Skip to content

Commit 778f4f7

Browse files
committed
reformat doc strings + remove useless log / verbose parameters for emd
1 parent d793f1f commit 778f4f7

File tree

1 file changed

+38
-43
lines changed

1 file changed

+38
-43
lines changed

ot/da.py

Lines changed: 38 additions & 43 deletions
Original file line numberDiff line numberDiff line change
@@ -1053,11 +1053,11 @@ def distribution_estimation_uniform(X):
10531053
10541054
Parameters
10551055
----------
1056-
X : array-like of shape = [n_samples, n_features]
1056+
X : array-like of shape = (n_samples, n_features)
10571057
The array of samples
10581058
Returns
10591059
-------
1060-
mu : array-like, shape = [n_samples,]
1060+
mu : array-like, shape = (n_samples,)
10611061
The uniform distribution estimated from X
10621062
"""
10631063

@@ -1071,13 +1071,13 @@ def fit(self, Xs=None, ys=None, Xt=None, yt=None):
10711071
(Xs, ys) and (Xt, yt)
10721072
Parameters
10731073
----------
1074-
Xs : array-like of shape = [n_source_samples, n_features]
1074+
Xs : array-like of shape = (n_source_samples, n_features)
10751075
The training input samples.
1076-
ys : array-like, shape = [n_source_samples]
1076+
ys : array-like, shape = (n_source_samples,)
10771077
The class labels
1078-
Xt : array-like of shape = [n_target_samples, n_features]
1078+
Xt : array-like of shape = (n_target_samples, n_features)
10791079
The training input samples.
1080-
yt : array-like, shape = [n_labeled_target_samples]
1080+
yt : array-like, shape = (n_labeled_target_samples,)
10811081
The class labels
10821082
Returns
10831083
-------
@@ -1122,17 +1122,17 @@ def fit_transform(self, Xs=None, ys=None, Xt=None, yt=None):
11221122
ones Xt
11231123
Parameters
11241124
----------
1125-
Xs : array-like of shape = [n_source_samples, n_features]
1125+
Xs : array-like of shape = (n_source_samples, n_features)
11261126
The training input samples.
1127-
ys : array-like, shape = [n_source_samples]
1127+
ys : array-like, shape = (n_source_samples,)
11281128
The class labels
1129-
Xt : array-like of shape = [n_target_samples, n_features]
1129+
Xt : array-like of shape = (n_target_samples, n_features)
11301130
The training input samples.
1131-
yt : array-like, shape = [n_labeled_target_samples]
1131+
yt : array-like, shape = (n_labeled_target_samples,)
11321132
The class labels
11331133
Returns
11341134
-------
1135-
transp_Xs : array-like of shape = [n_source_samples, n_features]
1135+
transp_Xs : array-like of shape = (n_source_samples, n_features)
11361136
The source samples samples.
11371137
"""
11381138

@@ -1142,17 +1142,17 @@ def transform(self, Xs=None, ys=None, Xt=None, yt=None):
11421142
"""Transports source samples Xs onto target ones Xt
11431143
Parameters
11441144
----------
1145-
Xs : array-like of shape = [n_source_samples, n_features]
1145+
Xs : array-like of shape = (n_source_samples, n_features)
11461146
The training input samples.
1147-
ys : array-like, shape = [n_source_samples]
1147+
ys : array-like, shape = (n_source_samples,)
11481148
The class labels
1149-
Xt : array-like of shape = [n_target_samples, n_features]
1149+
Xt : array-like of shape = (n_target_samples, n_features)
11501150
The training input samples.
1151-
yt : array-like, shape = [n_labeled_target_samples]
1151+
yt : array-like, shape = (n_labeled_target_samples,)
11521152
The class labels
11531153
Returns
11541154
-------
1155-
transp_Xs : array-like of shape = [n_source_samples, n_features]
1155+
transp_Xs : array-like of shape = (n_source_samples, n_features)
11561156
The transport source samples.
11571157
"""
11581158

@@ -1177,17 +1177,17 @@ def inverse_transform(self, Xs=None, ys=None, Xt=None, yt=None):
11771177
"""Transports target samples Xt onto target samples Xs
11781178
Parameters
11791179
----------
1180-
Xs : array-like of shape = [n_source_samples, n_features]
1180+
Xs : array-like of shape = (n_source_samples, n_features)
11811181
The training input samples.
1182-
ys : array-like, shape = [n_source_samples]
1182+
ys : array-like, shape = (n_source_samples,)
11831183
The class labels
1184-
Xt : array-like of shape = [n_target_samples, n_features]
1184+
Xt : array-like of shape = (n_target_samples, n_features)
11851185
The training input samples.
1186-
yt : array-like, shape = [n_labeled_target_samples]
1186+
yt : array-like, shape = (n_labeled_target_samples,)
11871187
The class labels
11881188
Returns
11891189
-------
1190-
transp_Xt : array-like of shape = [n_source_samples, n_features]
1190+
transp_Xt : array-like of shape = (n_source_samples, n_features)
11911191
The transported target samples.
11921192
"""
11931193

