@@ -1053,11 +1053,11 @@ def distribution_estimation_uniform(X):
10531053
10541054 Parameters
10551055 ----------
1056- X : array-like of shape = [ n_samples, n_features]
1056+ X : array-like of shape = ( n_samples, n_features)
10571057 The array of samples
10581058 Returns
10591059 -------
1060- mu : array-like, shape = [ n_samples,]
1060+ mu : array-like, shape = ( n_samples,)
10611061 The uniform distribution estimated from X
10621062 """
10631063
@@ -1071,13 +1071,13 @@ def fit(self, Xs=None, ys=None, Xt=None, yt=None):
10711071 (Xs, ys) and (Xt, yt)
10721072 Parameters
10731073 ----------
1074- Xs : array-like of shape = [ n_source_samples, n_features]
1074+ Xs : array-like of shape = ( n_source_samples, n_features)
10751075 The training input samples.
1076- ys : array-like, shape = [ n_source_samples]
1076+ ys : array-like, shape = ( n_source_samples,)
10771077 The class labels
1078- Xt : array-like of shape = [ n_target_samples, n_features]
1078+ Xt : array-like of shape = ( n_target_samples, n_features)
10791079 The training input samples.
1080- yt : array-like, shape = [ n_labeled_target_samples]
1080+ yt : array-like, shape = ( n_labeled_target_samples,)
10811081 The class labels
10821082 Returns
10831083 -------
@@ -1122,17 +1122,17 @@ def fit_transform(self, Xs=None, ys=None, Xt=None, yt=None):
11221122 ones Xt
11231123 Parameters
11241124 ----------
1125- Xs : array-like of shape = [ n_source_samples, n_features]
1125+ Xs : array-like of shape = ( n_source_samples, n_features)
11261126 The training input samples.
1127- ys : array-like, shape = [ n_source_samples]
1127+ ys : array-like, shape = ( n_source_samples,)
11281128 The class labels
1129- Xt : array-like of shape = [ n_target_samples, n_features]
1129+ Xt : array-like of shape = ( n_target_samples, n_features)
11301130 The training input samples.
1131- yt : array-like, shape = [ n_labeled_target_samples]
1131+ yt : array-like, shape = ( n_labeled_target_samples,)
11321132 The class labels
11331133 Returns
11341134 -------
1135- transp_Xs : array-like of shape = [ n_source_samples, n_features]
1135+ transp_Xs : array-like of shape = ( n_source_samples, n_features)
11361136 The source samples samples.
11371137 """
11381138
@@ -1142,17 +1142,17 @@ def transform(self, Xs=None, ys=None, Xt=None, yt=None):
11421142 """Transports source samples Xs onto target ones Xt
11431143 Parameters
11441144 ----------
1145- Xs : array-like of shape = [ n_source_samples, n_features]
1145+ Xs : array-like of shape = ( n_source_samples, n_features)
11461146 The training input samples.
1147- ys : array-like, shape = [ n_source_samples]
1147+ ys : array-like, shape = ( n_source_samples,)
11481148 The class labels
1149- Xt : array-like of shape = [ n_target_samples, n_features]
1149+ Xt : array-like of shape = ( n_target_samples, n_features)
11501150 The training input samples.
1151- yt : array-like, shape = [ n_labeled_target_samples]
1151+ yt : array-like, shape = ( n_labeled_target_samples,)
11521152 The class labels
11531153 Returns
11541154 -------
1155- transp_Xs : array-like of shape = [ n_source_samples, n_features]
1155+ transp_Xs : array-like of shape = ( n_source_samples, n_features)
11561156 The transport source samples.
11571157 """
11581158
@@ -1177,17 +1177,17 @@ def inverse_transform(self, Xs=None, ys=None, Xt=None, yt=None):
11771177 """Transports target samples Xt onto target samples Xs
11781178 Parameters
11791179 ----------
1180- Xs : array-like of shape = [ n_source_samples, n_features]
1180+ Xs : array-like of shape = ( n_source_samples, n_features)
11811181 The training input samples.
1182- ys : array-like, shape = [ n_source_samples]
1182+ ys : array-like, shape = ( n_source_samples,)
11831183 The class labels
1184- Xt : array-like of shape = [ n_target_samples, n_features]
1184+ Xt : array-like of shape = ( n_target_samples, n_features)
11851185 The training input samples.
1186- yt : array-like, shape = [ n_labeled_target_samples]
1186+ yt : array-like, shape = ( n_labeled_target_samples,)
11871187 The class labels
11881188 Returns
11891189 -------
1190- transp_Xt : array-like of shape = [ n_source_samples, n_features]
1190+ transp_Xt : array-like of shape = ( n_source_samples, n_features)
