@@ -19,7 +19,7 @@ def sinkhorn_unbalanced(a, b, M, reg, alpha, method='sinkhorn', numItermax=1000,
1919 The function solves the following optimization problem:
2020
2121 .. math::
22- W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + alpha KL(\gamma 1, a) + alpha KL(\gamma^T 1, b)
22+ W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + \ a lpha KL(\gamma 1, a) + \ a lpha KL(\gamma^T 1, b)
2323
2424 s.t.
2525 \gamma\geq 0
@@ -43,9 +43,9 @@ def sinkhorn_unbalanced(a, b, M, reg, alpha, method='sinkhorn', numItermax=1000,
4343 M : np.ndarray (ns, nt)
4444 loss matrix
4545 reg : float
46- Regularization term > 0
46+ Entropy regularization term > 0
4747 alpha : float
48- Regulatization term > 0
48+ Marginal relaxation term > 0
4949 method : str
5050 method used for the solver either 'sinkhorn', 'sinkhorn_stabilized' or
5151 'sinkhorn_epsilon_scaling', see those function for specific parameters
@@ -128,7 +128,7 @@ def sinkhorn_unbalanced2(a, b, M, reg, alpha, method='sinkhorn',
128128 The function solves the following optimization problem:
129129
130130 .. math::
131- W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + alpha KL(\gamma 1, a) + alpha KL(\gamma^T 1, b)
131+ W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + \ a lpha KL(\gamma 1, a) + \ a lpha KL(\gamma^T 1, b)
132132
133133 s.t.
134134 \gamma\geq 0
@@ -152,9 +152,9 @@ def sinkhorn_unbalanced2(a, b, M, reg, alpha, method='sinkhorn',
152152 M : np.ndarray (ns,nt)
153153 loss matrix
154154 reg : float
155- Regularization term > 0
156- alpha: float
157- Regularization term > 0
155+ Entropy regularization term > 0
156+ alpha : float
157+ Marginal relaxation term > 0
158158 method : str
159159 method used for the solver either 'sinkhorn', 'sinkhorn_stabilized' or
160160 'sinkhorn_epsilon_scaling', see those function for specific parameters
@@ -239,7 +239,7 @@ def sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, numItermax=1000,
239239 The function solves the following optimization problem:
240240
241241 .. math::
242- W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + alpha KL(\gamma 1, a) + alpha KL(\gamma^T 1, b)
242+ W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + \ a lpha KL(\gamma 1, a) + \ a lpha KL(\gamma^T 1, b)
243243
244244 s.t.
245245 \gamma\geq 0
@@ -263,9 +263,9 @@ def sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, numItermax=1000,
263263 M : np.ndarray (ns,nt)
264264 loss matrix
265265 reg : float
266- Regularization term > 0
267- alpha: float
268- Regularization term > 0
266+ Entropy regularization term > 0
267+ alpha : float
268+ Marginal relaxation term > 0
269269 numItermax : int, optional
270270 Max number of iterations
271271 stopThr : float, optional
@@ -410,7 +410,7 @@ def barycenter_unbalanced(A, M, reg, alpha, weights=None, numItermax=1000,
410410
411411 where :
412412
413- - :math:`W_ {reg}(\cdot,\cdot)` is the unbalanced entropic regularized Wasserstein distance (see ot.unbalanced.sinkhorn_unbalanced)
413+ - :math:`Wu_ {reg}(\cdot,\cdot)` is the unbalanced entropic regularized Wasserstein distance (see ot.unbalanced.sinkhorn_unbalanced)
414414 - :math:`\mathbf{a}_i` are training distributions in the columns of matrix :math:`\mathbf{A}`
415415 - reg and :math:`\mathbf{M}` are respectively the regularization term and the cost matrix for OT
416416 - alpha is the marginal relaxation hyperparameter
@@ -423,9 +423,9 @@ def barycenter_unbalanced(A, M, reg, alpha, weights=None, numItermax=1000,
423423 M : np.ndarray (d,d)
424424 loss matrix for OT
425425 reg : float
426- Regularization term > 0
426+ Entropy regularization term > 0
427427 alpha : float
428- Regularization term > 0
428+ Marginal relaxation term > 0
429429 weights : np.ndarray (n,)
430430 Weights of each histogram a_i on the simplex (barycentric coodinates)
431431 numItermax : int, optional
0 commit comments