@@ -1278,13 +1278,13 @@ def fit(self, Xs=None, ys=None, Xt=None, yt=None):
12781278
(Xs, ys) and (Xt, yt)
12791279
Parameters
12801280
----------
1281-
Xs : array-like of shape = [n_source_samples, n_features]
1281+
Xs : array-like of shape = (n_source_samples, n_features)
12821282
The training input samples.
1283-
ys : array-like, shape = [n_source_samples]
1283+
ys : array-like, shape = (n_source_samples,)
12841284
The class labels
1285-
Xt : array-like of shape = [n_target_samples, n_features]
1285+
Xt : array-like of shape = (n_target_samples, n_features)
12861286
The training input samples.
1287-
yt : array-like, shape = [n_labeled_target_samples]
1287+
yt : array-like, shape = (n_labeled_target_samples,)
12881288
The class labels
12891289
Returns
12901290
-------
@@ -1341,13 +1341,10 @@ class EMDTransport(BaseTransport):
13411341
on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1
13421342
"""
13431343

1344-
def __init__(self, verbose=False,
1345-
log=False, metric="sqeuclidean",
1344+
def __init__(self, metric="sqeuclidean",
13461345
distribution_estimation=distribution_estimation_uniform,
13471346
out_of_sample_map='ferradans', limit_max=10):
13481347

1349-
self.verbose = verbose
1350-
self.log = log
13511348
self.metric = metric
13521349
self.limit_max = limit_max
13531350
self.distribution_estimation = distribution_estimation
@@ -1358,13 +1355,13 @@ def fit(self, Xs, ys=None, Xt=None, yt=None):
13581355
(Xs, ys) and (Xt, yt)
13591356
Parameters
13601357
----------
1361-
Xs : array-like of shape = [n_source_samples, n_features]
1358+
Xs : array-like of shape = (n_source_samples, n_features)
13621359
The training input samples.
1363-
ys : array-like, shape = [n_source_samples]
1360+
ys : array-like, shape = (n_source_samples,)
13641361
The class labels
1365-
Xt : array-like of shape = [n_target_samples, n_features]
1362+
Xt : array-like of shape = (n_target_samples, n_features)
13661363
The training input samples.
1367-
yt : array-like, shape = [n_labeled_target_samples]
1364+
yt : array-like, shape = (n_labeled_target_samples,)
13681365
The class labels
13691366
Returns
13701367
-------
@@ -1377,8 +1374,6 @@ def fit(self, Xs, ys=None, Xt=None, yt=None):
13771374
# coupling estimation
13781375
self.Coupling_ = emd(
13791376
a=self.mu_s, b=self.mu_t, M=self.Cost,
1380-
# verbose=self.verbose,
1381-
# log=self.log
13821377
)
13831378

13841379
return self
@@ -1463,13 +1458,13 @@ def fit(self, Xs, ys=None, Xt=None, yt=None):
14631458
(Xs, ys) and (Xt, yt)
14641459
Parameters
14651460
----------
1466-
Xs : array-like of shape = [n_source_samples, n_features]
1461+
Xs : array-like of shape = (n_source_samples, n_features)
14671462
The training input samples.
1468-
ys : array-like, shape = [n_source_samples]
1463+
ys : array-like, shape = (n_source_samples,)
14691464
The class labels
1470-
Xt : array-like of shape = [n_target_samples, n_features]
1465+
Xt : array-like of shape = (n_target_samples, n_features)
14711466
The training input samples.
1472-
yt : array-like, shape = [n_labeled_target_samples]
1467+
yt : array-like, shape = (n_labeled_target_samples,)
14731468
The class labels
14741469
Returns
14751470
-------
@@ -1568,13 +1563,13 @@ def fit(self, Xs, ys=None, Xt=None, yt=None):
15681563
(Xs, ys) and (Xt, yt)
15691564
Parameters
15701565
----------
1571-
Xs : array-like of shape = [n_source_samples, n_features]
1566+
Xs : array-like of shape = (n_source_samples, n_features)
15721567
The training input samples.
1573-
ys : array-like, shape = [n_source_samples]
1568+
ys : array-like, shape = (n_source_samples,)
15741569
The class labels
1575-
Xt : array-like of shape = [n_target_samples, n_features]
1570+
Xt : array-like of shape = (n_target_samples, n_features)
15761571
The training input samples.
1577-
yt : array-like, shape = [n_labeled_target_samples]
1572+
yt : array-like, shape = (n_labeled_target_samples,)
15781573
The class labels
15791574
Returns
15801575
-------

0 commit comments

Comments
 (0)