You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
- :math:`\Omega_e` is the entropic regularization term :math:`\Omega_e(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
90
+
- :math:`\Omega_g` is the group lasso regulaization term :math:`\Omega_g(\gamma)=\sum_{i,c} \|\gamma_{i,\mathcal{I}_c}\|^{1/2}_1` where :math:`\mathcal{I}_c` are the index of samples from class c in the source domain.
91
+
- a and b are source and target weights (sum to 1)
92
+
93
+
The algorithm used for solving the problem is the generalised conditional gradient as proposed in [5]_ [7]_
94
+
95
+
96
+
Parameters
97
+
----------
98
+
a : np.ndarray (ns,)
99
+
samples weights in the source domain
100
+
labels_a : np.ndarray (ns,)
101
+
labels of samples in the source domain
102
+
b : np.ndarray (nt,)
103
+
samples weights in the target domain
104
+
M_GPU : cudamat.CUDAMatrix (ns,nt)
105
+
loss matrix
106
+
reg : float
107
+
Regularization term for entropic regularization >0
108
+
eta : float, optional
109
+
Regularization term for group lasso regularization >0
110
+
numItermax : int, optional
111
+
Max number of iterations
112
+
numInnerItermax : int, optional
113
+
Max number of iterations (inner sinkhorn solver)
114
+
stopInnerThr : float, optional
115
+
Stop threshold on error (inner sinkhorn solver) (>0)
116
+
verbose : bool, optional
117
+
Print information along iterations
118
+
log : bool, optional
119
+
record log if True
120
+
121
+
122
+
Returns
123
+
-------
124
+
gamma : (ns x nt) ndarray
125
+
Optimal transportation matrix for the given parameters
126
+
log : dict
127
+
log dictionary return only if log==True in parameters
128
+
129
+
130
+
References
131
+
----------
132
+
133
+
.. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, "Optimal Transport for Domain Adaptation," in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1
134
+
.. [7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). Generalized conditional gradient: analysis of convergence and applications. arXiv preprint arXiv:1510.06567.
0 commit comments