@@ -40,7 +40,6 @@ def tensor_square_loss(C1, C2, T):
4040 function as the loss function of Gromow-Wasserstein discrepancy.
4141
4242 Where :
43-
4443 C1 : Metric cost matrix in the source space
4544 C2 : Metric cost matrix in the target space
4645 T : A coupling between those two spaces
@@ -61,13 +60,10 @@ def tensor_square_loss(C1, C2, T):
6160 T : ndarray, shape (ns, nt)
6261 Coupling between source and target spaces
6362
64-
6563 Returns
6664 -------
6765 tens : ndarray, shape (ns, nt)
6866 \mathcal{L}(C1,C2) \otimes T tensor-matrix multiplication result
69-
70-
7167 """
7268
7369 C1 = np .asarray (C1 , dtype = np .float64 )
@@ -119,15 +115,13 @@ def tensor_kl_loss(C1, C2, T):
119115 T : ndarray, shape (ns, nt)
120116 Coupling between source and target spaces
121117
122-
123118 Returns
124119 -------
125120 tens : ndarray, shape (ns, nt)
126121 \mathcal{L}(C1,C2) \otimes T tensor-matrix multiplication result
127122
128123 References
129124 ----------
130-
131125 .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016.
132126
133127 """
@@ -159,7 +153,6 @@ def update_square_loss(p, lambdas, T, Cs):
159153 Updates C according to the L2 Loss kernel with the S Ts couplings
160154 calculated at each iteration
161155
162-
163156 Parameters
164157 ----------
165158 p : ndarray, shape (N,)
@@ -174,8 +167,6 @@ def update_square_loss(p, lambdas, T, Cs):
174167 ----------
175168 C : ndarray, shape (nt,nt)
176169 updated C matrix
177-
178-
179170 """
180171 tmpsum = sum ([lambdas [s ] * np .dot (T [s ].T , Cs [s ]).dot (T [s ]) for s in range (len (T ))])
181172 ppt = np .outer (p , p )
@@ -202,8 +193,6 @@ def update_kl_loss(p, lambdas, T, Cs):
202193 ----------
203194 C : ndarray, shape (ns,ns)
204195 updated C matrix
205-
206-
207196 """
208197 tmpsum = sum ([lambdas [s ] * np .dot (T [s ].T , Cs [s ]).dot (T [s ]) for s in range (len (T ))])
209198 ppt = np .outer (p , p )
@@ -229,15 +218,13 @@ def gromov_wasserstein(C1, C2, p, q, loss_fun, epsilon, max_iter=1000, tol=1e-9,
229218 \GW\geq 0
230219
231220 Where :
232-
233221 C1 : Metric cost matrix in the source space
234222 C2 : Metric cost matrix in the target space
235223 p : distribution in the source space
236224 q : distribution in the target space
237225 L : loss function to account for the misfit between the similarity matrices
238226 H : entropy
239227
240-
241228 Parameters
242229 ----------
243230 C1 : ndarray, shape (ns, ns)
@@ -261,13 +248,11 @@ def gromov_wasserstein(C1, C2, p, q, loss_fun, epsilon, max_iter=1000, tol=1e-9,
261248 log : bool, optional
262249 record log if True
263250
264-
265251 Returns
266252 -------
267253 T : ndarray, shape (ns, nt)
268254 coupling between the two spaces that minimizes :
269255 \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l}-\epsilon(H(T))
270-
271256 """
272257
273258 C1 = np .asarray (C1 , dtype = np .float64 )
@@ -322,17 +307,14 @@ def gromov_wasserstein2(C1, C2, p, q, loss_fun, epsilon, max_iter=1000, tol=1e-9
322307 .. math::
323308 \GW_Dist = \min_T \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l}-\epsilon(H(T))
324309
325-
326310 Where :
327-
328311 C1 : Metric cost matrix in the source space
329312 C2 : Metric cost matrix in the target space
330313 p : distribution in the source space
331314 q : distribution in the target space
332315 L : loss function to account for the misfit between the similarity matrices
333316 H : entropy
334317
335-
336318 Parameters
337319 ----------
338320 C1 : ndarray, shape (ns, ns)
@@ -360,7 +342,6 @@ def gromov_wasserstein2(C1, C2, p, q, loss_fun, epsilon, max_iter=1000, tol=1e-9
360342 -------
361343 gw_dist : float
362344 Gromov-Wasserstein distance
363-
364345 """
365346
366347 if log :
@@ -428,7 +409,6 @@ def gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun, epsilon, max_iter=1000,
428409 -------
429410 C : ndarray, shape (N, N)
430411 Similarity matrix in the barycenter space (permutated arbitrarily)
431-
432412 """
433413
434414 S = len (Cs )
0 commit comments