@@ -58,27 +58,6 @@ def coordinate_grad_semi_dual(b, M, reg, beta, i):
5858 -------
5959 coordinate gradient : ndarray, shape (nt,)
6060
61- Examples
62- --------
63- >>> import ot
64- >>> np.random.seed(0)
65- >>> n_source = 7
66- >>> n_target = 4
67- >>> a = ot.utils.unif(n_source)
68- >>> b = ot.utils.unif(n_target)
69- >>> X_source = np.random.randn(n_source, 2)
70- >>> Y_target = np.random.randn(n_target, 2)
71- >>> M = ot.dist(X_source, Y_target)
72- >>> ot.stochastic.solve_semi_dual_entropic(a, b, M, reg=1, method="ASGD", numItermax=300000)
73- array([[2.53942342e-02, 9.98640673e-02, 1.75945647e-02, 4.27664307e-06],
74- [1.21556999e-01, 1.26350515e-02, 1.30491795e-03, 7.36017394e-03],
75- [3.54070702e-03, 7.63581358e-02, 6.29581672e-02, 1.32812798e-07],
76- [2.60578198e-02, 3.35916645e-02, 8.28023223e-02, 4.05336238e-04],
77- [9.86808864e-03, 7.59774324e-04, 1.08702729e-02, 1.21359007e-01],
78- [2.17218856e-02, 9.12931802e-04, 1.87962526e-03, 1.18342700e-01],
79- [4.14237512e-02, 2.67487857e-02, 7.23016955e-02, 2.38291052e-03]])
80-
81-
8261 .. _references-coordinate-grad-semi-dual:
8362 References
8463 ----------
@@ -137,27 +116,6 @@ def sag_entropic_transport(a, b, M, reg, numItermax=10000, lr=None):
137116 v : ndarray, shape (`nt`,)
138117 Dual variable.
139118
140- Examples
141- --------
142- >>> import ot
143- >>> np.random.seed(0)
144- >>> n_source = 7
145- >>> n_target = 4
146- >>> a = ot.utils.unif(n_source)
147- >>> b = ot.utils.unif(n_target)
148- >>> X_source = np.random.randn(n_source, 2)
149- >>> Y_target = np.random.randn(n_target, 2)
150- >>> M = ot.dist(X_source, Y_target)
151- >>> ot.stochastic.solve_semi_dual_entropic(a, b, M, reg=1, method="ASGD", numItermax=300000)
152- array([[2.53942342e-02, 9.98640673e-02, 1.75945647e-02, 4.27664307e-06],
153- [1.21556999e-01, 1.26350515e-02, 1.30491795e-03, 7.36017394e-03],
154- [3.54070702e-03, 7.63581358e-02, 6.29581672e-02, 1.32812798e-07],
155- [2.60578198e-02, 3.35916645e-02, 8.28023223e-02, 4.05336238e-04],
156- [9.86808864e-03, 7.59774324e-04, 1.08702729e-02, 1.21359007e-01],
157- [2.17218856e-02, 9.12931802e-04, 1.87962526e-03, 1.18342700e-01],
158- [4.14237512e-02, 2.67487857e-02, 7.23016955e-02, 2.38291052e-03]])
159-
160-
161119 .. _references-sag-entropic-transport:
162120 References
163121 ----------
@@ -225,27 +183,6 @@ def averaged_sgd_entropic_transport(a, b, M, reg, numItermax=300000, lr=None):
225183 ave_v : ndarray, shape (`nt`,)
226184 dual variable
227185
228- Examples
229- --------
230- >>> import ot
231- >>> np.random.seed(0)
232- >>> n_source = 7
233- >>> n_target = 4
234- >>> a = ot.utils.unif(n_source)
235- >>> b = ot.utils.unif(n_target)
236- >>> X_source = np.random.randn(n_source, 2)
237- >>> Y_target = np.random.randn(n_target, 2)
238- >>> M = ot.dist(X_source, Y_target)
239- >>> ot.stochastic.solve_semi_dual_entropic(a, b, M, reg=1, method="ASGD", numItermax=300000)
240- array([[2.53942342e-02, 9.98640673e-02, 1.75945647e-02, 4.27664307e-06],
241- [1.21556999e-01, 1.26350515e-02, 1.30491795e-03, 7.36017394e-03],
242- [3.54070702e-03, 7.63581358e-02, 6.29581672e-02, 1.32812798e-07],
243- [2.60578198e-02, 3.35916645e-02, 8.28023223e-02, 4.05336238e-04],
244- [9.86808864e-03, 7.59774324e-04, 1.08702729e-02, 1.21359007e-01],
245- [2.17218856e-02, 9.12931802e-04, 1.87962526e-03, 1.18342700e-01],
246- [4.14237512e-02, 2.67487857e-02, 7.23016955e-02, 2.38291052e-03]])
247-
248-
249186 .. _references-averaged-sgd-entropic-transport:
250187 References
251188 ----------
@@ -304,27 +241,6 @@ def c_transform_entropic(b, M, reg, beta):
304241 u : ndarray, shape (`ns`,)
