@@ -54,41 +54,28 @@ def wda(X,y,p=2,reg=1,k=10,solver = None,maxiter=100,verbose=0):
5454
5555 Parameters
5656 ----------
57- a : np.ndarray (ns,)
58- samples weights in the source domain
59- b : np.ndarray (nt,)
60- samples in the target domain
61- M : np.ndarray (ns,nt)
62- loss matrix
63- reg : float
64- Regularization term >0
65- numItermax : int, optional
66- Max number of iterations
67- stopThr : float, optional
68- Stop threshol on error (>0)
69- verbose : bool, optional
57+ X : numpy.ndarray (n,d)
58+ Training samples
59+ y : np.ndarray (n,)
60+ labels for training samples
61+ p : int, optional
62+ size of dimensionnality reduction
63+ reg : float, optional
64+ Regularization term >0 (entropic regularization)
65+ solver : str, optional
66+ None for steepest decsent or 'TrustRegions' for trust regions algorithm
67+ else shoudl be a pymanopt.sovers
68+ verbose : int, optional
7069 Print information along iterations
71- log : bool, optional
72- record log if True
70+
7371
7472
7573 Returns
7674 -------
77- gamma : (ns x nt ) ndarray
75+ P : (d x p ) ndarray
7876 Optimal transportation matrix for the given parameters
79- log : dict
80- log dictionary return only if log==True in parameters
81-
82- Examples
83- --------
84-
85- >>> import ot
86- >>> a=[.5,.5]
87- >>> b=[.5,.5]
88- >>> M=[[0.,1.],[1.,0.]]
89- >>> ot.sinkhorn(a,b,M,1)
90- array([[ 0.36552929, 0.13447071],
91- [ 0.13447071, 0.36552929]])
77+ proj : fun
78+ projectiuon function including mean centering
9279
9380
9481 References
0 commit comments