11911191 The transported target samples.
11921192 """
11931193
@@ -1278,13 +1278,13 @@ def fit(self, Xs=None, ys=None, Xt=None, yt=None):
12781278 (Xs, ys) and (Xt, yt)
12791279 Parameters
12801280 ----------
1281- Xs : array-like of shape = [ n_source_samples, n_features]
1281+ Xs : array-like of shape = ( n_source_samples, n_features)
12821282 The training input samples.
1283- ys : array-like, shape = [ n_source_samples]
1283+ ys : array-like, shape = ( n_source_samples,)
12841284 The class labels
1285- Xt : array-like of shape = [ n_target_samples, n_features]
1285+ Xt : array-like of shape = ( n_target_samples, n_features)
12861286 The training input samples.
1287- yt : array-like, shape = [ n_labeled_target_samples]
1287+ yt : array-like, shape = ( n_labeled_target_samples,)
12881288 The class labels
12891289 Returns
12901290 -------
@@ -1341,13 +1341,10 @@ class EMDTransport(BaseTransport):
13411341 on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1
13421342 """
13431343
1344- def __init__ (self , verbose = False ,
1345- log = False , metric = "sqeuclidean" ,
1344+ def __init__ (self , metric = "sqeuclidean" ,
13461345 distribution_estimation = distribution_estimation_uniform ,
13471346 out_of_sample_map = 'ferradans' , limit_max = 10 ):
13481347
1349- self .verbose = verbose
1350- self .log = log
13511348 self .metric = metric
13521349 self .limit_max = limit_max
13531350 self .distribution_estimation = distribution_estimation
@@ -1358,13 +1355,13 @@ def fit(self, Xs, ys=None, Xt=None, yt=None):
13581355 (Xs, ys) and (Xt, yt)
13591356 Parameters
13601357 ----------
1361- Xs : array-like of shape = [ n_source_samples, n_features]
1358+ Xs : array-like of shape = ( n_source_samples, n_features)
13621359 The training input samples.
1363- ys : array-like, shape = [ n_source_samples]
1360+ ys : array-like, shape = ( n_source_samples,)
13641361 The class labels
1365- Xt : array-like of shape = [ n_target_samples, n_features]
1362+ Xt : array-like of shape = ( n_target_samples, n_features)
13661363 The training input samples.
1367- yt : array-like, shape = [ n_labeled_target_samples]
1364+ yt : array-like, shape = ( n_labeled_target_samples,)
13681365 The class labels
13691366 Returns
13701367 -------
@@ -1377,8 +1374,6 @@ def fit(self, Xs, ys=None, Xt=None, yt=None):
13771374 # coupling estimation
13781375 self .Coupling_ = emd (
13791376 a = self .mu_s , b = self .mu_t , M = self .Cost ,
1380- # verbose=self.verbose,
1381- # log=self.log
13821377 )
13831378
13841379 return self
@@ -1463,13 +1458,13 @@ def fit(self, Xs, ys=None, Xt=None, yt=None):
14631458 (Xs, ys) and (Xt, yt)
14641459 Parameters
14651460 ----------
1466- Xs : array-like of shape = [ n_source_samples, n_features]
1461+ Xs : array-like of shape = ( n_source_samples, n_features)
14671462 The training input samples.
1468- ys : array-like, shape = [ n_source_samples]
1463+ ys : array-like, shape = ( n_source_samples,)
14691464 The class labels
1470- Xt : array-like of shape = [ n_target_samples, n_features]
1465+ Xt : array-like of shape = ( n_target_samples, n_features)
14711466 The training input samples.
1472- yt : array-like, shape = [ n_labeled_target_samples]
1467+ yt : array-like, shape = ( n_labeled_target_samples,)
14731468 The class labels
14741469 Returns
14751470 -------
@@ -1568,13 +1563,13 @@ def fit(self, Xs, ys=None, Xt=None, yt=None):
15681563 (Xs, ys) and (Xt, yt)
15691564 Parameters
15701565 ----------
1571- Xs : array-like of shape = [ n_source_samples, n_features]
1566+ Xs : array-like of shape = ( n_source_samples, n_features)
15721567 The training input samples.
1573- ys : array-like, shape = [ n_source_samples]
1568+ ys : array-like, shape = ( n_source_samples,)
15741569 The class labels
1575- Xt : array-like of shape = [ n_target_samples, n_features]
1570+ Xt : array-like of shape = ( n_target_samples, n_features)
15761571 The training input samples.
1577- yt : array-like, shape = [ n_labeled_target_samples]
1572+ yt : array-like, shape = ( n_labeled_target_samples,)
15781573 The class labels
15791574 Returns
15801575 -------
0 commit comments