305242 Dual variable.
306243
307- Examples
308- --------
309- >>> import ot
310- >>> np.random.seed(0)
311- >>> n_source = 7
312- >>> n_target = 4
313- >>> a = ot.utils.unif(n_source)
314- >>> b = ot.utils.unif(n_target)
315- >>> X_source = np.random.randn(n_source, 2)
316- >>> Y_target = np.random.randn(n_target, 2)
317- >>> M = ot.dist(X_source, Y_target)
318- >>> ot.stochastic.solve_semi_dual_entropic(a, b, M, reg=1, method="ASGD", numItermax=300000)
319- array([[2.53942342e-02, 9.98640673e-02, 1.75945647e-02, 4.27664307e-06],
320- [1.21556999e-01, 1.26350515e-02, 1.30491795e-03, 7.36017394e-03],
321- [3.54070702e-03, 7.63581358e-02, 6.29581672e-02, 1.32812798e-07],
322- [2.60578198e-02, 3.35916645e-02, 8.28023223e-02, 4.05336238e-04],
323- [9.86808864e-03, 7.59774324e-04, 1.08702729e-02, 1.21359007e-01],
324- [2.17218856e-02, 9.12931802e-04, 1.87962526e-03, 1.18342700e-01],
325- [4.14237512e-02, 2.67487857e-02, 7.23016955e-02, 2.38291052e-03]])
326-
327-
328244 .. _references-c-transform-entropic:
329245 References
330246 ----------
@@ -399,27 +315,6 @@ def solve_semi_dual_entropic(a, b, M, reg, method, numItermax=10000, lr=None,
399315 log : dict
400316 log dictionary return only if log==True in parameters
401317
402- Examples
403- --------
404- >>> import ot
405- >>> np.random.seed(0)
406- >>> n_source = 7
407- >>> n_target = 4
408- >>> a = ot.utils.unif(n_source)
409- >>> b = ot.utils.unif(n_target)
410- >>> X_source = np.random.randn(n_source, 2)
411- >>> Y_target = np.random.randn(n_target, 2)
412- >>> M = ot.dist(X_source, Y_target)
413- >>> ot.stochastic.solve_semi_dual_entropic(a, b, M, reg=1, method="ASGD", numItermax=300000)
414- array([[2.53942342e-02, 9.98640673e-02, 1.75945647e-02, 4.27664307e-06],
415- [1.21556999e-01, 1.26350515e-02, 1.30491795e-03, 7.36017394e-03],
416- [3.54070702e-03, 7.63581358e-02, 6.29581672e-02, 1.32812798e-07],
417- [2.60578198e-02, 3.35916645e-02, 8.28023223e-02, 4.05336238e-04],
418- [9.86808864e-03, 7.59774324e-04, 1.08702729e-02, 1.21359007e-01],
419- [2.17218856e-02, 9.12931802e-04, 1.87962526e-03, 1.18342700e-01],
420- [4.14237512e-02, 2.67487857e-02, 7.23016955e-02, 2.38291052e-03]])
421-
422-
423318 .. _references-solve-semi-dual-entropic:
424319 References
425320 ----------
@@ -509,33 +404,6 @@ def batch_grad_dual(a, b, M, reg, alpha, beta, batch_size, batch_alpha,
509404 grad : ndarray, shape (`ns`,)
510405 partial grad F
511406
512- Examples
513- --------
514- >>> import ot
515- >>> np.random.seed(0)
516- >>> n_source = 7
517- >>> n_target = 4
518- >>> a = ot.utils.unif(n_source)
519- >>> b = ot.utils.unif(n_target)
520- >>> X_source = np.random.randn(n_source, 2)
521- >>> Y_target = np.random.randn(n_target, 2)
522- >>> M = ot.dist(X_source, Y_target)
523- >>> sgd_dual_pi, log = ot.stochastic.solve_dual_entropic(a, b, M, reg=1, batch_size=3, numItermax=30000, lr=0.1, log=True)
524- >>> log['alpha']
525- array([0.71759102, 1.57057384, 0.85576566, 0.1208211 , 0.59190466,
526- 1.197148 , 0.17805133])
527- >>> log['beta']
528- array([0.49741367, 0.57478564, 1.40075528, 2.75890102])
529- >>> sgd_dual_pi
530- array([[2.09730063e-02, 8.38169324e-02, 7.50365455e-03, 8.72731415e-09],
531- [5.58432437e-03, 5.89881299e-04, 3.09558411e-05, 8.35469849e-07],
532- [3.26489515e-03, 7.15536035e-02, 2.99778211e-02, 3.02601593e-10],
533- [4.05390622e-02, 5.31085068e-02, 6.65191787e-02, 1.55812785e-06],
534- [7.82299812e-02, 6.12099102e-03, 4.44989098e-02, 2.37719187e-03],
535- [5.06266486e-02, 2.16230494e-03, 2.26215141e-03, 6.81514609e-04],
