &= \min_{\gamma_b} <\gamma_b,M_b>_F + reg\cdot\Omega(\gamma_b)
1497+
1498+ S &= W - 1/2 * (W_a + W_b)
1499+
1500+ .. math::
14941501 s.t. \gamma 1 = a
14951502
14961503 \gamma^T 1= b
@@ -1510,9 +1517,9 @@ def empirical_sinkhorn_divergence(X_s, X_t, reg, a=None, b=None, metric='sqeucli
15101517 \gamma_b\geq 0
15111518 where :
15121519
1513- - M (resp. :math:`M_a, M_b) is the (ns,nt) metric cost matrix (resp (ns, ns) and (nt, nt))
1520+ - :math:`M` (resp. :math:`M_a, M_b` ) is the (ns,nt) metric cost matrix (resp (ns, ns) and (nt, nt))
15141521 - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
1515- - a and b are source and target weights (sum to 1)
1522+ - :math:`a` and :math:`b` are source and target weights (sum to 1)
15161523
15171524
15181525 Parameters
0 commit comments