536- [6.06713990e-02, 3.98139808e-02, 5.46829338e-02, 8.62371424e-06]])
537-
538-
539407 .. _references-batch-grad-dual:
540408 References
541409 ----------
@@ -600,37 +468,6 @@ def sgd_entropic_regularization(a, b, M, reg, batch_size, numItermax, lr):
600468 beta : ndarray, shape (nt,)
601469 dual variable
602470
603- Examples
604- --------
605- >>> import ot
606- >>> n_source = 7
607- >>> n_target = 4
608- >>> reg = 1
609- >>> numItermax = 20000
610- >>> lr = 0.1
611- >>> batch_size = 3
612- >>> log = True
613- >>> a = ot.utils.unif(n_source)
614- >>> b = ot.utils.unif(n_target)
615- >>> rng = np.random.RandomState(0)
616- >>> X_source = rng.randn(n_source, 2)
617- >>> Y_target = rng.randn(n_target, 2)
618- >>> M = ot.dist(X_source, Y_target)
619- >>> sgd_dual_pi, log = ot.stochastic.solve_dual_entropic(a, b, M, reg, batch_size, numItermax, lr, log)
620- >>> log['alpha']
621- array([0.64171798, 1.27932201, 0.78132257, 0.15638935, 0.54888354,
622- 1.03663469, 0.20595781])
623- >>> log['beta']
624- array([0.51207194, 0.58033189, 1.28922676, 2.26859736])
625- >>> sgd_dual_pi
626- array([[1.97276541e-02, 7.81248547e-02, 6.22136048e-03, 4.95442423e-09],
627- [4.23494310e-03, 4.43286263e-04, 2.06927079e-05, 3.82389139e-07],
628- [3.07542414e-03, 6.67897769e-02, 2.48904999e-02, 1.72030247e-10],
629- [4.26271990e-02, 5.53375455e-02, 6.16535024e-02, 9.88812650e-07],
630- [7.60423265e-02, 5.89585256e-03, 3.81267087e-02, 1.39458256e-03],
631- [4.37557504e-02, 1.85189176e-03, 1.72335760e-03, 3.55491279e-04],
632- [6.33096109e-02, 4.11683954e-02, 5.02962051e-02, 5.43097516e-06]])
633-
634471 References
635472 ----------
636473 .. [19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A.& Blondel, M. Large-scale Optimal Transport and Mapping Estimation. International Conference on Learning Representation (2018)
@@ -702,37 +539,6 @@ def solve_dual_entropic(a, b, M, reg, batch_size, numItermax=10000, lr=1,
702539 log : dict
703540 log dictionary return only if log==True in parameters
704541
705- Examples
706- --------
707- >>> import ot
708- >>> n_source = 7
709- >>> n_target = 4
710- >>> reg = 1
711- >>> numItermax = 20000
712- >>> lr = 0.1
713- >>> batch_size = 3
714- >>> log = True
715- >>> a = ot.utils.unif(n_source)
716- >>> b = ot.utils.unif(n_target)
717- >>> rng = np.random.RandomState(0)
718- >>> X_source = rng.randn(n_source, 2)
719- >>> Y_target = rng.randn(n_target, 2)
720- >>> M = ot.dist(X_source, Y_target)
721- >>> sgd_dual_pi, log = ot.stochastic.solve_dual_entropic(a, b, M, reg, batch_size, numItermax, lr, log)
722- >>> log['alpha']
723- array([0.64057733, 1.2683513 , 0.75610161, 0.16024284, 0.54926534,
724- 1.0514201 , 0.19958936])
725- >>> log['beta']
726- array([0.51372571, 0.58843489, 1.27993921, 2.24344807])
727- >>> sgd_dual_pi
728- array([[1.97377795e-02, 7.86706853e-02, 6.15682001e-03, 4.82586997e-09],
729- [4.19566963e-03, 4.42016865e-04, 2.02777272e-05, 3.68823708e-07],
730- [3.00379244e-03, 6.56562018e-02, 2.40462171e-02, 1.63579656e-10],
731- [4.28626062e-02, 5.60031599e-02, 6.13193826e-02, 9.67977735e-07],
732- [7.61972739e-02, 5.94609051e-03, 3.77886693e-02, 1.36046648e-03],
733- [4.44810042e-02, 1.89476742e-03, 1.73285847e-03, 3.51826036e-04],
734- [6.30118293e-02, 4.12398660e-02, 4.95148998e-02, 5.26247246e-06]])
735-
736542 References
737543 ----------
738544 .. [19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A.& Blondel, M. Large-scale Optimal Transport and Mapping Estimation. International Conference on Learning Representation (2018)
0 commit comments